【期中考试】石家庄市新华区2015-2016年八年级下期中数学试卷含答案解析
【三套打包】石家庄市八年级下学期期中数学试题含答案(2)
B最新八年级下学期期中考试数学试题(含答案)一、选择题(10 ×3分=10分)1、已知y= ,则2xy 的值是(, )A 、15B 、-15C 、. D.2、计算的结果是( )A 、B 、C 、1D 、-1 3、下列根式中是最简二次根式的是( )A 、B 、C 、D 、4、下列根式中,不能与 合并的是( )A 、B 、C 、D 、5、如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 边上,∠ADC=2∠B ,AD= ,则BC 的长为( )A 、B 、C 、D 、 6、下列几组线段中,能组成直角三角形的是( )A 、2,3,4B 、3,4,6C 、5,12,13D 、2,4,5 7、如图为一个6×6的网格,在△ABC ,△A'B'C ’和△A"B"C"中,直角三角形有( )个 A 、0 B 、1 C 、2 D 、38、若xy <O ,则 化简后为( )A 、B 、C 、D 、 9、如图在□ABCD 中,BM 是∠ABC 的平分绒,交CD 于点M ,若MC=2,□ABCD 的周长是14,则DM 的长是( )A 、1B 、2C 、3D 、410、在直角三角形中,自锐角顶点引的两条中线为 和 ,则这个直角三角形的斜边长是( )A 、3B 、2C 、2D 、6二、填空题(6×3分=18分.)11、若式子有意义,则实数x 的范围是 .12、化简= .13、如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是 。
14、计算= .15、如图,在△ABC 中,AB=5,AC=13,边BC 上的中线AD=6,则BC 的长是 .16、已知四边形ABCD 的对角线AC=8 ,BD=6 ,P 、Q 、R 、S 分别是AB 、BC 、CD 、DA 的中点,则PR 2+QS 2的值是 . 三、解答题(共72分)17、(8分)计算: 18、(8分)已知x=2- ;求代数式的值。
2015-2016学年八年级下册期中数学试卷(含答案)
2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。
河北省石家庄市新华区2015-2016学年八年级(下)期中数学试卷(解析版)
式为 . (2)当h=10km时,高空的温度T是多少? (3)当T=﹣28℃时,距离地面的高度h是多少? 23.小亮同学参加周末社会实践活动,到城郊蔬菜大棚中收集到20株西 红柿秧上小西红柿的个数: 32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46 (1)将这20个数按组距为8进行分组,请补全频数分布表及频数分布直 方图(如图所示) 分组 28≤x<36 36≤x<44 44≤x<52 52≤x<60 60≤x<68 频数 2 2 (2)观察频数分布直方图,就此大棚中西红柿的长势情况写出一条结 论.
2015-2016学年河北省石家庄市新华区八年级 (下)期中数学试卷
一、选择题(共12小题,每小题2分,满分24分) 1.在下列调查中,适宜采用全面调查的是( ) A.了解我省中学生视力情况 B.了解八(1)班学生校服的尺码情况 C.检测一批电灯泡的使用寿命 D.调查石家庄对《新闻联播》栏目的收视率 2.点P(4,3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.某个函数自变量的取值范围是x≥﹣1,则这个函数的表达式为 ( ) A.y=x+1 B.y=x2+1 D.y= 4.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人 数最多的兴趣小组是( ) C.y=
x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数/通话 20 16 9 5 次数 18.正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个 正方形从第三象限的顶点开始,按顺时针方向的顺序,依次记为: A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1). A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2), A9(﹣3,﹣3),A10(﹣3,3),A11(3,3),A12(3,﹣3); …)它们在坐标系中摆放位置如图所示,则顶点A2016的坐标 为 .
2015下期中初二答案
2015-2016学年第一学期期中考试初二数学参考答案及评分标准一、选择题:本题共15小题,每小题3分,共45分.1-5:BDCCB 6-10:DB BAA 11-15:AD AC B二、填空题:本题共5小题,每小题4分,共20分.16、3 17、 一 18、5,35,-5 19、-3 20、2三、解答题21、解:原式=1332---= 32-- …………………………………………………………………………3分22.解:图略 ……………………………………………………………………………………5分 B 1的坐标(-6,2) ……………………………………………………………………8分23、解:△BCD 是等腰三角形理由:由AB=AC 得∠ABC=∠ACB ,因为BD 平分∠ABC ,所以∠DBC=12∠ABC , 因为同理∠DCB=12∠ACB , 所以∠DCB=∠DBC ,所以DB=DC ,即△BCD 是等腰三角形24、解:图略……………………………………………………………………………………5分 D 点三种情况:(﹣2,0);(4,0);(0,﹣4); ………………………………………8分25、解:过点C 作CD ⊥AB ,垂足为D.∵∠CAB=120°,∴∠CAD=60°,又∵CD ⊥AB ,∴∠ADC=90°,∴∠ACD=30°,∵AC=30 m ,∴AD=15 m.根据勾股定理得CD=223015153-=(m),在Rt △BDC 中,BD=2270(153)-=65(m),∴AB=BD-AD=50(m).答:A ,B 两个凉亭之间的距离是50 m.26.解:(1)被开方数扩大或缩小102n 倍,非负数的算术平方根就相应的扩大或缩小10n 倍;或者说成被开方数的小数点向左(或向右)移动2n 位,算术平方根的小数点就向左(或向右)移动n 位;…………………………………………………………………………………5分(2)0206.0≈0.1435; 206≈14.35;20600≈143.5……………………………8分27.解:分三类情况:(1)如图1所示,原来的花圃为Rt △ABC ,其中BC =6m ,AC =8m ,∠ACB =90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ).(2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt △ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45(m ).(3)如图3,设△ABD 中DA =DB ,再设CD =x m ,则DA =(x +6)m ,在Rt △ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37, ∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ). 图1668D CB A 图2486BC AD 图3x +6x 68B C D A。
石家庄市八年级下学期期中数学试卷
石家庄市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A . (x﹣3)(b2+b)B . b(x﹣3)(b+1)C . (x﹣3)(b2﹣b)D . b(x﹣3)(b﹣1)2. (2分) (2019七下·宜兴期中) 下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC中,若∠A+∠B=2∠C,∠A-∠C=40°,则这个△ABC为钝角三角形.A . 0个B . 1个C . 2个D . 3个3. (2分) (2015八下·绍兴期中) 在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A . 30,35B . 50,35C . 50,50D . 15,504. (2分) (2015八下·绍兴期中) 若,则化简的结果是()A . 2a﹣3B . ﹣1C . ﹣aD . 15. (2分) (2015八下·绍兴期中) 如图,P是▱ABCD上一点.已知S△ABP=3,S△PDC=2,那么平行四边形ABCD的面积是()A . 6B . 8C . 10D . 无法确定6. (2分)用反证法证明“在同一平面内,若a⊥b,a⊥c,则b∥c时,第一步应假设()A . b不平行cB . a不垂直cC . a不垂直bD . b∥c7. (2分) (2015八下·绍兴期中) 商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a 折销售,现该商品的售价为128元,则a的值是()A . 0.64B . 0.8C . 8D . 6.48. (2分) (2015八下·绍兴期中) 已知关于x的方程 x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是()A . 2B . 1C . 0D . ﹣19. (2分) (2015八下·绍兴期中) 如图,在平行四边形ABCD中,AB=6,AD=8,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=4 ,则四边形AECD的周长为()A . 20B . 21C . 22D . 2310. (2分) (2015八下·绍兴期中) 如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A . 6B . 12C . 20D . 24二、填空题 (共8题;共9分)11. (1分)(2018·淄博) 将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是________.12. (1分)(2018·射阳模拟) 从﹣,,0,π,这5个数中随机抽取一个数,抽到有理数的概率是________.13. (1分) (2019七下·呼和浩特期末) 以下四个命题:① 的立方根是②要调查一批灯泡的使用寿命适宜用抽样调查③两条直线被第三条直线所截同旁内角互补④已知与其内部一点 ,过点作 ,作 ,则 .其中假命题的序号为________.14. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.15. (1分) (2015八下·绍兴期中) 已知m= × ,若a,b是两个两个连续整数,且a<m<b,则a+b=________.16. (1分) (2015八下·绍兴期中) 已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是________.17. (1分) (2015八下·绍兴期中) 如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD的长等于________.18. (2分) (2015八下·绍兴期中) 如图,矩形ABCD的边AB在x轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则:(1) a的取值范围是________;(2)若设直线PQ为:y=kx+2(k≠0),则此时k的取值范围是________.三、解答题 (共6题;共80分)19. (10分) (2016九上·临海期末) 解方程:(1) 4x2﹣20=0;(2) x2+3x﹣1=0.20. (15分)有有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21. (15分)(2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.22. (10分) (2015八下·绍兴期中) 山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23. (15分) (2015八下·绍兴期中) 已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.24. (15分) (2015八下·绍兴期中) 在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P 从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共6题;共80分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、第11 页共11 页。
【人教版】2015-2016年八年级下期中数学试卷及答案解析
【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(
)
A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(
)
A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(
)
A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =
;
D、
=2
;
所以这三项都不是最简二次根式.故选 A .
河北省石家庄市八年级下学期数学期中考试试卷
河北省石家庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB 于E ,PF⊥AC于F ,则EF的最小值为().A . 4B . 4.8C . 5.2D . 62. (2分)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A . 3B . 4C . 5D . 63. (2分) (2017八下·西安期末) 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A .B .C .D .4. (2分) (2017八下·兴隆期末) 己知直线1:y=(m﹣3)x+m+2经过第一、二、四象限,则m的取值范围是()A .B .C .D .5. (2分) (2019八下·南山期中) 如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF= ;④S△AEF= .其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=3:4π以上结论正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)(2018·河东模拟) 如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A .B .C .D .8. (2分) (2013八下·茂名竞赛) 如图,正方形中,,点在边上,且将沿对折至,延长交边于点连结下列结论:①② ③ ④ 其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共9题;共10分)9. (1分)(2018·龙东) 在函数y= 中,自变量x的取值范围是________.10. (1分) (2017八上·高邑期末) 计算的结果是________.11. (1分)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,y1-y2________0(填“>”或“<”).12. (1分) (2013八下·茂名竞赛) 如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E 为AD中点,点P在轴上移动.小明同学写出了两个使△P OE为等腰三角形的P点坐标(,)和(,).请你写出其余所有符合这个条件的P点坐标________.13. (1分)(2017·武汉模拟) 如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为________.14. (2分)(2017八上·西湖期中) 有一组平行线,过点作于,作,且,过点作交直线于点,在直线上取点使,则为________三角形,若直线与间的距离为,与间的距离为,则 ________.15. (1分) (2019八上·合肥期中) 小敏从地出发向地行走,同时小聪从地出发向地行走,如图,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则 ________时,小敏、小聪两人相距.16. (1分) (2020八下·横县期末) 如图,矩形ABCD中DF平分∠ADC交BC于点F,EF⊥AD交AD于点E,若EF=4,AF=5,则AD等于________.17. (1分)如图,在长和宽分别是8和7矩形内,放置了如图中5个大小相同的正方形,则正方形的边长是________.三、解答题 (共9题;共90分)18. (5分) (2020七下·京口月考) 根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥BC(▲_)∴∠4=∠5=90°(_▲)∴AD∥EG(▲_)∴∠1=∠E(▲)∠2=∠3(▲_)∵∠E=∠3(▲)∴▲(等量代换)∴AD是∠BAC的平分线(▲)19. (5分)计算:(a≥0,b≥0).20. (10分) (2019八下·博白期末) 某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?21. (15分)(2019·青白江模拟) 如图①,在矩形ABCD中,AB= ,AD=3,点E是边AD靠近A的三等分点,点P是BC延长线上一点,且EP⊥EB,点G是BE上任意一点,过G作GH∥BP,交EP于点H.将△EGH绕点E 逆时针旋转α(0<α<90°),得到△EMN(M、N分别是G、H的对应点).(1)求BP的长;(2)求的值;(3)如图②当α=60°时,点M恰好落在GH上,延长BM交NP于点Q,取EP的中点K,连接QK.若点G在线段EB上运动,问QK是否有最小值?若有最小值,请求出点G运动到EB的什么位置时,QK有最小值及最小值是多少,若没有最小值,请说明理由.22. (10分) (2017八下·常熟期中) 如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.23. (10分) (2018八下·江海期末) 如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:AF=CE.24. (10分)(2020·晋中模拟) 如图,在四边形ABCD中,对角线AC、BD交于点O ,AB∥DC , AB=BC ,BD平分∠ABC ,过点C作CE⊥AB交AB的延长线于点E ,连接OE .(1)求证:四边形ABCD是菱形;(2)若AB=2 ,BD=4,求OE的长.25. (10分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程的两个根,点C在轴正半轴上,且OB=2OC.(1)求A、B、C三点坐标;(2)将△OBC绕点C顺时针旋转90°后得到,求直线的表达式.26. (15分)(2018·深圳模拟) 已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共90分)18-1、19-1、答案:略20-1、20-2、21-1、答案:略21-2、答案:略21-3、答案:略22-1、答案:略22-2、23-1、23-2、答案:略24-1、24-2、答案:略25-1、答案:略25-2、答案:略26-1、26-2、答案:略26-3、答案:略第11 页共11 页。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
2015-2016学年八年级(下)期中数学试卷含答案解析
=﹣4C.
=×
4.如图,直角三角形的三边长分为 a、b、c,下列各式正确的是(
D. ﹣ = )
A.a2+b2=c2 B.b2+c2=a2 C.c2+a2=b2 D.以上都不对 5.一个直角三角形的两边长分别为 4cm、3cm,则第三条边长为( ) A.5cm B.4cm C. cm D.5cm 或 cm 6.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 7.如图,在▱ABCD中,已知 AD=5cm,AB=3cm,AE平分∠BAD交 BC边于点 E,则 EC等于( )
A.1cm B.2cm C.3cm D. 4cm 8.菱形具有而矩形不具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.对角相等 D.邻角互补 9.两条对角线互相垂直平分且相等的四边形是( ) A.矩形 B.菱形 C.正方形 D.都有可能 10.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,则重叠部分△
【解答】解:∵式子
有意义,
∴x﹣5≥0,解得 x≥5.
故选 C. 【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的
关键.
2.下列二次根式中,属于最简二次根式的是( )
A. B.
C. D.
【考点】最简二次根式. 【分析】根据最简二次根式的条件进行判断即可. 【解答】解: = ,被开方数含分母,不是最简二次根式;
2015-2016 学年八年级(下)期中数学试卷 参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1.使式子
石家庄八年级下数学期中试卷 必考 经典试题
S 与 x 之间的函数关系式为( )
A. S 80﹣5x
B. S 5x
C. S 10x
D. S 5x 80
11.(2 分)(2014•呼和浩特)已知线段 CD 是由线段 AB 平移得到的,点 A(﹣1,4)的对应
点为 C(4,7),则点 B(﹣4,﹣1)的对应点 D 的坐标为( )
A.(1,2)
A.金额
B.数量
C.单价
D.金额和数量
4.(2 分)(2017 春•长安区期中)下列平面直角坐标系中的图象,不能表示 y 是 x 的函数
的是( )
A.
B.
C.
D.
5.(2 分)(2016•成都)平面直角坐标系中,点 P(﹣2,3)关于 x 轴对称的点的坐标为( )
A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)
7.(2 分)(2017 春•长安区期中)娟娟同学上午从家里出发,骑车去一家超市购物,然后
从这家超市返回家中.娟娟同学离家的路程 (y m)和所经过的时间 x(min)之间的函数图
象如图所示,则下列说法不正确的是( )
A.娟娟同学与超市相距 3000 m
B.娟娟同学去超市途中的速度是 300 m / min
图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当
月销售总额的百分比情况,观察图①、图②,下列说法不正确的是( )
18.(3 分)(2017 春•长安区期中)如图,线段 OB、OC、OA的长度分别是 1、2、3,且
OC 平分 AOB.若将 A 点表示为(3,30), B 点表示为(1, 120),则 C 点可表示
.
20.(3 分)(2017 春•长安区期中)如图所示的图象反映的过程是:甲乙两人同时从 A 地
2015--2016八年级下册数学期中测试卷及答案
2015—2016学年度第二学期期中考试初二数学试题 (I 卷)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是( ) A .21B . 8.0C . 4D . 52、有意义的条件是二次根式3 x ( ) A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、正方形面积为36,则对角线的长为( ) A .6 B. C .9 D.4、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 55、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( ) A.12 B. 24 C. 312 D. 3166、下列条件中 能判断四边形是平行四边形的是( )(A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm8、如图,菱形ABCD 中,E 、F 分别是AB 、AC的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .249、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6B .8C .10D .1210、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF =( ) A .45° B .30° C .60° D .55°A B CD F D ’2015—2016学年度第二学期期中考试初二数学试题 (II 卷)11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
石家庄市新华区2015-2016年八年级下期中数学试卷含答案解析
A.
B.
C.
D.
11.以下是某手机店 1~4 月份的统计图,分析统计图,对 3、4 月份三星手机的销售情况 四个同学得出的以下四个结论,其中正确的为( )
A.4 月份三星手机销售额为 65 万元 B.4 月份三星手机销售额比 3 月份有所上升 C.4 月份三星手机销售额比 3 月份有所下降 D.3 月份与 4 月份的三星手机销售额无法比较,只能比较该店销售总额
第 1 页(共 21 页)
A.(2,3) B.(6,1) C.(2,1) D.(3,3) 9.如图是变量 y 与 x 之间的函数图象,则函数 y 的取值范围是( )
A.﹣ 3≤y≤3 B.0≤y≤2 C.0≤y≤3 D.1≤y≤3 10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停 下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下 的路程 s 关于时间 t 的函数图象,那么符合小明行驶情况的图象大致是( )
第 4பைடு நூலகம்页(共 21 页)
2015-2016 学年河北省石家庄市新华区八年级(下)期中数学试 卷
一、选择题(共 12 小题,每小题 2 分,满分 24 分) 1.在下列调查中,适宜采用全面调查的是( ) A.了解我省中学生视力情况 B.了解八(1)班学生校服的尺码情况 C.检测一批电灯泡的使用寿命 D.调查石家庄对《新闻联播》栏目的收视率 2.点 P(4,3)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.某个函数自变量的取值范围是 x≥﹣ 1,则这个函数的表达式为( )
A.y=x+1 B.y=x2+1 C.y=
D.y=
4.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是 ()
2015-2016新华区八年级第二学期数学试卷分析
2015-2016新华区八年级第二学期数学试卷分析一试卷整体分析:数学试卷从考查形式上和去年一样,分为选择题,填空题,解答题选择题12题,共24分,填空题6小题共18分,解答题共4题分值共28分,实践与应用题共4题,共30分。
从考查难度上看这次试卷基础知识60%,中档题20%,难题20%,整体难度比去年期末考试大,试卷具体分析:(一)选择题1-12题,基础知识题型多,知识覆盖面比较广,个别题难度较大,第1题考查20章函数自变量取值范围比较容易,第2题考查18章数据收集与整理中抽样调查的四个概念,总体,个体样本,样本容量,比较容易,第3题考查22章四边形中多边形内角和与外角和,求边数问题,容易题,第4题考查22章菱形的性质与判定,容易题,第5题考查21章一次函数图像和性质,容易题,第6题考查21章待定系数法和判断点在函数图像上,容易题,第7题考查20章图像分析理解题意及反馈,第8考查21章一次函数图像和性质,比较函数值的大小,容易题,第9题考查21章待定系数法及三角形全等和平移,难度中等,第10题考查22章中点四边形形状与原四边形对角线的关系,难度中等,第11考查21章一次函数与二元一次方程的关系,难度中等,第12题考查22章等腰三角形三线合一,三角形中位线和最大距离综合性较强,难度较大。
(二)填空题,侧重基础知识的考查,第13题考查21章一次函数与坐标轴的交点,难度容易题,第14题考查22章矩形的性质,勾股定理和等边三角形性质难度中等,15题考查21章一次函数与坐标轴围成的三角形的面积,求未知数的值,难度中等易错题,16题考查22章菱形的性质和三角形中位线求角度,练习册原题,容易题,17题考查22章全等等三角形与正方形性质求面积问题,难度中等,18题考查19章平面直角坐标系,规律探索题,点与坐标的关系。
难度中等。
解答题,19-22题,试题比较容易,侧重基础知识的考查:第19题考查19章平面直角坐标系,作图题,学生的实际操作能力,图形的平移和轴对称,第20题考查18章统计图,识图读图能力,补全统计图,估计总体,题目较基础,第21题考查21题待定系数法求一次函数解析式,和求两个一次函数图像的交点,第22题考查22章菱形的判定,(四)实践与应用题,侧重考查学生的综合能力。
2016-2017学年河北省石家庄市新华区八年级(下)期中数学试卷
2016-2017学年河北省石家庄市新华区八年级(下)期中数学试卷一、精心选择(本大题共12个小题,每小题2分,共24分)1.(2分)为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重2.(2分)下列函数中,自变量的取值范围选取错误的是()A.y=2x2中,x取全体实数B.y=中,x取x≠﹣1的实数C.y=中,x取x≥2的实数D.y=中,x取x>﹣3的实数3.(2分)点A(1,m)在函数y=2x的图象上,则m的值是()A.1B.2C.D.04.(2分)如图是光明中学初中各年级参加美术兴趣班人数情况的统计图,根据图中信息,下面说法正确的是()A.九年级的男生是女生的两倍B.九年级学生女生比男生多C.八年级比九年级的学生多D.七年级学生最多5.(2分)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对7.(2分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户8.(2分)若kb<0.则一次函数y=kx+b的图象可能是()A.B.C.D.9.(2分)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)10.(2分)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x 的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0 11.(2分)已知点P(a+1,﹣+1)关于x轴的对称点在第四象限,则a的取值范围是()A.a<﹣1B.a>2C.﹣1<a<2D.﹣1≤a≤2 12.(2分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、准确填空(本大题共6个小题,每小题3分,共18分.请你把答案写在答题纸上)13.(3分)正比例函数y=﹣5x中,y随着x的增大而.14.(3分)如图是八(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是(填写序号).15.(3分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在第象限.16.(3分)已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.(3分)一次数学测试后,某班40名学生的成绩被分为5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频率是.18.(3分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.三、挑战技能(本大题共4个小题,每小题6分,共24分)19.(6分)已知:一次函数的图象经过点(﹣1,6)和点(3,﹣2),求这个一次函数的表达式.20.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(6分)如图,在平面直角坐标系中,有A、B、C三点.若A、B、C三点的横坐标的数字之和为a,纵坐标的数字之总和为b,求出点P(a,b),并在坐标系中标出P点.22.(6分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,求△ABC平移的距离.23.(6分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.24.(6分)在图所示的直角坐标系内,将坐标为(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)的点依次连接起来,组成一个图形,若将图形进行下列变化,请分别画出变化后对应的图形,并指出所得的图形与原图形相比发生了什么变化?(1)每个点的纵坐标不变,横坐标减4;(2)每个点的横坐标不变,纵坐标乘以﹣1;(3)每个点的横坐标,纵坐标均乘以2.25.(6分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?26.(6分)如图,直线l:y=x+4与x轴、y轴分别交于A、B两点,点C是直线l上的一点,且其纵坐标为2,点D为OB的中点,点P为OA上一动点(1)求C点的坐标;(2)当PC+PD取得最小值时,求线段AP的长.。
八年级(下)期中考试数学试题(含答案)
八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.9.【答案】D【解析】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.【答案】D【解析】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.11.【答案】x≥【解析】解:要是有意义,则2x-1≥0,解得x≥.故答案为:x≥.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】-【解析】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.本题主要考查了勾股定理的应用,解题的关键在于熟练运用勾股定理并注意根据点的位置以确定数的符号.13.【答案】6【解析】【分析】利用平行四边形的性质,首先证明△ADE是等腰三角形,求出DE即可解决问题.本题考查平行四边形的性质,等腰三角形的判定、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,AD=BC,∴∠DEA=∠EAB,∵∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵DE:EC=3:1,∴DE=6,∴BC=AD=DE=6.故答案为6.14.【答案】【解析】【分析】除以一个数相当于乘以这个数的倒数,按照顺序运算.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.【解答】解:=××=.故答案为.15.【答案】25解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△ABO是等边三角形,∴OA=AB=4cm,∴AC=2OA=8cm,故答案为8.根据等边三角形的性质首先证明△AOB是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定等知识,解题的关键是发现△AOB是等边三角形,属于基础题,中考常考题型.17.【答案】8解:∵四边形ABCD是菱形,∴AD=AB=4,∵AE=EB=2,∵DE⊥AB,∴∠AED=90°在Rt△ADE中,DE==2,∴菱形ABCD的面积=AB•DE=4•2=8,故答案为8.利用勾股定理求出DE,根据菱形ABCD的面积=AB•DE计算即可.本题考查菱形的性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.18.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19.【答案】解:(1)原式=4--+=3;(2)原式=(2+4)(-2)-(2-2+3)=2(+2)(-2)-(5-2)=2×(2-12)-5+2=-20-5+2=-25+2.【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后利用平方差公式和完全平方公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25-x)2,x=10.故:E点应建在距A站10千米处.【解析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.21.【答案】解:如图所示:.【解析】由10个小正方形拼成的一个大正方形面积为10,边长为,由=画分割线.本题考查了作图的运用及设计作图.根据作图前后,图形的面积保持不变,根据矩形及正方形的面积计算公式,设计作图方法.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.则该平行四边形的对边相等:AE=CF.本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.【答案】解:(1)∵四边形ABCD是矩形,∴OB=OC,∠ABC=90°,又∵∠BOC=120°,∴∠OBC=∠OCB=30°,∴AB=AC=×6=3;(2)∵AB2+BC2=AC2,∴BC==3,∴矩形ABCD的面积=AB×BC=3×3=9.【解析】(1)根据OB=OC,∠ABC=90°,以及∠BOC=120°,可得出∠OBC=∠OCB=30°,进而得到AB=AC=3;(2)根据勾股定理即可得出BC==3,进而得出矩形ABCD的面积.本题主要考查了矩形的性质以及勾股定理的运用,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.八年级下册数学期中考试试题(含答案)一、选择题(本大题共16个小题,1-10小题,每小题3分:11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)若+=0,则x与y()A.同为正数B.相等C.互为相反数D.都等于0 3.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=14.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°5.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.86.(3分)如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点7.(3分)在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形8.(3分)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD 与S四边形ECDF的大小关系是()A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +29.(3分)如图,平行四边形ABCD 的对角线交于点O ,且AB =5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .4610.(3分)甲、乙、丙、丁四位同学到工厂实习,工人师傅拿一把尺子要他们帮助检测一个四边形构件是否为正方形,他们各自做了如下检测,其中正确的是( ) A .甲量得构件四边都相等 B .乙量得构件的两条对角线相等 C .丙量得构件的一组邻边相等D .丁量得构件四边相等且两条对角线也相等11.(2分)满足下列条件的△ABC 不是直角三角形的是( )A .BC =1,AC =2,AB =B .BC :AC :AB =3:4:5 C .∠A +∠B =∠CD .∠A :∠B :∠C =3:4:512.(2分)如图,在矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使DA 与对角线DB 重合,点A 落在点A ′处,折痕为DE ,则A ′E 的长是( )A .1B .C .D .213.(2分)矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( ) A .3cm 2 B .4cm 2C .12cm 2D .4cm 2或12cm 214.(2分)如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .3S 1=2S 215.(2分)已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内的一点,且PB =PD =2,则AP 的长是( )A .2B .3C .4或2D .216.(2分)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .()6B .()7C .()6D .()7二、填空题(本大题共3个小题,共10分.17~18小题各3分;19小题4分.把答案写在题中横线上)17.(3分)写出一个与的积为正整数的数 .18.(3分)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a ,较长的直角边长为b,那么(a+b)2的值为.19.(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB =S四边形DEOF,其中正确结论的序号是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:①+﹣5②÷﹣+③()(2)21.(9分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(9分)阅读材料并解决问题:===﹣1,像上述解题过程中,+1与﹣1相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.(1)将下列式子进行分母有理化:①=;②=;(2)化简:+.23.(9分)如图,▱ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.24.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(10分)如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE =CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF;(2)求证:四边形EFGH是菱形.26.(12分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D 移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?2017-2018学年河北省沧州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分:11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,可化简,故A选项错误;B、==2,可化简,故B选项错误;C、=|x|,可化简,故C选项错误;D、不能化简,是最简二次根式,故D选项正确.故选:D.【点评】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.2.(3分)若+=0,则x与y()A.同为正数B.相等C.互为相反数D.都等于0【分析】算术平方根具有非负性,依此可求x,y,可得x与y的关系.【解答】解:∵+=0,∴x=0,y=0,∴x与y都等于0.故选:D.【点评】考查了非负数的性质,非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.3.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=1【分析】根据二次根式的混合运算法则计算,判断即可.【解答】解:与不是同类二次根式,不能合并,A错误;3×2=6,B正确;(2)2=8,C错误;=,D错误;故选:B.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.4.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°【分析】由在平行四边形ABCD中,∠ABC的平分线交AD于E,易证得∠AEB=∠ABE,又由∠BED=150°,即可求得∠A的大小.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选:C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.5.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.8【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故选:C.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.6.(3分)如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C .AC 中点D .∠C 的平分线与AB 的交点【分析】了解直角三角形的判定及三角形的外心的知识,是解答的关键.【解答】解:因为AB =1000米,BC =600米,AC =800米,所以AB 2=BC 2+AC 2,所以△ABC 是直角三角形,∠C =90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P 的位置应在△ABC 三边垂直平分线的交点处,也就是△ABC 外心处,又因为△ABC 是直角三角形,所以它的外心在斜边AB 的中点处,故选A .【点评】本题比较容易主要考查直角三角形的判定及三角形的外心的知识.7.(3分)在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a ﹣b )=c 2,则( )A .∠A 为直角B .∠C 为直角 C .∠B 为直角D .不是直角三角形【分析】先把等式化为a 2﹣b 2=c 2的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.【解答】解:∵(a +b )(a ﹣b )=c 2,∴a 2﹣b 2=c 2,即c 2+b 2=a 2,故此三角形是直角三角形,a 为直角三角形的斜边, ∴∠A 为直角.故选:A .【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.(3分)如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD 与S 四边形ECDF的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDFC .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +2 【分析】根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面积,进而得到答案.【解答】解:S 四边形ABDC =CD •AC =1×4=4,S 四边形ECDF =CD •AC =1×4=4,故选:A .【点评】此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式. 9.(3分)如图,平行四边形ABCD 的对角线交于点O ,且AB =5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .46【分析】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD 的两条对角线的和时要把两条对角线可作一个整体.【解答】解:∵四边形ABCD 是平行四边形,∴AB =CD =5,∵△OCD 的周长为23,∴OD +OC =23﹣5=18,∵BD =2DO ,AC =2OC ,∴平行四边形ABCD 的两条对角线的和=BD +AC =2(DO +OC )=36,故选:C .【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)甲、乙、丙、丁四位同学到工厂实习,工人师傅拿一把尺子要他们帮助检测一个四边形构件是否为正方形,他们各自做了如下检测,其中正确的是( )A .甲量得构件四边都相等B .乙量得构件的两条对角线相等C.丙量得构件的一组邻边相等D.丁量得构件四边相等且两条对角线也相等【分析】根据正方形的判定定理即可证得四边相等且两条对角线也相等的四边形是正方形,继而求得答案.【解答】解:甲:∵构件四边都相等,∴此四边形是菱形;乙:∵两条对角线相等,∴没法判定是什么四边形;丙:∵一组邻边相等,∴没法判定是什么四边形;丁:∵四边相等,∴此四边形是菱形,∵两条对角线也相等,∴此四边形是正方形.故选:D.【点评】此题考查了正方形的判定.此题难度不大,注意熟记定理是解此题的关键.11.(2分)满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=180°,所以∠C=90°,所以△ABC为直角三角形;。
石家庄初中数学八年级下期中经典练习(答案解析)
一、选择题1.(0分)[ID :9932]下列运算正确的是( ) A .347+=B .1232=C .2(-2)2=-D .142136= 2.(0分)[ID :9930]下列运算中,正确的是( ) A .235+=; B .2(32)32-=-; C .2a a =;D .2()a b a b +=+.3.(0分)[ID :9928]按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,则y 与x 之间的关系式为( )A .y =6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+24.(0分)[ID :9896]已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3B .﹣3C .1D .05.(0分)[ID :9893]如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .36.(0分)[ID :9890]把式子1a a-号外面的因式移到根号内,结果是( ) A .aB .a -C .a -D .a --7.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A.B.C.D.8.(0分)[ID:9887]李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.349.(0分)[ID:9878]如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA =OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个10.(0分)[ID:9867]如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.3B.8C.3D.611.(0分)[ID:9862]如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.4112.(0分)[ID:9850]如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.513.(0分)[ID:9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家14.(0分)[ID:9923]如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.12515.(0分)[ID:9838]小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④二、填空题16.(0分)[ID :10030]如图,已知在Rt △ABC 中,AB =AC =3√2,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.17.(0分)[ID :10025]如图,在矩形ABCD 中,2AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.18.(0分)[ID :10015]23(1)0m n -+=,则m+n 的值为 .19.(0分)[ID :10005]如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.20.(0分)[ID :10002]如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,则△AFC 的面积S 为_____.21.(0分)[ID :9999]化简()2-2的结果是________;3.14π-的相反数是________;364-的绝对值是_________.22.(0分)[ID :9996]如果482x ⨯是一个整数,那么x 可取的最小正整数为________.23.(0分)[ID :9959]如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.24.(0分)[ID :9955]如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.25.(0分)[ID :9935]如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题26.(0分)[ID :10130]已知长方形的长1322a =,宽1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系. 27.(0分)[ID :10113]计算 (1)1148183273-- (2) ()()2(325)4545+-+-28.(0分)[ID :10086]如图,方格纸中的每个小正方形的边长都是1,请在方格纸中画出1一个边长为22,且面积为6的等腰三角形(各顶点必须与方格纸中小正方形的顶点重合).29.(0分)[ID :10046]一次函数y 1=kx +b 和y 2=﹣4x +a 的图象如图所示,且A (0,4),C (﹣2,0).(1)由图可知,不等式kx +b >0的解集是 ; (2)若不等式kx +b >﹣4x +a 的解集是x >1. ①求点B 的坐标; ②求a 的值.30.(0分)[ID :10036]已知:如图,在四边形ABCD 中,∠B =90°,AB =BC =2,CD =3,AD =1,求∠DAB 的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.D4.B5.C6.D7.A8.B9.C10.D11.C12.C13.D14.B15.C二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质19.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB;最后Rt△BOC中根据勾股定理得OB的值则【详解】解:如图连接CE交AB于点O∵Rt△20.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC与△AFC是同底等高的三角形∴S=2故答案为:221.4【解析】分析:根据二次根式的性质相反数的定义绝对值的意义解答即可详解:==2314﹣π的相反数为π﹣31=4故答案为2π﹣3144点睛:本题考查了二次根式的性质相反数的定义绝对值的意义是基础题熟记22.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确23.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式24.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD 是菱形AC=8BD=6∴AO25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.D解析:D【解析】2=-误;a =,故错误; D.()2a b =+,正确;故选D.3.D解析:D 【解析】 【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x 张餐桌共有6+4(x-1)=4x+2,由此即可解答. 【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1, 有3张桌子时有14把椅子,14=6+4×2, ∵多一张餐桌,多放4把椅子, ∴第x 张餐桌共有6+4(x-1)=4x+2. ∴y 与x 之间的关系式为:y =4x +2. 故选D . 【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.4.B解析:B 【解析】 【分析】根据点P (x ,y )是直线y=1322x -上的点,可以得到y 与x 的关系,然后变形即可求得所求式子的值. 【详解】∵点P (x ,y )是直线y=1322x -上的点, ∴y=1322x -, ∴4y=2x-6, ∴4y-2x=-6, ∴4y-2x+3=-3, 故选B . 【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.5.C解析:C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.6.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a的范围,再把根号外的非负数平方后移入根号内即可.【详解】1∴-≥aa∴<∴==故选D.【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.7.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.8.B解析:B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.9.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD 故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.10.D解析:D【解析】【分析】连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB .【详解】解:如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,故选D .【点睛】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE ,进而利用勾股定理得出AE 即可.【详解】∵菱形ABCD ,∴CD =AD =5,CD ∥AB ,∴CE =CD ﹣DE =5﹣1=4,∵BE ⊥CD ,∴∠CEB =90°,∴∠EBA =90°,在Rt △CBE 中,BE 2222543BC CE =-=-=, 在Rt △AEB 中,AE 22223534BE AB =+=+=,故选C .【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD . 12.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴2594 BO=-=,∴DB=8,∴菱形ABCD的面积是116824 22AC DB⨯⋅=⨯⨯=,∴BC⋅AE=24,245AE=,故选C.13.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.14.B解析:B【解析】【分析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴==5,∵1122AB BE AE BH⋅=⋅,∴1134522BH ⨯⨯=⨯⨯,∴BH=125,则BF=245,∵FE=BE=EC,∴∠BFC=90°,∴CF==185.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.15.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:3×(12) 2018【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出EIKI =PFEF=12,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=√2AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE =13BC =2, ∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴EI KI =PF EF=12, ∴EI =12KI =12HI ,∵DH =EI ,∴HI =12DE =(12)2﹣1×3, 则第n 个内接正方形的边长为:3×(12)n ﹣1. 故第2019个内接正方形的边长为:3×(12)2018. 故答案是:3×(12)2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD 即可【详解】解:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A解析:3【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA =OB =AB =2,得出BD =2OB =4,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =OB =AB =2,∴BD =2OB =4,∴AD 22BD AB -2242-23故答案为:23.【点睛】此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质19.【解析】【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分邻边相等推知OD=OBCD=CB ;最后Rt △BOC 中根据勾股定理得OB 的值则【详解】解:如图连接CE 交AB 于点O ∵Rt △解析:75【解析】【分析】首先根据勾股定理求得AB =5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD =OB ,CD =CB ;最后Rt △BOC 中,根据勾股定理得,OB 的值,则2AD AB OB =-.【详解】解:如图,连接CE 交AB 于点O .∵Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3∴225AB AC BC =+= (勾股定理)若平行四边形CDEB 为菱形时,CE ⊥BD ,且OD =OB ,CD =CB .∵1122AB OC AC BC ⋅=⋅, ∴12.5OC =∴在Rt △BOC 中,根据勾股定理得,2222129355OB BC OC ⎛⎫=-=-= ⎪⎝⎭, ∴725AD AB OB =-=故答案是:75. 【点睛】本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.20.2【解析】【分析】【详解】解:如图连接FB∵四边形EFGB 为正方形∴∠FBA=∠BAC=45°∴FB∥AC∴△ABC 与△AFC 是同底等高的三角形∴S=2故答案为:2解析:2【解析】【分析】【详解】解:如图,连接FB∵四边形EFGB 为正方形∴∠FBA=∠BAC=45°,∴FB ∥AC∴△ABC 与△AFC 是同底等高的三角形2224ABC IEABCD IEABCD S S S =⋅=⨯=∴S=2故答案为:2.21.4【解析】分析:根据二次根式的性质相反数的定义绝对值的意义解答即可详解:==2314﹣π的相反数为π﹣31=4故答案为2π﹣3144点睛:本题考查了二次根式的性质相反数的定义绝对值的意义是基础题熟记解析: 3.14π-4【解析】分析:根据二次根式的性质,相反数的定义,绝对值的意义解答即可.()2-24=2,3.14﹣π的相反数为π﹣3.13644-=-=4.故答案为2,π﹣3.14,4.点睛:本题考查了二次根式的性质,相反数的定义,绝对值的意义,是基础题,熟记概念是解题的关键.22.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】==∴∴x可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.23.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式解析:2【解析】由题意得:2x-3=9-4x,解得:x=2,故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.24.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB,∴4×6=5×DH,∴DH=245,∴222465⎛⎫- ⎪⎝⎭=185.【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键. 25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题26.(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.27.(12)【解析】【分析】(1)根据二次根式的混合运算顺序,首先计算开方,再计算乘法,最后从左向右依次计算即可.(2)根据二次根式的混合运算顺序,平方差公式和完全平方公式进行计算,最后从左向右依次计算即可.【详解】(1=183=(2)(2(344+-(16-5)=18+125.【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.28.见解析【解析】【分析】利用三角形面积求法以及等腰三角形的性质画出即可.【详解】如图所示,即为所求:【点睛】此题主要考查了等腰三角形的性质以及作图,熟练掌握等腰三角形的性质是关键.29.(1)x>﹣2;(2)①(1,6);②10.【解析】【分析】(1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.【详解】解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为:x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1,∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B的坐标为(1,6);②∵点B(1,6),∴6=﹣4×1+a,得a=10,即a的值是10.【点睛】本题主要考查学生对于一次函数图像性质的掌握程度30.135º.【解析】【分析】在直角△ABC中,由勾股定理求得AC的长,在△ACD中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD是不是直角三角形.【详解】解:∵∠B=90°,AB=BC=2,∴AC,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.。
八年级下期中试卷--数学(解析版) (3)
八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题2分,共24分)1.(2分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查2.(2分)在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B 的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8) D.(8,2)3.(2分)在平面直角坐标系中,边长为2的等边△OAB的位置如图所示,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)4.(2分)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图5.(2分)如图,甲、乙二人同时从A地出发,甲沿北偏东50°方向行走200m后到达B地,并立即向正东方向走去,乙沿北偏东70°方向行走,二人恰好在C地相遇,则B、C两地的距离为()A.100m B.150m C.200m D.无法确定6.(2分)在下列图象中,不能表示y是x的函数是()A.B.C.D.7.(2分)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条8.(2分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1) B.(﹣1,1) C.(1,﹣2) D.(﹣1,﹣2)9.(2分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C. D.10.(2分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大11.(2分)在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)12.(2分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次二、填空题(本小题共6小题,每小题3分,共18分)13.(3分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.14.(3分)在函数y=中,自变量x的取值范围是15.(3分)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.16.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.17.(3分)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.18.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.三、解答题(本题共4个小题,每小题6分,共24分)19.(6分)如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.(6分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?21.(6分)小明从家到图书馆看报,然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,试求:(1)小明回家的速度.(2)小明离家50分钟时离家的距离.22.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.23.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?24.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.25.(9分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B 地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(km)与甲出发的时间x(分)之间的关系如图所示.(1)求甲、乙相遇时,乙所行驶的路程;(2)当乙到达终点A时,甲还需多少分钟到达终点B?26.(9分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.2017-2018学年河北省石家庄市新华区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题2分,共24分)1.(2分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、人数不多,容易调查,适合普查.B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C、班内的同学人数不多,很容易调查,因而采用普查合适;D、数量较大,适合抽样调查;故选:D.【点评】本题考查全面调查与抽样调查,理解全面调查与抽样调查的意义是解题的关键.2.(2分)在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B 的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8) D.(8,2)【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.3.(2分)在平面直角坐标系中,边长为2的等边△OAB的位置如图所示,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)【分析】过B作BC⊥OA于C,根据等边三角形的性质得出OC=AC=1,根据勾股定理求出BC,即可得出答案.【解答】解:过B作BC⊥OA于C,则∠BCO=90°,∵△AOB是边长为2的等边三角形,∴OB=OA=2,OC=AC=1,在Rt△OCB中,由勾股定理得:BC===,∴B点的坐标为(1,),故选:B.【点评】本题考查了等边三角形的性质,勾股定理,坐标与图形性质等知识点,能够正确作出辅助线是解此题的关键.4.(2分)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:D.【点评】本题考查扇形统计图、折线统计图、条形统计图,理解各自的特点是解题的关键.5.(2分)如图,甲、乙二人同时从A地出发,甲沿北偏东50°方向行走200m后到达B地,并立即向正东方向走去,乙沿北偏东70°方向行走,二人恰好在C地相遇,则B、C两地的距离为()A.100m B.150m C.200m D.无法确定【分析】延长CB交yz轴于E.只要证明∠C=∠BAC=20°,可得BA=BC=200m;【解答】解:延长CB交yz轴于E.∵∠AEB=90°,∠EAB=50°,∴∠EBA=40°,∵∠EAC=70°,∴∠BAC=20°,∵∠EBA=∠BAC+∠C,∴∠C=∠BAC=20°,∴BA=BC=200m,故选:C.【点评】本题考查解直角三角形﹣方向角问题,等腰三角形的判定和等知识,解题的关键是学会来源于数形结合的首先解决问题,属于中考常考题型.6.(2分)在下列图象中,不能表示y是x的函数是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.【解答】解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A正确;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B正确;C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C正确;D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D错误;故选:D.【点评】主要考查了函数的定义,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.7.(2分)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条 B.1750条 C.2500条 D.5000条【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:由题意可得:50÷=1250(条).故选:A.【点评】本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.8.(2分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1) B.(﹣1,1) C.(1,﹣2) D.(﹣1,﹣2)【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选:B.【点评】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.9.(2分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C. D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.10.(2分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【分析】根据题意结合折线统计图确定正确的选项即可.【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选:D.【点评】本题考查了折线统计图,计算增长率是解题关键.11.(2分)在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)【分析】根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.【解答】解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选:C.【点评】本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.12.(2分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【分析】通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A 错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本小题共6小题,每小题3分,共18分)13.(3分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为(1,3).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(2,3)向左平移1个单位长度,∴点A′的横坐标为2﹣1=1,纵坐标不变,∴A′的坐标为(1,3).故答案为:(1,3).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.(3分)在函数y=中,自变量x的取值范围是x≥2【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:由题意得x﹣1≥0,解得:x≥2,故答案为:x≥2.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(3分)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.【分析】用样本中最喜欢的项目是跳绳的人数所占比例乘以全校总人数即可得.【解答】解:由于样本中最喜欢的项目是跳绳的人数所占比例为,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×=680,故答案为:680.【点评】本题主要考查样本估计总体,掌握总体中所占比值与样本中的所占比值近似相等是解题的关键.16.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y 轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.17.(3分)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了27场.【分析】根据统计图中的数据可以求得比赛总场数,从而可以求得足球队全年比赛胜的场数.【解答】解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1﹣26%﹣20%)=50×54%=27,故答案为:27.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.三、解答题(本题共4个小题,每小题6分,共24分)19.(6分)如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.20.(6分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.21.(6分)小明从家到图书馆看报,然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,试求:(1)小明回家的速度.(2)小明离家50分钟时离家的距离.【分析】(1)根据题意和函数图象可以求得小明从图书馆回家的速度以及对应的时间;(2)利用(1)的结论,可以求得他离家50分钟时离家的距离;【解答】解:(1)由题意可得,小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,则小明回家的速度为:0.9÷15=0.06km/min,(2)他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km,答:小明离家50分钟时离家的距离0.3km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有800人,其中选择B类的人数有240人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【分析】(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.【解答】解:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为:800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.23.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河北省石家庄市新华区八年级(下)期中数学试卷一、选择题(共12小题,每小题2分,满分24分)1.在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解八(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查石家庄对《新闻联播》栏目的收视率2.点P(4,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某个函数自变量的取值范围是x≥﹣1,则这个函数的表达式为()A.y=x+1 B.y=x2+1 C.y=D.y=4.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()A.棋类 B.书画 C.球类 D.演艺5.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)6.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=7.某校为了了解学生对“白求恩同志事迹”的知晓情况,从全校2400名学生中随机抽样了100名学生进行调查,在这次调查中,样本是()A.2400名学生B.100名学生C.所抽取的100名学生对“白求恩同志事迹”的知晓情况D.每一名学生对“白求恩同志事迹”的知晓情况8.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的,则点A的对应点A′的坐标是()A.(2,3)B.(6,1)C.(2,1)D.(3,3)9.如图是变量y与x之间的函数图象,则函数y的取值范围是()A.﹣3≤y≤3 B.0≤y≤2 C.0≤y≤3 D.1≤y≤310.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.11.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额12.对点P(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y),且规定P n(P n+1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2),则P2016(0,﹣2)=()A.(0,21008)B.(0,﹣21008) C.(0,21009)D.(0,﹣21009)二、填空题(共6小题,每小题3分,满分18分)13.点P(5,3)关于y轴对称的点的坐标是.14.阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为.15.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.16.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是.17.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表,则.正方形1234,5678,9101112,…,(每个正方形从第三象限的顶点开始,按顺时针方向的顺序,依次记为:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1).A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),A10(﹣3,3),A11(3,3),A12(3,﹣3);…)它们在坐标系中摆放位置如图所示,则顶点A2016的坐标为.三、解答题(共8小题,满分58分)19.某油箱容量为60L的汽车,加满汽油后行驶了100km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为xkm,油箱中剩余油量为yL,求y与x之间的函数关系式,以及自变量的x取值范围.20.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21.如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(3,1).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移后得到的线段A2C2,并以它为一边作出格点△A2B2C2,使△A2B2C2≌△ABC,再写出点B2的坐标.(1)根据表格中的数据发现:距离地面高度每升高1km,温度就降低℃,进而猜想:温度T与距离地面高度h之间的函数关系式为.(2)当h=10km时,高空的温度T是多少?(3)当T=﹣28℃时,距离地面的高度h是多少?23.小亮同学参加周末社会实践活动,到城郊蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46120824.如图,在平面直角坐标系中,点A的坐标是(0,3),点B在x轴的负半轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O,B的对应点分别为E,F.(1)若点B的坐标是(﹣5,0),请在图中画出△AEF,并写出点E,F的坐标;(2)当点F落在x轴上方时,请写出所有符合条件的整数点F的坐标(横、纵坐标均为整数).25.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后,卸完物品再另装货物共用45min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示.(1)求甲、乙两地之间的距离;(2)求点B的坐标;(3)求快递车从乙地返回甲地时的速度.26.如图,已知正方形ABCD的边长为1,E为CD的中点,P为正方形ABCD边上的动点,动点P从点A出发,沿A→B→C→E运动,若点P经过的路程为x,△APE的面积为y.(1)求y与x之间的函数关系式.(2)当点P运动路程为多少时,△APE的面积为.2015-2016学年河北省石家庄市新华区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解八(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查石家庄对《新闻联播》栏目的收视率【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解我省中学生视力情况,因为工作量较大,适合抽样调查,故本选项错误;B、了解八(1)班学生校服的尺码情况,精确度要求高的调查,适于全面调查,故本选项正确;C、检测一批电灯泡的使用寿命,具有破坏性的调查,适合抽样调查,故本选项错误;D、调查石家庄对《新闻联播》栏目的收视率,因为普查工作量大,适合抽样调查,故本选项错误.故选B.2.点P(4,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P在平面直角坐标系的第一象限.故选:A.3.某个函数自变量的取值范围是x≥﹣1,则这个函数的表达式为()A.y=x+1 B.y=x2+1 C.y=D.y=【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.【解答】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是全体实数,故本选项错误;C、由x+1≥0得,x≥﹣1,故本选项正确;D、由x+1≠0得,x≠﹣1,故本选项错误.故选C.4.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()A.棋类 B.书画 C.球类 D.演艺【考点】扇形统计图.【分析】根据扇形统计图中扇形的面积越大,参加的人数越多,可得答案.【解答】解:35%>30%>20%>10%>5%,参加球类的人数最多,故选:C.5.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)【考点】坐标与图形变化-平移.【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).故选D.6.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=【考点】根据实际问题列反比例函数关系式.【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.7.某校为了了解学生对“白求恩同志事迹”的知晓情况,从全校2400名学生中随机抽样了100名学生进行调查,在这次调查中,样本是()A.2400名学生B.100名学生C.所抽取的100名学生对“白求恩同志事迹”的知晓情况D.每一名学生对“白求恩同志事迹”的知晓情况【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【解答】解:在这次调查中,样本是:所抽取的100名学生对“白求恩同志事迹”的知晓情况;故选:C.8.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的,则点A的对应点A′的坐标是()A.(2,3)B.(6,1)C.(2,1)D.(3,3)【考点】坐标与图形性质.【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的,则点A的对应点A′坐标是(2,3).故选A.9.如图是变量y与x之间的函数图象,则函数y的取值范围是()A.﹣3≤y≤3 B.0≤y≤2 C.0≤y≤3 D.1≤y≤3【考点】函数的图象.【分析】观察函数图象纵坐标的变化范围,然后得出答案即可.【解答】解:根据函数图象给出的数据可得:自变量y的取值范围是0≤y≤3;故选C.10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )A .B .C .D .【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S 是均匀减小的,接着不变,后来速度加快,所以S 变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S 先缓慢减小,再不变,在加速减小.故选:D .11.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A .4月份三星手机销售额为65万元B .4月份三星手机销售额比3月份有所上升C .4月份三星手机销售额比3月份有所下降D .3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额【考点】条形统计图;折线统计图.【分析】根据销售总额乘以三星所占的百分比,可得三星的销售额,根据有理数的大小比较,可得答案.【解答】解:A 、4月份三星手机销售额为65×17%=11.05万元,故A 错误;B 、3三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故B 正确;C 、3三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故C 错误;D 、3三星手机的销售额60×18%=10.8万元,4月份三星手机销售额为65×17%=11.05万元,故D 错误;故选:B .12.对点P(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y),且规定P n(P n+1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2),则P2016(0,﹣2)=()A.(0,21008)B.(0,﹣21008) C.(0,21009)D.(0,﹣21009)【考点】点的坐标.【分析】根据所给的已知条件,找出题目中的变化规律,得出当n为偶数时的坐标,即可求出P2016(0,﹣2)时的答案.【解答】解:根据题意得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为偶数时,P n(1,﹣1)=(,﹣),则P2016(0,﹣2)=(0,﹣21008).故选:B.二、填空题(共6小题,每小题3分,满分18分)13.点P(5,3)关于y轴对称的点的坐标是(﹣5,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:P(5,3)关于y轴对称的点的坐标是(﹣5,3),故答案为:(﹣5,3).14.阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为4.【考点】频数(率)分布直方图.【分析】根据频数之和等于总数可得.【解答】解:根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4.15.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为y=,则这个问题中,30是常量;x,y是变量.【考点】函数关系式;常量与变量.【分析】根据矩形面积公式得出xy之间的关系,进而利用常量与变量的定义得出答案.【解答】解:∵长方形相邻两边长分别为x、y,面积为30,∴xy=30,∴y=,则用含x的式子表示y为y=,则这个问题中,30是常量;x,y是变量.故答案为:y=,30;x,y.16.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).【考点】坐标确定位置.【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).17.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表,则【分析】根据表格中的数据可以计算出不超过15min的频率,本题得以解决.【解答】解:由题意和表格可得,不超过15min的频率为:,故答案为:0.9.18.正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向的顺序,依次记为:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1).A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),A10(﹣3,3),A11(3,3),A12(3,﹣3);…)它们在坐标系中摆放位置如图所示,则顶点A2016的坐标为.【考点】规律型:点的坐标.【分析】观察图形结合正方形的性质可得出下标为4的整数倍的点落在第四象限的对角线上,再根据A4、A8、A12的坐标变化,可找出变化规律“A4n(n,﹣n)”,依此规律即可解决问题.【解答】解:观察图形发现,下标为4的整数倍的点落在第四象限的对角线上,∵A4(1,﹣1),A8(2,﹣2),A12(3,﹣3),…,∴A4n(n,﹣n).∵2016=4×504,∴顶点A2016的坐标为.故答案为:.三、解答题(共8小题,满分58分)19.某油箱容量为60L的汽车,加满汽油后行驶了100km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为xkm,油箱中剩余油量为yL,求y与x之间的函数关系式,以及自变量的x取值范围.【考点】一次函数的应用.【分析】根据油箱容量为60L的汽车,加满汽油后行驶了100km时,油箱中的汽油大约消耗了,可以求出每千米的耗油量,从而可以得到y与x之间的函数关系式,以及自变量的x取值范围.【解答】解:由题意可得,每千米耗油量为:60×=0.12L,加满油后最大行驶的路程为:60÷0.12=500km,则y=60﹣0.12x(0≤x≤500),即y与x之间的函数关系式是:y═60﹣0.12x,自变量x的取值范围是:0≤x≤500.20.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【考点】条形统计图;扇形统计图.【分析】(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案.【解答】解:(1)B组参赛作品数是:100×(1﹣35%﹣20%﹣20%)=25(件);(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,C班的获奖率为:50%;D班的获奖率为:×100%=40%,故C班的获奖率高.21.如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(3,1).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移后得到的线段A2C2,并以它为一边作出格点△A2B2C2,使△A2B2C2≌△ABC,再写出点B2的坐标.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)先根据网格结构找出点A、C平移后的对应点A2、C2的位置,然后连接,再分点B2在A2C2的上方和下方两种情况写出点B2的坐标.【解答】解:(1)△A1B1C1如图所示;(2)线段A2C2如图所示;点B2(﹣2,﹣3)或(1,﹣2).根据表中,请你帮助小明解决下列问题:(1)根据表格中的数据发现:距离地面高度每升高1km,温度就降低6℃,进而猜想:温度T与距离地面高度h之间的函数关系式为T=20﹣6h.(2)当h=10km时,高空的温度T是多少?(3)当T=﹣28℃时,距离地面的高度h是多少?【考点】函数关系式;函数值.【分析】(1)直接利用表格中数据得出温度与高度之间的关系;(2)利用(1)中所求,进而代入h的值求出答案;(3)利用(1)中所求,进而代入T的值求出答案.【解答】解:(1)由表格中数据可得:距离地面高度每升高1km,温度就降低6℃,进而猜想:温度T与距离地面高度h之间的函数关系式为:T=20﹣6h;故答案为:6,T=20﹣6h;(2)由(1)得:T=20﹣6×10=﹣40(℃),答:当h=10km时,高空的温度T是﹣40℃;(3)当T=﹣28℃时,则:﹣28=20﹣6h,解得:h=8,答:距离地面的高度h是8km.23.小亮同学参加周末社会实践活动,到城郊蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 461208【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据所给出的数据分别得出各段的频数,从而补全统计图;(2)根据频数分布直方图所给出的数据分别进行分析即可.1(2)答案不唯一,如:此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.24.如图,在平面直角坐标系中,点A的坐标是(0,3),点B在x轴的负半轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O,B的对应点分别为E,F.(1)若点B的坐标是(﹣5,0),请在图中画出△AEF,并写出点E,F的坐标;(2)当点F落在x轴上方时,请写出所有符合条件的整数点F的坐标(横、纵坐标均为整数).【考点】作图-旋转变换.【分析】(1)利用网格特点和旋转的性质,分别画出点O和点B的对应点E、F,从而得到△AEF,然后写出E点和F点坐标;(2)由于AO绕点A逆时针旋转90°得到AE,即E点坐标总为(3,3),而∠FEA=90°,于是当点F落在x轴上方时只有两个点的坐标满足条件(横、纵坐标均为整数).【解答】解:(1)如图,△AEF为所作,E点坐标为(3,3),F点坐标为(3,﹣2);(2)满足条件的F点的坐标为(3,1),(3,2).25.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后,卸完物品再另装货物共用45min,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示.(1)求甲、乙两地之间的距离;(2)求点B的坐标;(3)求快递车从乙地返回甲地时的速度.【考点】一次函数的应用.【分析】(1)根据“快递车的速度=货车的速度+两车的速度差”可以求出快递车的速度,再根据“路程=快递车的速度×快递车到达乙地的时间”即可得出结论;(2)结合快递车装货45min即可得出点B的横坐标,根据“两车间的距离=120﹣货车速度×快递车装货时间”即可得出点B的纵坐标,由此即可得出点B的坐标;(3)结合点B、C的横坐标可得出快递车从返回到遇见货车所用的时间,再根据“快递车返回的速度=路程÷时间﹣货车的速度”即可得出结论.【解答】解:(1)快递车的速度为:60+120÷3=100(km/h),甲、乙两地之间的距离为:100×3=300(km).答:甲、乙两地之间的距离为300km.(2)点B的横坐标为:3+=3(h),点B的纵坐标为:120﹣×60=75(km),故点B的坐标为(3,75).(3)快递车从返回到遇见货车所用的时间为:4﹣3=(h),快递车从乙地返回甲地时的速度为:75÷﹣60=90(km/h).答:快递车从乙地返回甲地时的速度为90km/h.26.如图,已知正方形ABCD的边长为1,E为CD的中点,P为正方形ABCD边上的动点,动点P从点A出发,沿A→B→C→E运动,若点P经过的路程为x,△APE的面积为y.(1)求y与x之间的函数关系式.(2)当点P运动路程为多少时,△APE的面积为.【考点】正方形的性质.【分析】(1)分别从0≤x≤1,1<x≤2,2<x≤2.5去分析求解即可求得答案;(2)分别从0≤x≤1,1<x≤2,2<x≤2.5时,y=,去求解即可求得答案.【解答】解:(1)①当0≤x≤1时,AP=x,AD=1,则y=×x×1=x;②如图(2),当1<x≤2时,BP=x﹣1,CP=2﹣x,﹣S△ABP﹣S△CPE=×(+1)×1﹣×1×(x﹣1)﹣××(2﹣x)=∴y=S梯形ABCE﹣x;③如图(3),当2<x≤2.5时,EP=2.5﹣x,∴y=×(2.5﹣x)×1=﹣x;(2)①当0≤x≤1时,x=,解得:x=;②当1<x≤2时,﹣x=,解得:x=;③当2<x≤2.5时,﹣x=,解得:x=(舍去);综上:当点P运动路程为或时,△APE的面积为.2016年8月25日第21页(共21页)。