苏教版八年级数学上教材答案

合集下载

苏教版初中八年级上册数学课本习题答案

苏教版初中八年级上册数学课本习题答案
移动一位。(3)0.1732 54.77
§13.1平方根(三)
一、1. D 2. C
二、1. ,2 2, 3.
三、1.(1)(2)(3)(4)
2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-
3.(1)(2)(3)(4)
4.,这个数是4
5. 或
§13.2立方根(一)
一、1. A 2. C
二、1. y= x- 2. (1,-4)四 3. y=2x
三、图略
§14.4课题学习选择方案
1. (1)y1=3x;y2=2x+15;(2)169网;(3)15小时
2. (1)y=50x+1330,3≤x≤17;(2)A校运往甲校3台,A
校运往乙校14台,B校运往甲校15台;1480元 3.(1)
3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1
§13.3实数(一)
一、1. B 2. A
二、1.
2. ±3
3.
三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,4
2. 略
3.16cm、12cm
4. a= ,b=-
§13.3实数(二)
一、1. D 2. D
§14.3.2一次函数与一元一次不等式
一、1. C 2. C
二、1. x=1; x<1 2. 0<x<1 3. x<-2
三、1. x≤1;图象略
2. (1)与y轴交点为(0,2),与x轴交点为(2,0)(2) x≤2
3.(1) x>(2)x<(3)x>0
§14.3.3一次函数与二元一次方程(x+5;(2) 2.(1)0.5;0.9;(2)当0≤x≤50,y=0.5x;当x>50时,y=0.9x-20

苏教版八年级数学上册1.1 全等图形 课时练习(含答案解析)

苏教版八年级数学上册1.1 全等图形 课时练习(含答案解析)

1.1 全等图形一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图所示的图形是全等图形的是()A.B.C.D.3.下列各组的两个图形属于全等图形的是()A.B.C.D.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.三.解答题(共5小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).答案与解析一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.2.如图所示的图形是全等图形的是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:如图所示的图形是全等图形的是B,故选:B.【点评】此题主要考查了全等图形,关键是掌握全等形的定义.3.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.【点评】此题考查全等图形问题,关键根据全等图形的定义判断.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解答】解:(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.【点评】本题主要考查了全等三角形的性质,解题时注意:能够完全重合的两个图形叫做全等形.8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【解答】解:②和④都可以完全重合,因此全等的图形是②和④.故选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对【分析】根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.【解答】解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选:D.【点评】本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.【分析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.【解答】解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使选项B的两个三角形重合必须将其中的一个翻转180°;而其A、D、C的全等三角形可以在平面内通过平移或旋转使它们重合.故选:B.【点评】此题考查了全等图形的知识,学生要注意阅读理解能力及空间想象能力的培养,题目出的较灵活,认真读题,透彻理解题意是正确解决本题的关键.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为90°.【分析】首先证明△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再根据余角的定义可得∠AED+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.【解答】解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故答案为:90°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是丙.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【解答】解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;丙:符合AAS定理,能推出两三角形全等;故答案为:丙.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=27cm.【分析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.【点评】此题主要考查了全等图形的性质,得出CD的长是解题关键.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为225°.【分析】根据正方形的性质可得出∠3=45°,根据长方形的性质即可得出相等的边,由此可得出全等的三角形,进而得出∠1与∠5互余、∠2与∠4互余,再将其代入∠1+∠2+∠3+∠4+∠5中即可得出结论.【解答】解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.【点评】本题考查了全等图形、全等三角形的判定与性质、长方形及正方形的性质,解题的关键是找出∠3=45°、∠1与∠5互余、∠2与∠4互余.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是①④.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.【点评】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.三.解答题(共10小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.【解答】解:设计方案如下:【点评】本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.【分析】(1)本题属于主观性试题,有多种方案,我们可以构造8字形的全等三角形来测得揽月湖的长度(如下图);(2)根据三角形全等的证明得出对应边相等即可得出答案.【解答】解:(1)如图所示;分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.(2)理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴在△PCQ与△BCA中,,∴△PCQ≌△BCA(SAS),∴AB=PQ.【点评】此题考查了全等三角形的应用与证明;此题带有一定主观性,学生要根据已知知识对新问题进行探索和对基础知识进行巩固,这种做法较常见,要熟练掌握.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.【分析】能够完全重合的两个图形叫做全等形,可以利用图形的轴对称性和中心对称性来分割成两个全等的图形.【解答】解:如图所示,(答案不唯一)【点评】本题主要考查了全等图形,解题的关键是掌握全等图形的定义:形状和大小完全相同的两个图形叫全等形.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).【分析】根据能够完全重合的两个图形叫做全等形画线即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.。

苏教版《义务教育课程标准实验教科书 数学》八年级(上册)3.6 三角形、梯形的中位线(一)

苏教版《义务教育课程标准实验教科书 数学》八年级(上册)3.6  三角形、梯形的中位线(一)

3.6 三角形、梯形的中位线(一)1 教材分析1.1 教材:苏教版《义务教育课程标准实验教科书数学》八年级(上册)第三章第六节(一)。

1.2 本节教材的地位和作用三角形的中位线是初中几何的一个非常重要的知识点,它具有计算和证明等多种灵活的运用。

它是继四边形性质学习之后的又一个非常重要的几何知识。

学生在学“三角形中位线”前,已经学习了旋转图形、中心对称,并且已经利用中心对称图形性质研究了平行四边形的性质,并在此基础上开展了对矩形、菱形、正方形的研究。

“三角形中位线”作为几何计算和推理论证的重要一环,是初中几何的的一个基础环节,它直接关系到学生对几何计算、几何论证等内容的进一步学习。

初中阶段要培养学生的运算能力、逻辑思维能力、空间想象能力以及让学生根据一些现实模型,把它转化为数学问题的能力。

其中逻辑思维能力的培养主要是在八年级阶段完成的。

学生在探索并掌握三角形中位线的概念及性质这一过程中,发展了他们的观察力和抽象思维能力。

学生在探索过程中,需要通过中心对称变换,将三角形变成之前刚学习过的平行四边形,将三角形中位线性质转换为平行四边形性质的研究。

着要求学生从转换的角度来认识对象,转换也是初中几何中最重要的思想方法之一。

1.3教学内容与教材处理“3.6三角形、梯形的中位线”一节共分两节课,本节课是第一节课,并且讲课时间控制在20分钟左右,因此,讲解的例题与习题都只有一个。

学生探索得到三角形中位线的性质,并会利用三角形中位线的性质解决有关问题。

通过学生的互相合作和师生共同探究,促进学习共同体的形成。

本课体现了转换的思想。

教学中不仅仅关注知识的探究,也要关注学生对思想方法的理解。

教学中国更要注意学生学习方式的多样化。

学生间的合作探讨问题可以增加他们之间的交流,也利于课堂氛围的提升,最终达到共同进步。

在课的最后让学生们交流本堂课的体验及收获,这不仅是个总结的过程,也是个学生反思自身学习、老师反思自身教学的过程,这更是个对本节课思想方法进行领悟的过程。

苏教版数学八年级上册第一章第二章单元试卷及答案

苏教版数学八年级上册第一章第二章单元试卷及答案

苏教版八上数学第一章轴对称图形测试题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个A .1个B .2个C .3个D .4个 3.已知∠AO B =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形. 4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75° 5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度.A .45°B .30°C .60°D .90°6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定 7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对 8.如图:已知∠AOP=∠BOP=15°,PC∥OA, PD⊥OA,若PC=4,则PD= ( ) A .4 B .3 C .2 D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( )A .3cm 或5cmB .3cm 或7cmC .3cmD .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.A O P AEC B D13.在Rt△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________.15.如图:等腰梯形ABCD 中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC=____________. 18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF的长.OB22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长; ② 若BC=4,求△BCD 的周长.23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ,BP=CQ ,问 △APQ是什么形状的三角形?试说明你的结论.B CD EAA CBPQ苏教版八上数学第一章轴对称图形测试题参考答案一、选择题(每小题3分,共30分)1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C 二、填空题(每小题3分,共24分)11.2 12.30°、75°、120°13.4 14.5 15.15 16.4、6 17.72°18.50°三解答题:(共46分)19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.苏教版第二章勾股定理与平方根测试题一、选择题1.下列几组数中不能作为直角三角形三边长度的是( )A .7,24,25a b c ===B . 1.5,2, 2.5a b c ===C .25,2,34a b c ===D .15,8,17a b c ===2.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是 ( ) A .9英寸(23cm ) B .21英寸(54cm ) C .29英寸(74cm ) D .34英寸(87cm ) 3.等腰三角形腰长10cm ,底边16cm ,则面积 ( )A .296cmB .248cmC .224cmD .232cm4.三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 5.2(6)-的平方根是( )A .6-B .36C .±6D .6±6.下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和负实数两类 ( )A .1个B .2个C .3个D .4个 7.x 是2)9(-的平方根,y 是64的立方根,则=+y x( )A .3B .7C .3,7D .1,7 8.直角三角形两直角边长度为5,12,则斜边上的高( )A .6B .8C .1813D .60139.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A 、2h ab =B .2222h b a =+C .hb a 111=+ D .222111hb a =+ 10.如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .cm 2B .cm 3C .cm 4D .cm 5AE B D C 第10题图二、填空题11.下列实数(1)3.1415926 .(2)0.3 22(3)7(5)-(6)2π(7)0.3030030003...其中无理数有________,有理数有________.(填序号) 12.49的平方根________,0.216的立方根________.13的平方根________的立方根________.14.算术平方根等于它本身的数有________,立方根等于本身的数有________.15.若2256x =,则=x ________,若3216x =-,则=x ________.16.已知Rt ABC ∆两边为3,4,则第三边长________.17.若三角形三边之比为3:4:5,周长为24,则三角形面积________.18.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.19.如果0)6(42=++-y x ,则=+y x ________.20.如果21a -和5a -是一个数m 的平方根,则.__________,==m a 21.三角形三边分别为8,15,17,那么最长边上的高为________.22.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 三、计算题23.求下列各式中x 的值2(1)16490x -=;2(2)(1)25x -=;3(3)(2)8x =-;3(4)(3)27x --=.四、作图题24.在数轴上画出8-的点.25.下图的正方形网格,每个正方形顶点叫格点,请在图中画一个面积为10的正方形.五、解答题26.已知如图所示,四边形ABCD 中,3,4,13,12,AB cm AD cm BC cm CD cm ====090A ∠=求四边形ABCD 的面积.27.如图所示,在边长为c 的正方形中,有四个斜边为c 、直角边为b a ,的全等直角三角形,你能利用这个图说明勾股定理吗?写出理由.第24题图第25题图第27题图A第26题图28.如图所示,15只空油桶(每只油桶底面直径均为60cm )堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?29.如图所示,在Rt ABC ∆中,090ACB ∠=,CD 是AB 边上高,若AD=8,BD=2,求CD .30.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).第29题图CADB第28题图苏教版八上数学第二章勾股定理与平方根参考答案一、选择题(每小题3分,共30分)1.C 2.C 3.C 4.C 5.C 6.B 7.D 8.D 9.D 10.B 二、填空题:(每空2分,共34分) 11. (4)(6)(7);(1)(2)(3)(5)12.23±,0.613.2±,214.0,1;0,1± 15.16±,-6 16.5717.24 18.直角 19.-220.2或-4;9或8121.1201722.1三、解答题:(共56分)23.(1) x=74± (2) x=6或x=-4 (3)x=-1 (4) x=024.略 25.如图 26.3627.2222222214(),22,2ab b a c ab a b ab c a b c ⨯+-=∴++-=∴+=28.h=360 29.4 30.13苏教版八上数学第三章中心对称图形(一)一.选择题1.下列图形中,是中心对称图形而不是轴对称图形的是 ( ) A .平行四边形 B .矩形 C .菱形 D .正方形2.正方形具有而菱形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等 D .对角线平分一组对角3.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是 ( ) A .8和14 B .10和14 C .18和20 D .10和344.下面说法正确的是 ( ) A .一个三角形中,至多只能有一个锐角 B .一个四边形中,至少有一个锐角 C .一个四边形中,四个内角可能全是锐角 D .一个四边形中,不能全是钝角5.一个凸n 边形的边数与对角线条数的和小于20,且能被5整除,则n 为 ( ) A .4 B .5 C .6D .5或66.如图:在□ABCD 中,AE⊥BC 于E ,AF⊥CD 于F 。

苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥是a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0 ||00a aa aa a>⎧⎪===⎨⎪-<⎩()()20a a a =≥ 知识点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】 类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2016春•庐江县期末)已知()22230x y x y ++++=,求2x y -的平方根.【答案】解:, 解得,∴ 2x y -=1﹣2×(﹣2)=5,∴5的平方根是±.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

苏教版八年级上册数学补充习题

苏教版八年级上册数学补充习题

苏教版八年级上册数学补充习题1.1 全等图形答案1、(D).2、a,f3、(1)如(2)如.4、如.5、共有6种不同的分割方案(“对称”的方案只算一种,否则有11种),每一种方案中的分割线都要经过中间两个小三角形的公共边,例如:6、.1.21、.2、(1) 平行移动,≌,AB和DE、BC和EF、AC和DF;(2) 30°,≌,∠E与∠C、∠D与∠B、∠EAD与∠CAB.3、AB = BA,BC = AD,BD = AC,∠D = ∠C,∠DAB = ∠CBA,∠ABD = ∠BAC.4、KP = DF = 7 cm,PQ = DE = 5 cm,QK = EF = 8 cm,FK = 5 cm,EK = 3 cm.5、(1) 50°;(2) 90°.1.3.11、△ACB ≌ NMR,△DEF ≌△QOP.2、在△ABC和△CDA中,∵AB = CD, ∠BAC= ∠DCA,AC = CA,∴△ABC ≌△CDA(SAS).3、∵AB ⊥ CD,∠ABC = ∠DBE = 90°.又AB = DB,BC = BE,∴△ABC ≌△DBE(SAS).4、(1) ∵AD = AE,∠1 = ∠2, AO = AO,∴△AOD ≌△AOE( SAS).(2) ∵AC = AB,∠1 = ∠2, AO = AO,∴△AOC ≌△AOB( SAS).(3) ∵AB = AC,∠BAD = ∠CAE,AD = AE,∴△ABD ≌△ACE( SAS).1.3.21、∵ AD是△ABC的中线,∴ BD = CD.又∠BDN = ∠CDM,DN = DM,∴△BDN ≌△CDM( SAS).2、∵ AD是△ABC的中线,∴BD = CD.∵ AD ⊥ BC,∴∠ADB = ∠ADC = 90°.在△ABD和△ACD中,∵AD = AD,∠ADB = ∠ADC, BD = CD,∴△ABD ≌△ACD(SAS).∴ AB = AC.3、在△ABC和△DEF中,∵AB = DE,∠B = ∠E, BC = EF,∴△ABC ≌△DEF(SAS).∴∠ACB = ∠DFE.∵∠ACF + ∠ACB = ∠DFC + ∠DFE = 180°,∴∠ACF = ∠DFC.∴ AC ∥ DF.4、(1) 利用(SAS)证明;(2) 共可画14条.1.3.31、∵ AB ∥ DC,AD ∥ BC,∴∠BAC = ∠DCA,∠BCA = ∠DAC.在△ABC和△CDA中,∵∠BAC = ∠DCA,AC = CA,∠BCA = ∠DAC,∴△ABC ≌△CDA(ASA). ∴ AB = DC,AD = BC.2、在△ABE和△ACD中,∵∠A = ∠A,AB = AC,∠B = ∠C,∴△ABE ≌△ACD(ASA).∴ AD = AE.∴ AB - AD = AC - AE.即DB = EC.3、∵∠3 + ∠AOB = ∠4 + ∠AOC = 180°,∠3 = ∠4,∴∠AOB = ∠AOC.在△AOB和△AOC中,∵∠1 = ∠2, AO = AO,∠AOB = ∠AOC,∴△AOB ≌△AOC(ASA).∴ OB = OC.1.3.41、∵ AB ∥ CD,∴∠ABE = ∠CDF.∵ AE ⊥ BD,CF ⊥ BD,∴∠AEB = ∠CFD = 90°.在△ABE和△CDF中,∵∠ABE = ∠CDF,∠AEB = ∠CFD,AE = CF,∴△ABE ≌△CDF(AAS).∴ AB = CD.2、∵△ABC ≌△DCB,∴ AB = DC,∠A = ∠D.在△AOB和△DOC中,∵∠A = ∠D,∠AOB = ∠DOC,AB = DC,∴△AOB ≌△DOC(AAS).3、(1) 在△ABE和△ACD中,∵∠A = ∠A,∠B = ∠C,AE = AD,∴△ABE ≌△ACD(AAS).(2)∵△ABE ≌△ACD,∴ AB = AC,AB - AD = AC - AE,即DB = EC.在△BOD和△COE中,∵∠DOB = ∠EOC,∠B = ∠C, DB = EC,∴△BOD ≌△COE(AAS).1.3.51、∵ B是EC的中点,∴ BE = BC.∵∠ABE = ∠DBC,∴∠ABE + ∠ABD = ∠DBC + ∠ABD,即∠DBE = ∠ABC.在△DEB和△ACB中,∵∠DBE = ∠ABC,∠D = ∠A,BE = BC,∴△DEB ≌△ACB( AAS).∴DE = AC.2、∵ CD ⊥ AB,EF ⊥ AB,∴∠CDB = ∠EFA = 90°,∵ AD = BF,∴ AD + DF = BF + DF,即AF = BD.在△CBD和△EAF中,∵ CD = EF,∠CDB = ∠EFA,BD = AF,∴△CBD ≌△EAF(SAS).∴∠A = ∠B.3、∵∠AFB = ∠AEC,∠B = ∠C,AB = AC,∴△ABF ≌△ACE(AAS).∴∠BAF = ∠CAE.∴∠BAF - ∠EAF = ∠CAE - ∠EAF,即∠BAE = ∠CAF.1.3.61、连接BD.∵ AB = CB, AD = CD,BD = BD,∴△ABD ≌△CBD(SSS).∴∠A = ∠C.2、∵AB = DC,AC = DB,BC = CB,∴△ABC ≌△DCB(SSS).∴∠ABC = ∠ DCB,∠ACB = ∠DBC.∴∠ABC - ∠DBC = ∠DCB - ∠ACB,即∠1 = ∠2.3、△ABC ≌△CDA( SSS),△ABE ≌△CDF( SAS),△ADF ≌△CBE(SAS).证明略.1.3.71、(1) 图略;(2) 在△OPE和△OPF中,∵∠EOP = ∠FOP,OP = OP,∠OPE = ∠OPF= 90°,△OPE ≌△OPF(ASA).∴ PE = PF.2、(1) 图略;(2) 在△OPM和△OPN中,∵∠MOP = ∠NOP,∠PMO =∠PNO = 90°,OP = OP,∴△OPM ≌△OPN(AAS).∴ PM = PN.1.3.81、∵ AB ⊥ BD, CD ⊥ DB,∴∠ABD = ∠CDB = 90°,在Rt△ABD和Rt△CDB中,∵ AD = CB, DB = BD,∴ Rt△ABD ≌ Rt△CDB( HL).∴ AB = CD.2、在Rt△ABF和Rt△DCE中,∠B = ∠C= 90°,AF = DE,AB = DC,∴ Rt△ABF ≌ Rt△DCE( HL).∴ BF = CE.∴ BF - EF = CE - EF,即BE = CF.3、在Rt△ADE和Rt△ADF中,∵∠AED = ∠AFD = 90°,DE = DF,AD = AD,∴ Rt△ADE ≌ Rt△ADF( HL).∴∠EAD = ∠FAD.在△ADB和△ADC中,∠ADB = ∠ADC = 90°,AD = AD,∠BAD = ∠CAD,∴△ADB ≌△ADC(ASA).∴ AB = AC.4、在Rt△ADB和Rt△BCA中,∵∠ADB = ∠BCA = 90°.BD = AC, AB = BA,∴ Rt△ADB ≌ Rt△BCA(HL).∴ AD = BC.在△ADC和BCD中,∵ AC = BD,AD = BC,DC = CD.∴△ADC ≌△BCD.∴∠2 = ∠1.小结与思考1、5.2、4,①与③,①与④,②与③,②与④3、(B)4、∵ E是AC的中点,∴ AE = CE.∵ CD ∥ AB,∴∠A = ∠ACD.又∠AEF = ∠CED.∴△AEF ≌△CED(ASA).∴ EF = ED.5、(1) ∵ DF ∥ BC.∠ACB = 90°,∴∠ADF = ∠DCE = 90°. 又D是AC的中点,AD = CD, DE = AF,∴ Rt △ADF ≌ Rt△DCE(HL).(2) ∵∠ADF = ∠CDF = 9O°,AD = DC. FD = FD.∴△ADF ≌△CDF(SAS).6、(1) 如图;(2) ∠CEF = ∠CFE.由∠ACB = ∠CDA = 90°,可知∠1 + ∠CEA = 90°,∠2 + ∠AFD = 90°.又∠1 = ∠2,∠AFD = ∠CFE,于是∠CEF = ∠CFE.单元测试1、3,△ABD ≌△DCA,△ABC ≌△DCB,△ABE ≌△DCE2、AC = AD(或∠C = ∠D,或∠B = ∠E).3、(A).4、(D).5、(B).6、∵∠ADC = ∠BCD,∠1 = ∠2,∴∠ADC - ∠1 = ∠BCD - ∠2,即∠BDC= ∠ACD.在△ADC和△BCD中,∵∠ADC = ∠BCD,DC = CD,∠ACD = ∠BDC,∴△ADC ≌ BCD(ASA).∴ AD = BC.7、13 cm.8、∵∠DBE = 90°,∠ABD + ∠DBE + ∠EBC = 180°,∴∠ABD + ∠EBC = 90°,∵∠A = 90°,∴∠ABD + ∠D = 90°.∴∠D = ∠EBC.在△ABD和△CEB中,∵∠D = ∠EBC,∠A = ∠C = 90°,AB = CE,∴△ABD ≌△CEB(AAS).9、5.6 cm10、∵∠2 = ∠1,AC = AC,∠4 = ∠3,∴△ABC ≌△ADC(ASA).∴ AB = AD.在△ABE和△ADE中,∵ AB = AD,∠2 = ∠1,AE = AE,∴△ABE≌△ADE(SAS).∴ BE = DE.11、BC = B′C′.∵ AD ⊥ BC, A′D′⊥ B′C′,∴∠ADB = ∠A′D′B′= 90°.又AB = A'B', AD = A'D',∴ Rt△ABD ≌ Rt△A'B'D'(HL).∴∠B = ∠B′.又AB = A′B′,BC = B′C′,∴△ABC ≌△A′B′C′(SAS).12、分割线如图(△ABG ≌△DEH,△CBG ≌△DFH).苏教版八年级上册数学补充习题2.1 轴对称与轴对称图形答案1、(A).2、(C).3、①③⑤,②④.4、(1) 不是;(2) 改变方案有多种(略). 5、略.2.2.11、60°.2、略.3、(1) 3条对称轴重合;(2) 成轴对称,图略.4、(1) 点P在对称轴l上,AC和A'C'的交点也在对称轴l上,CB和C'B'没有交点;(2) 对应边所在直线与对称轴平行或对应边所在直线相交且交点在对称轴上;(3) 把△A′B′C′向左平移1 cm.2.2.21、点B,点D,O2、略.3、像蝴蝶4、图略,不成轴对称.5、2.31、2、(B).3、略.4、5、图形有多种,如6、略2.4.11、由点D在线段AB的垂直平分线上,可知DA = DB.于是△BDC的周长=BD + DC+ BC = DA + DC + BC =AC + BC = 9.2、(1) 图略;(2) OA = OB = OC.∵点O在线段AB的垂直平分线m上,∴OA = OB(线段垂直平分线上的点到线段两端的距离相等).同理,OB = OC.∴OA = OB = OC.2.4.21、点D在线段AC的垂直平分线上,∵ BC = BD + DC,BC = BD + AD,∴ BD + DC = BD + AD.∴DC = DA.∴点D在线段AC的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).2、∵∠1 = ∠2,AC = AC,∠3 = ∠4,∴△ABC ≌△ADC,∴ AB = AD,CB = CD.∴点A在线段BD的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).同理,点C在线段BD的垂直平分线上,∴ AC是线段BD的垂直平分线(两点确定一条直线).2.4.31、过点D作DE ⊥AB,垂足为E.∵AD平分∠BAC,DC ⊥AC,DE ⊥AB,∴DE = DC(角平分线上的点到角两边的距离相等).根据题意,得DC = 6.∴点D到AB的距离为6.2、DE = DC.∵AD平分∠BAC,DB ⊥AB,DF ⊥AC,∴DB = DF(角平分线上的点到角两边的距离相等).又BE = CF,∴Rt△DBE ≌Rt△DFC.∴DE = DC.3、∵∠FEB = ∠FDC = 90°,∠BFE = ∠CFD,BE = CD,∴△BEF∽△CDF.∴FE = FD.∴点F在∠MAN的平分线上(角的内部到角两边距离相等的点在角的平分线上).2.5.11、(1) 40°,40°;(2) 40°,100°或70°, 70°.2、(D).3、(1) ∠ BAD = ∠DAC = ∠B = ∠C,∠ADB = ∠ADC = ∠BAC;(2) BD = DC = AD.4、84,36.5、∵ DA = DC,∴∠1 = ∠2.∵DB = DC,∴∠3 = ∠4(等边对等角).∴∠1 + ∠3 = ∠2 + ∠4.∵∠1 + ∠3 + ∠2 + ∠4 = 180°,∴∠1 + ∠3 = 90°.6、提示:过点A作AD ⊥ BC,垂足为D.根据等腰三角形的性质即得证.2.5.21、80°或50°或20°.2、40.3、∵AD平分∠BAC,DC ⊥AC,DE ⊥AB∴DC = DE.∵ AC = BC,∠C = 90°,∴∠B = ∠CAB = 45°(等边对等角).∵∠DEB = 90°,∴∠EDB = 45°.∴BE = DE(等角对等边).∴BE = DE = CD.4、∵∠ACD = ∠ADC,∴AC = AD(等角对等边).在Rt△ABC和Rt△AED中,∵∠ABC = ∠AED = 90°,AB = AD,∴Rt△ABC ≌Rt△AED. ∴BC = ED.5、连接BD.∵AB = AD,∴∠ABD = ∠ADB(等边对等角).∵∠ABC = ∠ADC,∴∠ABC - ∠ABD = ∠ADC - ∠ADB,即∠CBD = ∠CDB.∴BC = DC(等角对等边).∴△ABC ≌△ADC.∴∠BAC = ∠DAC,即AC平分∠BAD.6、∵△ABC是等边三角形,∴∠CAB = ∠ABC = ∠ACB = 60°(等边三角形的各角都等于60°).∵AB ⊥DE,BC ⊥EF,AC ⊥FD,∴∠BAE = ∠CBF = ∠ACD = 90°.∴∠ABE = ∠BCF = ∠DAC = 30°.∴∠E = ∠F = ∠D = 60°.∴△DEF是等边三角形(三个角都相等的三角形是等边三角形).2.5.31、∵ AD ⊥ BC,AE = BE,∴ DE = AE(直角三角形斜边上的中线等于斜边的一半).∴∠EAD = ∠ADE(等边对等角).∵ AB = AC,AD ⊥ BC,∴∠BAD = ∠CAD(等腰三角形底边上的高线、顶角的平分线重合).∴∠ADE = ∠CAD.∴ DE ∥ AC.2、∵ EH ∥ BC,∠GHC = ∠DCH,又∠ACH = ∠DCH,∴∠ACH = ∠GHC,∴ GH = GC(等角对等边).同理,GE = GC,∴ GE = GH.3、∵ AD、BE、CF是等边三角形ABC的角平分线,∴∠ADB = ∠BEC = ∠CFA = 90°,BD = DC,CE = EA,AF = FB(等腰三角形底边上的高线、中线及顶角的平分线重合).∴ DF = AB,ED = BC,FE = AC(直角三角形斜边上的中线等于斜边的一半).∵ AB = BC = AC.∴ DF = ED = FE.∴△DEF是等边三角形.第二章小结与思考答案1、图略,3.2、顶角平分线(或底边上的中线或底上的高)所在直线,3.3、12.4、AC = AE = BE,CD = DE,AD = DB,∠CAD = ∠DAE = ∠B,∠C = ∠AED= ∠BED. ∠ADC = ∠ADE = ∠EDB.5、5 cm.6、∵点C、D在线段AB的垂直平分线MN上∴ CA = CB,DA = DB(线段垂直平分线上的点到线段两端的距离相等).∴∠CAB = ∠CBA,∠DAB = ∠DBA(等边对等角).∴∠CAB - ∠DAB = ∠CBA - ∠DBA,即∠CAD = ∠CBD.7、∵ AC = BC,∠C = 90°.∴∠B = ∠CAB = 45°(等边对等角).又DE ⊥ AB,∴∠EDB = 90°- ∠B = 45°.∴∠B = ∠EDB.∴ ED = EB(等角对等边).在△ACD和△AED中,∵∠CAD = ∠EAD,∠C = ∠DEA = 90°,AD = AD,∴△ACD ≌△AED.∴ AC = AE,CD = ED.∴ AB = AE + EB = AC + CD.8、连接CD.(1) ∵∠ACB = 90°,D是AB的中点,∴ CD = AD(直角三角形斜边上的中线等于斜边的一半),∠DCF = ∠ACB = 45°(等腰三角形底边上的中线、顶角的平分线重合).∵ AC = BC,∴∠A = ∠B = 45°(等边对等角)∴∠A = ∠DCF.又AE = CF,∴△DAE ≌△DCF.∴ DE = DF;(2)∵∠ACB = 90°,D是AB的中点,∴ CD ⊥ AB(直角三角形底边上的中线、高线重合),即∠ADE + ∠EDC = 90°.∵△DAE ≌△DCF,∴∠ADE = ∠CDF.∴∠CDF + ∠EDC= 90°.∴ DE ⊥ DF.第二章单元测试(1)答案1、100或40.2、30.3、62,31.4、11.5、④②③.6、30°,1.5.7、52°.8、(D).9、(C). 10、(C). 11、略.12、略.13、∵∠BAD = ∠BCD = 90°,BO = DO,∴ OA = OC = BD(直角三角形斜边上的中线等于斜边的一半).∴∠1 = ∠2(等边对等角).14、∵ AD = BC,AC = BD,AB = BA,∴△ABD ≌△BAC.∴∠DBA = ∠CAB.∴ EA = EB(等角对等边).15、(1)∵△ABC是等边三角形,∴ AB = AC,∠BAC = ∠C = 60°(等边三角形的各角都等于60°).又AE = CF,∴△ABE ≌△CAF.∴ BE = AF.(2) ∵△ABE ≌△CAF,∴∠ABE = ∠CAF.∴∠BOF = ∠BAO + ∠ABO = ∠BAO + ∠CAF = ∠BAC =60°.16、17、有多种方法,如18、建在A或A′处.如图,因为点A和A′在PQ的垂直平分线上,所以点A和点A′分别到P、Q两镇的距离相等.理由是:线段垂直平分线上的点到线段两端点的距离相等.又因为点A和点A′分别在l1、l2所成角的平分线上,所以点A和点A′到l1、l2两条高速公路的距离相等.理由是:角平分线上的点到角的两边距离相等.因此A或A′处符合要求,可根据具体情况确定.第二章单元测试(2)答案1、AB = AC,BD = DC = AD.2、100,100.3、△ABC、△DAB、△BCD.4、b、d、f.5、△BDE、△ADC,DE、AD所在的直线.6、6 cm或14 cm.7、(D). 8、(B). 9、(A). 10、(C).11、因为AB = AC,∠A = 40°,所以∠C = ∠ABC = 70°.因为AB的垂直平分线MN交AC 于点D,所以DA = DB,∠DBA = ∠A = 40°,所以∠DBC = 30°.12、∵△ABC是等边三角形,∴∠BAC = 60°(等边三角形的各角都等于60°).∵AD是等边三角形ABC的中线,∴∠DAC = ∠BAC = 30°,AD ⊥BC(等腰三角形底边上的中线、高线及角平分线重合).∵ AD = AE,∴∠ADE = ∠AED = 75°(等边对等角).∴∠EDC = ∠ADC - ∠ADE = 15°.13、在Rt△ADC和Rt△CEB中,∵∠D = ∠E = 90°,AD = CE = 1,CD = BE = 2,∴ Rt△ADC ≌Rt△CEB.∴ AC = CB,∠ACD = ∠CBE.∵∠CBE + ∠BCE = 90°,∴∠ACD + ∠BCE = 90°,∴∠ACB = 180°- 90° = 90°.∴△ABC是等腰直角三角形.14、∵△ABC、△ADE是等边三角形,∴∠BAC = ∠DAE = 60°(等边三角形的各角都等于60°).∵ AD是等边三角形ABC的中线,∴∠DAC = 2∠BAC = 30°(等腰三角形底边上的中线、顶角的平分线重合).∴∠FAE = 60°- 30°- 30°= ∠DAC.∴ AC ⊥ DE,DF = EF(等腰三角形底边上的高线、中线及顶角平分线重合).15、∵∠BEC = 90°,BD = CD,∴ DE = BC(直角三角形斜边上的中线等于斜边的一半).同理,DF = BC.∴ DE = DF.又G是EF的中点,∴ DG ⊥ EF(等腰三角形底边上的高线、中线重合).16、如图,作AB的垂直平分线DE,连接AE,则Rt△ACE、Rt△ADE、Rt△BDE全等.17、因为∠ADB是△ACD的外角,且∠ADB = 30°,∠ACB = 15°,所以AD = CD = 17.6(m). 在Rt△ABD中,作斜边AD上的中线BE.因为∠ABD = 90°,∠ADB = 30°,∠DAB = 60°,所以△ABE是等边三角形.所以AB= BE = AE = 8.8(m),即旗杆高8.8m.18、(1) 如图①,作线段AB的垂直平分线交直线 l 于点P,则点P为公交车站的位置;(2) 如图②,作点A关于直线 l 的对称点A',连接BA'交直线 l 于点P,则点P为泵站的位置苏教版八年级上册数学补充习题3.1 勾股定理(1)答案1、(B).2、(B). 5、5.4 m.3.1.21、(D).2、(D).3、长为10的线段如图所示.4、10.5、(1) 略;(2) .(3) 由图②可知:△ACE与△DEF都是直角边分别为a、b的直角三角形,它们的面积和为ab.CE = c,DF = c.由∠1 = ∠2,可得∠DCE = ∠OCA = 90°.同理,可知∠CEF =∠EFD = ∠FDC = 90°,正方形CDEF的面积为c².由图①、图②,可知a²+ b²+ ab = c²+ ab.于是a²+ b²= c².3.21、(C).2、(C).3、不是,因为4²+ 6²≠7².4、面积为96 cm².因为12²+ 16²= 20²,所以该三角形为直角三角形.5、17.6、由已知条件,得△ABD ≌△ECD.所以CE = AB = 3.在△ACE中,因为CE²+ AE²= 3²+ 4²= 25 = AC²,所以△ACE是直角三角形.所以S△ABC = S△ACD + S△ADB = S△ACD + S△BCD = 6.3.31、(C).2、100.3、6.4、根据题意,得△AED ≌△ACD,AE = AC = 6,ED = CD,∠AED = ∠C = 90°.由勾股定理,得AB = 10.设ED = CD = x.在Rt△BDE中DE²+ EB²= DB²,即x²+ (10 - 6)²= (8 - x)².解得x = 3,即CD = 3 cm.5、连接CE.∵∠A = 90°,∴EC²= AC²+ AE².∵DE是BC的垂直平分线,∴EC = EB.∴BE²= AC²+ AE².第三章小结与思考答案1、2.5;24;9;12.2、12.3、2.4、216.5、(1) 5;(2) 由图可知,AB²= 3²+ 4²= 25,BC²=2²+ 4²= 20,AC²= 1²+ 2²= 5,∴ AB²= BC²+ AC².∴△ABC是直角三角形.6、57、根据题意,得△AFE ≌△ADE,EF = ED,AF = AD = 10.在Rt△ABF中,BF²= AF²- AB²,AF = 10,AB = 6,∴ BF = 8.∴ FC = 2.设EC = x.在Rt△ECF中,EC²+ FC²= EF²,即x²+ 2²= (6 - x)².8、BD = 11 或 BD = 21.第三章单元测试答案1、12.5.2、180.3、答案不唯一,如:(1) 6,10;(2) 12,15.4、15,120.5、(C).6、(B).7、5 cm,5 cm,6 cm.8、连接AC,则Rt△ABC的面积为600 m²,AC = 50.因为AC²+ AD²= CD²,所以△ACD是直角三角形,△ACD的面积为3 000 m².所以这块地的面积为 3 600 m ².9、设这个直角三角形的两条直角边的长分别为a、b,斜边的长为c.根据题意,得c = 25,a +b = 31.因为a²+ b²= c²,所以(a + b)²- 2ab = c²,即31²- 2ab = 25²,ab = 168.所以这个直角三角形的面积为84 cm².10、根据题意,得PM = AM,BM = 12 - AM.在Rt△PBM中,PB²+ BM²= PM²,即5 +(12 - AM)²= AM²,11、△BEF是直角三角形,设正方形ABCD的边长为a.根据题意,得在△BEF中,EF²+ BE²= BF²,所以△BEF是直角三角形.12、∵∠ACB = 90°,∴ AC²+ BC²= AB².∵ 4BC²= AB².在Rt△ABC中,∵ CD是中线,∴ BC = CD = BD.∴△BCD是等边三角形.∴∠BCD = 60°.又∵ CE ⊥ BD,∴∠BCE = ∠DCE = 30°,∴∠ACD = 90°- 60°= 30°.∴ CD、CE三等分∠ACB.苏教版八年级上册数学补充习题4.1 平方根(1)答案1、1.44,-1.2. 3、(C).4.1.21、(B).2、(C).3、(1) 13; (2) 170 ; (3) 0.16.4.21、(D).2、(A).3、(1) 7;(2) -0.3.4、2倍.5、筐的棱长为2 m,筐的对角线长为因为2. 5²< 12,3.5²> 12,所以长2.5m的细木条能放入筐中,而长3.5m的细木条不能放入筐中4.3.12、右.3、(D).4、(1) a < 0;(2) b > 0;(3) ab < 0;(4) a - b < 0;(5)a + b > 0. 5、略.6、如0.121 221 222 122 221…(以后每两个1之间增加一个2).4.3.21、(D).4、 > .4.41、(1) 百分; (2) 十万分; (3) 个.2、(1) 0.023; (2) 2.2; (3) 73; (4) 0.04.3、(D).4、(B).5、他们说得都有道理.6、3.6 cm.第四章小结与思考答案(3) ±1 ; (4) ±2.(3) -10 ; (4) 4.6、在Rt△ACD中,由勾股定理,得①.在Rt△BCE中,由勾股定理,得②.①+②得,,即AC²+ BC²= 13.∴AB²= 13,第四章单元测试答案1、±1,6,-2.5、< , >.6、(C).7、(A).8、(A).9、(D). 10、(B).11、(1) 5; (2) ±0.9;12、(1) x = ±10;(2) ± 1.5;(3) x = -0.8;(4) x = -113、7.85 cm².所以= 3.15、由(a + b + 1) (a + b - 1) = 24,得(a + b)2 -1 = 24,即a +b = ±5.由(a - b + 1)(a - b - 1) = 0,得(a - b)²- 1 = 0,即a -b = ±1,16、阴影部分的面积为24,周长约为32.1.苏教版八年级上册数学补充习题5.1 物体位置的确定答案1、(D).2、略.3、B10.4、(1) 3区2排6号;(2) 不同,小明是在1区3排4号,他妈妈是在1区4排3号.5、C5,A1;上,经;数学真有趣,我喜欢它.5.2.11、(1) ×;(2) √; (3) √;(4) √.2、四,三,二,一,y,z,坐标轴上.3、A (0,-1),B (2,2), C (0,5), D (-2,2).4、(1) 一,三象限; (2) 二、四象限; (3)在 x 轴上或在 y 轴上.5、0(0,0), A(3,0), B(3,3).6、如:M1(2,-2),M2(3,-3).5.2.21、(2,1),(-2,-1),(-2,1).2、(C).3、3.4、(1) (2,2),(2,-1); (2) (m + 5,n),(m + 5,n - 3).5、y ,y.6、(1) 略;(2) 沿 z 轴向右平移 3 个单位长度,形状、大小不变.5.2.31、(1) (0,0),(4,0); (2) (0,0),(0,-4);(3) (-2,0),(2,0); (4) (5,1).2、答案不唯一.如:以边BC所在直线为x 轴,以边AC所在直线为y轴建立平面直角坐标系,则A(0,2),B(-6,0),C(0,0)3、A(0 ,0),B(4 ,0),4、答案不唯一,如:以对角线AC所在直线为 x 轴,以对角线BD所在直线为 y 轴建立平面直角坐标系,则,D(0,1).第五章小结与思考答案1、(D).2、(B).3、(C).4、5、右,4.6、(D).7、(B).(2) B( -3,-1),C( 3,-1),D( 3,1)9、点C的坐标为(4,0)或(-6,0).第五章单元测试答案1、(0,2).2、6,43、1,5.4、(0,4).6、(1) 2 ℃、 -2 ℃、6 ℃、12 ℃、4 ℃; (2) 12 ℃, -2 ℃.7 、(C). 8、(B). 9、(B). 10、(B). 11、(C). 12、(B).13、(1) ;(2) s = 100,s随着n的增大而增大.14、(1) 答案不唯一,如:以边BC所在直线为 x 轴,且向右为正方向,边BA所在直线为y轴,且向上为正方向,建立平面直角坐标系,则A(0,4),B(0,0),C(6,0),D(6,4);(2) 略.15、(1) 55 min,85 km/h;(2) 第35 min到第55 min保持匀速,为85 km/h;(3) 从开始到第10 min在加速,然后从第10 min到第25 min在减速,第25 min到第30 min停止,第30 min到第35 min提速,第35 min到第55 min保持匀速,第55 min到第60min减速到停止16、C(-2,2)或(2,2)17、(1) 菱形;(2) 能,只要把点 A 向下平移1个单位长度,把点C同上平移1个单位长度即可,此时点A(2,-2),点C(2,2)苏教版八年级上册数学补充习题6.1 函数(1)答案1、(B).2、(A).3、(1) 温度与时间; (2) 略;(3) 确定; (4) 可以.6.1.21、(C).2、(1) y = 60 - 2x;(2) 15 < x < 30.3、(1) 4,9,16,25; (2) S = n².6.2.11、(A).2、(C).3、(A).4、(1) y = x²,不是一次函数;是一次函数,也是正比例函数;(3) y = 80 + 20x,是一次函数,但不是正比例函数.(2) 会,当x 取 -3时.6.2.21、(C).2、(A).3、(1) y = 30 - 6x,是一次函数;(2) 0 ≦x ≦ 54、(1) y = 2x + 1;(2) -1;5、(1) 13;(2) y = 7(0 < x ≦ 3),y = 1.5x + 2.5( x 为大于3的整数).6.3.11、(C).2、(B).4、y = -6x - 2.6、(1) 图略;(2) 围成平行四边形;(3) 交点的坐标分别是(-1.5,-0.5)、(-3.5,-6.5)、(1.5,2.5)、(-0.5,-3.5).6.3.21、①⑤⑥,②③④.2、y = 5x.3、(2,0),(0,6).4、(D).5、y = -2x + 4 或 y = 2x - 4.(2) △ABC的面积为24或6.6.4.11、y = 3 000 - 125x.2、y = x + 9,17 cm.3、(1) y = 1 920 - 66x(0 ≦ x ≦ 20);(2) 10.4、(1) x ≦ 100时,y = 0.5x;x > 100时,y = x - 50.(2) 80度,120度.6.4.21、当 0 ≦ t < 1时,v = 7.5 t;当 1 ≦ t < 8时,v = 7.5;当 8 ≦ t ≦ 10时,2、(1) y1 = 1 000 + (x + 1 000) × 1.5%,y2 = -0.005x + 1 200;(2) 设y1 = y2 ,解得x = 9 250,x > 9 250 时,y1 > y2 ;x < 9 250 时,y1 < y2 .3、(1) 快车:y = 69x - 138,慢车:y = 46x;(2) 由图知慢车比快车早发2 h,快车比慢车早到4 h;(3) 快车的速度v快 = 69 km/h,慢车速度v慢 = 46 km/h;(4) 4 h.6.51、2x - y - 3 = 0.2、(1,-1),4、56.61、图略.(1) x < 1;(2) x > 1;2、(1) x = 2;(2) x < 3;(3) x > 3.3、x ≧ -1.5、音速超过340 m/s的气温超过15℃.第六章小结与思考答案1、(C).2、(1,1)或(-3,-1).3、y = 600 - 15x(0 ≦ x ≦ 40).4、y = 0.25x + 6(0 ≦ x ≦ 10).5、(C).7、2.8、(B). 9、(A).11、(1) y = -2x + 20,(2 ≦ x ≦ 9);(2) w = 336 - 10. 4x,2 ≦ x ≦ 9,当x = 2时,w最大,最大值为315.2(百元).车辆分配方案为:装运A种苹果,2辆;装运B种苹果,16辆;装运C种苹果,2辆.第六章单元测验(1)答案1、3.2、1.3、(2,0),(0,4),4.4、y = 3.60x + 0.20.5、y = 8x - 2.6、-5,11.7、m < 0. 8、y = 2x - 5 (x > 10),15.9 、(C). 10、(C). 11、(D).12、(B). 13、(C). 14、(B).15、(1) k1 = -2,k2 = 1;(2) A(9,0).16、(1) 10;(2) 1;(3) 3 ;(4) 1,15,图略;(5) s = 10 + 5t.17、(1) a = 1;(2) k = 2,b = -3;18、(1) 6 000,5 500;(2) 3 000,3 250;(3) y = 100x,y = 75x + 1 000;(4) 40;(5) 大于40,小于40.19、(1) 略;(2) 是;(3) y = - 0.116x + 8.82(供参考);(4) 1 400 m.第六章单元测验(2)答案2、-1,4.4、m > 0,n < 0.5、y = -x - 2.7 、(B). 8、(A). 9 、(D).10、(D). 11、(A). 12、(C).13、(1) 由图可见,4 min时进水20 L,故每分钟进水5 L.(2) 当4 ≦ x ≦ 12时,y 的图像是直线段,并且通过点(4,20)、(12,30).把这两点代入函数表达式y = kx + b,得 y 与 x 的函数表达式是(3) 当x = 5 时,从x = 4 到 x = 5,因此到13 min时,容器内有水L.即x ≧12时直线通过点(12,30)、(13,),代入y = kx + b,得所求函数表达式为14、(1) 分别把A(0,2)、B(2,0)、三点的坐标代入函数表达式进行检验,不难发现点A、C在函数的图像上,点B不在函数的图像上;15、(1) s = 600 - 80t;(2) 根据题意,得 0 ≦ s ≦ 600,即 0 ≦ 600 - 80t ≦ 600,解得 0 ≦t ≦ 7.5;(3) 由200 = 600 - 80t,得t = 5,即汽车开出5 h后离B市200km.16、(1) k = 2,n = 4;(2) 根据题意,得A(0,6),OA = 6,P1(4,2)、P2(-4,10).17、(1) 在△OPA中,OA = 4,高h = y,故S = 2y.因为y是点P的纵坐标,且点P在第一象限内,故0 < y = 6 - x < 6 ,所以S = 2y(0 < y< 6);(2) 由y = 6 - x,得S = -2x + 12 (0 < x < 6);(3) 由10 = 2y(0 < y < 6),得y = 5,此时x = 6 - y = 1,所以点P在(1,5)处时,△OPA的面积为10.18、(1) 两条直线相交于(1,a + b);(2) 图像如下:。

学与评价八年级上册苏教版数学

学与评价八年级上册苏教版数学

主题:学与评价八年级上册苏教版数学一、概述数学作为一门基础学科,在学生的教育中占据着重要的地位。

数学的学习不仅可以培养学生的逻辑思维能力,还可以帮助学生建立数学思维,提高解决问题的能力。

本文将对八年级上册苏教版数学进行学与评价,以期为广大教育者和学生提供参考。

二、教材内容八年级上册苏教版数学主要包括数字和代数、图形与运动、数据的处理和质量与比例四个部分。

教材内容丰富全面,贴近学生的生活实际,注重培养学生的数学思维和创新能力。

1. 数字和代数这一部分主要围绕整数、有理数、代数表达式和方程式展开。

教材通过形象生动的例题和习题,引导学生掌握数的运算规律和代数表达式的运算方法,培养学生的逻辑思维能力和分析问题的能力。

2. 图形与运动该部分主要涉及平面图形的性质和相关的计算方法,以及平移、旋转和镜像等几何运动。

教材通过具体的图形案例,引导学生理解图形的性质和运动规律,培养学生的空间想象能力和几何问题的解决能力。

3. 数据的处理教材设置了丰富多样的数据处理案例,通过实际的数据分析和统计运算,让学生体会到数据的分析和处理方法,培养学生的数据思维和解决实际问题的能力。

4. 主观与评价教材内容全面、丰富,结构合理,注重培养学生的数学思维和解决问题的能力。

教材配有丰富的例题和习题,以及配套的试卷和模拟题,有助于学生深入理解知识点,提高解决问题的能力。

八年级上册苏教版数学教材内容丰富全面,贴近学生的生活实际,注重培养学生的数学思维和创新能力,是一本优秀的数学教材。

三、教材特色1. 突出实际应用教材中的内容贴近学生的生活实际,注重引导学生将数学知识运用到实际问题中去解决,培养学生的实际应用能力。

2. 注重启发式教学教材注重启发式教学,通过生动形象的案例和教学活动,引导学生主动探索、发现和解决问题,促进学生的思维发展。

3. 突出发展性评价教材注重培养学生的创新能力和解决问题的能力,因此在课后习题和试卷设计上,注重引导学生思考、分析和解决问题,展现学生的真实水平。

苏科版八年级上册数学书答案

苏科版八年级上册数学书答案

篇一:苏科版八年级上册数学期中复习题及答案2015~2016学年第一学期初二数学期中复习要点考试范围:2013版苏科版初中数学教材八年级(上)第一章《全等三角形》、第二章《轴对称图形》及第四章《实数》;考试时间:120分钟;考试分值:130分。

第一章《全等三角形》知识点:全等图形,全等三角形的概念及性质,全等三角形的条件。

第二章《轴对称图形》知识点:轴对称与轴对称图形,轴对称性质,线段、角、等腰三角形的轴对称性。

练习:1.下列图形中:①平行四边形;②有一个角是30的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个B.2个C.3个D.4个 02..等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底长为()A.3cm或5cm,B.3cm或7cm C.3cm D.5cm3.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有 ( ) A.1个 B.2个 C.3个 D.4个4.下面能判断两个三角形全等的条件是 ( )A.两边和它们的夹角对应相等 B.三个角对应相等C.有两边及其中一边所对的角对应相等D.两个三角形周长相等5.如图,在△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°; B.35°; C.25°; D.20°6.如图,已知∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.17. .如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确.......定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.A.2 B.3 C.4 D.5(第5题)(第6题)(第7题)8.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件的个数( ) A.4个 B.3个C.2 个 D.1个19.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,C′D交AB于E,若∠BDC′=22.5°,则在不添加任何辅助线的情况下,图中45°的角(图中虚线也可视为角的边)有 ( ) A.7个 B.6个 C.5个 D.4个10.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是( )A.∠2=3∠1-180° B.?2?60?1() 3C.∠1=2∠2D.∠1=90°-∠2(8题图)11. 若等腰三角形的一个角是80°,则其底角为_ .12. 如图,在△ABC中,DE是AC的垂直平分线,AE=4 cm,△ABD的周长为13cm,则△ABC的周长为 cm.13.如图,AD是△ABC的中线,∠ADC=60°,BC=4,把△ABC沿直线AD折叠后,点C落在C'的位置上,那么BC'的长为;14.如图,AB=AE,∠1=∠2,要使△ABC≌△AED,还需添加的条件是;15.如图,AB//CD,AD//BC,图中全等三角形共有(第12题)(第13题)(第14题)(第15题) 16. 如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.17. 如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,连结AD.(1)若△ADC的周长为16,AB=12,求△ABC的周长;(2)若AD将∠CAB分成两个角,∠DAB=36°,求∠DAC的度数.2篇二:苏科版数学八年级上期末试卷(含答案)苏科版数学八年级上期末试卷班级姓名学号成绩一、选择题(每题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A、1个B、2个C、3个D、4个2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )A、(3,-2)B、(2,3)C、(-2,-3)D、(2,-3)3.若数据2,x,4,8的平均数是4,则这组数据的众数和中位数是()A、3和2B、2和3C、2和2D、2和44.在3,4,2,3.14,(2)0,0.58588588858888?,中无理数的个数是() 2A、2个B、3个C、4个D、5个5.下列说法:(1)对角线相等的四边形是矩形;(2)对角线互相垂直的四边形是菱形;(3)有一个角为直角且对角线互相平分的四边形是矩形;(4)菱形的对角线的平方和等于边长的平方的4倍。

苏教版八年级数学上册第一章全等三角

苏教版八年级数学上册第一章全等三角

全等三角形一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。

则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠FAB O第4题图第5题4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD相交于点O ,且AB ≠AD ,则下列判断不正确的是( )A .△ABD ≌△CBDB .△ABC 是等边三角形 C .△AOB ≌△COBD .△AOD ≌△COD6.下列命题中,不正确的是( )A .各有一个角为95°,且底边相等的两个等腰三角形全等;B .各有一个角为40°,且底边相等的两个等腰三角形全等;C .各有一个角为40°,且其所对的直角边相等的两个直角三角形全等;D .各有一个角为40°,且有斜边相等的两个直角三角形全等. 二、填空题(不需写出解答过程,请把答案直接填写在相应位的置.....上) 7.如图,在Rt △ABC 中,∠C=90°,AC=10,BC=5,PQ=AB ,点P 和点Q 分别在AC 和AC的垂线AD 上移动,则当AP= 时,才能使△ABC 和△APQ 全等.8.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD=CD ,BE=CF ,则下列结论:①DE=DF ;②AD 平分∠BAC ;③AE=AD ;④AB+AC=2AE 中正确的是 .第7题图DBACDE9.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,∠1=30°,则∠2的度数为.10.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC , 垂足分别是R 、S , 若AQ =PQ ,PR =PS ,下面四个结论:①AS =AR ②QP ∥AR ③△BRP ≌△QSP ,④AP 垂直平分RS .其中正确结论的序号是 (请将所有正确结论的序号都填上). 三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明 过程或演算步骤)11.(2015•无锡)已知:如图,AB ∥CD ,E 是AB 的中点,CE=DE . 求证:(1)∠AEC=∠BED ; (2)AC=BD .12.如图,ABC ∆为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形CDE ∆,连接AE . (1)求证:CBD ∆≌CAE ∆.(2)判断AE 与BC 的位置关系,并说明理由.13如图,△ABC 是等边三角形,AE=CD ,BQ ⊥AD 于Q ,BE 交AD 于P . (1)求证:△ABE ≌△CAD ; (2)求∠PBQ 的度数.14.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点。

苏教版八年级数学上册第二章【轴对称图形】单元复习试卷及答案2

苏教版八年级数学上册第二章【轴对称图形】单元复习试卷及答案2

八年级数学上册第二章【轴对称图形】单元复习试卷一、选择题:1.下列说法中,正确说法的个数有()①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁.A.1个B.2个C.3个D.4个,则2.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.98.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二、填空题:9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)11.已知等腰三角形的一个内角为70°,则它的顶角为度.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE 的周长为cm.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.17.如图,△ABC的内部有一点P,且D、E、F是P分别以AB、BC、AC为对称轴的对称点.若△ABC 的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=..三、解答题:18.如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF.19.如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.20.如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.21.(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.22.某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?23.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.24.(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD 是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?【解析卷】八年级数学上册第二章【轴对称图形】单元复习试卷一、选择题:1.下列说法中,正确说法的个数有()①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁.A.1个B.2个C.3个D.4个分析:要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解答:解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选B.点评:本题考查了轴对称以及对称轴的定义和应用.,则2.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°考点:轴对称的性质.分析:认真读题、观察图形,由CF所在的直线是它的对称轴,得角相等,结合已知,答案可得.解答:解:轴对称图形按对称轴折叠后两边可以完全重合,,所以∠AFE+∠BCD=300°.故选B.,则∠EFC+∠DCF=150°∠AFC+∠BCF=150°点评:本题考查了轴对称的性质;掌握好轴对称的基本性质,找出相等角度是正确解答本题的关键.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点考点:角平分线的性质.专题:应用题.分析:直接根据角平分线的性质进行解答即可.解答:解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.点评:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形考点:等腰三角形的判定;平行线的性质.分析:已知EC∥AB,根据两直线平行同位角相等和两直线平行内错角相等,可得到∠ECD=∠ABC,∠ECA=∠CAB,再根据角平分线的性质不难判定该三角形的形状.解答:解:如图,EC是∠ACD的角平分线,且EC∥AB∵EC∥AB∴∠ECD=∠ABC,∠ECA=∠CAB∵EC是∠ACD的角平分线∴∠DCE=∠ACE∴∠ABC=∠CAB∴△ABC是等腰三角形故选C.点评:此题主要考查学生对等腰三角形的判定及平行线的性质的综合运用能力.5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行考点:生活中的轴对称现象.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,对称变换后又进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点考点:角平分线的性质;线段垂直平分线的性质.专题:压轴题.分析:根据角平分线及线段垂直平分线的判定定理作答.解答:解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.点评:本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.7.)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9考点:等腰三角形的判定.专题:分类讨论.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.解答:解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.点评:本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤考点:认识平面图形分析:根据分割与组合的原理对图形进行分析即解.解答:解:分析原图可得:原图由②⑤两种图案组成.故选D.点评:此题考查了平面图形的分割与组成,主要培养学生的观察能力和空间想象能力.二、填空题:9.已知以下四个汽车标志图案:其中是轴对称图形的图案是①,③(只需填入图案代号).考点:轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.故是轴对称图形的图案是①,③.点评:掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是1时30分.(按12小时制填写)考点:镜面对称.分析:此题考查镜面反射的基本知识,注意与实际问题的结合.解答:解:从镜子中看到的是10:30,那么正常时间应该是13:30.点评:解决此类习题时候,注意与现实生活结合,学以致用.11.已知等腰三角形的一个内角为70°,则它的顶角为40或70度.考点:等腰三角形的性质;三角形内角和定理.分析:本题考查的是等腰三角形的性质.首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.解答:解:本题可分两种情况:;①当70°角为底角时,顶角为180°﹣2×70°=40°②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故答案为:40或70.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为16cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,从而得到△BCE的周长=AC+BC,然后代入数据计算即可求解.解答:解:∵DE是AB的垂直平分线,∴AE=BE,∵AC=9cm,BC=7cm,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=7+9=16cm.故答案为:16.点评:本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,证明出三角形的周长等于AC与BC的和是解题的关键.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.考点:全等三角形的判定与性质;等边三角形的性质.专题:几何图形问题.分析:根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.解答:解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,,,∴∠APE=∠ABE+∠BAD=60°∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°.故答案为60.∴∠APE=60°点评:本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.考点:等边三角形的判定与性质;全等三角形的判定与性质.专题:压轴题.分析:过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.解答:解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故答案为:.点评:本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是8cm.考点:等腰三角形的判定与性质;平行线的性质.分析:分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.解答:解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案是:8.点评:此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于115°.考点:翻折变换(折叠问题).分析:根据折叠的性质,得∠BFE=(180°﹣∠1),再根据平行线的性质即可求得∠AEF的度数.解答:解:根据长方形ABCD沿EF对折,若∠1=50°,得..∵AD∥BC,∴∠AEF=115°∠BFE=(180°﹣∠1)=65°点评:此题综合运用了折叠的性质和平行线的性质.17.如图,△ABC的内部有一点P,且D、E、F是P分别以AB、BC、AC为对称轴的对称点.若△ABC 的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=360°.考点:轴对称的性质.分析:连接AP,BP,CP后,根据轴对称的性质,可得到角相等,结合及周角的定义可知答案.解答:解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,.∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.故答案为:360°点评:本题考查轴对称的性质,根据题意作出辅助线得到三对角相等是正确解答本题的关键.三、解答题:18.如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF.考点:直角三角形斜边上的中线;等腰三角形的判定与性质.专题:证明题.分析:连接ME、MF,根据直角三角形斜边上的中线等于斜边的一半可得MF=ME=BC,再根据等腰三角形三线合一的性质证明即可.解答:证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,作辅助线构造出等腰三角形是解题的关键.19.如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.考点:作图—应用与设计作图;生活中的轴对称现象.分析:找到A球关于EF的对称点A′,连接BA′,BA′与EF交点即为台球的撞击点.解答:解:如图,作点A关于GH的对称点A′,连接AB′,交EF于点O,将白球A打到台边GH的点O处,反弹后能击中彩球B.点评:本题主要考查了生活中的轴对称现象及作图﹣应用与设计作图,熟悉轴对称的性质是解题的关键.20.如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.考点:镜面对称.专题:作图题.分析:作出BC和AD的入射光线,相交处即为点S所在位置.解答:解:点评:用到的知识点为:入射角等于反射角;两条入射光线的交点处是点光源所在处.21.(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为5cm.考点:作图—基本作图.分析:(1)按题意,分别作出点P关于OA、OB的对称点P1、P2,并连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)依题意知,OA、OB分别为PP1、PP2的中垂线,可得出P1M=PM,P2N=PN,且已知P1P2=P1M+MN+NP2=PM+MN+NP=5cm,即可得出PMN的周长.解答:解:(1)依题意,如下图所示:(2)∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴L△PMN=PM+PN+MN=P1M+MN+P2N=P1P2=5cm.故答案为:5cm点评:本题主要考查了学生对基本作图的运用以及对三角形知识的灵活运用.22.某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?考点:轴对称-最短路线问题;作图—应用与设计作图.分析:(1)连接AB,构造直角三角形,由勾股定理求得AB的值;(2)作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点解答:解:(1)如图1,连接AB,AB与l的交点P就是所求分支点M分支点开在此处,总线路最短;(2)如图2,作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点.点评:本题考查的是轴对称﹣最短路线问题,熟知两点之间,线段最短是解答此题的关键.23.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.考点:等腰直角三角形;全等三角形的判定与性质.分析:连接OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.解答:解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,;∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.点评:本题考查了等腰直角三角形的判定与性质、全等三角形的判定与性质.解答该题的关键一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.24.(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD 是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?考点:等腰三角形的判定;全等三角形的判定与性质.分析:(1)过点P作OP的垂线,垂足为点P,可通过全等三角形来判定△OCD是等腰三角形;(2)作∠AOB的角平分线,再过点这作∠AOB的角平分线的垂线PD,延长PD使于角两边相交,同理可利用全等三角形的判定来判定其为等腰三角形;(3)由等腰三角形三线合一的性质与两直线平行的性质可以画出满足条件的等腰三角形,一共三个.解答:解:(1)如图,直线CD为过点P的一条垂线且垂足为P,则△OCD是等腰三角形.,OP=OP∵OP为∠AOB的角平分线∴∠AOP=∠BOP∵∠CPO=∠DPO=90°∴△COP≌△DOP(ASA)∴OC=OD∴△OCD是等腰三角形.(2)如图,过点O作∠AOB的角平分线OD,过点P作PD⊥OD于点D,延长交OA,OB于点M,N,则△OMN为等腰三角形.∵OD为∠AOB的角平分线∴∠AOD=∠BOD,OD=OD∴△MOD≌△NOD(ASA)∴OM=ON∵∠MPO=∠NPO=90°∴△OMN是等腰三角形.(3)应该可画3个.①过P作∠AOB中平分线的垂线,交OA,OB于M,N,则△OMN是等腰三角形.②过P作OA垂线,交OA,OB于E,F,在EA上作EG=OE,连FG,过P作FG平行线,交OA,OB于M,N,则△OMN是等腰三角形.③过P作OB垂线,交OA,OB于E,F,在FB上作FG=OF,连EG,过P作EG平行线,交OA,OB于M,N,则△OMN是等腰三角形.所以有三个这样的等腰三角形.点评:此题主要考查了等腰梯形的判定及全等三角形的判定方法与性质、角平分线的性质等知识;三角形全等的证明是正确解答本题的关键.。

05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册

05全等三角形判定二(SSS,AAS)(基础)知识讲解--苏教版苏科版初二数学八年级数学上册

05 全等三角形的判定二(SSS ,AAS )(基础篇)-知识讲解+答案【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件 可选择的判定方法一边一角对应相SAS AAS ASA等两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、(2016•蓝田县一模)如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A.0对B.1对C.2对D.3对【思路点拨】首先证明△ABE≌△AEC,再证明△AEC≌△ADC,△ABE≌△ADC.【答案与解析】解:在△ABE和△AEC中,,∴△ABE≌△AEC(SSS),在△AEC和△ADC中,,∴△ABO≌△ADO(SSS),∴△ABE≌△ADC,故选D【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【高清课堂:379109 全等三角形的判定(一) 同步练习6】【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”【高清课堂:379110 全等三角形的判定二,例6】2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、(2015春•雅安期末)如图:AB=A ′B ′,∠A=∠A′,若△ABC≌△A′B′C ′,则还需添加的一个条件有( )种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC ≌△ A ′B ′C ′,已知了AB=A ′B ′,∠ A=∠ A ′,可用的判别方法有ASA ,AAS ,及SAS ,所以可添加一对角∠B=∠B ′,或∠C=∠C ′,或一对边AC=A ′C ′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A ′C ′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B ′C ′(ASA );若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS );若添加AC=A ′C ′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C ′(SAS ).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:【变式】(2014秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=AB ,AF=AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。

八上数学补充习题答案(共10篇)

八上数学补充习题答案(共10篇)

八上数学补充习题答案(共10篇)八上数学补充习题答案(一): 苏教版八年级上册数学补充习题参考答案苏教版八年级上册数学补充习题答案 15页第五题谢很简单啊∵PD‖AB,PE‖AC ∴∠ABP=∠DPB,∠ACP=∠EPC ∵BP、CP分别平分∠ABC,∠ACB ∴八上数学补充习题答案(二): 苏教版8年纪上册数学补充习题答案第52页第4题和53页第4题!是菱形因为矩形对折在对折后的点是图1的中点,且两个对角线相等且垂直所以它是菱形S正方形OECF=(a/2)2=a2/4S四边形OMCF=1/4a2阴影部分面积是正方形面积的1/4八上数学补充习题答案(三): 八年级上册数学补充习题第54页的 45题的答案要过程哦【八上数学补充习题答案】有45题吗如果是4、5的话4.答:四边形EHFG为菱形证明:∵E是BC中点G是BD中点∴EG∥CD,且EG=1/2CD同理FH∥CD且FH=1/2CD.FG=1/2AB∴EG∥=FH∴四边形EHFG为平行四边形∵AB=CD∴EG=FG∴四边形EHFG为菱形5.答:AG⊥CG证明:∵E、F分别是AB、AC的中点∴AF=CF∴EF是△ABC的中位线∴EF∥BC∴∠GCD(2)=∠FGC(3)∵CG平分∠ACD∴∠FCG(1)=∠GCD(2)∴∠FCG(1)=∠FGC(3)∴CF=GF∴AF=GF∴∠FAG(4)=∠AGF(5)∵∠1+∠3+∠4+∠5=180°∴∠AGC=90°∴AG⊥CG八上数学补充习题答案(四): 数学补充习题八年级上~变量与函数(二)已知等腰三角形的周长为45,底边长为x,腰长为y.(1)写出y与x的函数关系式;(2)写出自变量x的取值范围;(3)当x等于多少时,此三角形是等边三角形一、y与x函数关系式:2y+x=45二、自变量x的取值范围:xx,即2y+x>2x,2y+x=45所以2x x x=15八上数学补充习题答案(五): 苏教版五年级上册数学补充习题38页答案把偶数2、4、6、8······照下表的样子排成五列,自左往右分别称为似一列、第二列······第五列.第100个偶数(也就是200)将会出现在哪一列中这是我以前的作业答案,我也不知道对不对.老教材了.错了莫怪我!100除4=25(组)答:他在第四列八上数学补充习题答案(六): 跪求苏教版六年级上册数学补充习题第26, 请在8点前给我答案谢谢【八上数学补充习题答案】26页:1、5厘米,150,1.5,125,0.1252、1.8厘米3、(1)2(ab+ac+bc)(2)abc4、6a a5、48平方分米6、(1)80平方米(2)2400立方分米,合2.4立方米.27页:1、(1)1.5立方米(2)2.4千克2、(1)64立方厘米(2)可切割成12个这样的小正方体八上数学补充习题答案(七): 苏教版数学补充习题六年级上册第83.86.87页答案.要全的30、甲、乙两人从同一地点出发,同向而行,甲骑自行车,乙步行.如果乙先走12千米,那么甲用1小时就能追上乙;如果乙先走1小时,那么甲只用1/2 小时就能追上乙.求两人的速度设乙的速度为a千米/小时甲的速度为12/1+a=a+12千米/小时a×1=(12+a-a)×1/2a=6千米/小时甲的速度为12+6=18千米/小时31、某市举行环城自行车赛,一圈7千米,甲的速度是乙的速度的5/7 ,出发后来1又1/6 小时,两人第二次相遇.问:甲、乙二人每分钟相差多少千米设乙的速度为a千米/小时,甲的速度为5/7a千米/小时7×2/(a-5/7a)=7/614/(2/7a)=7/61/3a=14a=42千米/小时每分钟相差a-5/7a=2/7a=2/7×42=12千米/小时=0.2千米/分钟32、用价值100元的甲涂料和价值240元的乙涂料配置成一种新涂料,新涂料每千克比甲涂料每千克少3元,比乙涂料每千克多1元,求这种新涂料每千克多少元设新涂料每千克a元,则甲涂料a+3元,乙涂料a-1元/千克100/(a+3)+240/(a-1)=(100+240)/a10(a-1)a+24(a+3)a=34(a-1)(a+3)5a -5a+12a +36a=17a +34a-513a=51a=17元新涂料每千克17元33、甲乙丙三人进行60米赛跑,当甲到终点时,比乙领先10米,比丙领先20米,按原速前进,乙到达终点时,比丙领先多少米甲跑100米,乙跑90米丙跑80米设乙到终点丙跑a米那么90:80=100:a90a=8000a=800/9领先丙100-800/9=100/9米34、客车与货车同时从A,B两地相向开出,4小时后相遇,已知客车与货车的速度之比是7:5,则相遇后货车经过多少小时到达A地设a小时货车到达A地5/12:4=7/12:a5/12a=7/12×4a=28/5小时35、红白球若干个,红球白球比是5:7,后来又放了6个红球,这时比是1:1,现在多少个球设红球和白球各有5a个,7a个根据题意(5a+6):7a=1:17a=5a+62a=6a=3现在有(5+7)×3+6=42个36、甲乙两班85人,将乙班的11分之1转到甲班,甲乙两班人数比为9:8,甲班原来多少人设甲班有a人,那么乙班有85-a人[a+(85-a)×1/11]:(85-a)×(1-1/11)=9:88a+8/11×(85-a)=90/11×(85-a)88a+680-8a=7650-90a170a=6970a=41甲班有41人37、甲班捐的是乙班、丙班和的3分之2,乙班捐的是甲班、丙班和的5分之2.如果甲班和乙班共捐144元,丙班捐了多少元设甲班捐了a元,则乙班捐了144-a元丙班捐了(144-a)/(2/5)-a=360-7/2a元根据题意a=(144-a+360-7/2a)×2/33a=288-2a+720-7a12a=1008a=84元那么丙班捐了360-7/2×84=66元38、两个分子相同的最简分数和是1又18分之7,两个分母的比是2:3,这两个分数分别是几设分母分别为2a和3a那么1/(2a)+1/(3a)=25/185/(6a)=25/18a=3/5那么这2个分数分别为5/6和5/939、大街上有一辆车身长12米的公共汽车由东向西行驶,车速为每小时18千米,人行道上有甲乙两人相向跑步,某一时刻汽车追上甲,6秒钟之后汽车离开甲.90秒后汽车遇到跑来的乙,又经过1.5秒钟.汽车离开了乙,问再经过多少秒后甲乙两人相遇18千米/小时=5米/秒汽车和甲是追及过程,速度差=12/6=2米/秒甲的速度为5-2=3米/秒汽车和乙是相遇过程,速度和=12/1.5=8米/秒乙的速度为8-5=3米/秒设甲乙之间的距离为s米汽车和乙相遇的时候,一共行了s-5×6-3×6=s-48根据题意(5+3)×90=s-48s-48=720s=768米汽车离开乙后甲乙距离768-(3+3)×(6+90+1.5)=183米再经过183/(3+3)=30.5秒相遇参考八上数学补充习题答案(八): 求苏科版数学八年级(上)书后习题答案买教材解读上有八上数学补充习题答案(九): 六年级数学上册《补充习题》答案86---92《补充习题》第86页答案.①:说一说每个百分数表示的含义,再说一说哪种蔬菜中的胡萝卜素的含量最高,哪种最低,并按一定的顺序把表中的百分数排列起来.8.1%>7.6%>1.3%>0.1% 答:菠菜里胡萝卜素含量最高,白菜最低.②:写出下面的百分数.百分之六=6% 百分之一百零九=109% 百分之三点七=3.7%百分之二百=200% 百分之七十五=75% 百分之零点零三=0.03%③:哪一种食品的合格率高一些48÷50=96%86÷90≈95.6%答:甲种食品合格率高.④:小芳用3分钟做了48道口算题,做错了5道.小力用5分钟做了70道口算题,做错了9道.谁的口算正确率高一些48—5=43(道)43÷48≈89.6%70—9=61(道)61÷70=87.1%答:小芳的口算正确率高一些.《补充习题》第87页答案.①:火药的主要成分是火硝、木炭、硫磺,这三个成分质量的比是15:2:3.配制这种火药是时用去16千克硫磺,需要火硝和木炭各多少千克120:16:24=15:2:3答:火硝120千克,木炭24千克.②:(题目太长了,我就不打了.)120×六分之五=100(棵)100×一百分之九十=90(棵)答:四年级植树90棵.③:(题目太长了,我就不打了.)9021÷90979≈9.9%答:是消灭的鸟的种类的9.9%.④:学校图书室有文艺书960本,科技书的本数比文艺书多50%.科技书有多少本960×50%=480(本)960+480=1440(本)答:科技书有1440本.(纯属手打.)(下面几页下次再打)八上数学补充习题答案(十): 六年级数学补充习题上85答案10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成.现由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成,问规定日期是多少天甲做3天相当于乙做5天甲乙的工作效率之比=5:3那么甲乙完成时间之比=3:5所以甲完成用的时间是乙的3/5所以乙单独完成需要5/(1-3/5)=5/(2/5)=12.5天规定时间=12.5-5=7.5天11、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队合作,还需要多少天完成乙5天完成5×1/30=1/6甲乙合作的工作效率=1/20+1/30=1/6那么还需要(1-1/6)/(1/6)=(5/6)/(1/6)=5天12、一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一起干,甲队因事走了,结果共用了六天,甲队实际干了多少天乙丙的工作效率和=1/15+1/20=7/60乙丙都做6天,完成7/60×6=7/10甲完成全部的1-7/10=3/10那么甲实际干了(3/10)/(1/10)=3天12、加工一个零件,甲需要4小时,乙需要2.5小时,丙需要5小时.现在有187个零件需要加工,如果规定三人用同样多的时间完成,那么各应该加工多少个甲乙丙加工1个零件分别需要1/4小时,2/5小时,1/5小时那么完成的时间=187/(1/4+2/5+1/5)=187/0.85=220小时那么甲加工1/4×220=55个乙加工2/5×220=88个丙加工1/5×220=44个13、一项工程,由甲先做5/1,再由甲乙两队合作,又做了16天完成.已知甲乙两队的工效比是2:3,甲乙两队独立完成这项工程各需多少天甲乙的工作效率和=(1-1/5)/16=(4/5)/16=1/20甲的工作效率=1/20×2/(2+3)=1/50乙的工作效率=1/20-1/50=3/100那么甲单独完成需要1/(1/50)=50天乙单独完成需要1/(3/100)=100/3天=33又1/33天14、一项工程,甲队20人单独做要25天,如果要20天完成,还需再加多少人将每个人的工作量看作单位1还需要增加1×25×20/(1×20)-20=25-20=5人。

八年级上册数学课本答案苏教版

八年级上册数学课本答案苏教版

八年级上册数学课本答案苏教版
志士惜年,贤人惜日,圣人惜时。

惜取时间勤奋做苏教版八年级数学课本的练习题对我们有好处。

下面是小编为大家精心整理的苏教版八年级上册数学课本练习的答案,仅供参考。

八年级上册数学课本答案苏教版(一)
练习教材第19页第1题答案
解:图①与图⑥是全等三危形.因为在这两个三角形中,有两组对应角相等,且对应角夹的边也相等,所以根据ASA,可以判定这两个三角形全等;图②与图④、图③与图⑤也分别是全等三角形,理由同上.
练习教材第19页第2题答案
证明:∵O是AB的中点(已知),
∴AO= BO(中点的定义),∵AC//BD(已知),
∴∠A=∠B(两直线平行,内错角相等).
在△AOC和△BOD中,
∴△AOC≌△BOD(ASA),
∴CO= DO(全等三角形的对应边相等),
即O是CD的中点.
八年级上册数学课本答案苏教版(二)
练习教材第22页第1题答案
1、证明:在△ABE和△ACD中,
∴△ABE≌ACD(ASA).
∴AD=AE(全等三角形的对应边相等).
∵ DB=AB=AD,EC=AC=AE,
∴DB=EC(等量代换)
练习教材第22页第2题答案
证明:∵∠ABC=∠DCB,∠1=∠2,
∴∠DBC= ∠ACB,
在△ABC和△DCB中,
∴△ABC≌△DCB( ASA).
∴AB= DC
(全等三角形的对应边相等).
八年级上册数学课本答案苏教版(三) 第54页。

苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)

苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)

《第6章一次函数》一、填空1.已知函数y=x﹣2,则当x=3时,y= .2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= .3.函数y=x+3的图象与x轴的交点坐标为.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.412.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.513.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.14.把函数y=3x+2的图象沿着y轴向下平移一个单位,得到的函数关系式是()A.y=3x+1 B.y=3x﹣1 C.y=3x+3 D.y=3x+515.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x 的函数解析式为( )A .y=20x+5%xB .y=20.05xC .y=20(1+5%)xD .y=19.95x17.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定18.在y=kx 中,当x=2时,y=﹣1,则当x=﹣1时,y=( )A .﹣2B .C .D .2三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量20.已知一次函数y=x+6﹣m ,求:(1)m 为何值时,函数图象交y 轴于正半轴?(2)m 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 为何值时,图象经过原点?21.用图象法求下面二元一次方程组的近似解.22.已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.《第6章一次函数》参考答案与试题解析一、填空1.已知函数y=x﹣2,则当x=3时,y= 1 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=3代入方程,即可求得y的坐标.【解答】解:根据题意,把x=3代入方程,可得y=3﹣2=1.故填1.【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= 5 .【考点】正比例函数的定义.【分析】根据正比例函数的定义列出关于m的方程组,求出m的值即可.【解答】解:∵函数y=(m﹣2)x+5﹣m是x的正比例函数,∴,解得m=5.故答案为:5.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.3.函数y=x+3的图象与x轴的交点坐标为(﹣3,0).【考点】一次函数图象上点的坐标特征.【分析】令y=0,即可得函数与x轴交点坐标.【解答】解:根据题意,把y=0代入y=x+3得:0=x+3,解得x=﹣3,∴图象与x轴的交点坐标为(﹣3,0).【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】由题意得y=3x过点(0,0),故平移过后一次函数过点(0,2),再根据平移之后k值不变,故可得出该一次函数解析式.【解答】解:由题意得:∵y=3x过点(0,0)∴y=3x平移过后过点(0,2)又∵平移不影响k的值,故可得出y=3x+b过点(0,2)代入得:2=b∴可得出该一次函数解析式为:y=3x+2.【点评】本题考查待定系数法求一次函数解析式,注意平移不影响k的值是关键.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为m<3 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】利用一次函数的性质得到关于m的不等式.【解答】解:∵y值随x的增加而减小∴m﹣3<0,即m<3.故填m<3.【点评】熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大;当k<0,y值随x的增加而减小.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为y=x+2 .【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】先设一次函数的解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.【解答】解:设一次函数的解析式为y=kx+b,把(﹣2,0)、(0,2)代入得,解得,所以一次函数的解析式为y=x+2.故答案为y=x+2.【点评】本题考查了待定系数法求一次函数解析式:设一次函数的解析式为y=kx+b,再把直线上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k与b的值即可.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为(﹣2,4).【考点】两条直线相交或平行问题.【专题】计算题.【分析】可设此点的坐标为(a,b)分别代入解析式求解方程组即可.【解答】解:根据题意,设点P的坐标为(a,b),代入两个解析式可得,b=﹣3a﹣2①,b=2a+8②,由①②可解得:a=﹣2,b=4,∴P点的坐标为(﹣2,4).【点评】本题考查了一次函数图象上的点的坐标特征,是基础题型.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:y=﹣x+1(答案不唯一).【考点】一次函数的性质.【专题】开放型.【分析】设一次函数的解释为y=kx+b(k<0),再把点(﹣1,2)代入得出k、b的关系,找出符合条件的k、b的值即可.【解答】解:∵一次函数y的值随x的增大而减小,∴设一次函数的解释为y=kx+b(k<0),∵函数的图象经过点(﹣1,2),∴﹣k+b=2,∴当k=﹣1时,b=1,∴符合条件的函数解析式可以为:y=﹣x+1.故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的性质,此题属开放性题目,答案不唯一.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把四个点的坐标分别代入y=﹣3x+1,若满足解析式,则可判断此点在直线y=﹣3x+1上.【解答】解:A、当x=2时,y=﹣3×2+1=﹣5,则点(2,﹣5)在直线y=﹣3x+1上,所以A选项正确;B、当x=1时,y=﹣3×1+1=﹣2,则点(1,0)不在直线y=﹣3x+1上,所以B选项错误;C、当x=﹣2时,y=﹣3×(﹣2)+1=7,则点(﹣2,3)不在直线y=﹣3x+1上,所以C选项错误;D、当x=0时,y=﹣3×0+1=1,则点(0,﹣1)不在直线y=﹣3x+1上,所以D选项错误.故选A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线;直线上任意一点的坐标都满足函数关系式y=kx+b.10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,2x﹣5≥0,解得x≥.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据当x=3时,两个函数的函数值相等,将x=3代入两个函数中,令其相等,即可解得m 的值.【解答】解:∵当x=3时,两个函数的y值相等,即:3+m=3m﹣1解得:m=2故选B.【点评】本题比较简单,直接代入x=3的值,就可得出结果.12.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.5【考点】一次函数图象上点的坐标特征.【分析】先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式求解即可.【解答】解:∵令x=0,y=3,令y=0,则x=﹣3,∴此函数与y轴的交点为(0,3),与x轴的交点为(﹣3,0),∴一次函数y=x+3的图象与两坐标轴所围成的三角形面积=×3×3=4.5.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数与坐标轴的交点特点是解答此题的关键.13.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D .【点评】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.把函数y=3x+2的图象沿着y 轴向下平移一个单位,得到的函数关系式是( )A .y=3x+1B .y=3x ﹣1C .y=3x+3D .y=3x+5【考点】一次函数图象与几何变换.【分析】原来函数过点(0,2),现在沿着y 轴向下平移一个单位,可知现在函数过(0,1)且斜率不变,即可得平移后的函数解析式.【解答】解:根据题意,可设平移后的直线的解析式为:y=3x+b ,而函数y=3x+2的图象过点(0,2),∴沿着y 轴向下平移一个单位可得点为(0,1),即点(0,1)在平移后的函数上,代入得:b=1, ∴函数关系式为:y=3x+1,故选A .【点评】本题考查了一次函数图象与几何变换,是基础题型.15.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定【考点】一次函数图象上点的坐标特征.【分析】分别把点代入解析式求坐标值比较或是根据﹣5<﹣4及函数递减性质直接判断.【解答】解:由直线y=﹣7x+b 可得,k=﹣7<0,∴函数图象上y 随x 的增大而减小,又∵﹣5<﹣4,∴y 1>y 2.故选A .【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k<0时,y随x的增大而减小.16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x册,需付款y(元)与x的函数解析式为()A.y=20x+5%x B.y=20.05x C.y=20(1+5%)x D.y=19.95x【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式.【解答】解:由题意得;购买一册书需要花费(20+20×5%)元∴购买x册数需花费x(20+20×5%)元即:y=x(20+20×5%)=20(1+5%)x故选C.【点评】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.17.如图,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快 B.乙比甲快 C.甲、乙同速D.不一定【考点】函数的图象.【分析】因为s=vt,同一时刻,s越大,v越大,图象表现为越陡峭,可以比较甲、乙的速度.【解答】解:根据图象越陡峭,速度越快;可得甲比乙快.故选:A.【点评】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.18.在y=kx中,当x=2时,y=﹣1,则当x=﹣1时,y=()A.﹣2 B.C.D.2【考点】待定系数法求正比例函数解析式.【专题】计算题.【分析】先根据所给自变量和函数的对应值,确定正比例函数的解析式,然后再将x=﹣1代入解析式,求出y的值.【解答】解:把x=2时,y=﹣1代入y=kx中,得2k=﹣1,解得,k=,所以y=x,当x=﹣1时,y=﹣×(﹣1)=.故选C.【点评】本题要首先利用待定系数法确定出正比例函数的解析式,当函数解析式确定后,已知x或y的任意一个值,都可以求出另一个值.三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.【解答】解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.【点评】此题由数量关系列出函数解析式,再把自变量的值代入函数解析式求得相对应的函数值,问题解决.20.已知一次函数y=x+6﹣m,求:(1)m为何值时,函数图象交y轴于正半轴?(2)m为何值时,函数图象与y轴的交点在x轴的下方?(3)m为何值时,图象经过原点?【考点】一次函数图象与系数的关系.【专题】计算题.【分析】(1)要使函数图象交y轴于正半轴,y=kx+b中b的值需大于0,即6﹣m>0,解不等式即可.(2)要使函数图象与y轴的交点在x轴的下方,y=kx+b中b的值需小于0,即6﹣m<0,解不等式即可.(3)图象经过原点,即6﹣m=0.【解答】解:(1)由题意得,6﹣m>0,解得,m<6;(2)由题意得,6﹣m<0,解得,m>6;(3)由题意得,6﹣m=0,解得,m=6.【点评】对于直线y=kx+b,当b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.21.用图象法求下面二元一次方程组的近似解.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由题意求方程的近似解,画出函数y=﹣+2与函数y=3x﹣4的图象,两函数的图象即为所求的方程组的解.【解答】解:由题意可知函数y=﹣+2与函数y=3x﹣4的交点即为方程组的解,如下图,由上图可知,交点近似为(1.8,1.3),∴二元一次方程组的近似解为.【点评】此题主要考查一次函数的性质及其图象,把二元一次方程同一次函数联系起来,利用函数的图象来解二元一次方程,是一道不错的题型.22.(2014秋•四川校级期末)已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】(1)设一次函数解析式为y=kx+b,把两个点的坐标代入函数解析式求解即可;(2)△AOC的边OC的长度为2,OC边上的高等于点A的纵坐标的长度,代入三角形的面积公式计算即可.【解答】解:(1)设一次函数解析式为y=kx+b,∵图象经过A(2,4),B(0,2)两点,∴,解得,∴一次函数解析式为y=x+2;(2)=×OC×AC=×2×4=4,S△AOC∴△AOC的面积为4.【点评】本题主要考查待定系数法求函数解析式,待定系数法是求函数解析式常用的方法,也是中考的热点之一.。

答案网补充习题答案汇总

答案网补充习题答案汇总

答案网补充习题答案汇总语文补充习题答案数学补充习题答案英语补充习题答案人教版部编本一年级语文上下册补充习题答案苏教版一年级上下册数学补充习题答案译林版1AB英语补充习题答案人教版部编本二年级语文上下册补充习题答案苏教版二年级上下册数学补充习题答案译林版2AB英语补充习题答案苏教版三年级上下册语文补充习题答案苏教版三年级上下册数学补充习题答案译林版三年级上下册英语补充习题答案苏教版四年级上下册语文补充习题答案苏教版四年级上下册数学补充习题答案译林版四年级上下册英语补充习题答案苏教版五年级上下册语文补充习题答案苏教版五年级上下册数学补充习题答案译林版五年级上下册英语补充习题答案苏教版六年级上下册语文补充习题答案苏教版六年级上下册数学补充习题答案译林版六年级上下册英语补充习题答案人教版七年级上下册语文补充习题答案(2017部编版)苏科版七年级上下册数学补充习题答案译林版七年级上下册英语补充习题答案人教版八年级上下册语文补充习题答案(2018部编版)苏科版八年级上下册数学补充习题答案译林版八年级上下册英语补充习题答案苏教版九年级上下册语文补充习题答案人教版九年级上下册语文补充习题答案(2019部编版)苏科版九年级上下册数学补充习题答案译林版九年级上下册英语补充习题答案其它补充习题答案汇总道德与法治:人教版部编本七年级上下册道德与法治补充习题答案苏人版七年级上下册道德与法治补充习题答案(配人教版部编本教材)苏人版八年级上下册道德与法治补充习题答案生物学:苏科版七年级生物学上下册补充习题答案苏科版八年级生物学上下册补充习题答案苏教版七年级生物学上下册补充习题答案苏教版八年级生物学上下册补充习题答案物理:苏科版初二物理上下册补充习题答案苏科版初三物理上下册补充习题答案化学:上教版九年级化学上下册补充习题答案附加作文:游玩桂林王府美丽的暑假,我们一家人来到了美丽的桂林。

这里真的好漂亮,跟我的家乡比,这里有很多小山、小河,温度虽然也高,但很舒服,我挺喜欢这里的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版八年级上数学教材答案第一章轴对称图形1.1练习 1、略 2、略 3、5条;1条;1条1.2练习 1、略2略 3、AB=A’B’,AP=A’P,BQ=B’Q;平行,因为垂直于同一条直线的两条直线平行。

习题 1、①④ 2、AB=A’B’ AO=A’O OB=OB’;对称,AA’,A’B’O,A’OB 3、略 4、略 5略1.3略1.4练习1、相等连接OA OB OC ,因为OA=OB,OA=OC,所以OB=OC,故0在BC的垂直平分线上 2、略3、作图略;相等(P19)练习1、过O点分别向CD AB CE作垂线,垂足分别为R S T,有OR=OS,OS=OT,故OR=OT,而O为∠C内的一点,∴O在CF上 2、略(P21)习题 1、一定,因为顶点到底边两短点的距离相等 2、略 3、7 4、略 5、作图略1.5习题1、(1)3;(2)2;(3)2或3.52、略3、30°;80°4、DA与CB垂直5、35°;20°;30°;40°6、40°或70°7、∠1=∠2=36°;△ABC,△ACD,△ABD为等腰三角形8、90,90;10;5,勾股定理9、45,22.5;45;AD,∵△ABE≌△CAD,全等三角形的对应边相等10、略11、∠ABC ∠ACB ∠BAE ∠DAC,∠AED ∠DAE ∠EDA;是,有一个角等于60°的三角形为等边三角形;30,1,有类似结论212、AD=BE,证明过程如下:∵AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD=∠BCE∴△ACD≌△BCE∴AD=BE1.6习题1、50°,50°,130°,130°2、略3(1)∠C=90-x,∠ABD=90-2x,∠ABC=90-x,∠A=90+x,∠ADB=90-2x,∠ADC=180-2x或90+2x(2)180-2x=90+2x,x=22.54、略 5略 6略7略复习题1、作图略2、略3、不是,补图略;可以4略5、AC,AB,A和C6、是等腰梯形,同一底上的两个角相等的梯形是等腰梯形7、(1)50,20,80(2)2.5,AB是腰则BC=3或2,BC是腰则BC=3或28、作图略 9、(1)相等,原因如下:AB ’=AP+PB ’,而,PB=PB ’,∴AB ’=AP+PB(2)AQ+QB>AP+PB ,两点之间线段最短或者三角形的两边之和大于第三边 10、36,18,剪纸略11、相等,等腰三角形的底边上的垂直平分线与顶角的平分线重合,而角平分线上的点到角两边的距离相等12、解:设∠B=x,∵AC=BC ,∴∠BAC=x, ∠BAC=180-2x又∵∠B+∠BAD=180, ∴∠BAD=180-x, ∠DAC=180-2x, ∠D=4x-180 而AB=DC, ∴∠B=∠BCD, ∠D+∠BCD=180 ∴4x-180+x=180 ∴x=7213、AB=AC ,证明如下:连接AO ,在△OBE 和△OCD 中,∠EOB=∠DOC, ∠BEO=∠CDO=90°,OB=OC ∴△OBE ≌△OCD ∴OE=OD∴OA 为∠BAC 的角平分线∴∠BAO=∠CAO,而∠EBO=∠ACO,AO=AO ∴△AOB ≌△AOC ∴AB=AC 14、(1)可以由边长为2的等边三角形剪成 (2)略 15略 16、(1)∵△BAC 为等腰直角三角形 ∴∠B=45, ∠BCA=45° 又∵CE=CA ∴∠CAE=22.5 而△BAD 为等腰三角形 ∴∠BAD=67.5°∴∠CAD=22.5°∴∠DAE=∠CAD+∠CAE=45° (2)不会改变∠DAE=45° ∠DAE=∠BAD-∠E=01(180-)2B E ∠-∠ 而∠E=12∠BCA ∴∠DAE=90°-12(∠B+∠BAC )=90°-12(180-∠BAC )=12∠BAC(3)∠DAE=12∠BAC第二章 勾股定理与平方根2.1练习1、25,30,102、h=2m3、略4、略2.2练习 1略2、是直角三角形,由222c a b =-得222c b a +=3、=∴222+AC AB BC =∴△BAC 为直角三角形 ∴∠BAC=90°2.3习题1、±13,±15,±12, ±0.4, 67±, 1.2±2、7,123233、4±,57±,92±4、13,55、d 136km<230km ===2.4习题1、-0.1,3-4,0.3,1,11 2、1.2,-6,-5,123、-12,32,-1,34、4倍5、4r R =≈2.5习题略2.6习题1、223.310⨯,83.610⨯ 2、2.2(2个有效数字),2.24,2.236,2.2361 3、(1)0.01,3个有效数字 (2)0.1,2个有效数字 (3)0.1,1个(4)0.1,2个有效数字2.7习题1、AB =2、17.0m AB ===320 3.354=67.1⨯,面积为(2m ) 4、设折断处离地面距离为x,则有9+22(10)x x =-,9120x =丈 5、连BE,设BG 与EC 的交点为M11=3282422BEG BDM S S S EG GF DE BC ∆∆-=⨯⨯-⨯⨯=-=阴影 其中,GF=8,BF=12 而CM BC GF BF =,83CM =,84433DM CD CM =-=-=5.657BD ==BG ==周长为L=BD+BG+EG+EM=5.657+14.422+4+1.333=25.412≈25.4复习巩固1、无理数:24π,2略,3略,4略,5略 6、是;不是7、2.2,3.2 8、略9、(1)BC = (2)1122ABC S AB AC AD BC ∆=•=•∴15201225AB AC AD BC •⨯=== 10、设甲地为A ,乙地为B,丙地为C ,则∠B=45°过A 向BC 作垂线,垂足为D ,则AD=BD=56.58 CD=43.42,∴AC ==11、16,BC =AC = △ABC 的周长为3.16+2.24+4.12=9.529.5≈12431+41+21=3.52ABC S ∆=⨯-⨯⨯⨯()12、略第三章 中心对称图形(一)3.1习题1、45n(其中n 为1,2,3···)2、(1)A,(2)90°(3)略3、略 3.2,3.3习题略3.4习题 1、4对2、是。

∵AB//CD ∴∠A+∠B=180° 又∵∠A=∠C ∴∠C+∠B=180° ∴AB//CD∴四边形ABCD 为ABCD Y3、是平行四边形4、5、6、7略 8、四边形AECF 为平行四边形∵四边形ABCD 为平行四边形 ∴OA=OC,OB=OD 又∵E 、F 分别为OB 、OD 的中点 ∴OE=OF∴四边形AECF 为平行四边形(两条对角线互相平分的四边形为平行四边形) 9、∵四边形ABCD 为平行四边形 ∴AB=CD, ∠ABD=∠CDB 又∠AEB=∠CFD=90°∴ABE CDF ∆≅∆∴AE=CF同理,ADF CBE ∆≅∆ ∴AF=CE∴四边形AECF 为平行四边形10、∠BAE=∠F=62° 001-2B ∠=∠(180BAE )=593.5习题1、错,对,错,对2、103、(1)BCE ∆为等腰三角形,证明过程如下: ∵AD//BC ∴∠DEC=∠BCE又∠BEC=∠DEC ∴∠BEC=∠BCE(2) 4、是矩形 5、6略7、是平行四边形,BD=8、是菱形,因为平行四边形OBEC 的对角线互相垂直 9、略10、∠E=22.5° 11、相等,EF=FC=DE12、∠ADE=∠BAF,AF ⊥DE3.6习题1、62、223、AF 和DE 互相平分4、是等腰梯形复习巩固1-10略 7、DE=2 11、AD=DC,AC=BD 12-15略 16、(1)AF=BD, ∵ACF DCB ∆≅∆ (2)AF=BD, ∵ACF DCB ∆≅∆17、四边形ABD 1C 1是平行四边形,因为AB 平行且相等于C 1D 1 18、(1)OE=OF∵l//BC ∴∠OEC=∠ECB, ∠EFC=∠FCD 又∵∠BCE=∠ECO, ∠OCF=∠FCD ∴∠OEC=∠ECO, ∠OCF=∠EFC ∴OE=OC,OC=OF ∴OE=OF(2)O 为AC 的中点 19、连接DE 、CF由题意知,OAD OBC ∆∆和为等边三角形,而E F 分别为OA OB 的中点, ∴EDC FCD ∆∆和为直角三角形 ∴11,22EG CD FG CD == ∴EG=FG 又12EF AB =∴EF=EG=FG∴EFG ∆为等边三角形 20、(1)254过程为:设BF=x, ∵BE=AB,AB=CD ∴BE=CD 又∵∠E=∠C=90°,∠BFE=∠DFC∴BEF DCF ∆≅∆ ∴DF=BF=x 而CF=8-2x 在Rt △CDF 中,由勾股定理得:222536(8),4x x =+-解得x= (2)过G 点作GM ⊥BC 于M GM=6设BH=y,则DH=y 在Rt △DHC 中,有222536(8),4y y y =+-=BM=AG=8-254=74, ∴MH=BC-BM-HC=8-7-7=92由勾股定理得2==第四章 数量、位置的变化4.1,4.2习题略 4.3习题1、略 2,13,m<0 3、略 4、P (-5,3) 5、D (0,3) 6-7略复习题 1-6略 7、(1)1980年和1990年 (2)29.2% 8、略 9、(1)B C,A B,A C (2)二,y 轴 10、略11、设C 到A 的距离为x,则有1322ABC S AB x x ∆=•=,故有3105,23x x == ∴C 点的坐标为(0,103)或(0,-103)12、不唯一,与同学交流略13、(1)人口总数和人口密度不断增大;(2)出生率高,而死亡率低;(3)我国从1988年开始,人口增长率不断下降 14、(-2,3)或(-2,-3) 15、略第五章 一次函数5.1习题1、略2、340l t =,2380米3、(1)314.1610y x -=-⨯ (2) 314.1610x y -=-⨯ 4-5略5.2习题1、(1)-11,4 (2)154,7 2、25y x =-;15;012.5x <≤ 3、802y x =-;20;364、0.32y x =;86875d x =;440 5、10a =6、有方程组:30;4k b b -+==-,得43k =,b=-41-5略(3)10200y x =+ (4)17005.4习题1、406Q h =-,252、(1)8010y x =+ (2)汽车到达B 站所用时间为3h ,可以到达C 站,在11时45分到达3、设通话时间为x,费用为y ,则第一种方案的费用为:1250.2y x =+,第二种方案为20.45y x = 当100x =即通话时间为100分钟时,12y y =,两种方式都可以选择;当100x <,即通话时间不足100分钟时,12y y <,应该选择第一种方式比较划算;当通话时间超过100分钟时,选择第二种方式划算。

相关文档
最新文档