历年江西高考数学文科卷

合集下载

历年江西高考数学文科卷

历年江西高考数学文科卷

2006高等学校全国统一数学文试题(江西卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(1)0P x x x =-≥,101Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q 等于( ) A.∅B.{}1x x ≥C.{}1x x >D.{}1x x x <0或≥2.函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为( ) A.π2B.πC.2πD.4π3.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=()A.2-B.0C.1D.24.下列四个条件中,p 是q 的必要不充分条件的是( )A.:p a b >,22:q a b > B.:p a b >,:22a b q >C.22:p ax by c +=为双曲线,:0q ab <D.2:0p ax bx c ++>,2:0c bq a x x -+>5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( )A.(0)(2)2(1)f f f +<B.(0)(2)2(1)f f f +≤C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( ) A.0B.2-C.52-D.3-7.在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( ) A.3B.6C.9D.128.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )A.12344812161040C C C C C B.21344812161040C C C C CC.23144812161040C C C C CD.13424812161040C C C C C9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 10.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且A B C ,,三点共线(该直线不过点O ),则200S 等于( ) A.100B.101C.200D.20111.P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN-的最大值为( )A.6B.7C.8D.912.某地一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图(1)所示,令()C t 表示时间段[0]t ,内的温差(即时间段[0]t ,内最高温度与最低温度的差).()C t 与t 之间的函数关系用下列图象表示,则正确的图象大致是( )二、填空题:本大题4小题,每小题4分,共16分.请把答案填在答题卡上.13.已知向量(1sin )a θ=,,(1cos )b θ=,,则a b -的最大值为.14.设3()log (6)f x x =+的反函数为1()f x -,若11[()6][()6]27f m f n --++=,则()f m n +=.15.如图,已知正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为.16.已知12F F ,为双曲线22221(00)a b x y a b a b ≠-=>>且,的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.下面四个命题( )Q 1C 1B 1A ACBtCA.12PF F △的内切圆的圆心必在直线x a =上; B.12PF F △的内切圆的圆心必在直线x b =上; C.12PF F △的内切圆的圆心必在直线OP 上;D.12PF F △的内切圆必通过点0a (),. 其中真命题的代号是(写出所有真命题的代号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a b ,的值及函数()f x 的单调区间;(2)若对[12]x ∈-,,不等式2()f x c <恒成立,求c 的取值范围.18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率. 19.(本小题满分12分)在锐角ABC △中,角AB C ,,所对的边分别为a b c ,,,已知sin 3A =,(1)求22tan sin 22B C A++的值;(2)若2a =,ABC S =△b 的值.20.(本小题满分12分)如图,已知三棱锥O ABC -的侧棱OAOB OC ,,两两垂AOECB直,且1OA =,2OB OC ==,E 是OC 的中点. (1)求O 点到面ABC 的距离; (2)求异面直线BE 与AC 所成的角; (3)求二面角E AB C --的大小. 21.(本小题满分12分)如图,椭圆22221(0)x y Q a b a b +=>>:的右焦点为(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于AB ,两点,P 为线段AB 的中点. (1)求点P 的轨迹H 的方程;(2)若在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤. 设轨迹H 的最高点和最低点分别为M 和N .当θ为何值时,MNF △为一个正三角形? 22.(本小题满分14分)已知各项均为正数的数列{}n a ,满足:13a =,且11122n nn n n n a a a a a a +++-=-,*n N ∈.(1)求数列{}n a 的通项公式;(2)设22212n nS a a a =+++,22212111n nT aa a a =+++,求n n S T +,并确定最小正整数n,使n nS T +为整数.2007年普通高等学校招生全国统一考试(江西卷)数 学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

普通高等学校招生国统一考试数学文试题江西卷,含答案 试题

普通高等学校招生国统一考试数学文试题江西卷,含答案 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,解析〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.第I 卷1至2页,第二卷3至4页,总分值是150分,考试时间是是120分钟. 考生注意:“2.第一卷每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第二卷用0.5毫米的黑色墨水签字笔在答题卡上书写答题,在试题卷上答题,答案无效.3.在考试完毕之后,监考员将试题卷、答题卡一并收回. 参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-锥体体积公式其中S 为底面积,h 为高第I 卷一、选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.()2,,x i i y i x y R -=+∈,那么复数x yi +=〔〕A.2i -+B.2i +C.12i -D.12i + 答案:B{1,2,3,4,5,6},{2,3},{1,4}U M N ===,那么集合{5,6}等于〔〕A.M N ⋃B.M N⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂答案:D3.假设121()log (21)f x x =+,那么()f x 的定义域为()A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞D.1(,2)2- 答案:C4.曲线x y e =在点A 〔0,1〕处的切线斜率为〔〕A.1B.2C.eD.1e答案:A5.设{n a }为等差数列,公差d=-2,n S 1011S S =,那么1a =〔〕A.18B.20C.22D.24 答案:B6.观察以下各式:那么234749,7343,72401===,…,那么20117的末两位数字为〔〕A.01B.43C.07D.49 答案:B下列图e m ,众数为o m ,平均值为x ,那么〔〕 A.e o m m x== B.e o m m x=< C.e o m m x<< D.o e m m x <<答案:D 计算可以得知,中位数为,众数为5所以选D 8.为理解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x 〔cm 〕 174 176 176 176 178 儿子身高y 〔cm 〕 175175176177177那么y 对x 的线性回归方程为 A.y=x-1B.y=x+1 C.y=88+12x D.y=176 C 线性回归方程bx a y +=,()()()∑∑==---=ni ini iix x yyx x b 121,x b y a-=9.将长方体截去一个四棱锥,得到的几何体如右图所示,那么该几何体的左视图为〔〕 答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

高考试题——文数(江西卷)解析版

高考试题——文数(江西卷)解析版

绝密★启用前2010年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上作答。

若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kk n k n n P k C p p -=-第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】主要考查不等式的性质。

当C=0时显然左边无法推导出右边,但右边可以推出左边 2.若集合{}||1A x x =≤,{}0B x x =≥,则AB =A .{}11x x -≤≤B .{}0x x ≥C .{}01x x ≤≤ D .∅ 【答案】C【解析】考查集合与简单不等式。

解决有关集合的问题关键是把握住集合中的元素,由题知集合A 是由大于等于-1小于等于1的数构成的集合,所以不难得出答案 3.10(1)x -展开式中3x 项的系数为A .720-B .720C .120D .120- 【答案】D 【解析】考查二项式定理展开式中特定项问题,解决此类问题主要是依据二项展开式的通项,由4.若42()f x ax bx c =++满足(1)2f '=,则(1)f '-=A .4-B .2-C .2D .4【答案】B【解析】考查函数的奇偶性,求导后导函数为奇函数,所以选择B 5.不等式22x x ->-的解集是 A .(,2)-∞ B .(,)-∞+∞C .(2,)+∞D .(,2)(2,)-∞+∞【答案】A【解析】考查含绝对值不等式的解法,对于含绝对值不等式主要是去掉绝对值后再求解,可以通过绝对值的意义、零点分区间法、平方等方法去掉绝对值。

普通高等学校招生全国统一考试数学文试题(江西卷,解析版)

普通高等学校招生全国统一考试数学文试题(江西卷,解析版)

()R C B ={()3R C B x =-<(3,2),所以概率为.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” .D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ【答案】D【解析】当0a ≠时,A 是正确的;当0b =时,B 是错误的;命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x <”,所以C 是错误的。

所以选择D 。

7.某人研究中学生的性别与成绩、学科 网视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是( )成绩 B.视力 C.智商 D.阅读量 【答案】D【解析】()22215262214105281636203216362032χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,()()2222521651612521671636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222352248812521281636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222452143026526861636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯。

分析判断24χ最大,所以选择D 。

8.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A.7B.9C.10D.11 【答案】B【解析】当1i =时,10lg lg33S =+=->-1, 123i =+=,3lg3lg lg55S =-+=->-1,325i =+=,5lg 5lg lg 77S =-+=->-1527i =+=,7lg 7lg lg 99S =-+=->-1729i =+=,9lg9lg lg1111S =-+=-<-1所以输出9i =过双曲线12222=-b y a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A 则双曲线C 的方程为( ) 112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x【答案】A【解析】以C 的右焦点为圆心、半径为4的圆经过坐标原点O ,则c=4.且4CA =.设右顶点为B(),0a ,C(),a b ,t ABC R ∆∆为,∴222BA BC AC+=,()22416,a b ∴-+=又22216a b c +==。

最新整理江西高考文科数试卷和答案.doc

最新整理江西高考文科数试卷和答案.doc

普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M ð为( ) A.{}01,B.{}2345,,,C.{}02345,,,,D.{}12345,,,,2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.πD.2π3.函数1()lg4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,, 4.若tan 3α=,4tan 3β=,则tan()αβ-等于( )A.3-B.13-C.3D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( )A.2- B.1- C.1 D.2 6.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1+D.32+8.若π02x <<,则下列命题正确的是( ) A.2sin πx x < B.2sin πx x > C.3sin πx x <D.3sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AD =在外接球面上两点A B ,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项:第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y fx -=的图象必经过点.16.如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)111B已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()1f x >+. 18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求AB 与平面11AAC C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--.1122.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1F AB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()1f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=.由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =. 所以点P的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点,12CA所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C . 连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为2BH =,AB =sin 10BH BAH AB ==∠.AB 与面11AAC C所成的角为arcsin10BAH =∠. (3)因为2BH =,所以222213B AAC C AA C C V S BH -=. 1121(12)2322=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C .1x(2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,10m AB AB m AB>==-则sin10θ=.所以AB 与面11AAC C 所成的角为arcsin 10. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--2211231313nn n -=-+ 22333843n nn --=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d d d d d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,12(01)17λ-=∈,故存在λ=方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AF FS AF AF λ==△,121212BF F S BF BF λ==△.则1(2AF B S λ=△.①由1212221AFF BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==△.②由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d += 平方得:221)4(1)d λ=-.④由③④消去d 可解得,12(01)17λ-=, 故存在λ=。

年高考真题试卷(江西卷)数学(文科)参考答案

年高考真题试卷(江西卷)数学(文科)参考答案

年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由2()18f x >+得, 当102x <<时,解得2142x <<, 当112x <≤时,解得1528x <≤, 所以2()18f x >+的解集为2548x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,3y =2cos()y x ωθ=+中得3cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,03y = 所以点P 的坐标为0π232x ⎛-⎝,. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05π3cos 46x ⎛⎫-=⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C .11D1B2CH O AA连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角. 因为2BH =,5AB =10sin BH BAH AB ==∠.AB 与面11AAC C 所成的角为10arcsin10BAH =∠. (3)因为22BH =,所以222213B AAC C AA C C V S BH -=. 1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C . (2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 1A11CxBzCOAy所以,cos m <,1010m AB AB m AB>==-10sin θ=所以AB 与面11AAC C 所成的角为10arcsin 10. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--2211231313nn n -=-+ 22333843n nn --=所以22223924163n n nnT +--=. 22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d d d d d d d θθ=+-=-+212()44d d λ-=-1221d d λ-=-2的常数)故动点P 的轨迹C 是以1F ,2F 为焦点,实轴长221a λ=-的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则123434213234222πsin 4d d a d d a d d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则134342222(21)d a d a d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,22(21)2a λ= (82)(1)2λλ--=,1222(01)17λ-=∈, 故存在12217λ-=方法二:(1)设1AF B △为等腰直角三角形,依题设可得2121221212222πsin π8211cos 4πsin 24AF AF AF AF BF BF BF BF λλλλλ⎧⎧===⎪⎪⎪⎪--⇒⎨⎨⎪⎪=⎪=⎪⎩⎩ 所以12121πsin (21)24AF F S AF AF λ==△,121212BF F S BF BF λ==△. 则1(22)AF B S λ=△.① 由12122221AF F BF F S AF S BF ==△△,可设2BF d =,则2(21)AF d =,1(22)BF AB d ==.则122211(22)22AF B S AB d ==△.② 由①②得2(22)2d λ+=.③根据双曲线定义12221BF BF a λ-==-(21)1d λ+=-平方得:2221)4(1)d λ=-.④由③④消去d 可解得,1222(01)17λ-=, 故存在12217λ-=。

【精品】江西省近两年(2017,2018)高考文科数学试卷以及答案(word解析版)

【精品】江西省近两年(2017,2018)高考文科数学试卷以及答案(word解析版)

绝密★启用前江西省2017年高考文科数学试卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

普通高等学校招生全国统一考试数学文试题(江西卷,含答案)

普通高等学校招生全国统一考试数学文试题(江西卷,含答案)

普通高等学校招生全国统一考试数学文试题(江西卷,含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡粘 贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式:如果事件A B 、互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A B 、相互,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于实数,,a b c ,“a b >”是“22ac bc >”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.若集合{}1A x x =≤,{}0B x x =≥,则A B =A .{}11x x -≤≤ B .{}0x x ≥ C .{}01x x ≤≤ D .∅ 3.10(1)x -展开式中3x 项的系数为A .720-B .720C .120D .120-4.若函数42()f x ax bx c =++满足'(1)2f =,则'(1)f -= A .1- B .2- C .2 D .0 5.不等式22x x -->的解集是A .(,2)-∞B .(,)-∞+∞C .(2,)+∞D .(,2)(2,)-∞+∞6.函数2sin sin 1y x x =+-的值域为 A .[]1,1- B .5,14⎡⎤--⎢⎥⎣⎦ C .5,14⎡⎤-⎢⎥⎣⎦ D .51,,4⎡⎤-⎢⎥⎣⎦7.等比数列{}n a 中,11a =,528a a =-,52a a >,则n a = A .1(2)n -- B .1(2)n --- C .(2)n - D .(2)n--8.若函数1axy x=+的图像关于直线y x =对称,则a 为 A .1 B .1- C .1± D .任意实数9.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是(01)p p <<,假设每位同学能否通过测试是相互的,则至少每一位同学能通过测试的概率为A .(1)np - B .1np - C .np D .1(1)np --10.直线3y kx =+与圆22(2)(3)4x y -+-=相交于,M N 两点,若23MN ≥,则k 的取值范围是A .3,04⎡⎤-⎢⎥⎣⎦B .33,33⎡⎤-⎢⎥⎣⎦C .3,3⎡⎤-⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦ 11.如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列四个命题:①过M 点有且只有一条直线与直线11,AB B C 都相交; ②过M 点有且只有一条直线与直线11,AB B C 都垂直; ③过M 点有且只有一个平面与直线11,AB B C 都相交; ④过M 点有且只有一个平面与直线11,AB B C 都平行. 其中真命题是A .②③④ B.①③④ C .①②④ D. ①②③12.四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数sin 2y x =,sin(),6y x π=+sin()3y x π=-的图像如下,结果发现恰有一位同学作出的图像有错误,那么有错误..的图像是绝密★启用前普通高等学校招生全国统一考试(江西卷) 文科数学 第Ⅱ卷 注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.已知向量a ,b 满足2b =,a 与b 的夹角为60°,则b 在a 上的投影是 .14.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有 种(用数字作答).15.点()00,A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = .16.长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,2BC =,则A ,B 两点间的球面距离为 .三.解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 设函数()()326322f x x a x ax =+++.(1)若()f x 的两个极值点为1x ,2x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(),-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由. 18.(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走出迷宫为止. (1)求走出迷宫时恰好用了l 小时的概率; (2)求走出迷宫的时间超过3小时的概率. 19.(本小题满分12分) 已知函数()()21cot sin 2sin sin 44f x x x x x ππ⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭. (1)若tan 2α=,求()fα;(2)若,122x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的取值范围.20.(本小题满分12分)面BCD ,AB ⊥平如图,BCD ∆与MCD ∆都是边长为2的正三角形,平面MCD ⊥平面BCD ,23AB =.(1)求直线AM 与平面BCD 所成角的大小;(2)求平面ACM 与平面BCD 所成二面角的正弦值. 21.(本小题满分12分)如图,已知抛物线1C :22x by b +=经过椭圆2C :()222210x y a b a b+=>>的两个焦点.(1)求椭圆2C 的离心率;(2)设点()3,Q b ,又M ,N 为1C 与2C 不在y 轴上的两个交点,若QMN ∆的重心在抛物线1C 上,求1C 和2C 的方程.22.(本小题满分14分)正实数数列{}n a 中,11a =,25a =,且{}2n a 成等差数列. (1)证明数列{}n a 中有无穷多项为无理数;(2)当n 为何值时,n a 为整数,并求出使200n a <的所有整数项的和.文科数学试题参考答案 一. 选择题;本大题共12小题,每小题5分,共60分.1.B 2.C 3.D 4. B 5.A 6.C 7.A 8.B 9.D 10.B 11.C 12.C 二. 填空题:本小题共4小题,每小题4分,共16分.13.1 14.90 15.2 16.3π(2)由(1)得1121()(sin 2cos 2)sin(2)22242f x x x x π=++=++, 由,122x ππ⎡⎤∈⎢⎥⎣⎦得552,4124x πππ⎡⎤+∈⎢⎥⎣⎦,所以2sin(2),142x π⎡⎤+∈-⎢⎥⎣⎦, 从而2112()sin(2)0,2422f x x π⎡⎤+=++∈⎢⎥⎣⎦. 20.(本小题满分12分)解法一:(1)取CD 中点O ,连OB ,OM ,则,OB CD OM CD ⊥⊥.又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO//AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则AEB ∠就是AM 与平面BCD 所成的角.3,//OB MO MO AB ==,则1,32EO MO EO OB EB AB ====,所以23EB AB ==,故45AEB ∠=.(2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF EC ⊥于F ,连AF ,则AF EC ⊥,AFB ∠就是二面角A EC B --的平面角,设为θ.因为120BCE ∠=,所以60BCF ∠=.sin 603BF BC =⋅=,tan 2ABBFθ==,25sin 5θ=. 所以,所求二面角的正弦值是255.21.(本小题满分12分)解:(1)因为抛物线1C 经过椭圆2C 的两个焦点1(,0)F c -,2(,0)F c ,所以220c b b +⨯=,即22c b =,由22222a b c c =+=,所以椭圆2C 的离心率22e =. (2)由(1)可知222a b =,椭圆2C 的方程为:222212x y b b+=联立抛物线1C 的方程22x by b +=得:2220y by b --=,解得:2by =-或y b =(舍去),所以62x b =±,即66(,),(,)2222b b M b N b ---, 所以QMN ∆的重心坐标为(1,0).因为重心在1C 上,所以2210b b +⨯=,得1b =.所以22a =.所以抛物线1C 的方程为:21x y +=,椭圆2C 的方程为:2212x y +=. 22.(本小题满分14分)证明:(1)由已知有:2124(1)n a n =+-,从而124(1)n a n =+-,方法一:取21124k n --=,则2*124()k n a k N =+∈.用反证法证明这些n a 都是无理数.假设2124k n a =+为有理数,则n a 必为正整数,且24kn a >, 故241k n a -≥.241k n a +>,与(24)(24)1k kn n a a -+=矛盾,当(31)1()2m m n m N +=+∈和*(31)1()2m m n m N -=+∈时,n a 为整数;由61200()n a m m N =+<∈有033m ≤≤,由*61200()n a m m N =-<∈有133m ≤≤.设n a 中满足200n a <的所有整数项的和为S ,则(511197)(1713199)S =++⋅⋅⋅+++++⋅⋅⋅+ 519711993334673322++=⨯+⨯=.。

2020年普通高等学校招生全国统一考试数学文试题(江西卷,含答案)

2020年普通高等学校招生全国统一考试数学文试题(江西卷,含答案)

2020年普通高等学校招生全国统一考试数学文试题(江西卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh = 其中S 为底面积,h 为高第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B2.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 答案:D3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞D.1(,2)2-答案:C4.曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e答案:A5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49 答案:B7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ) A.e o m m x== B.e o m m x =<C.e o m m x <<D.o e m m x <<答案:D 计算可以得知,中位数为5.5,众数为5所以选D父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm ) 175 175176177177则y 对x 的线性回归方程为A.y = x-1B.y = x+1C.y = 88+12x D.y = 176 C 线性回归方程bx a y +=,()()()∑∑==---=ni i ni ii x x y y x x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

高三数学招生国统一考试文科江西有解析 试题

高三数学招生国统一考试文科江西有解析 试题

本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

绝密★启用前2021年普通高等招生全国统一考试〔卷〕文科数学本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,第一卷1至2页,第二卷3至4页,一共150分。

考生注意:1. 在答题之前,所有考生必须将自己的准考证号、姓名填写上在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目〞与考生本人准考证号、姓名是否一致。

2. 第I 卷每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第二卷用黑色墨水签字笔在答题卡上书写答题。

在试题卷上答题,答案无效。

3. 在考试完毕之后,监考员将试题卷、答题卡一并收回。

参考公式假如事件,A B 互斥,那么 球的外表积公式()()()P A B P A P B +=+ 24S R π=假如事件,A B ,互相HY ,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式假如事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次HY 重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)kk n k n n P k C p p -=-第一卷一.选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.以下命题是真命题的为A .假设11x y=,那么x y = B .假设21x =,那么1x = C .假设x y =,= D .假设x y <,那么 22x y <2.函数y =A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-3.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,那么仅参加了一项活动的学生人数为A .50B .45C .40D .354.函数()(1)cos f x x x =的最小正周期为 A .2π B .32π C .π D .2π 5.函数()f x 是(,)-∞+∞上的偶函数,假设对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),那么(2008)(2009)f f -+的值是A .2-B .1-C .1D .26.假设122n n n n n C x C x C x +++能被7整除,那么,x n 的值可能为A .4,3x n ==B .4,4x n ==C .5,4x n ==D .6,5x n ==1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 假设12F F ,,(0,2)P b 是正三角形的三个顶点,那么双曲线的离心率为 A .32 B .2 C .52D .3yxO(,)P x y (,0)Q x 8.公差不为零的等差数列{}n a 的前n 项和为n S .假设4a 是37a a 与的等比中项,832S =,那么10S 等于A. 18B. 24C. 60D. 909.如图,在四面体ABCD 中,截面PQMN 是正方形,那么在以下命题中,错.误.的为 A . AC BD ⊥ B . AC ∥截面PQMNC . AC BD = D . 异面直线PM 与BD 所成的角为4510.甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组〔每组两个队〕进展比赛,胜者再赛,那么甲、乙相遇的概率为 A .16 B .14 C .13 D .1211.如下图,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为A B C D12.假设存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,那么a 等于 A .1-或者25-64 B .1-或者214 C .74-或者25-64 D .74-或者7绝密★启用前2021年普通高等招生全国统一考试〔卷〕P QMNABCDO ()t t O ()V t tO ()V t tO ()V t t文科数学第二卷考前须知:第二卷2页,须用黑色墨水签字笔在答题卡上书写答题,假设在试题上答题,答案无效。

历年江西省高考数学题(文科)-解析几何(含答案)

历年江西省高考数学题(文科)-解析几何(含答案)

江西历年高考数学题(文科)------解析几何2009年江西省高考数学文科7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32 B .2 C .52D .3 12.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A .1-或25-64 B .1-或214 C .74-或25-64 D .74-或7 16.设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,对于下列四个命题:( )A .存在一个圆与所有直线相交B .存在一个圆与所有直线不相交C .存在一个圆与所有直线相切D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号). 22.(本小题满分14分)如图,已知圆:G 222(2)x y r -+=是椭圆22116x y +=的内接△ABC 的内切圆, 其中A 为椭圆的左顶点.(1)求圆G 的半径r ;(2)过点(0,1)M 作圆G 的两条切线交椭圆于E F ,两点,证明:直线EF 与圆G 相切.10.直线3y kx =+与圆22(2)(3)4x y -+-=相交于M 、N 两点,若|MN |≥则k 的取值范围是( )A .3[,0]4-B.[ C.[D .2[,0]3-15.点00(,)A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = ;21.(本小题满分12分)已知抛物线1C :22x by b +=经过椭圆2C :22221(0)x y a b a b+=>>的两个焦点.(1) 求椭圆2C 的离心率;(2) 设(3,)Q b ,又,M N 为1C 与2C 不在y 轴上的两个交点,若QMN ∆的重心在抛物线1C 上,求1C 和2C 的方程.12.若双曲线22116y x m-=的离心率e=2,则m=____.19.(本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.8.椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别是A ,B ,左右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12 D.5-2 14.过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.20.已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →)+2.(1)求曲线C 的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与PA ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.9. 已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=( )A.2:B.1:2C. 1:D. 1:314.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是。

普通高等学校招生全国统一考试数学文试题(江西卷,解析版)

普通高等学校招生全国统一考试数学文试题(江西卷,解析版)

2013年普通高等学校招生全国统一考试(江西卷)文科数学解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用0.5毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。

4. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.复数z=i(-2-i)(i为虚数单位)在复平面内所对应的点在A.第一象限B.第二象限C.第三象限D.第四象限[答案]:D[解析]:Z=-2i-i2 =1-2i 对应点这(1,-2)在第四象限若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=A.4B.2C.0D.0或4[答案]:A[解析]:010a=≠∆当时,=不合,当a0时,=0,则a=43.3sin cos2αα==若,则()A.23-B.13-C.13 D.23[答案]:C[解析]:211 cos12sin12233αα=-=-⨯=4.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是A B. C. D.[答案]:C[解析]:所有情形有六种,满足要求的只有(2,2)和(3,1)故只能选C5.总体编号为01,02,…19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为A.08B.07C.02D.01[答案]:D[解析]:从第5列和第6列选出的两位数依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,但编号必须不大于20的且不和前面重复的只能是08,02,14,07,01,选D6. 下列选项中,使不等式x<1x <2x 成立的x 的取值范围是( )A.(,-1)B. (-1,0)C.0,1)D.(1,+) [答案]:A[解析]:令x=-2,不等式成立,只能选A 。

普通高等学校招生全国统一考试数学文(江西卷,含答案)

普通高等学校招生全国统一考试数学文(江西卷,含答案)

2009年普通高等学校招生全国统一考试数学文(江西卷,含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答。

在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

参考公式如果事件,A B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件,A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=- 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列命题是真命题的为A .若11x y =,则x y = B .若21x =,则1x = C .若x y =,= D .若x y <,则 22x y <2.函数y =的定义域为A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-3.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为 A .50 B .45 C .40 D .354.函数()(1)cos f x x x =的最小正周期为 A .2π B .32π C .π D .2π 5.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为A .2-B .1-C .1D .26.若122n nn n n C x C x C x +++能被7整除,则,x n 的值可能为A .4,3x n ==B .4,4x n ==C .5,4x n ==D .6,5x n ==7.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为 A .32 B .2 C .52D .3 8.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A. 18B. 24C. 60D. 909.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,错误..的为A . AC BD ⊥B . AC ∥截面PQMNC . AC BD = D . 异面直线PM 与BD 所成的角为4510.甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为 A .16 B .14 C .13 D .1211.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不 变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为AC D12.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64D .74-或7P QMNABCD(V ((V (绝密★启用前2009年普通高等学校招生全国统一考试(江西卷)文科数学 第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。

招生全国统一考试数学文试题江西卷,解析版

招生全国统一考试数学文试题江西卷,解析版

普通高等学校招生全国统一考试(江西卷)文科数学解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅱ卷用毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。

4. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.复数z=i(-2-i )(i 为虚数单位)在复平面内所对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]:D[解析]:Z =-2i-i2 =1-2i 对应点这(1,-2)在第四象限 若集合A={x ∈R|ax2+ax+1=0}其中只有一个元素,则a= .2 C 或4 [答案]:A[解析]: 010a =≠∆当时,=不合,当a 0时,=0,则a=4 3. 3sincos 23αα==若,则 ( ) A. 23- B. 13-C.Error! Cannot insert return character.D.[答案]:C[解析]:211cos 12sin 12233αα=-=-⨯=4.集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是A . D. [答案]:C[解析]:所有情形有六种,满足要求的只有(2,2)和(3,1)故只能选C5.总体编号为01,02,…19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为.07 C[答案]:D[解析]:从第5列和第6列选出的两位数依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,但编号必须不大于20的且不和前面重复的只能是08,02,14,07,01,选D 6. 下列选项中,使不等式x <Error! Digit expected.<2x 成立的x 的取值范围是( ) A.(,-1) B. (-1,0) ,1) D.(1,+)[答案]:A[解析]:令x=-2,不等式成立,只能选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006高等学校全国统一数学文试题(江西卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(1)0P x x x =-≥,101Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q 等于( ) A.∅ B.{}1x x ≥C.{}1x x >D.{}1x xx <0或≥2.函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为( )A.π2B.πC.2πD.4π 3.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A.2-B.0C.1D.24.下列四个条件中,p 是q 的必要不充分条件的是( ) A.:p a b >,22:q a b > B.:p a b >,:22abq > C.22:p ax by c+=为双曲线,:0q ab <D.2:0p ax bx c ++>,2:c b q a xx-+>5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( )A.(0)(2)2(1)f f f +<B.(0)(2)2(1)f f f +≤C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( ) A.0B.2-C.52-D.3-7.在2nx ⎛⎫+ ⎪⎝⎭的二项展开式中,若常数项为60,则n 等于( )A.3B.6C.9D.128.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )A.12344812161040C C C C CB.21344812161040C C C C CC.23144812161040C C C C C D.13424812161040C C C C C9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 10.已知等差数列{}n a 的前n 项和为nS ,若1200OB a OA a OC=+,且A B C ,,三点共线(该直线不过点O ),则200S 等于( ) A.100B.101C.200D.20111.P 为双曲线221916xy-=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN-的最大值为( )A.6B.7C.8D.912.某地一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图(1)所示,令()C t 表示时间段[0]t ,内的温差(即时间段[0]t ,内最高温度与最低温度的差).()C t 与t 之间的函数关系用下列图象表示,则正确的图象大致是( )二、填空题:本大题4小题,每小题4分,共16分.请把答案填在答题卡上.13.已知向量(1sin )a θ=,,(1cos )b θ=,,则a b -的最大值为.14.设3()log (6)f x x =+的反函数为1()fx -,若11[()6][()6]27fm f n --++= ,则()f m n +=.15.如图,已知正三棱柱111ABC A B C -的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为. 16.已知12F F ,为双曲线22221(00)a b xy a b ab≠-=>>且,的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.下面四个命题( )Q 1C 1B 1A ACBtCA.12PF F △的内切圆的圆心必在直线x a =上; B.12PF F △的内切圆的圆心必在直线x b =上; C.12PF F △的内切圆的圆心必在直线O P 上;D.12PF F △的内切圆必通过点0a (),. 其中真命题的代号是 (写出所有真命题的代号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a b ,的值及函数()f x 的单调区间;(2)若对[12]x ∈-,,不等式2()f x c <恒成立,求c 的取值范围. 18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求(1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率. 19.(本小题满分12分)在锐角A B C △中,角A B C ,,所对的边分别为a b c ,,,已知sin 3A =,(1)求22tansin22B C A ++的值;(2)若2a =,ABCS =△b 的值.20.(本小题满分12分)如图,已知三棱锥O A B C -的侧棱OA OB OC ,,两两垂AOECB直,且1O A =,2O B O C ==,E 是O C 的中点. (1)求O 点到面ABC 的距离; (2)求异面直线B E 与A C 所成的角; (3)求二面角E A B C --的大小. 21.(本小题满分12分)如图,椭圆22221(0)x yQ a b a b +=>>:的右焦点为(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 为线段A B 的中点. (1)求点P 的轨迹H 的方程;(2)若在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤. 设轨迹H 的最高点和最低点分别为M 和N .当θ为何值时,M N F △为一个正三角形? 22.(本小题满分14分)已知各项均为正数的数列{}n a ,满足:13a =,且11122n nn n n n a a a a a a +++-=-,*n N ∈.(1)求数列{}n a 的通项公式;(2)设22212n nS a a a =+++ ,22212111n nT aa a a =+++ ,求n nS T +,并确定最小正整数n ,使n nS T +为整数.2007年普通高等学校招生全国统一考试(江西卷)数 学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合M ={0,1},I ={0,1,2,3,4,5},则ð1M 为 A .{0,1} B .{2,3,4,5} C .{0,2,3,4,5} D .{1,2,3,4,5} 2.函数y =5tan (2x +1)的最小正周期为A .4πB .2πC .πD .2π3.函数41lg)(--=x xx f 的定义域为A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞)D .(-∞,1]∪(4,+∞)4.若tan α=3,tan β=34,则tan (α-β)等于A .-3B .-31C .3D .315.设(x2+1)(2x +1)9=a0+a1(x +2)+a2(x +2)2+…+a11(x +2)11,则a0+a1+a2+…+a11的值为A .-2B .-1C .1D .26.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为A .321B .641C .323D .6437.连接抛物线x2=4y 的焦点F 与点M (1,0)所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为A .-1+2 B .23-2 C .1+2 D .23+28.若0<x <2π,则下列命题中正确的是A .sin x <xπ2 B .sin x >xπ2 C .sin x <xπ3 D .sin x >xπ3 X9.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是A .6πB .3πC .32πD .65π10.设p :f (x )=x3+2x2+mx +l 在(-∞,+∞)内单调递增,q :m ≥34,则p 是q 的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是A .h2>h1>h4B .h1>h2>h3C .h3>h2>h4D .h2>h4>h112.设椭圆)0(12222>>b a by ax=+的离心率为e =21,右焦点为F (c ,0),方程ax2+bx -c =0的两个实根分别为x1和x2,则点P (x1,x2)A .必在圆x2+y2=2上B .必在圆x2+y2=2外C .必在圆x2+y2=2内D .以上三种情形都有可能二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上。

13.在平面直角坐标系中,正方形OABC的对角线OB的两端点分别为O(0,0),B(1,1),则AB·AC=。

14.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=。

15.已知函数y=f(x)存在反函数y=f-1(x),若函数y=f(x+1)的图象经过点(3,1),则函数y=f-1(x)的图象必经过点。

16.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的命题是A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.二面角C—B1D1—C1的正切值为2D.点H到平面A1B1C1D1的距离为43其中真命题的代号是(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数⎪⎩⎪⎨⎧≤++=-)1(12)0(1)(2<<<xccxcxxfcx满足89)(2=cf。

相关文档
最新文档