原子物理学复习资料

合集下载

原子物理学复习资料讲解

原子物理学复习资料讲解

原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,康普顿效应理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:氢原子谱线跃迁、类氢原子谱线跃迁,碱金属原子能级跃,精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。

3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5. 原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6. 原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。

原子物理复习资料

原子物理复习资料

原子物理复习资料一、原子的结构原子是由位于中心的原子核和核外电子组成的。

原子核带正电荷,电子带负电荷,它们之间的静电引力使得电子围绕原子核做高速运动。

原子核由质子和中子组成,质子带正电,中子不带电。

原子的质子数决定了它的元素种类,而质子数和中子数共同决定了原子的质量数。

电子在原子核外分层排布,离核越近的电子能量越低,越稳定;离核越远的电子能量越高,越不稳定。

二、原子的能级和跃迁原子中的电子只能处于一系列不连续的能量状态,这些能量状态称为能级。

处于基态的原子是最稳定的,当原子吸收一定能量的光子或与其他粒子发生碰撞时,电子会从低能级跃迁到高能级;反之,电子会从高能级跃迁到低能级,同时释放出光子。

跃迁过程中吸收或释放的光子能量等于两个能级的能量差,即$h\nu = E_{m} E_{n}$,其中$h$ 是普朗克常量,$\nu$ 是光子的频率,$E_{m}$和$E_{n}$分别是高能级和低能级的能量。

三、氢原子的能级结构对于氢原子,其能级公式为$E_{n} =\frac{136}{n^2} \text{eV}$,其中$n$ 是量子数,$n = 1, 2, 3, \cdots$。

当$n = 1$ 时,对应的能级为基态,能量为$-136 \text{eV}$;当$n = 2$ 时,对应的能级为第一激发态,能量为$-34 \text{eV}$;以此类推。

氢原子从高能级向低能级跃迁时,可以发出一系列不同频率的光子,形成线状光谱。

四、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量,如果吸收的能量足够大,电子就能从金属表面逸出,这种现象称为光电效应。

光电效应的实验规律:1、存在饱和电流,光电流的强度与入射光的强度成正比。

2、存在遏止电压,与入射光的频率有关,而与入射光的强度无关。

3、存在截止频率(红限),当入射光的频率低于截止频率时,无论光强多大,都不会产生光电效应。

爱因斯坦提出了光子说,成功解释了光电效应。

原子物理学总复习

原子物理学总复习
原子物理学总复习
段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)

原子物理学复习总结提纲

原子物理学复习总结提纲

第一章 原子的位形:卢瑟福模型一、学习要点1、原子的质量和大小R ~10-10 m , N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2、原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论: 库仑散射理论公式:221212200cot cot cot 12422242C Z Z e Z Z e a b E m v θθθπεπε===⋅'⋅ 卢瑟福散射公式:222124401()4416sin sin 22Z Z e a d d dN N nAt ntN E A θθπεΩΩ'== 2sin d d πθθΩ=实验验证:1422sin ,,Z , ,2A dN t E n N d θρμ--'⎛⎫∝= ⎪Ω⎝⎭,μ靶原子的摩尔质量 微分散射面的物理意义、总截面 24()216sin 2a d d b db σθπθΩ==()022212244()114416sin 22Z Z e d a d E Sin σθσθθθπε⎛⎫≡== ⎪Ω⎝⎭ (5)原子核大小的估计: α粒子正入射(0180θ=)::2120Z Z 14m c e r a E πε=≡ ,m r ~10-15-10-14m第一章自测题1. 选择题(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍? A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14 (6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少? A. 16 B.8 C.4 D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A .质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2. 填空题(1)α粒子大角散射的结果证明原子结构为 核式结构 .(2)爱因斯坦质能关系为 2E mc = .(3)1原子质量单位(u )= 931.5 MeV/c 2. (4) 24e πε= 1.44 fm.MeV. 3.计算题习题1-2、习题1-3、习题1-5、习题1-6.4.思考题1、什么叫α粒子散射?汤姆孙模型能否说明这种现象?小角度散射如何?大角度散射如何?2、什么是卢瑟福原子的核式模型?用原子的核式模型解释α粒子的大角散射现象。

原子物理学知识要点总结

原子物理学知识要点总结

一.氢原子光谱的线系
巴尔末线系:
v

1


4 B
1 22

1 n2


RH
1 22

1 n2

n 3, 4, 5,
RH 1.0967758107 m1 氢原子的Rydberg常数
(远紫外)赖曼系:
v

RH
1 12

1 n2

n 2,3, 4
(红外三个线系)
例: 3 2 P3/ 2 表示: n 3, 1, j 3/ 2 的原子态,多重度:2
Li原子能级图(考虑精细结构,不包括相对论修正)
单电子辐射跃迁选择定则
1、选择定则 单电子辐射跃迁(吸收或发射光子)只能在下列条件下发生:
l 1 j 0, 1
2、碱金属光谱的解释
主线系
2P1/2 2P3/2
l0
碱金属原子态符号: n 2s1Lj
n : 价电子的主量子数
L : 价电子的轨道角动量,用大写 S, P, D, F,G... 表
示 0,1,2,3,4...
j :电子的总角动量。
2s 1: 自旋多重度,表示原子态的多重数。对碱原子 2s 1 2
S 态虽然是单层(重)能级,仍表示为:2S
5 4 10000
3 20000
p =1
5 4
3
2 30000
d =2
5 4 3
f
=3
5 4
柏 格 曼 系
40000 2
厘米-1
锂原子能级图
H 7 56 4 3
2
锂的四个线系
主 线 系: 第二辅线系: 第一辅线系: 柏格曼系:

原子物理学期末总复习

原子物理学期末总复习

能级跃迁选择定则:
即 li 奇数 l’ i 偶数
对L S耦合:S 0; L 0,1; J 0,1( J 0 J ' 0除外) J 0,1( J 0 J ' 0除外) 对j j耦合:j 0,1;
跃迁还需满足初末态宇 称相反,
11. 碱金属原子能级的双重结构是由于下面的原因产生 : [ D] (A)相对论效应; ( B) 原子实极化; (C) 价电子的轨道贯穿; (D) 价电子自旋与轨道角动量相 互作用。
12.在(1)α粒子散射实验,(2)弗兰克-赫兹实验, (3)史特恩-盖拉实验,(4)反常塞曼效应中, 证实电子存在自旋的有:[ B ] (A)(1),(2); (B)(3),(4); (C)(2),(4); (D)(1),(3).
多电子原子
电子组态: n1l1n2l2原子态(n1l1n2l2)2s+1Lj 电子组态的耦合方式:L-S耦合, j-j耦合 核外电子排布规则:泡利原理和能量最低原理 泡利不相容原理:在一个原子中不可能有两个或者两个 以上的电子具有完全相同的四个量子数(n,l,ml,ms)。 换言之,原子中的每一个状态只能容纳一个电子.
5. 一次电离的氦离子( He+ )处于 n=2 的激发态,根据波 尔理论,能量E为 [ C ] (A)-3.4eV ( B) -6.8eV ( C) -13.6eV (D) -27.2eV
6.夫兰克—赫兹实验证明了[ B ] (A)原子内部能量连续变化 (B)原子内存在能级 (C)原子有确定的大小 (D)原子有核心
16.处于L=3, S=2原子态的原子,其总角动量量子数J的可能 取值为:[ B ] (A) 3, 2,1; (B) 5, 4, 3, 2, 1; (C) 6, 5, 4, 3; (D) 5/2, 4/2, 3/2, 2/2, 1/2。

原子物理学复习资料

原子物理学复习资料

解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比, 拉莫尔进动,拉莫尔频率,朗德g 因子,电子态,原子态,塞曼效应,电子组态, LS 耦合,jj 耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc ,ħc ,玻尔磁子,精细结构常数,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l ,s ,j ),LS 耦合原子态,jj 耦合原子态,朗德间隔定则,g 因子,塞曼效应,原子基态谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则1. 同位素 :一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2. 类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。

3. 电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4. 激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5. 原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6. 原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。

原子物理学知识点高三

原子物理学知识点高三

原子物理学知识点高三第一部分:原子和元素的基本概念原子物理学是研究原子和原子核的性质及其相互作用的学科,是现代物理学的重要分支之一。

在高三的学习中,我们会遇到一些基本的原子物理学知识点,让我们来系统地学习一下。

1. 原子的基本构成:原子是物质的基本组成单元,由原子核和围绕核运动的电子组成。

原子核是由质子和中子组成,质子带正电荷,中子不带电。

电子带负电荷,质量远小于质子和中子。

2. 元素和周期表:元素是指由具有相同原子序数的原子组成的纯物质,目前已经发现的元素有118种。

元素可以根据原子序数和原子量等特征排列在周期表中,周期表是原子物理学中的重要工具,能够帮助我们理解元素的性质和相互关系。

3. 原子的核内外层结构:原子核内包含质子和中子,质子数决定了元素的原子序数。

电子围绕在原子核外层运动,形成电子层。

电子层之间存在能级的差异,高能级电子离原子核越远,电子的能量越高。

第二部分:量子力学和原子结构量子力学是研究微观领域物理现象的理论框架,对于研究原子物理学非常重要。

在高三学习中,我们也会接触到一些基本的量子力学概念和应用。

1. 波粒二象性:在量子力学中,微观粒子既可以表现出粒子的性质,也可以表现出波动的性质。

典型的例子就是电子的行为,既可以看作是以粒子形式存在,也可以看作是以波动形式传播。

2. 波函数:波函数是描述量子系统状态的数学函数,可以用于计算能级、态密度等物理量。

波函数的平方模长(即概率密度)表示在特定位置或状态下找到粒子的概率。

3. 原子能级和电子排布规则:根据量子力学的原理,原子中的电子分布在不同的能级上,每个能级由一个或多个轨道构成。

根据泡利不相容原理、奥克形矩阵规则等,我们能够了解电子在不同能级上的排布规律。

第三部分:原子核和核反应除了电子外,原子核也是原子物理学研究的重要对象。

在高三学习中,我们会接触到一些关于原子核的知识和相关的核反应。

1. 原子核的结构:原子核由质子和中子组成,质子数决定了元素的原子序数。

原子物理学总复习

原子物理学总复习

原子物理学总复习量子物理卢瑟福微分截面d dN c ( ) d Nntd 散射在某个范围内(θ1到θ2)的几率有效散射截面2d 2 b dba 2 d 16 Sin42dN ' 2 d nt d nt N 3 1 1 4 si n 22a 2 cos第十九章Ch2 原子的量子态量子物理玻尔理论:三步曲1.定态条件(量子态概念); 2.频率条件(量子跃迁); h 3.角动量量子化。

Ln nEn Em实验验证:1.夫兰克-赫兹实验:证实了量子态的存在;2.光谱:三类单电子体系~ 1 Z 2R 1 1 T( m ) T( n ) H 2 n2 m第十九章量子物理~ 1 Z 2R 1 1 T( m ) T( n ) H m 2 n2光谱项R T , E hcT 2 n*n , 碱金属n* n l Z对氢n* n, 类氢n*~ hc 物理量的关系E h hc第十九章量子物理氢光谱rn r1n2 , r1 0.053nm(n 1,2,3, )E1 13.6eVEn E1 n能量E2类氢离子光谱:n2 半径rn a1 ZhcR 2 Z 2 n线系n 4 n 3 n 2n第十九章量子物理E 0帕邢系巴耳末系莱曼系布拉开系n 1E碱金属光谱Li四个线系主线系,nP→2S, T2 s Tnp 主线系~ R R 2 (2 s ) (n p )2第十九章量子物理n 2, 3, 4, 基线系锐线系,nS→2P,又称第二辅线系线系T2 p Tnsn 3, 4, 5, n 3, 4, 5,锐线系漫线系漫线系,nD→2P,又称第一辅线系;线系T2 p Tnd基线系,nF→3D 又称柏格曼线系主线系系T3d Tnfn 4, 5, 6,第十九章量子物理mM Δ 几个光谱名词二体问题me→ M mRA线系限共振线主线rm Mme M r1 r1 (基态) M meR m 1 e M.典型题目:三种体系的光谱计算2-6~2-10,2-13~2-14第四章原子的精细结构第十九章量子物理碱金属精细结构史特恩―盖拉赫实验塞曼效应电子的自旋S基础:原子磁矩,空间量子化1.一个假设(核心)――电子的自旋第十九章量子物理它是与粒子运动状态无关的、粒子的内禀性特性。

原子物理学复习资料讲解

原子物理学复习资料讲解

原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj 耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,?c,玻尔磁子,拉莫尔进动频率著名实验的内容、现象及解释:a粒子散射实验,夫兰克一赫兹实验,施特恩一盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,康普顿效应理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(I,S, j ),LS耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:氢原子谱线跃迁、类氢原子谱线跃迁,碱金属原子能级跃,精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1. 同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2. 类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子3. 电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4. 激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电5. 原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6. 原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当 由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小 的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极 化。

原子物理学复习

原子物理学复习

第一章 原子的基本状况一、学习要点1.原子的质量和大小,R ~ 10-10 m , N o =×1023/mol2.原子核式结构模型 (1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式:(5)原子核大小的估计 (会推导): 散射角θ:),2sin11(Z 241220θπε+⋅=Mv e r mα粒子正入射:2024Z 4Mv e r m πε= ,m r ~10-15-10-14 m二、基本练习1.选择(1)原子半径的数量级是: A .10-10cm; C. 10-10m(2)原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180︒ B.α粒子只偏2︒~3︒ C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小()(X)Au AA g M N ==12-27C 1u 1.6605410kg12==⨯的质量22012c 42v Ze b tgM θπε=角散射(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍 A. 1/4 B . 1/2 C . 1 D. 24一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。

若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为:A. b ; B . 2b ; C. 4b ; D. 。

2.简答题(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么 3.褚书课本P 20-21:(1).(2).(3);第二章 原子的能级和辐射 一、学习要点:1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)11(~22nmR -=ν、光谱项()2n R n T =、并合原则:)()(~n T m T -=ν2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞2222422Z 2Z )41(πε,n =1.……(3)实验验证:(a )氢原子4个线系的形成)11(Z ~,)4(222232042n m R ch e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁)(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势 3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等 (2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动ee m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =.能量224222Z )41(ne E n μπε-=,里德伯常数变化Mm R R eA +=∞11重氢(氘)的发现 4.椭圆轨道理论索末菲量子化条件q q n h n pdq ,⎰=为整数a nn b n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,222022422,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并。

原子物理学,教学,课件,复习

原子物理学,教学,课件,复习


二、基本模型和原理
描述对象 原子结构 原子的电子运动 原子核组成 黑体辐射 光电效应 微观粒子 元素排列

电子自旋运动 电子耦合
模型/原理内容 汤姆孙模型,卢瑟福模型 玻尔模型 中子-质子假说 能量量子假说(普朗克) 光量子假说 德布罗意假设 泡利不相容原理、能量最 低原理 电子自旋假设 两角动量耦合的一般规则


第五章 多电子原子
基础概念:电子组态、耦合、同科电子、 电子运动状态 重点概念:L-S 耦合、j-j 耦合、原子态 2S+1L 、壳层、支壳层、量子数、洪特定 J 则、朗德间隔定则、泡利不相容和能量最 低原理、跃迁选择定则 了解概念:斯莱特方法、幻数、重态数、 壳层排序

第六章 X射线


第三章 量子力学初步

基础概念:实物粒子二象性,德布罗意波,量 子态 重要概念:波函数及其统计解释,薛定得方程 在量子力学中的地位和作用,不确 定(则不准)关系; 了解概念: 量子力学处理氢原于的基本步骤和 主耍结论;量子力学与玻尔理论对 锂原子处理的分析比较。


第四章 原子的精细结构

基础概念:磁矩、旋磁比、精细结构、粗结构 、洛仑兹单位 重点概念:原子取向量子化、玻尔磁子、电子 自旋、碱金属双线、自旋-轨道耦合、朗德g 因 子、正(反)常塞曼效应、偏振π、σ成分 了解概念:帕邢-巴克效应、电子顺磁共振 EPR(ESR) 、核磁共振NMR、激光磁共振 LMR



玻尔理论的具体内容(两个假设一个推论); 氢原子、类氢离子的电子的速度、半径、能量 、角动量量子化的公式。 碱金属光谱特点及其跃迁定则(l、j)。各线系及 其主线意义(确定各线系跃迁能级)。 氦原子光谱特点。 确定电子自旋与轨道耦合的总角动量及其耦合 能的特点(如一分为二双层、S 能级不分裂单 层、向哪移动)。

原子物理学高考知识点

原子物理学高考知识点

原子物理学高考知识点在物理学中,原子物理学是一个重要的领域,也是高考物理考试中的重点内容之一。

原子物理学研究原子的结构、性质和相互作用,对于理解物质的微观世界具有重要意义。

1. 原子的基本结构原子是物质的最小单位,由原子核和围绕核运动的电子组成。

原子核由质子和中子组成,质子带正电荷,中子不带电荷。

电子带负电荷,数量与原子核中质子的数量相等,保持整体电荷平衡。

2. 能级结构和电子排布规律在原子内部,电子按照一定的能级排布。

能级越靠近原子核,对应的能量越低。

电子按照能量从低到高的顺序填充能级,遵循“能量最低原理”和“泡利不相容原理”。

能量最低原理指的是,电子总是先填充最低的可用能级。

泡利不相容原理指的是,一个能级上最多只能容纳两个电子,且它们的自旋方向相反。

3. 原子光谱原子在不同能级之间发生跃迁时,会吸收或者发射光子,形成光谱。

原子光谱分为连续光谱和线状光谱。

连续光谱是指光的波长连续分布的光谱,常见于加热的固体或者液体物质。

线状光谱是指光的波长呈现不连续的离散光谱,常见于气体或者稀薄原子蒸汽。

4. 原子核的稳定性原子核中的质子带正电荷,质子之间相互排斥,所以原子核内的质子数量过多时,核内部的作用力无法维持核的稳定。

中子的存在对于核的稳定性至关重要,可以中和质子之间的排斥力。

稳定的原子核通常满足“质子数目近似等于中子数目”或者“原子序数小于等于20或者大于82”的条件。

5. 原子核的衰变不稳定的原子核会发生衰变,以减少能量和提高稳定性。

常见的衰变方式有α衰变、β衰变和γ衰变。

α衰变是指原子核放出一个α粒子,即一个氦离子核,减少两个质子和两个中子。

β衰变又分为正电子β衰变和电子β衰变,分别是通过放射一个正电子和放射一个电子来减少质子或者中子。

γ衰变是指原子核放出γ射线,减少能量。

衰变过程中,原子核会发生变化,从一个元素转变成另一个元素。

6. 原子核的聚变和裂变原子核的聚变是指两个轻原子核结合成一个较重的原子核,释放出巨大的能量。

原子物理学复习总结提纲

原子物理学复习总结提纲

原子物理学复习总结提纲I.引言
A.原子物理学概述
B.原子结构的发现历程
II.原子结构
A.原子的基本组成
B.原子的大小和质量
C.原子核的结构
1.质子和中子
2.原子核的稳定性和不稳定性
D.原子壳层结构
1.电子的概念和特性
2.原子层能级
3.壳层填充规则
III.原子光谱
A.光的性质和特性
B.原子光谱的产生机制
C.原子发射光谱
1.电子激发
2.原子的激发态和基态
3.能级跃迁和发射光谱
D.原子吸收光谱
1.光的吸收和衰减
2.能级跃迁和吸收光谱IV.原子核物理学
A.原子核的性质和特性
B.原子核的稳定性和放射性
1.放射性的概念和分类
2.放射性衰变的过程和特征
C.核反应和核能
1.核反应的概念和条件
2.核能及其应用
V.原子物理学的应用
A.核技术与核工程
1.核裂变与核聚变
2.核电站和核燃料循环
B.医学影像学和放射治疗
1.X射线和CT扫描
2.放射治疗的原理和应用
C.等离子体物理学
1.等离子体的概念和性质
2.等离子体的应用和研究VI.总结
A.原子物理学的重要性和意义
B.原子物理学的发展前景
C.总结复习要点。

(完整版)原子物理学复习

(完整版)原子物理学复习

第一章 原子的基本状况一、学习要点1.原子的质量和大小,R ~ 10-10 m , N o =6.022×1023/mol2.原子核式结构模型 (1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式:(5)原子核大小的估计 (会推导): 散射角θ:),2sin11(Z 241220θπε+⋅=Mv e r mα粒子正入射:2024Z 4Mv e r m πε=,m r ~10-15-10-14 m二、基本练习1.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m (2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也()(X)Au AA g M N ==12-27C 1u 1.6605410kg12==⨯的质量22012c 42v Ze b tgM θπε=存在小角散射(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2 4一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。

若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为:A. b ; B . 2b ; C. 4b ; D. 0.5b 。

2.简答题(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么? 3.褚书课本P 20-21:(1).(2).(3);第二章 原子的能级和辐射一、学习要点:1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)11(~22nmR -=ν、光谱项()2nR n T =、并合原则:)()(~n T m T -=ν2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ;()n hcT n hc R n e m E e n --=-=∞2222422Z 2Z )41(πε,n =1.2.3……(3)实验验证:(a )氢原子4个线系的形成)11(Z ~,)4(222232042n m R ch e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁)(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动ee m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =.能量224222Z )41(n e E n μπε-=,里德伯常数变化Mm R R eA +=∞11重氢(氘)的发现 4.椭圆轨道理论索末菲量子化条件q q n h n pdq ,⎰=为整数a nn b n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,222022422,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并。

原子物理学复习资料

原子物理学复习资料

原子物理学(褚圣麟编著高等教育出版社)第一章 原子的基本状况1、α粒子散射实验结论p9:卢瑟福的α粒子散射实验观察到,绝大多数电子只有2~3度的偏转,有1/8000的α粒子偏转大于90°,其中有接近180°的。

2、卢瑟福散射公式p13:22224014sin 2Ze d Ωd Mv σθπε⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,d σ是立体角d Ω内每个原子的散射截面 dnd Ntnσ=;N 为薄膜中单位体积中原子的个数;t 为薄膜厚度;有n 个α粒子射到薄膜上,其中d n 个落在d Ω中第二章 原子的能级和辐射1、光谱的分类p23:(1)线装光谱:是原子所发的; (2)带状光谱:是分子所发的;(3)连续光谱:固体加热所发的,原子和分子在某些情况下也会发连续光谱。

2、波数p243、谱线系p25(m < n , m = 1,2,3…),表示第m 条谱线到第n 条谱线的能量差;对于氢原子,Z = 1。

R 是里德伯常数,它由11/e R R m M∞=+确定,其中M 是原子核质量,m e 是绕核旋转的电子的质量.对于氢原子,R H = 1.09677576×107 m -1。

m = 1时的谱线系称为赖曼系;m = 2时的谱线系称为巴耳末系; m = 3时的谱线系称为帕邢系; m = 4时的谱线系称为布喇开系; m = 5时的谱线系称为普丰特系。

4、原子的能量p29:2hcRE n=-5、氢原子半径p3021n r a Z =,2012244h a meπεπ=.对于氢原子,a 1 = 0.529166×10-10m.6、氢原子能级p31212Z E E n =,2412202(4)me E hππε=-.对于氢原子,E 1 = -13.59 eV . 7、折合质量p39若不满足m << M ,则计算时的质量m 需要使用折合质量MmM mμ=+.8、电离电势(ionizing potential )p46在赖曼系中取n = ∞求得,则电离电势为.9、激发电势(excitation potential )p42原子由第m 条谱线激发到第n 条谱激发电势为.10、两个实验p42 p55:(1)夫兰克—赫兹实验证明原子能级的存在(2)史特恩—盖拉赫实验证明原子空间取向的量子化第三章 量子力学初步1、光子的能量p78E h ν=2、德布罗意(de Broglie )波长p79h pλ=3、不确定性原理(Uncertainty principle )p82/2p x ∆∆≥, /2E t ∆∆≥4、薛定谔方程(Schrodinger equation )p89定态薛定谔方程(time-independent Schrodinger equation ):5、球坐标下的薛定谔方程p1046、波函数必须满足的三个条件:有限;连续;单值(唯一) 7、五个量子数主量子数n = 1, 2, 3 ···角量子数l = 0, 1, 2 ··· (n - 1)角量子数在z 轴的分量(磁量子数)m l = 0, ±1, ±2, ··· ±l 自旋量子数s = 1/2自旋量子数在z 轴的分量m s = ±1/2第四章 碱金属原子和电子自旋1、四种线系2、锂(Li)3、钠(Na)4、碱金属的光谱项表达式*22(Δ)R RT n n ==- 5、原子实的极化和轨道贯穿使电子的能级偏低,其中轨道贯穿影响较大。

原子物理学总复习大纲

原子物理学总复习大纲

原子物理学总复习大纲第一章 原子模型 纲要1.原子的大小和质量原子的线度r 约在10-10米数量级.原子的质量使用原子质量单位u,1u 为1个碳原子12C 质量的1/12,1u=1.6605402×10-27千克.2.卢瑟福核式结构几种结构模型:汤姆逊枣糕模型(西瓜模型)、长冈半太郎土星模型、卢瑟福核式结构模型。

卢瑟福核式结构模型:原子是由原子核和核外电子组成的,原子核带正电荷Ze ,几乎集中了原子的全部质量,核外电子在核的库存仑场中绕核运动.与实验结果符合最好。

原子核的线度r 为10-14~10-15米的数量级.3.α粒子散射理论(验证模型的理论) 偏转角与瞄准距离的关系:22θcot a b = 或 ctg θ/2=4πεоMv ²/(2Ze ²)b卢瑟福散射公式: 原子核半径大小的估算公式:)2(12θcsc +=a r m或 )21(1241220θπεsi n +=Mv Ze r m 第二章玻尔模型 纲 要1.里德伯(J.R.Rydberg)方程:(1)氢、类氢离子的里德伯方程的波数表示形式⎥⎦⎤⎢⎣⎡-=≡22111n m R H λν~ ⎥⎦⎤⎢⎣⎡-=≡22111n m R Z A λν~ (2)里德伯方程的光谱项表示形式ν~=T (m)-T (n),(3)氢、类氢离子里德伯方程的能量表示形式 []2211n m hcR Z c h h A -==λν 2n Rhc Z E n -= eV Rhc 613.=2. 里德伯公式对应的轨道跃迁、能级跃迁两种形象表示21)441()(422210θπεθσsin E e Z Z c =3.其他一些相关量 (1)氢、类氢原子的里德伯常量M m R R A +=∞11(2)能级间跃迁两能级能量差E 和波长、波数的关系E n m K e V 241.=λ nmKeV E 2411.~==λν(3)氢原子、类氢原子轨道半径公式 n a r n 1= a 1=0.053nm(4)氢原子电子速度公式n c V n α= α=1/1374.一些相关思想(1) 普朗克为了解释黑体辐射实验,引入了能量交换量子化的假说:E =h ν:普朗克常量h 的物理意义是:h 是能量量子化的量度,即能量分立性的量度。

高三物理复习资料 原子物理基础知识.doc

高三物理复习资料 原子物理基础知识.doc

高三物理复习资料 原子物理基础知识一、黑体和黑体辐射1.热辐射现象: 任何物体在 任何 温度下都要发射 各种 波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与 温度 有关,所以称为热辐射。

2.黑体:物体具有 辐射 能量的本领,又有吸收外界辐射来的能量的本领。

绝对黑体(简称“黑体”)是指能够完全吸收入射的各种(填“各种”或“部分”)波长电磁波而不发生反射的物体,而黑体辐射电磁波的强度按波长的分布只与黑体的 温度 有关。

3.实验规律:(1)随着温度的升高,黑体的辐射强度都有增加;(2)随着温度的升高,辐射强度的极大值向 波长较短 方向移动。

二、、光电效应现象 1、光电效应:光电效应:物体在光 包括 不可见光的照射下发射电子的现象称为光电效应。

2、光电效应的研究结论:① 任何 金属,都有一个极限频率,入射光的频率必须 大于 这个极限频率,才能产生光电效应; 低于 这个频率的光不能产生光电效应。

②光电子的最大初动能与入射光的强度 无关 ,只随着入射光频率的增大而 增大 。

③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s ;④当入射光的频率大于极限频率时,入射光的强度越强,单位时间内发射的电子数 越多 。

3、光电效应的应用:光电管:光电管的阴极表面敷有 碱 金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为 光电流 。

注意:①光电管两极加上正向电压,可以增强光电流。

②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。

入射光的强度越大,光电流越大。

③遏止电压U 0。

回路中的光电流随着反向电压的增加而减小,当反向电压U 0满足:02max 21eU mv ,光电流将会减小到零,所以遏止电压与入射光的 频率 有关。

4、波动理论无法解释的现象:①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。

原子物理期末复习

原子物理期末复习

《原子物理学》(Atomic Physics)
期末复习
三、玻尔理论
概念。 三个假设:定态假设、频率条件、角动量量子化。 玻尔第一轨道半径、氢原子基态能量(记忆)。 精细结构常数 四、线系限 含义(结合里德伯公式)。对应的能量就是电离能。 相关计算。 里德伯常数的变化特点。
1 4 0hc 137
一、单选题
二、填空题
(2X15=30分)
(2X10=20分)
三、判断题
四、计算题
(2X10=20分)
(10X3=30分)
《原子物理学》(Atomic Physics)
期末复习
第四章 原子的精细结构:电子的自旋
一、碱金属原子光谱(以锂原子光谱为例) 主线系 第二辅线系 第一辅线系 柏格曼线系 碱金属光谱项
p
% n 2S nP
% n 2P nS
n 2,3,L n 3, 4,L n 3, 4,L
期末复习
二、泡利不相容原理
1、概念表述。 2、四量子数的取值及各状态下波函数的数量 3、同科电子形成的原子态特点 三、元素周期表 1、原子核外电子排布规律。 2、每个壳层能容纳的最大电子数。 3、基态的原子态符号。 4、利用洪特定则判断原子基态原子态。
《原子物理学》(Atomic Physics)
s
d
% n 2 P nD
f
% n 3D nF
n 4,5,L
T R n*2
各个线系的名称以及对应的跃迁 计算相应的波长、线系限、电离能、光谱项、量子缺等。
《原子物理学》(Atomic Physics)
期末复习
二、角动量量子数、磁量子数的计算
v v v J S L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,精细结构常数,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。

3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6.原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。

7.轨道贯穿:当电子处在原子实外边那部分轨道时,原子实对它的有效电荷数Z是1,当电子处在穿入原子实那部分轨道时,对它起作用的有效电荷数Z 就要大于1。

8.有效电荷数:9.电子自旋:电子既有某种方式的转动而电子是带负电的,因而它也具有磁矩,这个磁矩的方向同上述角动量的方向相反。

从电子的观点,带正电的原子实是绕着电子运动的,电子会感受到一个磁场的存在,电子既感受到这个磁场,它的自旋取向就要量子化。

(电子内禀运动或电子内禀运动量子数的简称)10.磁矩:11.旋磁比:粒子磁动量和角动量的比值。

12. 拉莫尔进动:是指电子、原子核和原子的磁矩在外部磁场作用下的进动。

13. 拉莫尔频率:f=4ππmv eB ,式中e 和m分别为电子的电荷和质量,μ为导磁率,v 为电子的速度。

该频率被称为拉莫尔频率14. 朗德g 因子: 磁矩j p m e 2g j =μ 对于单个电子:)1(2)1()1()1(1++++-++=j j s s l l j j g 对于LS 耦合:式子中的L ,S ,J 是各电子耦合后的数值15.塞曼效应:当光源放在足够强的磁场中,所发出光谱的谱线会分裂成几条,而且每条谱线的光是偏振的。

16.电子组态:价电子可以处在各种状态,合称电子组态。

17.泡利原理:不能有两个电子处在同一状态。

18.同科电子:n*和l二量子数相同的电子称为同科电子。

19.壳层:20.原子基态:原子的能量最低状态。

21.洪特定则:只适合于LS耦合,从同一电子组态形成的级中,(1)那重数最高的亦即S 值最大的能级位置最低。

(2)重数相同即具有相同S 值的能级中,那具有最大L 值的位置最低。

22. 朗德间隔定则:在一个多重能级的结构中,能级的二相邻间隔同有关的二J 值中较大那一值成正比。

数据记忆:电子电量1.602×10-19 C 质量:9.11×10-31kg普朗克常量:6.63×10-34 J·s 玻尔半径:==22014e m a e πε 5.29×10-11 m氢原子基态能量:E=-13.6ev里德堡常量:17100974.1-∞⨯=m R 17100968.1-⨯=m R Hhc ħc (π2h = ) 玻尔磁子:m s v m e ⋅⋅⨯==-290B 101654.12eμμ精细结构常数::3-02107.2972⨯==hce a ε 拉莫尔进动频率: f=4ππmv eB ,式中e 和m分别为电子的电荷和质量,μ为导磁率,v 为电子的速度。

该频率被称为拉莫尔频率。

理论解释:1,(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足? 在α散射试验中,平均只有2-3度的偏转,但有1/8000的α粒子偏转大于90度,其中有接近180度的。

模型:原子有带正电的原子核和带负电的电子组成,带正电部分很小,电子在带正电部分外边。

实验现象解释:α粒子接近原子时,它受电子的作用引起的运动改变还是不大(库伦力不大),α粒子进入原子区域,它还在正电体以外,整个正电体对它起作用,因此受库伦力是2024Ze 2r πε因为正电部分很小,所以r 很小,故受的力很大,因此可能产生大角散射。

2,玻尔氢原子光谱理论的建立、意义及不足?条件:电子只能处于一些分立的轨道,它只能在这些轨道上绕核转动,且不产生电磁辐射。

推导过程:库仑力提供向心力:2222041r mv r Ze =πε(1) 势能=k-rZe 241πε(w=⎰∞=rr Ze dr r Ze 202204141πεπε库仑力做负功故势能增) 故能量rZe r Ze mv 2414121E 20202πεπε-=-=(2)根据轨道量子化条件:πφ2hnmur P ==(3)联立(1)(3)消去v 得,......3,2,14422220==n mZeh n r 其中ππε (4)令2220144me h a ππε=则Zn a r 21=(5)把(4)式代入(2)式有E=........321n )4(me 22220222,,,其中=-h n Z πεπ氢原子光谱:● 光谱是线状的,谱线有一定位置。

● 谱线间有一定的关系● 每一条谱线的波数都可以表达为两光谱项之差,为整数。

其中氢的光谱项是n nR),()(2H n T m T -=-ν1,2E n R hc -= 能级计算公式:R 为里德伯常数17100974.1-∞⨯=m R17100968.1-⨯=m RH2,量子化通则:........3,2,1n nh pdq ⎰==,3,电子椭圆轨道半径:长半轴Z a n a 12= 短半轴Z a nn b 1φ=;0,.......,3,2,1;........,321n n r ---==n n n n n n r ,,,表示径量子数,表示角量子数,φφ4,史特恩---盖拉赫实验;其中磁力F的夹角。

是磁矩与磁场方向之间,磁感应强度变化的陡度是沿磁场方向的量,是磁矩在磁场方向的分;其中βμβμμdzBdz dB dz dB zd cos F z ==βμμcos )(21)(21)(2121S 2222vL dz dB m v L dz dB m v L m F at z ====5,(1)电子的角动量=轨道角动量+自旋角动量;j 2s l s l j hjP P P P P s l s l j -=+==-+=或其中或π(2)但是较为准确的角动量计算公式为:;,2)1(,2)1(,2)1(s l j s l j hj j P h s s P h l l P j s l -=+=+=+=+=或其中故πππ单电子辐射跃迁的选择定则:1,0,1±=∆±=∆j l 6,课后习题中两个问题的解释: 主线系最长波长是电子从第一激发态向激发态跃迁产生的,辅线系系限波长是电子从无穷远处像第一激发态跃迁产生的。

7,碱金属原子的光谱项可以表达为:22*)(T ∆-==n R n R它与氢原子光谱项的差别在于有效量子数不是整数,而是主量子数减去一个数值∆8,(1)jj 耦合..........,1j j j j J J ,21)J(J P p .21,212121J j j hp p j s s l s l j j j j --++=+==+-=,,只能有如下数值:合成原子的总角动量:电子的再和另一个,每个电子的值,也就是有两个故每个电子有两个而或π(2)LS 耦合:,称为三重态值,相当于有三个能级,共有三个,,时有,对于一个单一态;那就是一个能级,称为时,显然对于,,其中其中;或故或而J 1L L 1L J 1S L J 0S ;S -L .........,1-S L S L J ,2)1(;,,.........1,L ,2)1(P 10S s S 2)1(2121212121+-====++=+=--++=+==-=+=+=πππhJ J P l l l l l l hL L s s S s hS S P J L S9,原子磁矩的计算: (1)磁矩j p me2gj=μ对于单个电子:)1(2)1()1()1(1++++-++=j j s s l l j j g (2)记。

耦合过于复杂,可以不。

是各电子耦合后的数值,其中耦合是原子的总角动量。

,的原子,对两个或两个以上电子jj S J J S S L L J J g LS P megJ J ,,L )1(2)1()1()1(1P 2J J ++++-++==μ10,外磁场对原子的作用:原子受磁场作用的附加能量:为波尔磁子。

磁场强度,因子,是朗德,,,如下数值:称为磁量子数,只能取其中B B g ,..........1J J M 4M E μμπg J B Mg B mhegB --==∆11,塞曼效应的理论解释:[][]2'11221122'1114L 4111λλλλλλλππλλλ∆-=-=∆=-=-=-=∆)(相差不大时和对于为洛伦兹单位。

其中)(‘mcBeLg M g M mc Be g M g M发生,只有下列情况的跃迁塞曼跃迁也有跃迁定则:1,除外)。

时,线(当,产生0M 0M0J 0M 12=→==∆=∆π2,线。

,产生σ1M ±=∆原子物理复习资料一、选择题1.德布罗意假设可归结为下列关系式:( A )A .E=h υ, p =λh ; B.E=ω ,P=κ ; C. E=h υ ,p =λ ; D. E=ω ,p=λ2.夫兰克—赫兹实验的结果表明:( B ) A 电子自旋的存在;B 原子能量量子化 C 原子具有磁性; D 原子角动量量子化 3为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:BA.电子的波动性和粒子性B.电子的波动性 C.电子的粒子性 D.所有粒子具有二项性4.若镁原子处于基态,它的电子组态应为:( C )A.2s2s B.2s2p C.3s3s D.3s3p5.下述哪一个说法是不正确的?( B ) A.核力具有饱和性; B.核力与电荷有关; C.核力是短程力;D.核力是交换力. 6.按泡利原理,主量子数n确定后可有多少个状态?( D )A.n2;B.2(2l +1);C.2j+1;D.2n27.钠原子由nS跃迁到3P态和由nD跃迁到3P态产生的谱线分别属于:( D )A.第一辅线系和基线系B.柏格曼系和第二辅线系C.主线系和第一辅线系D.第二辅线系和第一辅线系8.碱金属原子光谱精细结构形成的根本物理原因:( A )A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化9.铍(Be)原子若处于第一激发态,则其电子组态:( D )A.2s2s;B.2s3p;C.1s2p;D.2s2p10如果l是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:( C )A.0=∆l;B. 0=∆l或±1;C. 1±=∆l;D. 1=∆l11.设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:C A.4个; B.9个; C.12个; D.15个12.氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:( C )A.0;B.2;C.3;D.1 13.设原子的两个价电子是d电子和f 电子,在L-S耦合下可能的原子态有:( D )A.9个;B.12个;C.15个;D.20个;14.原子发射X射线特征谱的条件是:( C )A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强15正常塞曼效应总是对应三条谱线,是因为:CA.每个能级在外磁场中劈裂成三个;B.不同能级的郎德因子g大小不同;C.每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁Th的半衰期近似为25天,如果将16.钍2349024克Th贮藏100天,则钍的数量将存留多少克? ( A )A.1.5;B.3;C.6;D.12.17.如果原子处于2P1/2态,它的朗德因子g值:( A )A.2/3;B.1/3;C.2;D.1/26.氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:( C ) A.1P1;B.3S1;C .1S0;D.3P0 .18.原子发射伦琴射线标识谱的条件是:( C )A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。

相关文档
最新文档