天津理工大学 操作系统实验3:磁盘调度算法地实现
操作系统磁盘调度算法实验报告
while(p)
{
sum=sum+p->time;
p->averageTime=sum;
p=p->next;
SUM+=sum;
} return 0;
}
void print(linknode *head)
{
linknode *p;
p=head->next;
printf("各进程处理时间为:");
#include <stdlib.h>
int SUM=0,K=0;
typedef struct link
{
int time;
int averageTime;
int priority;
struct link *next;
}linknode;
linknode *creat()
{
int n,m;
linknode *head,*r,*s;
return 0;
}
2、最短寻道时间优先算法后的磁盘调度序列
源代码
#include<stdio.h>
void main()
{
int m=0,n,Seek[100],Flag[100],SCurrent,t,i=0,j,k,i0,j0;
printf("请输入当前的磁道号:");
scanf("%d",&SCurrent);
{
for(i=i0;i>=0;i--)
printf("%5d",Seek[i]);
k=-1;
}
// 3.当前磁道号在已排序的磁道序列的中间//
操作系统磁盘调度算法实验报告及代码
操作系统磁盘调度算法实验报告及代码一、实验目的通过实验掌握磁盘调度算法的实现过程,了解各种不同磁盘调度算法的特点和优缺点,并比较它们的性能差异。
二、实验原理磁盘调度是操作系统中的重要内容,其主要目的是提高磁盘的利用率和系统的响应速度。
常见的磁盘调度算法有:FCFS(先来先服务)、SSTF (最短寻道时间)、SCAN(扫描)、C-SCAN(循环扫描)等。
三、实验过程1.编写代码实现磁盘调度算法首先,我们需要定义一个磁盘请求队列,其中存放所有的IO请求。
然后,根据所选的磁盘调度算法,实现对磁盘请求队列的处理和IO请求的调度。
最后,展示运行结果。
以FCFS算法为例,伪代码如下所示:```diskQueue = new DiskQueue(; // 创建磁盘请求队列while (!diskQueue.isEmpty()request = diskQueue.dequeue(; // 取出队列头的IO请求//处理IO请求displayResult(; // 展示运行结果```2.运行实验并记录数据为了验证各种磁盘调度算法的性能差异,我们可以模拟不同的场景,例如,随机生成一批磁盘IO请求,并使用不同的磁盘调度算法进行处理。
记录每种算法的平均响应时间、平均等待时间等指标。
3.撰写实验报告根据实验数据和结果,撰写实验报告。
实验报告通常包括以下内容:引言、实验目的、实验原理、实验步骤、实验结果、实验分析、结论等。
四、实验结果与分析使用不同的磁盘调度算法对磁盘IO请求进行处理,得到不同的实验结果。
通过对比这些结果,我们可以看出不同算法对磁盘IO性能的影响。
例如,FCFS算法对于请求队列中的请求没有排序,可能会导致一些请求等待时间过长。
而SSTF算法通过选择离当前磁道最近的请求进行处理,能够减少平均寻道时间,提高磁盘性能。
五、实验总结通过本次实验,我们学习了操作系统中磁盘调度算法的原理和实现过程。
不同的磁盘调度算法具有不同的优缺点,我们需要根据实际情况选择合适的算法。
操作系统实验报告—磁盘调度算法
操作系统实验报告—磁盘调度算法操作系统实验报告实验3磁盘调度算法报告日期:20XX-6-17姓名:学号:班级:任课教师:实验3磁盘调度算法一、实验内容模拟电梯调度算法,实现对磁盘的驱动调度。
二、实验目的磁盘是一种高速、大量旋转型、可直接存取的存储设备。
它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。
系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。
驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。
本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。
三、实验原理模拟电梯调度算法,对磁盘调度。
磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。
当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。
当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。
当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。
假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。
请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。
四、实验过程1.画出算法流程图。
2.源代码#include #include #include int *Init(intarr) {int i = 0;srand((unsignedint)time(0)); for (i = 0; i = num) {a[j+1] = arr[i]; j++; } else {b[k+1] = arr[i]; k++; } }printf(\访问序列:\\n\); for (i = 1; i 0; i--) { printf(\, b[i]); }sum = ((a[j]-100)*2+(100- b[1]))/15;printf(\平均寻道长度:%d\, sum); }int main {int arr[15] = { 0 }; int *ret=Init(arr); two_part(ret); getchar ; return 0;}4运行结果:五、实验小结通过本次实验,我对scan算法更加深入理解,用C语言模拟电梯调度算法,实现对磁盘的驱动调度,这个相比前两个实验实现起来相对简单,理解了算法实现起来尤为简单,程序敲出来之后没有错误,可直接运行,结果验证也无误。
磁盘调度实验报告实验总结
磁盘调度实验报告实验总结磁盘调度是操作系统中的一个重要概念,它是指操作系统通过合理的算法和策略来管理和调度磁盘上的数据访问请求。
磁盘调度的目的是提高磁盘的读写效率,减少磁盘访问的时间开销,从而提高系统的整体性能。
本次实验主要对比了三种常见的磁盘调度算法:先来先服务(FCFS)、最短寻道时间优先(SSTF)和电梯算法(SCAN)。
通过对比实验结果分析各种算法的性能表现和特点,并给出相应的实验总结。
实验总结如下:一、先来先服务(FCFS)算法FCFS算法是一种简单直接的磁盘调度算法,它按照请求的顺序依次进行访问。
实验结果表明,FCFS算法的平均寻道时间较高,且易产生长期等待现象。
这是因为FCFS算法无法优化磁头的移动顺序,只能按照请求的先后顺序安排磁道的访问,从而导致了较差的性能表现。
二、最短寻道时间优先(SSTF)算法SSTF算法根据当前磁头位置选择距离最近的请求进行服务。
实验结果表明,SSTF算法的平均寻道时间明显优于FCFS算法,且缓解了长期等待现象。
这是因为SSTF算法可以选择离当前磁头位置最近的请求,从而减少了寻道时间,提高了磁道的访问效率。
三、电梯算法(SCAN)算法SCAN算法也称为电梯算法,它模拟了电梯运行的原理。
SCAN算法先将磁头移动到一个极限位置,然后沿着一个方向依次访问请求,直到到达另一个极限位置,再改变方向重复上述过程。
实验结果表明,SCAN算法的平均寻道时间与SSTF 算法相当,且具有较好的均衡性。
这是因为SCAN算法可以使得磁头在磁盘上的行进路线保持平衡,避免了过多的磁道之间的跳跃,从而提高了磁道的访问效率。
综上所述,不同的磁盘调度算法具有不同的性能表现和特点。
在实际应用中,需要根据具体的场景和需求选择合适的磁盘调度算法。
一般而言,SSTF算法和SCAN算法在性能上表现较好,可以提高磁盘的读写效率,减少寻道时间开销。
而FCFS算法在实际应用中较为有限,对于长期等待和寻道时间要求较高的场景不太适用。
操作系统模拟磁盘调度实验报告
操作系统课程设计成绩单开设时间:2015-2016学年第一学期一、需求分析本实验主要在于用随机生成的磁道序号和初始磁头位置,来模拟磁盘调度的实现过程。
(1)输入的形式和输入值的范围输入的形式是各种命令,由于在图形界面上操作,所以输入值的范围已在图形界面上约束。
(2)输出的形式调用每种磁盘调度方法后,相关结果显示在图像界面上,并以折线图的形式输出调度算法的过程。
(3)程序所能达到的功能能够模拟磁盘调度算法的过程和实现比较。
(4)测试数据:包括正确的输入及其输出结果和含有错误的输入及其输出结果。
程序中主要的数据是由程序随机生成磁道序号,用户点击按钮输入选择相关方法;测试得输入方面没有出现意料之外的结果;输出的结果也是各种合理的折线图和比较信息。
二、概要设计(1)程序中主要用到的抽象数据类型程序中主要的抽象数据类型是数组,定义如下:int [] num = new int[400];主要用于存放程序随机生成的400个磁道序号,以便在需要时便于使用。
(2)主程序的流程图(3)各个模块之间的调用关系三、详细设计(1)实现概要设计中定义的所有数据类型,对每个操作只需要写出伪码算法。
int [] num = new int[400];if(user statrt to use the project){SourceNum sourceNum = new SourceNum();} // 生成随机数于类SourceNum 中使用静态数组保存(2)对主程序和其他模块也都需要写出伪码算法(伪码算法达到的详细程度应能够按照伪码算法在计算机键盘上直接输入高级程序设计语言程序)。
主程序If(user select some operate){Show the result;}其他模块Process process = new Process();If(user click one btn){int [] source = new int[400];source = process.getNumbers(); // 获取实验数据give the source to related Chart to make Chart to show;}(3)画出函数的调用关系图。
磁盘调度操作系统实验报告
实验一磁盘调度算法实现一、实验目的本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解。
二、实验内容系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCA)N。
2.1 先来先服务算法(FCFS )这是一种比较简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。
2.2 最短寻道时间优先算法(SSTF )该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。
其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。
在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。
2.3 扫描算法(SCAN)扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。
例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。
这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。
这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。
由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。
磁盘调度算法的实现
实验五、磁盘调度算法的实现一、实验目的实验程序模拟先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN 算法的工作过程。
假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m 和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度,本程序采用随机数来产生磁道数。
二、实验要求算法所需的各种参数由输入产生(手工输入或者随机数产生)。
最后的结果要求是在运行四种算法的程序后,能够输出调度过程、平均寻道长度的正确结果。
三、实验说明(1) 先来先服务.(FCFS):这是一种简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
但此算法由于未对寻道进行优化,致使平均寻道时间可能较长。
(2) 最短寻道时间优先(SSTF):该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,但这种调度算法却不能保证平均寻道时间最短。
(3) 扫描算法(SCAN):SCAN算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。
例如,当磁头正在自里向外移动时,SCAN算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。
这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。
这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。
由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。
(4)循环扫描算法(CSCAN)CSCAN算法是对扫描算法的改进。
如果对磁道的访问请求是均匀分布的,当磁头到达磁盘的一端,并反向运动时落在磁头之后的访问请求相对较少。
这是由于这些磁道刚被处理,而磁盘另一端的请求密度相当高,且这些访问请求等待的时间较长,为了解决这种情况,循环扫描算法规定磁头单向移动。
磁盘调度算法实验报告
磁盘调度算法实验报告磁盘调度算法实验报告引言:磁盘调度算法是操作系统中的重要组成部分,它负责决定磁盘上数据的访问顺序,以提高磁盘的访问效率。
在本次实验中,我们对比了三种常见的磁盘调度算法:先来先服务(FCFS)、最短寻道时间优先(SSTF)和扫描(SCAN)算法。
通过对比实验结果,我们将分析不同算法的优缺点,并对其适用场景进行探讨。
实验过程:为了模拟磁盘调度算法在实际应用中的情况,我们使用了一个包含100个磁道的磁盘模型。
我们随机生成了一组磁道请求序列,并以此作为实验数据。
首先,我们使用FCFS算法对数据进行访问,记录下访问每个磁道所需的时间。
然后,我们分别使用SSTF和SCAN算法进行同样的操作,并记录下相应的访问时间。
实验结果:经过实验,我们得到了不同调度算法的访问时间数据。
在FCFS算法中,由于它按照请求的先后顺序进行访问,所以磁头需要频繁地在磁道之间移动,导致访问时间较长。
SSTF算法则根据当前磁头位置选择最近的磁道进行访问,因此其访问时间相对较短。
而SCAN算法则将磁头从一端移动到另一端,期间访问所有请求的磁道,这样可以减少磁头的移动次数,从而提高访问效率。
讨论与分析:从实验结果可以看出,不同的磁盘调度算法在不同的场景下有着不同的优势。
FCFS算法适用于请求较少、请求之间没有明显关联的情况。
因为它简单易实现,不需要额外的计算和判断,但在高负载情况下容易导致磁头抖动,降低整体性能。
SSTF算法适用于请求之间有明显关联的情况,因为它能够选择最近的磁道进行访问,减少了磁头的移动次数。
但是,当请求分布不均匀时,SSTF算法可能会导致某些磁道长时间得不到访问。
SCAN算法则适用于对整个磁盘进行扫描的场景,因为它能够在一个方向上连续访问多个磁道,减少了磁头的移动次数。
但是,SCAN算法可能会导致某些磁道长时间得不到访问,因此在请求分布不均匀的情况下,其性能可能会受到影响。
结论:通过本次实验,我们对比了三种常见的磁盘调度算法,并分析了它们的优缺点及适用场景。
操作系统实验磁盘调度算法实验报告
if(a==0)
{
cout<<"输入数据的类型错误,请重新输入!"<<endl;
goto F;//输入错误,跳转到F,重新输入
}
else
c=trans(str,a);
if(c==5)
break;
if(c>5)
{
cout<<"数据输入错误!请重新输入"<<endl;
goto G;
1、实验目的
通过这个实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN、CSCAN算法。
2、实验内容
利用高级语言编写先来先服务FCFS、最短寻道时间优先SSTF、SCAN、CSCAN算法。
3、实验环境
1.PC微机。
2.Windows操作系统。
3.C/C++/VB开发集成环境。
cout<<"* 4. 循 环 扫 描 *"<<endl;
cout<<"* 5. 退 出 *"<<endl;
cout<<"* *"<<endl;
cout<<"********************************"<<endl;
G:cout<<"请选择算法:";
F:cin>>str; //对输入数据进行有效性判断
break;
}
}
}
5、实验结果
成绩评定:
1、根据实验情况和实验报告质量作出写事性评价
磁盘调度算法的设计实验报告
磁盘调度算法的设计实验报告一、实验背景磁盘调度算法是操作系统中的重要内容之一,它的主要作用是优化磁盘的读写效率,提高系统的性能。
本次实验旨在通过设计不同的磁盘调度算法,比较它们在不同情况下的性能表现。
二、实验环境本次实验使用了Linux操作系统和C语言编程语言。
硬件环境为Intel Core i5处理器、4GB内存和500GB硬盘。
三、实验过程1. 先来看看什么是磁盘调度算法。
磁盘调度算法是指操作系统中用于管理磁盘I/O请求队列的算法。
常见的磁盘调度算法有FCFS(先来先服务)、SSTF(最短寻道时间优先)、SCAN(扫描)、LOOK(往返扫描)等。
2. 接下来我们分别对这些算法进行设计和实现,并进行性能测试。
3. 首先是FCFS算法。
FCFS算法就是按照请求到达时间的顺序进行服务,即先来先服务。
我们通过模拟生成一组随机数作为请求队列,然后计算出每个请求需要移动的距离,并计算出平均寻道长度。
4. 然后是SSTF算法。
SSTF算法是指选择距离当前磁头位置最近的请求进行服务。
我们同样使用模拟生成一组随机数作为请求队列,然后计算出每个请求与当前磁头位置的距离,并按照距离从小到大进行排序,然后依次服务每个请求,并计算出平均寻道长度。
5. 接下来是SCAN算法。
SCAN算法是指磁头从一端开始移动,直到到达另一端,然后返回原点继续移动。
我们同样使用模拟生成一组随机数作为请求队列,并将其按照磁头当前位置的左右分成两部分,分别从左往右和从右往左进行服务,并计算出平均寻道长度。
6. 最后是LOOK算法。
LOOK算法和SCAN类似,不同之处在于当服务完最远的请求时不会返回原点,而是直接返回最近的请求。
我们同样使用模拟生成一组随机数作为请求队列,并将其按照磁头当前位置的左右分成两部分,分别从左往右和从右往左进行服务,并计算出平均寻道长度。
四、实验结果通过对以上四种磁盘调度算法进行测试,得到以下结果:1. FCFS平均寻道长度:1622. SSTF平均寻道长度:783. SCAN平均寻道长度:984. LOOK平均寻道长度:87五、实验结论从实验结果可以看出,SSTF算法的性能最优,平均寻道长度最短。
天津理工大学操作系统实验3:磁盘调度算法地实现
实验报告学院(系)名称:计算机与通信工程学院【实验过程记录(源程序、测试用例、测试结果及心得体会等)】#include<iostream>#include<iomanip>#include<math.h>using namespace std;const int MaxNumber=100;int TrackOrder[MaxNumber];int MoveDistance[MaxNumber]; //----移动距离;int FindOrder[MaxNumber]; //-----寻好序列。
double AverageDistance; //-----平均寻道长度bool direction; //-----方向true时为向外,false为向里int BeginNum; //----开始磁道号。
int M; //----磁道数。
int N; //-----提出磁盘I/O申请的进程数int SortOrder[MaxNumber]; //----排序后的序列bool Finished[MaxNumber];void Inith(){cout<<"请输入磁道数:";cin>>M;cout<<"请输入提出磁盘I/O申请的进程数:";cin>>N;cout<<"请依次输入要访问的磁道号:";for(int i=0;i<N;i++)cin>>TrackOrder[i];for(int j=0;j<N;j++)MoveDistance[j]=0;cout<<"请输入开始磁道号:";cin>>BeginNum;for(int k=0;k<N;k++)Finished[k]=false;for(int l=0;l<N;l++)SortOrder[l]=TrackOrder[l];}//=====================排序函数,将各进程申请的磁道按从小到大排列=================void Sort(){ //------冒泡排序int temp;for(int i=N-1;i>=0;i--)for(int j=0;j<i;j++){if(SortOrder[j]>SortOrder[j+1]){temp=SortOrder[j];SortOrder[j]=SortOrder[j+1];SortOrder[j+1]=temp;}}}//============FCFS,先来先服务================================= void FCFS(){int temp;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){MoveDistance[i]=abs(TrackOrder[i]-temp); //-------计算移动磁道数temp=TrackOrder[i]; //-------寻到后,将此道作为当前所在磁道号,赋给tempFindOrder[i]=TrackOrder[i]; //-----寻好的赋给寻好序列}}//========SSTF,最短寻道法=============================void SSTF(){int temp,n;int A=M;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){for(int j=0;j<N;j++) //-------寻找最短的寻道长度{if(abs(TrackOrder[j]-temp)<A&&Finished[j]==false){A=abs(TrackOrder[j]-temp);n=j;}else continue;}Finished[n]=true; //-------将已经寻找到的Finished赋值为trueMoveDistance[i]=A; //-------寻道长度temp=TrackOrder[n]; //-------当前寻道号。
操作系统实验(进程调度+存储管理+磁盘调度++银行家算法+文件系统设计)
操作系统实验(进程调度+存储管理+磁盘调度++银行家算法+文件系统设计)操作系统实验(进程调度+存储管理+磁盘调度++银行家算法+文件系统设计) 实验三进程调度一、实验目的多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。
因而引起进程调度。
本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
二、实验要求1.设计进程调度算法,进程数不定2.包含几种调度算法,并加以实现3.输出进程的调度过程——进程的状态、链表等。
三、参考例1.题目——优先权法、轮转法简化假设1)进程为计算型的(无I/O)2)进程状态:ready、running、finish 3)进程需要的CPU时间以时间片为单位确定2.算法描述1)优先权法——动态优先权当前运行进程用完时间片后,其优先权减去一个常数。
2)轮转法开始键盘输入进程数n,和调度方法的选择优先权法?轮转法产生n个进程,对每个进程产生一个PCB,并用随机数产生进程的优先权及进程所需的CPU时间按优先权大小,把n个进程拉成一个就绪队列初始化其他数据结构区链首进程投入运行时间片到,进程所需的CPU时间减1,优先权减3,输出个进程的运行情况所需的CPU时间=0?撤销进程就绪队列为空?结束将进程插入就绪队列N Y N Y Y B N 四、实验流程图产生n个进程,对每个进程用随机数产生进程的轮转时间片数及进程所需的时间片数,已占用CPU的时间片数置为0 按进程产生的先后次序拉成就绪队列链链首进程投入运行时间片到,进程所需时间片数减1,已占用CPU时间片数加1 输出各进程的运行情况进程所需时间片数=0?撤销该进程就绪队列为空吗?占用CPU的时间片数=轮转时间片数?占用CPU的时间片数置为0 把该进程插入就绪队列尾B N Y N Y Y 结束N 注意:1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。
操作系统实验磁盘调度算法实验报告
操作系统实验磁盘调度算法实验报告一.实验目的本实验旨在通过磁盘调度算法的模拟,探究不同调度算法对磁盘访问性能的影响,了解各种算法的特点和适用场景。
二.实验方法本实验通过编写磁盘调度模拟程序,实现了三种常见的磁盘调度算法:FCFS(先来先服务)、SSTF(最短寻找时间优先)和SCAN(扫描算法)。
实验中使用C语言编程语言,并通过随机生成的队列模拟磁盘访问请求序列。
三.实验过程1.FCFS(先来先服务)算法FCFS算法是一种非常简单的调度算法,它按照请求到达的顺序进行调度。
在实验中,我们按照生成的请求队列顺序进行磁盘调度,记录每次磁头移动的距离。
2.SSTF(最短寻找时间优先)算法SSTF算法是一种动态选择离当前磁头位置最近的磁道进行调度的算法。
在实验中,我们根据当前磁头位置和请求队列中的磁道位置,选择距离最近的磁道进行调度。
然后将该磁道从请求队列中移除,并记录磁头移动的距离。
3.SCAN(扫描算法)算法SCAN算法是一种按照一个方向进行扫描的算法,它在每个方向上按照磁道号的顺序进行调度,直到扫描到最边缘磁道再折返。
在实验中,我们模拟磁头从一个端点开始,按照磁道号从小到大的顺序进行调度,然后再折返。
记录磁头移动的距离。
四.实验结果与分析我们通过生成不同数量的请求队列进行实验,记录每种算法的磁头移动距离,并进行比较。
实验结果显示,当请求队列长度较小时,FCFS算法的磁头移动距离较短,因为它按照请求到达的顺序进行调度,无需寻找最短的磁道。
然而,当请求队列长度较大时,FCFS算法的磁头移动距离会显著增加,因为它不能根据距离进行调度。
SSTF算法相对于FCFS算法在磁头移动距离上有了明显改进。
SSTF算法通过选择最短的寻找时间来决定下一个访问的磁道,因此可以减少磁头的移动距离。
然而,在请求队列中存在少量分散的请求时,SSTF算法可能会产生扇区的服务死锁现象,导致一些磁道无法及时访问。
SCAN算法通过扫描整个磁盘来进行调度,有效解决了FCFS算法有可能导致的服务死锁问题。
天津理工大学 操作系统实验3:磁盘调度算法的实现
实验报告学院(系)名称:计算机与通信工程学院【实验过程记录(源程序、测试用例、测试结果及心得体会等)】#include<iostream>#include<iomanip>#include<math.h>using namespace std;const int MaxNumber=100;int TrackOrder[MaxNumber];int MoveDistance[MaxNumber]; //----移动距离;int FindOrder[MaxNumber]; //-----寻好序列。
double AverageDistance; //-----平均寻道长度bool direction; //-----方向 true时为向外,false为向里int BeginNum; //----开始磁道号。
int M; //----磁道数。
int N; //-----提出磁盘I/O申请的进程数int SortOrder[MaxNumber]; //----排序后的序列bool Finished[MaxNumber];void Inith(){cout<<"请输入磁道数:";cin>>M;cout<<"请输入提出磁盘I/O申请的进程数:";cin>>N;cout<<"请依次输入要访问的磁道号:";for(int i=0;i<N;i++)cin>>TrackOrder[i];for(int j=0;j<N;j++)MoveDistance[j]=0;cout<<"请输入开始磁道号:";cin>>BeginNum;for(int k=0;k<N;k++)Finished[k]=false;for(int l=0;l<N;l++)SortOrder[l]=TrackOrder[l];}//=====================排序函数,将各进程申请的磁道按从小到大排列================= void Sort(){ //------冒泡排序int temp;for(int i=N-1;i>=0;i--)for(int j=0;j<i;j++){if(SortOrder[j]>SortOrder[j+1]){temp=SortOrder[j];SortOrder[j]=SortOrder[j+1];SortOrder[j+1]=temp;}}}//============FCFS,先来先服务=================================void FCFS(){int temp;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){MoveDistance[i]=abs(TrackOrder[i]-temp); //-------计算移动磁道数temp=TrackOrder[i]; //-------寻到后,将此道作为当前所在磁道号,赋给tempFindOrder[i]=TrackOrder[i]; //-----寻好的赋给寻好序列}}//========SSTF,最短寻道法=============================void SSTF(){int temp,n;int A=M;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){for(int j=0;j<N;j++) //-------寻找最短的寻道长度{if(abs(TrackOrder[j]-temp)<A&&Finished[j]==false){A=abs(TrackOrder[j]-temp);n=j;}else continue;}Finished[n]=true; //-------将已经寻找到的Finished赋值为trueMoveDistance[i]=A; //-------寻道长度temp=TrackOrder[n]; //-------当前寻道号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告学院(系)名称:计算机与通信工程学院【实验过程记录(源程序、测试用例、测试结果及心得体会等)】#include<iostream>#include<iomanip>#include<math.h>using namespace std;const int MaxNumber=100;int TrackOrder[MaxNumber];int MoveDistance[MaxNumber]; //----移动距离;int FindOrder[MaxNumber]; //-----寻好序列。
double AverageDistance; //-----平均寻道长度bool direction; //-----方向 true时为向外,false为向里int BeginNum; //----开始磁道号。
int M; //----磁道数。
int N; //-----提出磁盘I/O申请的进程数int SortOrder[MaxNumber]; //----排序后的序列bool Finished[MaxNumber];void Inith(){cout<<"请输入磁道数:";cin>>M;cout<<"请输入提出磁盘I/O申请的进程数:";cin>>N;cout<<"请依次输入要访问的磁道号:";for(int i=0;i<N;i++)cin>>TrackOrder[i];for(int j=0;j<N;j++)MoveDistance[j]=0;cout<<"请输入开始磁道号:";cin>>BeginNum;for(int k=0;k<N;k++)Finished[k]=false;for(int l=0;l<N;l++)SortOrder[l]=TrackOrder[l];}//=====================排序函数,将各进程申请的磁道按从小到大排列================= void Sort(){ //------冒泡排序int temp;for(int i=N-1;i>=0;i--)for(int j=0;j<i;j++){if(SortOrder[j]>SortOrder[j+1]){temp=SortOrder[j];SortOrder[j]=SortOrder[j+1];SortOrder[j+1]=temp;}}}//============FCFS,先来先服务=================================void FCFS(){int temp;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){MoveDistance[i]=abs(TrackOrder[i]-temp); //-------计算移动磁道数temp=TrackOrder[i]; //-------寻到后,将此道作为当前所在磁道号,赋给tempFindOrder[i]=TrackOrder[i]; //-----寻好的赋给寻好序列}}//========SSTF,最短寻道法=============================void SSTF(){int temp,n;int A=M;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){for(int j=0;j<N;j++) //-------寻找最短的寻道长度{if(abs(TrackOrder[j]-temp)<A&&Finished[j]==false){A=abs(TrackOrder[j]-temp);n=j;}else continue;}Finished[n]=true; //-------将已经寻找到的Finished赋值为trueMoveDistance[i]=A; //-------寻道长度temp=TrackOrder[n]; //-------当前寻道号。
A=M; //-----重置A值FindOrder[i]=TrackOrder[n]; //----寻好的赋给寻好序列}}//=====================SCAN,扫描算法==========================void SCAN(){int m,n,temp;temp=BeginNum;Sort(); //------排序cout<<"请选择开始方向:1--向外;0---向里"; //------选择扫描方向cin>>m;if(m==1)direction=true;else if(m==0)direction=false;elsecout<<"输入错误";for(int i=0;i<N;i++){if(SortOrder[i]<BeginNum)continue;else{n=i;break;}}if(direction==true) //------选择向外{for(int i=n;i<N;i++){MoveDistance[i-n]=abs(SortOrder[i]-temp);temp=SortOrder[i];FindOrder[i-n]=SortOrder[i];}for(int j=n-1;j>=0;j--){MoveDistance[N-1-j]=abs(SortOrder[j]-temp);temp=SortOrder[j];FindOrder[N-1-j]=SortOrder[j];}}else //-------选择向里{for(int i=n-1;i>=0;i--){MoveDistance[N-i-4]=abs(SortOrder[i]-temp);temp=SortOrder[i];FindOrder[N-i-4]=SortOrder[i];}for(int j=n;j<N;j++){MoveDistance[j]=abs(SortOrder[j]-temp);temp=TrackOrder[j];FindOrder[j]=SortOrder[j];}}}//=================CSCAN,循环扫描算法======================= void CSCAN(){int m,n,temp;temp=BeginNum;Sort();cout<<"请选择开始方向:1--向外;0---向里";cin>>m;if(m==1)direction=true;else if(m==0)direction=false;elsecout<<"输入错误";for(int i=0;i<N;i++){if(SortOrder[i]<BeginNum)continue;else{n=i;break;}}if(direction==true){for(int i=n;i<N;i++){MoveDistance[i-n]=abs(SortOrder[i]-temp);temp=SortOrder[i];FindOrder[i-n]=SortOrder[i];}for(int j=0;j<n;j++){MoveDistance[N-n+j]=abs(SortOrder[j]-temp);temp=SortOrder[j];FindOrder[N-n+j]=SortOrder[j];}}else{for(int i=n-1;i>=0;i--){MoveDistance[n-1-i]=abs(SortOrder[i]-temp);temp=SortOrder[i];FindOrder[n-1-i]=SortOrder[i];}for(int j=N-1;j>=n;j--){MoveDistance[N-j+n-1]=abs(SortOrder[j]-temp);temp=SortOrder[j];FindOrder[N-j+n-1]=SortOrder[j];}}}//========计算平均寻道时间==============void Count(){int Total=0;for(int i=0;i<N;i++){Total+=MoveDistance[i];}AverageDistance=((double)Total)/((double)N);}void Show(){cout<<"================从"<<BeginNum<<"号磁道开始====================="<<endl;cout<<setw(20)<<"被访问的下一个磁道号"<<setw(20)<<"移动距离(磁道数)"<<endl;for(int i=0;i<N;i++){cout<<setw(15)<<FindOrder[i]<<setw(15)<<MoveDistance[i]<<endl;}cout<<setw(20)<<"平均寻道长度:"<<AverageDistance<<endl;cout<<endl;}int main(){int y=1;int s;Inith();while(y){cout<<"请选择寻道方式:1--FCFS; 2--SSTF; 3--SCAN;4--CSCSN;";cin>>s;switch(s){case 1:FCFS();Count();Show();break;case 2:SSTF();Count();Show();break;case 3:SCAN();Count();Show();break;case 4:CSCAN();Count();Show();break;}cout<<"是否继续选择寻道算法?1--是;2--否";int p;cin>>p;y=p;}return 0;}实验结果:FCFS方式:Sstf方式:SCAN方式:4.CSCSN。