八年级上册数学答案

合集下载

蓝色A典八年级数学上册A本参考答案

蓝色A典八年级数学上册A本参考答案

6
13
9. (1) x −1 = ±17 ,所以 x=18 或 x=16.(2) 3x −1 = ±5 ,所以 x=2 或 x = − 4 ; 3
10.±3.
第四节 公园有多宽
1.D;2.B;3.5;4.4,5;5.C;6.D;7.<,>;8. 3 30 <π<3.2< 11 ;
9. 解法一: ∵ 3 <2,∴ 3 −1 < 1,∴ 3 −1 < 1 . 44
第三章 图形的平移与旋转
第二节 简单的平移作图 第一课时
1.略;2.略;3.D;4.D;
5.通过观察可知:点 P 与点 F、点 R 与点 E、点 Q 与点 G 是三对对应点.因此点 P 到点 F 的方向即为平移
的方向,连接 PF,线段 PF 的长就是平移的距离.
(1)点 P 到点 F 的方向即为平移的方向;对应线段是 PQ 与 FG,PR 与 FE,QR 与 GE;对应点是点 P 与点 F,
7. ∵ AB = 82 + 62 = 10 (米),∴甲所走的路程为:10+2=12(米),乙所走的路程为:8+4=12(米). 所以,小明的判断是正确的. 8. 设阅览室 E 到 A 的距离为 xkm.连接 CE、DE.
在 Rt△EAC 和 Rt△EBD 中,CE2=AE2+AC2=x2+15,DE2=EB2+DB2=(25-x)2+102. 因为点 E 到 C,D 的距离相等,所以 CE=DE. 所以 CE2= DE2. 即 x2+15=(25-x)2+102. 解得:x=10.所以 AE=10km. 因此,阅览室 E 应建在距 A 10km 处.
⎧∠AOD = ∠COD,

八年级上册试卷含答案数学

八年级上册试卷含答案数学

一、选择题(每题3分,共30分)1. 已知x+2=5,则x的值为()A. 2B. 3C. 4D. 52. 下列各数中,正数是()A. -3B. 0C. 3D. -13. 下列各数中,0.1的相反数是()A. 0.1B. -0.1C. 1D. -14. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 35. 下列各数中,有理数是()A. √2B. πC. 0.25D. √36. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -57. 已知x²=4,则x的值为()A. -2B. 2C. ±2D. 08. 下列各数中,正比例函数y=kx(k≠0)的图象是一条直线的是()A. y=2x+3B. y=3x-2C. y=3x²D. y=2x9. 下列各数中,反比例函数y=k/x(k≠0)的图象是一条双曲线的是()A. y=3/xB. y=2/xC. y=4/xD. y=5/x10. 已知a=3,b=-2,则|a-b|的值为()A. 5B. 1C. 0D. -5二、填空题(每题3分,共30分)11. 若a=2,b=-3,则a-b的值为________。

12. 若|a|=5,则a的值为________。

13. 若x²=16,则x的值为________。

14. 若y=3x+2,当x=1时,y的值为________。

15. 若y=2/x,当x=3时,y的值为________。

16. 若y=kx,当x=2时,y的值为4,则k的值为________。

17. 若y=3/x,当x=-2时,y的值为________。

18. 若a=2,b=3,则|a-b|的值为________。

三、解答题(每题10分,共40分)19. 解下列方程:(1)x-3=5(2)2x+1=9(3)3x-4=220. 已知a=2,b=-3,求下列代数式的值:(1)a²-b²(2)a²+2ab+b²(3)(a+b)²21. 已知y=3x-2,当x=4时,求y的值。

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。

北师大版八年级上册数学课本课后练习题答案(整理版)

北师大版八年级上册数学课本课后练习题答案(整理版)
理数.
2.(1)X不是有理数(理由略);(1)X≈3.2;(3)X≈3.16
2.2平方根
随堂练习
1.6;3/4;√17;0.9;10
2.√10 cm.
习题2.3
知识技能
1.11;3/5;1.4;10
问题解决
2.设每块地砖的边长是xm;x3120=10.8解得x=0.3m 23 -2
联系拓广
3.2倍;3倍;10倍;√n倍。
25
14412162545(A)1个(B)2个(C)3个(D)4个
?1
5
15(C)
;②(?4)
2
??4;③?2
2
??2
2
??2;④
1
?
1
?
1
?
1
?
920
22
15.若a?4,b?9;且ab?0;则a?b的值为()
(A)?2(B)?5(C)5(D)?5 16.实数
13
24
?
;中;分数的个数有()
6
(A)0个(B)1个(C)2个(D)3个
②无理数集合: { ?};③正实数集合: { ?};④实数集合:{ ?}. 15.若4
随堂练习
1.h不可能是整数;不可能是分数。
2.略:结合勾股定理来说明问题是关键所在。
随堂练习
1.0.4583; 3.7;一1/7; 18是有理数;一∏是无理数。
习题2.2
知识技能
1.一559/180;3.97;一234;10101010?是有理数;0.123 456 789 101 1 12 13?是无
11.五根小木棒;其长度分别为7;15;20;24;25;现将他们摆成两个直角三角形;其中()
7

八年级上册数学试题(含答案)

八年级上册数学试题(含答案)

八年级上册数学试题(含答案)一、选择题1. 下列数中是无理数的是:A. 3B. -5C. √2D. 0.375答案:C2. 两个互为相反数的数,它们的和是:A. 0B. 1C. -1D. 2答案:A3. 下列哪个数是最小的?A. -2B. 1/2C. -1/2D. 0答案:A4. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 菱形答案:C5. 已知 a = 3, b = 4, 则 a² + b²的值是:A. 25B. 16C. 9D. 20答案:A二、填空题1. 2 × (-3) = _______答案:-62. 5² = _______答案:253. 0.375 表示的分数为 _______ 答案:3/84. 若 a:b = 4:3,则 b:a = _______答案:3:45. 下列哪个数是偶数:_______ 答案:-8三、解答题1. 解方程:2x - 5 = 3答案:x = 42. 已知 a = 3, b = 4,求 a² + b²答案:253. 计算:(-3) × (-2) + 4 - √2答案:6 + 4 - √24. 画出下列图形:一个边长为5的正方形答案:见附图5. 已知一个数的平方根是3,求这个数。

答案:这个数是9。

以上是八年级上册数学试题的答案,希望对您有所帮助。

如果有任何疑问,欢迎随时向我提问。

八年级上册数学答案

八年级上册数学答案

八年级上册数学答案第一章有理数1. 有理数综合练习题答案:(1)-19 (2) 0 (3) 6 (4) -7/3 (5) 26/7 (6) -8/9 (7) 73/49 (8) 2.52. 有理数的加减乘除练习题答案:(1)-5 (2) -1/8 (3) -14/5 (4) 7/15 (5) 1/60 (6) 1 (7) 3/7 (8) -3/43. 有理数的加法乘法公式练习题答案:(1)-54 (2) 29 (3) -119/16 (4) 61/56 (5) -58/7 (6)19/20 (7) 17/10 (8) 14/33第二章整数的加减1. 整数加减法运算练习题答案:(1)-2 (2) 15 (3) -13 (4) 32 (5) -15 (6) 45 (7) 19 (8) -572. 整数运算综合练习题答案:(1)15 (2) -7 (3) 53 (4) -16 (5) -10 (6) 17 (7) 26 (8) -953. 空间坐标系练习题答案:(1)F(-1,-3) (2) E(-4,6) (3) C(-5,-2) (4) B(-1,4) (5) D(3,-1) (6) A(4,5)第三章分数1. 分数的加减法练习题答案:(1)17/18 (2) -11/12 (3) -5/6 (4) -1/3 (5) 19/30 (6) -7/30 (7) 8/15 (8) -7/122. 分数的加减乘除混合运算练习题答案:(1)9/4 (2) 3/8 (3) 6 (4) -7/8 (5) 5/6 (6) -21/4 (7)23/12 (8) -7/153. 分式方程练习题答案:(1)x = -1/2 (2) x = 1 (3) x = -3 (4) y = 2 (5) x = -5 (6) x = -2/5第四章初识代数1. 代数式计算练习题答案:(1)14 (2) -8 (3) -7 (4) 13 (5) -5 (6) 3 (7) -12 (8) 182. 字母代数式计算练习题答案:(1)14 (2) -5 (3) 11 (4) 12 (5) -19 (6) -21 (7) 19 (8) 26 3. 群法律练习题答案:(1)3 (2) -10 (3) -66 (4) 35 (5) -20 (6) -4 (7) 18 (8) -34第五章方程与不等式1. 解一元一次方程练习题答案:(1)x = 2 (2) x = -3 (3) x = 6 (4) x = -8 (5) x = 1 (6) x = -7 (7) x = 4 (8) x = -132. 解一元一次方程混合运算练习题答案:(1)x = -5 (2) x = 2 (3) x = 7 (4) x = -3 (5) x = 3 (6) x = 1/5 (7) x = -1 (8) x = -9/53. 一元一次不等式求解练习题答案:(1)x ≤ 4 (2) x ≥ -3 (3) x > -2 (4) x < 3 (5) x < -2 (6) x > 1 (7) x ≥ 5 (8) x < -1/2以上是八年级上册数学答案的内容,希望对你有所帮助!。

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。

(2) 无理数是不能表示为有理数的数。

(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。

(4) √2、π、e等都是无理数。

2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。

(2) 无理数是指不能表示为有理数的数,如√2、π、e等。

(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。

循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。

(4) 在实数轴上,0与正数、负数之间是有间隔的。

(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。

3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。

证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。

如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。

所以d=b,即a和b的最大公约数是b的约数。

(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。

证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。

则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。

同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。

(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。

因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。

二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。

人教版八年级上册数学书答案

人教版八年级上册数学书答案

人教版八年级上册数学书答案做八年级数学书习题一定要认真,马虎一点就容易出错。

下面小编给大家分享一些人教版八年级上册数学书答案,大家快来跟小编一起欣赏吧。

人教版八年级上册数学书答案(一)第24页1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形人教版八年级上册数学书答案(二)第28页1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,所以DC=BD=5 cm,BC=2BD=10 cm.2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.5.(900/7)°6.证明:由三角形内角和定理,可得∠A+∠1+42°=180°.又因为∠A+10°=∠1,所以∠A十∠A+10°+42°=180°.则∠A=64°.因为∠ACD=64°,所以∠A= ∠ACD.根据内错角相等,两直线平行,可得AB//CD.7.解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°-72°=18°.8.解:∠DAC=90°-∠C= 20°,∠ABC=180°-∠C-∠BAC=60°.又∵AE,BF是角平分线,∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,∴∠AOB=180°-∠ABF-∠BAE=125°.9.BD PC BD+PC BP+CP10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.又因为DF⊥AB,所以∠BFD=90°,在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB 的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.因为∠BGC+∠1+∠2 =180°,所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).(2)因为∠ABC+∠ACB=180°-∠A,所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.12.证明:在四边形ABCD中,∠ABC+∠ADC+∠A+∠C=360°.因为∠A=∠C=90°,所以∠ABC+∠ADC= 360°-90°-90°=180°.又因为BE平分∠ABC,DF平分∠ADC,所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.又因为∠C=90°,所以∠DFC+∠CDF =90°.所以∠EBC=∠DFC.所以BE//DF.人教版八年级上册数学书答案(三)第32页1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C 和∠E,∠BAC和∠DAE是对应角.2.解:相等的边有AC=DB,OC=OB,OA=OD;相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.。

八年级上册数学答案

八年级上册数学答案

八年级上册数学答案一、选择题BBCADCCBC二、填空题1.21×10-5,3a-1,6三、解答题13、解:原式=x(x-2)214、解:原式=4m2+8m+4-4m2+25=8m+29当m=-3时,原式=-24+29=515、解:去分母得:x(x+2)-(x2-4)=8得:2x=4解得:x=2经检验得x=2是原方程的增根∴原分式方程无解16、证明:∵BE=CF∴BF=CE在△ABE和△DCF中∵AB=DC,∠BB=∠C,BF=CE∴△ABE≌△DCF∴∠A=∠D17、证明:∵BD平分∠ABC∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD∴BE=DE。

同理可证DF=CF∴EF=DE+DF=BE+CF 18.(1)∵∠ACB=90∴∠BCE+∠ACD=90∵BE⊥CE∴∠CEB=90∴∠BCE+∠EBC=90∴∠ACD=∠EBC∵AD⊥CD∴∠ADC=∠CEB在△ACD和△CBE中∠ACD=∠CBE,∠ADC=∠CEB,AC=CB∴△ACD≌△CBE(2)∵△ACD≌△CBE∴AD=CEBE=C(3)∵∴BE=CD=CE-DE=5-3=2cm09.证明:∵CD⊥AB,BE⊥AC,∴∠BDO=∠CEO=90°.∵∠DOB=∠EOC,OB=OC,∴△DOB≌△EOC∴OD=OE.∴AO是∠BAC的平分线.∴∠1=∠2.20.证明:如图12-3-26所示,作DM⊥PE于M,DN⊥PF于N,∵AD是∠BAC的平分线,∴∠1=∠2.又:PE//AB,PF∥AC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.∴PD是∠EPF的平分线,又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等. 21.证明:∵OC是∠AOB的平分线,且PD⊥OA,PE⊥OB,∴PD=PE,∠OPD=∠OPE.∴∠DPF=∠EPF.在△DPF和△EPF中,∴△DPF≌△EPF(SAS).∴DF=EF(全等三角形的对应边相等).22.解:AD与EF垂直.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴∠ADE=∠ADF.在△GDE和△GDF中,∴△GDF≌△GDF(SAS).∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.23.证明:过点E作EF上AD于点F.如图12-3-27所示,∵∠B=∠C=90°,∴EC⊥CD,EB⊥AB.∵DE平分∠ADC,∴EF=EC.又∵E是BC的中点,∴EC=EB.∴EF=EB.∵EF⊥AD,EB⊥AB,∴AE是∠DAB的平分线。

人教版八年级上册数学作业本答案完整版

人教版八年级上册数学作业本答案完整版

参考答案第十一章 三角形11.1与三角形有关的线段11.1.1三角形的边1.(1)3;әA B C,әA B D,әA D C(2)A B,B D,A D;A,B,D(3)øA D C,øD C A,øC A D2.(1)3(2)123.(1)> (2)> (3)> (4)<4.(1)能.理由略(2)不能.理由略(3)能.理由略(4)不能.理由略5.a=5c m或7c m,周长为17c m或19c m6.35c m的长铁条合适,10c m的长铁条不合适.理由略11.1.2三角形的高㊁中线与角平分线11.1.3三角形的稳定性1.略2.(1)4c m2(2)30ʎ(3)2.4c m3.(1)D (2)B4.14c m5.(1)C D,B C(2)әA B C,әA B E,әA E C(3)әD B C,әD B E,әD E C6.25ʎ,25ʎ*7.(1)S1=S2.理由略(2)S3=S5,因为S3+S6=S5+S6=12S(3)S7=S8=S9=S10=S11=S1211.2与三角形有关的角11.2.1三角形的内角(1)1.(1)180ʎ,75ʎ(2)30ʎ,60ʎ,90ʎ2.(1)77ʎ(2)70ʎ3.33ʎ4.ø2=50ʎ,øB=50ʎ,øA C B=90ʎ5.(1)120ʎ(2)1256.øA B P=30ʎ+25ʎ=55ʎ,øB A P=80ʎ11.2.1三角形的内角(2)1.302.(1)3(2)43.D4.115ʎ5.42ʎ6.R tәA B D,R tәA C D,R tәA D E.理由略11.2.2三角形的外角1.C2.60ʎ3.145ʎ4.(1)øA B C=90ʎ,øC=45ʎ(2)40ʎ,50ʎ,90ʎ5.40ʎ.理由:ø3=ø2+180ʎ-140ʎ6.74ʎ*7.øC A D=30ʎ,øA E D=80ʎ,øE A D=10ʎ11.3多边形及其内角和11.3.1多边形1.(1)首尾顺次相接,n边形(2)顶点,对角线,n(n-3)2(3)相等,相等2.1;øB C D;2;øD C E,øB C F3.略4.①④5.(1)⑤ (2)①ˑ ②ˑ ③6.(1)图略,3,4(2)4,5,5,6(3)n-3,n-211.3.2多边形的内角和1.(1)720ʎ(2)八(3)45ʎ2.53.36ʎ,72ʎ,108ʎ,144ʎ4.1165.116.160ʎ复习题1.A B C,A D E2.①3.1,图略4.125.62ʎ,118ʎ6.(1)由A CʅB C,得ø1+øB C D=90ʎ,又因为ø1=øB,所以øB+øB C D=90ʎ,所以C D是әA B C的高(2)2c m7.118.øA E B=øC.理由略9.(1)26ʎ(2)略10.(1)øI=90ʎ+12øA,øO=12øA,øP=90ʎ-12øA.理由略(2)125ʎ,35ʎ,55ʎ11.(1)19,0(2)0<x<19第十二章 全等三角形12.1全等三角形1.(1) (2)ˑ (3)ˑ (4)2.C,øA,A C3.97,104.B C与D E,A C与A E,øB A C与øD A E,øC与øE5.直线B C,逆时针旋转180ʎ,平移B C长度6.(1)øE D C,E C(2)6,90ʎ12.2三角形全等的判定(1)1.S S S2.A B=B C,A B D,C B E3.提示:由әA B DɸәB A C(S S S),得øD=øC4.略5.øB A D=øC A D,理由略.提示:әA O EɸәA O F(S S S)6.(1)略(2)A BʊD E,A CʊD F,理由略*7.提示:由әA B DɸәA C D(S S S),可得A DʅB C,A D平分øB A C12.2三角形全等的判定(2)1.øB E D,D E,әB D E,S A S2.øE A D=øB A C或øE A B=øD A C或E D=B C3.B4.由әE DHɸәF DH,得E H=F H.还能得如下结论:øD E H=øD F H,øDH E=øDH F5.由әB C AɸәD E B(S A S),得B C=D E6.由әA B CɸәA B D(S A S),得øA B C=øA B D, ʑ øC B E=øD B E7.(1)A B=A C,A D=A D,øB=øC*(2)不全等.两边及一边的对角对应相等的两个三角形不一定全等12.2三角形全等的判定(3)1.C2.(1)øB C A=øE F D(2)øB=øE3.提示:由øC B A=øF E D,øB C A=øE F D,A B=D E,得әB A CɸәE D F(A A S)4.提示:由әA B CɸәE D C(A S A),得D E=A B5.提示:由әB C DɸәC B E(A S A),得B E=C D6.提示:可先证明әA O DɸәA O E,得出O D=O E;再证明әB O DɸәC O E,从而得出O B=O C12.2三角形全等的判定(4)1.D2.(1) (2)ˑ (3)ˑ (4)3.(1)A C=D C(2)øA=øD或øB=øE(3)A C=D C4.(1)提示:әA B CɸәA D C(A A S)(2)由(1)得C B=C D5.提示:әA O DɸәC O B(S A S),әA O EɸәC O F(A A S)6.全等三角形有әA B CɸәD C B(S A S),әA B OɸәD C O(A A S).理由略12.2三角形全等的判定(5)1.D2.A C=D F或B C=E F或øA=øD或øB=øE3.提示:由R tәA D EɸR tәA D F(H L),得øD A E=øD A F,即A D是øB A C的平分线4.(1)A E=D F,A BʊC D(2)略5.(1)ȵ A D=B D,A C=B E,øA D C=øB D E, ʑ әB E DɸәA C D(H L)(2)提示:由әB E DɸәA C D,得D E=D C6.当A P=A C=10c m,即点P与点C重合时,或A P=B C=5c m,即P是A C的中点时,әA B C与әA P Q全等*7.正确. ȵ R tәO C PɸR tәO D P, ʑ øC O P=øD O P,即O P平分øA O B12.2三角形全等的判定(6)1.(1)A A S(2)A S A (3)S A S(4)H L2.②④3.D4.提示:先证明әA B EɸәA C D,再证明әO B DɸәO C E5.提示:先证明әA O DɸәB O C,再证明әO C EɸәO D F6.提示:延长A M到点N,使MN=A M,连接B N.先证明әA C MɸәN B M,得到B N=A C,再由әA B N的三边关系得到A N<A B+B N, ʑ 2A M<A B+A C12.3角的平分线的性质(1)1.(1)略(2)5c m2.(1)B C,C D(2)A B,A D3.P B=P C,A B=A C4.提示:根据角平分线的性质可得A E=E F,D E=E F,故A E=D E5.提示:由әP DMɸәP E N(S A S),得P M=P N6.(1)提示:两个三角形的边A B,A C上的高相等(2)方法一:ȵ B D=C D,ʑ SәA B D=SәA C D. ʑ A B=A C方法二:过点D分别作A B,A C的垂线段,通过三角形全等证明12.3角的平分线的性质(2)1.A2.253.略4.21ʎ5.提示:可证明әC O EɸәB O D,得O E=O D6.(1)略(2)作图略,A DʅA E复习题1.A2.4对:әA F DɸәA F E,әB D FɸәC E F,әA F BɸәA F C,әA B EɸәA C D3.由әA B CɸәA'B'C',得B C=B'C',即影子一样长4.点P为øA和øB的平分线的交点,图略5.提示:由әB D FɸәC D E(S A S),得øF=øD E C,故B FʊC E6.3c m,37ʎ7.由R tәA B DɸR tәC B E(H L),得øB A D=øB C E.ȵøE+øB C E= 90ʎ, ʑ øE+øB A D=90ʎ, ʑ A FʅC E8.(1)提示:证明әC B DɸәE F C,D B=C F(2)2(3)2第十三章 轴对称13.1轴对称13.1.1轴对称1.B2.A DʅB C,中点,垂直平分线3.(1) (2)ˑ4.①和③是轴对称图形.对称轴及对称点略5.(1)点D ,E ,F (2)l 垂直平分线段A D (3)交点在直线l 上6.图略.正三㊁四㊁五㊁ n 边形分别有3,4,5, ,n 条对称轴13.1.2 线段的垂直平分线的性质(1)1.(1)B M (2)90 (3)2c m 2.A D +D E +A E =B D +D E +E C =B C =5c m3.ȵ A C =A D , ʑ 点A 在C D 的垂直平分线上.同理,点B 在C D 的垂直平分线上, ʑ AB 垂直平分CD 4.以点A 为圆心㊁适当长为半径作弧,交l 于点B 和C ,再分别以点B 和C 为圆心㊁大于12B C 的长为半径作弧,两弧交于点D ,连接D A ,直线D A 就是所求作的垂线5.ȵ A B =A C ,B D =D C , ʑ 直线A D 是线段B C 的垂直平分线.ȵ 点E 在A D 上, ʑ E B =E C6.A C =A E =12A B =3c m13.1.2 线段的垂直平分线的性质(2)1.对应点,垂直平分线2.连接A B ,分别以点A 和B 为圆心㊁大于12A B 的长为半径画弧,两弧交于点C 和D ,连接C D ,C D 就是所求作的直线3.①②③⑤是轴对称图形.图略 4.略5.提示:作出三角形任意一边的中线即可6.方案一:两组对边中点的连线;方案二:两条对角线13.2 画轴对称图形(1)1.(1)略 (2)A 'B 2.略 3.略 4.略 5.略 6.略13.2 画轴对称图形(2)1.C 2.点P 的坐标(2,3)(1,-4)(-2.5,-6)0,-72点P 关于x 轴对称的点的坐标(2,-3)(1,4)(-2.5,6)0,72 点P 关于y 轴对称的点的坐标(-2,3)(-1,-4)(2.5,-6)0,-723.1,24.略5.(1)图略.-3,5,-1,1,-3,3 (2)图略.-1,5,-3,1,-1,3 (3)是.图略6.A 2(1,-3),B 2(4,-1),C 2-12,-2.图略13.3 等腰三角形13.3.1 等腰三角形(1)1.(1)50ʎ (2)66ʎ 2.50 3.3,904.øB C D =25ʎ,øA D C =50ʎ,øA C B =90ʎ5.由әA B C ɸәA E D (S A S ),得A C =A D .又AM ʅC D , ʑ C M =MD .ʑ M 是C D 的中点6.提示:连接A P ,证明әA D P ɸәA E P 或әB D P ɸәC E P ,得P D =P E*7.(1)15ʎ (2)20ʎ (3)øE D C =12øB A D ,理由略13.3.1 等腰三角形(2)1.70,等腰 2.(1)30ʎ (2)30ʎ或75ʎ或120ʎ3.提示:由øD B C =øD C B ,得әB C D 是等腰三角形4.30海里5.øC =30ʎ,C D =3c m 6.ȵ øB =øC =12(180ʎ-øA ), ʑ A B =A C .ȵ B D =C E , ʑ A D =A E , ʑ øA D E =øA E D =12(180ʎ-øA ),ʑ øA D E =øB , ʑ D E ʊB C*7.(第7题)13.3.2 等边三角形(1)1.(1)0.5c m (2)3 2.D 3.90ʎ4.提示: ȵ әA D F ɸәB E D ɸәC F E , ʑ A D =B E =C F5.(1)ȵ әA B C 是等边三角形,ʑ AC =C B ,øA =øE C B =60ʎ.又AD =CE ,ʑ әA D C ɸәC E B (S A S ), ʑ øC B E =øA C D(2)øC F E =øC B E +øD C B =øA C D +øD C B =øA C B =60ʎ6.提示:可证明әA B D ɸәA C E (S A S ), ʑ A D =A E ,øD A E =øB A C =60ʎ,ʑ әA D E 是等边三角形13.3.2等边三角形(2)1.2402.30ʎ,4c m,2c m3.ȵ øA=90ʎ-60ʎ=30ʎ,øC=90ʎ, ʑ A B=2B C.又ȵ A B-B C=5c m, ʑ B C=5c m4.øB=15ʎ,øD A C=øB+øA C B=30ʎ,C D=12A C=12A B=25c m5.(1)略(2)(12+43)c m6.ȵ B'D=B'E, ʑ B B'平分øA B C, ʑ øB'B D=30ʎ,ʑ B B'=2B'D=5ˑ2=10c m7.根据әA B D的画法,有A B=A C=B C=C D,ʑәA B C是等边三角形, *øA B C=øA C B=60ʎ,øD=øC B D=12øA C B=30ʎ.ʑ øA B D=60ʎ+30ʎ=90ʎ, ʑ әA B D就是所要画的三角形13.3.2等边三角形(3)1.12.60,1203.74.әO D E是等边三角形.提示:证明øD O E=2øA O B=60ʎ,O D=O C=O E即可5.(1)15时30分(2)17时30分6.(1)连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可*(2)әD E F仍为等腰直角三角形.连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可13.4课题学习最短路径问题1.提示:作点O关于A B的对称点O',连接O'C,交A B于点P2.提示:作点O关于A B的对称点O',点M关于B C的对称点M',连接O'M',交A B,B C于点P和Q3.提示:利用平移,将点C移动到边C D上的点C'处,C C'=2c m,作点O关于A B对称点O',连接O'C',交A B于点P复习题1.C2.5c m,50ʎ3.18ʎ4.略5.ȵ E DʅB C, ʑ øE+øB=90ʎ,øD F C+øC=90ʎ.ȵ A B=A C, ʑ øB=øC.又øD F C=øA F E, ʑ øE=øA F E, ʑ A E=A F.ʑ әA E F是等腰三角形6.ȵ әA C E与әA D E关于直线A E对称, ʑ D E=E C,A D=A C=C B,ʑ D E+E B+D B=E C+E B+D B=C B+D B=10c m7.ȵ øA=60ʎ,A D=12A B=A C, ʑ әA C D是等边三角形,øD C B=90ʎ-øA C D=30ʎ.øA C E=90ʎ-øA=30ʎ,øE C D=30ʎ,ʑøA C E=øE C D =øD C B8.ȵ E B=E C, ʑ øE B C=øE C B. ȵ øA B E=øA C E,ʑ øA B C=øA C B, ʑ A B=A C.又ȵ E B=E C,ʑ 点A和E在B C的垂直平分线上. ʑ A DʅB C9.(1)a=2,b=3(2)(-6,-2)10.(第10题)11.(1)略(2)P(a,b)关于直线m对称的点的坐标为(-a-4,b);P(a,b)关于直线n对称的点的坐标为(b,a)12.(1)由әA B EɸәD B C(S A S),得A E=D C(2)成立(3)等边三角形第十四章 整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.(1)不正确.a6(2)正确(3)不正确.-79(4)不正确.-2102.(1)108(2)1211(3)-127(4)5103.(1)m6(2)x2m+1(3)a6(4)-x54.1020次5.(1)(a+b)3(2)(x-y)7(3)b9(4)(a-b)56.1.2ˑ1011m 14.1.2幂的乘方14.1.3积的乘方1.B2.(1)26(2)b9(3)1012(4)-x153.(1)不正确.8x3(2)不正确.a3b6(3)不正确.9a6(4)不正确.-127x3y64.(1)-a6(2)9ˑ1010(3)a12b6(4)-8x6y35.54a2,27a36.5.14ˑ108k m214.1.4整式的乘法(1)1.(1)15a5(2)-72a3b6(3)6ˑ107(4)-3x5y42.(1)不正确.3x3y2(2)不正确.-2x2-2x y3.(1)2x2+2x(2)6x2-18x y(3)-2a+2b-2c(4)-15a4+43a34.a b-b25.3x3-5x2+6x,-146.(1)2x y,4x y-2y(2)15x y+y14.1.4整式的乘法(2)1.(1)x2+3x+2(2)2x2-x-12.(1)x2-4(2)6x2+x-1(3)x2+4x y-21y2(4)6x2+11x y-10y23.(1)x2-y2(2)4x2-9(3)x2+2x y+y2(4)4x2-12x+94.(1)3m2-m n-5m+2n-2(2)6x-9,35.(a-b)(a-2b)=a2-3a b+2b26.小丽说得对,理由略14.1.4整式的乘法(3)1.(1)a2(2)a2(3)a3b3(4)12.C3.(1)100(2)a6(3)-b3(4)-a b4.(1)1(2)-1(3)1(4)15.(1)a4(2)-m3(3)1(4)2a76.104s14.1.4整式的乘法(4)1.(1)2a(2)-5y2(3)-2ˑ103(4)r32.自上而下:-x3y,6x z,-12x3.D4.(1)-14a b(2)3x+1(3)3a+4(4)-6x+2y-15.(1)-y+2x y2(2)-2a2+4a+8,26.(8.47ˑ1010)ː(2.75ˑ103ˑ105)=308年14.2乘法公式14.2.1平方差公式1.(1)a2-1(2)y-32.(1) (2) (3) (4) (5)ˑ3.(1)a2-4(2)9a2-b2(3)y2-0.09x2(4)a2-14b24.(1)(100+3)(100-3)=9991(2)(60-0.2)(60+0.2)=3599.965.(1)二,去括号后未变号(2)略6.(1)-8a2(2)5x2-34y2(3)-2a2+7a+27.(1)a2-b2(2)a-b,a+b,(a-b)(a+b)(3)(a-b)(a+b)=a2-b2 *(4)略14.2.2 完全平方公式(1)1.D2.(1)9+6x +x 2(2)y 2-14y +49 (3)x 2-10x +25 (4)9+2t +19t 23.(1)10000 (2)38809 4.(1)14x 2-2x y +4y 2 (2)-4a 2-12a -95.(1)略 (2)(a -b )2+4a b =(a +b )2(3)69 ʃ11 6.8a b14.2.2 完全平方公式(2)1.D 2.(1)y +z (2)y -z (3)2b -c ,2b -c3.(1)4x 2+12x y +9y 2 (2)4x 2-4x +14.(1)4x 2+y 2+z 2-4x y +4x z -2y z (2)a 2-4b 2+4b -15.x 2-3,1 6.(1)a 5+5a 4b +10a 3b 2+10a 2b 3+5a b 4+b 5(2)24314.3 因式分解14.3.1 提公因式法1.C2.(1)3 (2)x (3)2a 2(4)a -b 3.(1)2x 2(x +3) (2)3p q (q 2+5p 2) (3)x y (x +y -1) (4)-2a b 3(4a -3c )4.(1)(a -b )(2a -2b -1) (2)(x -y )2(3-x +y )(3)(a -b )(7+a )5.-24 6.(1)998 (2)-1020197.2r h +12πr 2,分解因式得r 2h +12πr,64πm 214.3.2 公式法(1)1.B2.(1)2x ,3y ,(2x +3y )(2x -3y )(2)5b ,4a ,(5b +4a )(5b -4a )(3)x 2-y 2,x y (x +y )(x -y )3.(1)(x +1)(x -1) (2)3(2+a )(2-a ) (3)(a +b +c )(a +b -c )(4)(a 2+9b 2)(a +3b )(a -3b )4.(1)2013 (2)-15.a 2-4b 2=(a +2b )(a -2b )=128c m26.(1)34 (2)23 (3)58 (4)10120014.3.2 公式法(2)1.D 2.(1)3a +2 (2)9y 2,3y (3)-2m n 3.(1)(x -3)2 (2)(2a +b )2 (3)-(3x -2y )2 (4)a +12b24.(5x+y)2,4255.(1)-3x(x-1)2(2)(2a+b-4)2(3)(a+2b)2(a-2b)2(4)(a+2)(a-2)6.(1)1ˑ104(2)1ˑ1047.(1)(x+2y-1)2(2)(a+b-2)2*复习题1.D2.(1)3x4y4(2)-4a b3.a2+4a b+4b2,a2-4b2,4b2-a2,-a2-4a b-4b24.(1)2a3b3c3+12a3b c3(2)-3a b+8b(3)14x2-16a2(4)16m2+8m+15.②6.(1)(x+2)(x-2)(2)(8-a)2(3)(x-y)(2+a)(4)(0.7x+0.2y)(0.7x-0.2y)7.(1)2x5(2)-7x3y2+2x2(3)-4x-12(4)x-y8.(1)(x-y)(5x-4y)(2)-a2(b-1)2(3)4a(x+2y)(x-2y)(4)(x-2)(x-3)(x+3)9.吃亏了,少了25m2,理由略10.(1)(a+2b)(2a+b)=2a2+5a b+2b2(2)如图(3)答案不唯一.如图,(a+2b)(a+b)=a2+3a b+2b2[第10(2)题][第10(3)题]11.原式=(2-1)ˑ(2+1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22-1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22048-1)ˑ(22048+1)=24096-112.(1)C(2)(x-2)4(3)设x2-2x=y,原式=y(y+2)+1=(y+1)2=(x2-2x+1)2=(x-1)4第十五章 分式15.1 分式15.1.1 从分数到分式1.(1)3t (2)nm +12.m ,x 5,13a 2b ,23,5π整式集合 2a ,x x -3,x 2-x +1y,x +1x -1分式集合3.(1)x ʂ0 (2)x ʂ2 (3)x ʂ0且x ʂ1 (4)x ʂʃ34.(1)m +n x +y千克 (2)b45a 5.(1)x =43 (2)x =-12 (3)-3 6.x -5x 2-3615.1.2 分式的基本性质(1)1.(1)x (2)3a 2-3a b (3)y -2 (4)1 2.(1)ˑ (2) (3)ˑ (4)ˑ 3.(1)12x (2)-x 3y(3)2a5b 4.(1)相等.因为把第一个分式的分子㊁分母同乘以3x 就是第二个分式(2)相等.因为把第一个分式的分子㊁分母同乘以3b 2就是第二个分式5.(1)5x -103x +20 (2)x -23x -1 6.(1)A (2)3y (答案不唯一) 15.1.2 分式的基本性质(2)1.B 2.A 3.(1)c b (2)-4x 5y (3)34(x -y )4.(1)x +2x -2 (2)1m (m -2) (3)x +2x -25.(1)x +2y 4x ,34 (2)a +3a -3,46.答案不唯一,例如:x 2-1x 2+x=x -1x ,1215.1.2 分式的基本性质(3)1.(1)5a (2)a 2b 22.D3.(1)412x 2与5x 12x 2 (2)3b c a 2b 2与2a c a 2b 2 (3)5a 2c 21a c 与35c 21a c (4)3a b 23b 2与a 3b24.(1)a c +c (a -1)(a +1)与a c -c (a -1)(a +1) (2)2y 2x y (y +1)与3x 2x y (y +1)5.(1)a -2a 与a 2-2a a (2)x 2-y 2x +y 与2y 2x +y6.(1)c -a (a -b )(b -c )(c -a ),a -b (a -b )(b -c )(c -a )与c -b(a -b )(b -c )(c -a )(2)2a (a -3)(a +3)(a -3)2与3(a +3)(a +3)(a -3)215.2 分式的运算15.2.1 分式的乘除(1)1.C 2.(1)不正确.-3x (2)不正确.8x 23a 2 3.(1)1 (2)-5a14x 4.(1)-1a c (2)1a (a -2) (3)2x -2x +2 (4)-13m5.s a ːm s b =b a m6.300x ㊃2x m =600m 个15.2.1 分式的乘除(2)1.B2.(1)a b (2)a 2b 2 (3)(x -1)2(4)4a 2c 4 (5)4c 2d 2a 2b 6 (6)(2a +b )2(a -b )23.(1)3c a b (2)49x 2y 2 (3)m 2n 24.(1)1b (2)-y (x +y )5.32倍15.2.2 分式的加减(1)1.(1)3x (2)x -y a (3)1 (4)-b a2.C3.(1)5y -4x 6x 2y 2 (2)3b c 3+2a36a 2b 2c 24.(1)2 (2)a b a -b (3)3x +4 (4)4x +25.(1)2a a +2 (2)1m -1 (3)2a 2a -2 6.3000a -30003a =2000a时15.2.2 分式的加减(2)1.D 2.(1)2 (2)-1a 3.(1)b 2a3 (2)1a -2 (3)1x +1 (4)1x -14.aa -3,a 可选除0,2,3以外的任意数5.方法一:原式=2x (x +4)(x -2)(x +2)㊃x 2-4x =2x +8;方法二:原式=3x x -2㊃x 2-4x -x x +2㊃x 2-4x =2x +8*6.(1)100(x +y ),100x +100y ,x +y 2,2xy x +y(2)乙购买粮食的方式更合算,理由略15.2.3 整数指数幂(1)1.(1)25,1,125 (2)25,1,1252.(1)不正确.1 (2)不正确.-1 (3)不正确.19 (4)正确3.(1)1100 (2)127 (3)1000 (4)94 4.(1)6a2c 4 (2)y 2x 6z45.(1)8m 8n 7 (2)b 138a 8 6.原式=y -9x 3,8915.2.3 整数指数幂(2)1.C 2.A3.(1)1.0ˑ105 (2)1.0ˑ10-5 (3)-1.12ˑ105 (4)-1.12ˑ10-44.(1)75 (2)3.6ˑ10-135.(1)0.00001 (2)0.000236.3.1ˑ10-315.3 分式方程(1)1.C 2.(1)x =73(2)x =4 3.m =14 4.(1)x =12 (2)x =35.(1)x =1 (2)x =-1*6.设原分式为x -16x ,则x -15x +1=12,解得原分数为153115.3 分式方程(2)1.A 2.90x +6=60x 3.设乙单独做,x 天完成,则46+4x=1,解得x =124.120元5.设原计划每天铺设x m 管道,则3000x -3000(1+25%)x =30,解得x =20,(1+25%)x =25.实际每天铺设管道25m 6.(1)70m /m i n (2)李明能在联欢会开始前赶到学校15.3 分式方程(3)1.10 2.B 3.35.6mm4.设乙每分钟输入x 名学生的成绩,则26402x =2640x-2ˑ60,解得x =11,2x =22.乙每分钟输入11名学生的成绩,甲每分钟输入22名学生的成绩5.设货车的速度是x km /h ,由题意得14401.5x +6=1440x,解得x =80.货车的速度是80k m /h ,客车的速度是120k m /h *6.255p -1元 复习题1.B2.C3.C4.3ˑ10-4微米 5.(1)1.2ˑ104 (2)10-46.(1)y 29x 6 (2)x -5 7.(1)x =1 (2)无解 8.设甲的速度为x k m /h ,则8-0.5x x =122x,解得x =4,所以甲的速度是4k m /h ,乙的速度是8k m /h9.设该市去年居民用水的价格为x 元/米3,则今年居民用水的价格为(1+25%)x元/米3.根据题意,得36(1+25%)x -18x=6,解得x =1.8,(1+25%)x =2.25.该市今年居民用水的价格为2.25元/米310.王师傅这次运输所花时间为180v h ,180v ˑ29v +14+180v ˑ20=176,解得v =45.王师傅这次运输的平均速度为45k m /h 11.(1)取a =1,b =1,得M =N =1;取a =2,b =12,得M =N =1.猜想:M =N (2)M =a a +1+b b +1=a a +a b +b b +a b =1b +1+1a +1=N ,因此M =N 总复习题1.C2.C3.D4.B5.A6.1.83ˑ10-77.538.5409.所有图案都是轴对称图形,图略10.(1)3x2-20x+26(2)-111.(1)2x(3-2y)(2)y(y+2x)(y-2x)(3)(a+3)2(a-3)2(4)(a-b)(2a-2b+3)(2a-2b-3)12.(1)无解(2)x=-713.ȵ øA=50ʎ,øB D C=85ʎ,ʑøA B D=35ʎ.又ȵB D平分øA B C,D EʊB C,得øB D E=35ʎ, ʑ øBE D=110ʎ. ʑ әB D E各内角度数分别为35ʎ,35ʎ,110ʎ14.әA B C,әA B D,әA C D;øB=36ʎ15.B E=A B-A E=7c m,在әB E F中,øB E F=øG E F=øA E G=60ʎ,得E F=2B E=14c m16.øA B C=øA D C.提示:连接B D,证明øA D B=øA B D,øC D B=øC B D,得øA D B+øC D B=øA B D+øC B D,即øA D C=øA B C17.设甲公司单独完成需要x天,则12x+121.5x=1,解得x=20,1.5x=30.甲㊁乙两公司单独完成此项工程,分别需要20天和30天18.(1)在R tәA D B与R tәC E A中,A B=A C,øB A D=øA C E, ʑ әA D BɸәC E A, ʑ A D=C E,A E=B D. ʑ D E=B D+C E(2)D E=B D+C E(3)D E=C E-B D19.(1)øA+øD=øB+øC(2)6(3)øP=45ʎ(4)øP=øB+øD2,理由略20.(1)32(2)ʃ321.略期末综合练习1.D2.D3.A4.A5.B6.D7.B8.C9.C 10.A 11.4.2ˑ10-712.23b13.3x(x+2y)(x-2y)14.ʃ4 15.116.917.= 18.24ʎ19.20ʎ或35ʎ或80ʎ或50ʎ20.2 21.a+1,选取a=2,所求的值为322.略23.提示:(1)由әB O DɸәC O E可得(2)提示:证明A B=A C,得点A,O都在B C的垂直平分线上24.(1)甲工程队每月修建绿道1.5k m,乙工程队每月修建绿道1k m(2)甲工程队至少修建绿道8个月25.(1)①30 ②|60ʎ-2α|(2)①略 ②|8-2n|。

人教版八年级上册数学书答案

人教版八年级上册数学书答案

人教版八年级上册数学书答案第一章有理数习题1.1:1.有理数是指能够用两个整数的比表示的数,可以是正数、负数或0。

2.(1)+12;(2)-7;(3)-32;(4)+18;(5)03.(1)-8;(2)-76;(3)0;(4)+20;(5)+9;(6)+364.(1)-9;(2)+24;(3)0;(4)-14;(5)+425.(1)0;(2)-45;(3)2;(4)-88;(5)9;(6)-656.(1)+13;(2)-37;(3)-45;(4)0;(5)+16;(6)+1;(7)-77;(8)+887.(1)-0.2;(2)+0.8;(3)-0.05;(4)+0.15;(5)-0.6;(6)+0.38.(1)-0.1;(2)+0.2;(3)-1.3;(4)+0.5;(5)-0.7;(6)+1.2习题1.2:1.(1)-4.3;(2)0;(3)-2.8;(4)-3.4;(5)-2.92. (1) -12.15 (2) 1.2 (3) -1.25 (4) -0.125 (5) 1.48 (6)3.4 (7) -15.6253. (1) -1.375 (2) 5.5 (3) 7 (4) -3.2 (5) -0.894 (6) 12.1254. (1) 69.50 (2) -8.2 (3) -1.8 (4) 1.7 (5) -0.02习题1.3:1. 总结:两个整数的和、差、积仍然是有理数。

2. 总结:两个有理数的和、积、商仍然是有理数,但当除数为0时,没有意义。

3. 总结:有理数的相反数仍然是有理数。

习题1.4:1. 一个有理数的绝对值等于该数与0之间的距离,绝对值表示数的大小。

2. (1) 3 (2) 8 (3) 15 (4) -63. (1) 6 (2) -14 (3) 20 (4) -3习题1.5:1. (1) -2.5 (2) -0.2 (3) 0.6 (4)3.52. (1) 1.3 (2) -0.7 (3) 0.9 (4) -0.1习题1.6:1. (1) 7 (2) 0 (3) 5 (4) 8 (5) -42. (1) -0.5 (2) -0.3 (3) -0.4 (4) 0.2 (5) -0.1习题1.7:1. x = -52. x = 33. x = -5习题1.8:1. 自定义答案第二章代数初步习题2.1:1. 解:x = 32. 解:x = 13. 解:x = 3习题2.2:1. 解:x = 22. 解:x = 03. 解:x = -1习题2.3:1. 代解得a = 6,b = 4习题2.4:1. 代入原式:1 + (2 + 3 + 4) = 1 + 9 = 102. 解:x = 83. 代入原式:3(8) = 24习题2.5:1. 代入原式:6 - (20 + 14) = 6 - 34 = -28习题2.6:1. 解:x = 3习题2.7:1. 解:x = 9习题2.8:1. 解:x = -5习题2.9:1. 解:x = 3习题2.10:1. 解:x = 4习题2.11:1. 解:x = 2习题2.12:1. 代入原式:8(2) = 16习题2.13:1. 解:y = 4习题2.14:1. 解:x = 62. 解:y = 6习题2.15:1. 解:x = -2习题2.16:1. 解:x = 7习题2.17:1. 解:a = 5习题2.18:1. 解:x = 1习题2.19:1. 解:x = -8习题2.20:1. 解:y = -3习题2.21:1. 解:x = 0习题2.22:1. 解:x = -4习题2.23:1. 解:x = -12习题2.24:1. 解:y = -4习题2.25:1. 代入原式:8 - (-12) = 8 + 12 = 202. 代入原式:-5 - (-3) = -5 + 3 = -83. 代入原式:3 - 7 = -4习题2.26:1. 代入原式:3 + 5(4) = 3 + 20 = 23习题2.27:1. 代入原式:4 + 5(-2) = 4 - 10 = -6习题2.28:1. 代入原式:7 - 5(3) = 7 - 15 = -8习题2.29:1. 代入原式:-3 + 5(-2) + 4 = -3 - 10 + 4 = -9习题2.30:1. 代入原式:3(5 - 2) = 3(3) = 9综上所述,以上是人教版八年级上册数学书第一章和第二章习题的答案。

人教版八年级上册数学第十三章 轴对称含答案(完美版)

人教版八年级上册数学第十三章 轴对称含答案(完美版)

人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm2、如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8B.4C.12D.163、已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A. 、B. 、C. 、D.、4、甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)5、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.116、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对7、如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A.110°B.60°C.80°D.100°8、下列图形中,是轴对称图形的个数是().A.1个B.2个C.3个D.4个9、把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A.直角三角形B.等腰三角形C.等边三角形D.任意三角形10、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°12、如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,以B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有()A.①②B.①②③C.①②④D.①②③④13、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③顶角和底边对应相等的两个等腰三角形全等;④有一个角是60°的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.514、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y=的图象经过点B,则下列关于m,n2的关系正确的是()A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n15、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为________ cm.18、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是________.19、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为________.20、如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是________ .(只需填上一个正确的条件)21、如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.22、点A(2,-3)关于x轴对称的点的坐标是________.23、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是________24、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为________.25、如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.28、已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G 不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.29、作图题:如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1, B1, C1的坐标;②在y轴上画出点P,使PA+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、C6、B7、D8、D9、B10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。

初中数学试卷八年级上册第一章 含答案1

初中数学试卷八年级上册第一章 含答案1

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C 【考点】三角形内角与定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角与定理列式进行计算求出k值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3与2的两个木棍,想要装一个木棍,用它们围成一个三角形,则他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C 【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之与大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x <5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B 【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之与大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C 【考点】三角形内角与定理【解析】【解答】(1)最小内角是20°,则其他两个角的与是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角与定理与三角形的分类,关键是要知道钝角三角形、直角三角形与锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B 【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D 【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,则这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A 【考点】三角形的角平分线、中线与高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,则这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C 【考点】三角形内角与定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角与是180°可求解.9、已知三角形的两边长分别是4与10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B 【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。

金试卷数学八年级上册答案

金试卷数学八年级上册答案

一、选择题1. 已知a+b=5,a-b=3,则ab的值为()A. 4B. 8C. 12D. 16答案:A解析:由题意得,a+b=5,a-b=3,将两个等式相加得2a=8,即a=4;将两个等式相减得2b=2,即b=1。

所以ab=4×1=4。

2. 下列哪个数不是正数()A. 3B. -2C. 0D. 1答案:C解析:正数是大于0的数,0不是正数。

3. 若a、b、c成等差数列,且a=1,b=3,则c的值为()A. 5B. 7C. 9D. 11答案:B解析:由等差数列的性质知,b-a=c-b,即c=2b-a=2×3-1=5。

4. 下列哪个函数的图像是一条直线()A. y=x^2B. y=2x+1C. y=3x-5D. y=2/x答案:C解析:一次函数的图像是一条直线,故选C。

5. 已知一元二次方程x^2-4x+3=0的解为x1、x2,则x1+x2的值为()A. 2B. 4C. 6D. 8答案:B解析:根据一元二次方程的求和公式,x1+x2=-b/a,将a=1,b=-4代入得x1+x2=4。

二、填空题1. 若x^2-6x+9=0,则x的值为______。

解析:将x^2-6x+9分解为(x-3)^2=0,得到x=3。

2. 已知等差数列的前三项分别为2,5,8,则该数列的公差为______。

答案:3解析:等差数列的公差为相邻两项之差,故公差为5-2=3。

3. 若a、b、c成等比数列,且a=2,b=6,则c的值为______。

答案:18解析:等比数列的性质为相邻两项之比相等,即b/a=c/b,将a=2,b=6代入得c=18。

4. 已知一次函数y=kx+b的图像经过点(1,2),则该函数的解析式为______。

答案:y=2x+1解析:将点(1,2)代入一次函数解析式得2=k+b,又因为过原点,所以b=0,解得k=2,所以解析式为y=2x+1。

5. 若一元二次方程x^2-3x+2=0的两根分别为x1、x2,则x1×x2的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,C

,C

均可
6.(1)略 (2)CF=15cm
7.AP平分∠BAC.理由如下:由AP是中线,得BP=
PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).
∴ ∠BAP=∠CAP
【2.2】
1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略
等都可说明AB∥CD
6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略
【1.3(1)】
1.D 2.∠1=70°,∠2=70°,∠3=110°
3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),
∴ ∠3=∠4(两直线平行,同位角相等)
4.垂直的意义;已知;两直线平行,同位角相等;30
于 M,BN⊥l

于 N,则△ABM≌
△BCN,得AB=BC
复习题
1.50 2.(1)∠4 (2)∠3 (3)∠1
3.(1)∠B,两直线平行,同位角相等
(2)∠5,内错角相等,两直线平行
(第5题)
(3)∠BCD,CD,同旁内角互补,两直线平行
4.(1)90° (2)60°
5.AB∥CD.理由:如图,由∠1+∠3=180°,得
∠ADG=


∠ADE,∠ABF=


∠ABC,则∠ADG=∠ABF,所以由同
位角相等,两直线平行,得DG∥BF
【1.2(2)】
1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错角相等,两直线平行
2.D
3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行
可得BE=4cm.在Rt△BED中,42
+CD

=(8-CD)
2,解得
CD=3cm
第3章 直棱柱
【3.1】
1.直,斜,长方形(或正方形) 2.8,12,6,长方形
3.直五棱柱,7,10,3 4.B
5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形
6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形
∴ ∠B=∠D,从而∠D+∠C=∠B+∠C=90°
复习题
1.A 2.D 3.22 4.13或 槡119 5.B 6.等腰
7.72°,72°,4 8.槡7 9.64°
10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.
又∵ BD=EC, ∴ △ABD≌△ACE. ∴ AB=AC
(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行
4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.
所以∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)
5.(1)180°;AD;BC
(2)AB与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°
∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D
与∠DCB
【1.2(1)】
1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略
3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行
5.a与b平行.理由略
6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得
1.D 2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m
5.由BE=


AC,DE=


AC,得BE=DE 6.135m
【2.6(1)】
1.(1)5 (2)12 (3)槡5 2.A=225
3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cm
∴ ∠4=∠3=120°(两直线平行,同位角相等)
5.能.举例略
6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.
义务教育课程标准实验教材作业本
数学 八 年 级 上
50
∴ ∠PAB+∠PCD=180°-∠CAP-∠ACP.
又∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD
4.∵ ∠B+∠C=90°, ∴ △ABC是直角三角形
5.由已知可求得∠C=72°,∠DBC=18°
6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,
∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,
∴ ∠EDF=90°,即DE⊥DF
【2.5(2)】
49
参考答案
第1章 平行线
【1.1】
1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C
4.∠2与∠3相等,∠3与∠5互补.理由略
5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED
6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与
∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与
状、面积完全相同的长方形
(2)9条棱,总长度为(6a+3b)cm
7. 正多面体 顶点数(V) 面数(F) 棱数(E) V+F-E
正四面体4462
正六面体86122
正八面体68122
正十二面体2012302
正二十面体1220302
符合欧拉公式
【3.2】
(第6题)
1.C 2.直四棱柱 3.6,7
∠3=72°=∠2
6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.
∴ ∠B=65°
7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D
8.不正确,画图略
9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°
10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D
5.β=44°. ∵ AB∥CD, ∴ α=β
6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°
【1.3(2)】
1.(1)两直线平行,同位角相等 (2)两直线平行,内错角相等
2.(1)× (2)× 3.(1)DAB (2)BCD
4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).
4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平
参考答案
51
分线,得∠DBC=∠DCB.则DB=DC
5.∠DBE=∠DEB,DE=DB=5
6.△DBF和△EFC都是等腰三角形.理由如下:
∵ △ADE和△FDE重合, ∴ ∠ADE=∠FDE.
∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,
从上面看圆圆和圆心圆
4.B 5.示意图如图 6.示意图如图
(第5题)
(第6题)
【3.4】
1.立方体、球等 2.直三棱柱 3.D
4.长方体.15×3×05×3×4=27(cm
2) 5.如图
(第5题)
(第6题)
6.这样的几何体有3种可能.左视图如图
【1.4】
1.2
2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约
为120m
3.15cm 4.略
5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.
∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,
∴ AE=CF
6.AB=BC.理由如下:作AM⊥l2
2,得a2
+b

=c

【2.6(2)】
1.(1)不能 (2)能 2.是直角三角形,因为满足m

=p

+n

3.符合
4.∠BAC,∠ADB,∠ADC都是直角
5.连结BD,则∠ADB=45°,BD 槡=32. ∴ BD

+CD

=BC
2,
义务教育课程标准实验教材作业本
数学 八 年 级 上
52
∴ ∠BDC=90°. ∴ ∠ADC=135°
6.(1)n

-1,2n,n

+1
(2)是直角三角形,因为(n2
-1)

+(2n)

=(n

+1)

【2.7】
1.BC=EF或AC=DF或∠A=∠D或∠B=∠E 2.略
3.全等,依据是“HL”
(2)由B′E∥DC,得∠BEB′=∠C=130°.
∴ ∠AEB′=∠AEB=


∠BEB′=65°
第2章 特殊三角形
【2.1】
1.B
2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC
3.15cm,15cm,5cm 4.16或17
(第5题)
5.如图,答案不唯一,图中点C1
4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.
∴ ∠AEC=90°,即△AEC是等腰直角三角形
5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,
∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,
相关文档
最新文档