多元函数极值的判别方法
用无条件极值判定多元函数条件极值

用无条件极值判定多元函数条件极值用无条件极值判定多元函数条件极值------------------------------------------------------------------多元函数的极值是指在定义域内,函数值变化最快的点,其特征为函数在极值点处切线垂直于坐标轴。
要求多元函数极值,一般采用导数法、无条件极值判定法、拉格朗日乘子法、几何法等方法。
### 一、导数法使用导数法来求多元函数极值,即通过计算函数的偏导数,使得偏导数等于0,从而得到极值点。
要想使用导数法求多元函数的极值,首先要计算出函数的一阶、二阶、三阶偏导数,然后将偏导数代入极值条件,即等于0,从而解出极值点。
### 二、无条件极值判定法无条件极值判定法是通过直观上判断函数在某一区间内是否存在极大值或者极小值,也就是判断函数在区间内的单调性。
例如,如果在某个区间内,函数的取值都是递增的,那么就说明该函数在该区间内有极小值;如果在某个区间内,函数的取值都是递减的,那么就说明该函数在该区间内有极大值。
### 三、拉格朗日乘子法拉格朗日乘子法是一种可以快速计算多元函数极值的方法。
这种方法将原来的多元函数变为一元函数,通过一元函数来求解多元函数的极值。
该方法的关键在于将原函数中的约束条件(如非负性约束、单调性约束、可行性约束等)用乘子的形式表达出来,然后将乘子代入原函数中,将原函数变为一元函数,最后使用一元函数的求解方法来解决该问题。
### 四、几何法几何法是通过图形直观表示来求多元函数极值的方法。
该方法通过在相应的图形上画上该函数的图形,然后由图形上的相应特征来判断该函数是否存在极大值或者极小值。
这种方法一般用于解决二元函数或者三元函数的问题。
总之,用无条件极值判定法来求多元函数条件极值是一种有效的方法,它不仅可以快速的找到多元函数的极值,而且还可以很好的发现多元函数的特性。
多元函数的极值分析

多元函数的极值分析在数学中,多元函数的极值分析是研究多元函数在特定范围内的最大值和最小值的问题。
它是微积分的重要内容,有着广泛的应用。
本文将介绍多元函数的极值分析方法和应用。
一、多元函数的定义多元函数是含有多个自变量的函数,通常用 f(x1, x2, ..., xn) 表示。
其中,x1, x2, ..., xn 是自变量,f 是函数的取值。
多元函数可以表示为在多维空间中的曲面。
二、局部极值点的判定1. 梯度为零的点对于一个具有连续偏导数的多元函数,其极值点通常出现在梯度为零的点上。
梯度是一个向量,其方向指向函数增长最快的方向。
当梯度为零时,函数在该点上可能是极大值、极小值或鞍点。
2. 黑塞矩阵的判别黑塞矩阵是多元函数的二阶偏导数构成的方阵。
通过计算黑塞矩阵的特征值,可以判断一个点是极大值点、极小值点还是鞍点。
三、全局极值点的判定当一个多元函数在特定范围内的所有局部极值点被找到后,还需要判定是否存在全局极值点。
1. 边界点的判定当多元函数在一个有界区域内进行极值分析时,需要考虑边界点。
边界点通常是通过检查给定区域的边界条件来判断的。
2. 偏导数的判别对于一个有界区域内的多元函数,可以通过计算边界点处的偏导数,来判定是否存在全局极值点。
四、应用案例多元函数的极值分析在实际问题中有着广泛的应用。
以下是几个应用案例。
1. 经济学中的效用函数在经济学中,效用函数描述了人们对商品或服务的偏好程度。
通过分析效用函数的极值,可以确定最大化消费者的满意程度。
2. 物理学中的能量函数在物理学中,能量函数描述了物体的能量随时间的变化。
通过分析能量函数的极值,可以确定物体的平衡位置和运动方程。
3. 工程学中的优化问题在工程学中,常常需要解决各种优化问题,如资源分配、路径规划等。
多元函数的极值分析可以为工程师提供最优解决方案。
五、总结多元函数的极值分析是数学中重要的内容,可以通过梯度为零的点和黑塞矩阵的判别来确定局部极值点。
多元函数极值点的判别

多元函数极值点的判别
多元函数极值点是指多元函数在一定范围内的局部极大值或极小值的点,其判别方法根据
函数是凸函数还是凹函数确定。
1. 如果函数是凸函数,则函数极值点为函数的局部极小值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远大于或等于0;
2. 如果函数是凹函数,则函数极值点为函数的局部极大值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远小于或等于0。
在判别多元函数极值点之前,需要求解该函数的一阶偏导数,并将一阶偏导数的值代入函数,如果函数的一阶偏导数的值为0,则代入函数得到的值即为多元函数极值点。
若不满足上述函数一阶偏导数等于零条件,则在该多元函数极值点处函数一阶导数不存在,此时只能采用函数的导数性质进行判别:
当多元函数的局部极大值点处,其一阶偏导数小于0;
当多元函数的局部极小值点处,其一阶偏导数大于0。
以上就是多元函数极值点的判断方法,要确定一个函数的极值点,需要先求出一阶偏导数,如果函数的一阶偏导数值等于0,则即为极值点。
若一阶偏导数值不等于0,则需要根据
其正负性判断多元函数极值点,大于零则为极小值,小于零则为极大值。
多元函数的极值

(4)求出函数z=f(x, y)对应极值点(x0, y0)的函数值f (x0, y0),即为极值。
例1 求 f (x ,y) x3 y3 3xy 的极值。
解 fx(x ,y) 3x2 3y,f y(x ,y) 3y2 3x
例2 要用铁板做一个体积为2 m3的,有盖长方体水箱,问 当长、宽、高各取怎样的尺寸时,才能使用料最省。
解 设水箱的长为x m,宽为y m,则其高应为 2 m xy
此水箱所用材料的面积为
A
2
xy
y
2 xy
x
2 xy
(x 0 ,y 0)
即
A
2
要用铁板做一个体积为2 m3的,有盖长方体水箱,问 当长、宽、高各取怎样的尺寸时,才能使用料最省。
整理结果,各驻点对应的极值判别如表所示。
驻点
(x ,y)
A
B
C
B2 AC f (x ,y)
(0 ,0)
0
-3
0
不是极
90
值
(1,1)
6
-3
是极小
6
27 0
值
由上表可知,(1, 1)点是极小点,f(1, 1)=-1是函数的极小 值.
二、二元函数的最大值和最小值
与一元函数类似,我们可以利用函数的极值来求函数的 最大值和最小值.如果函数z=f(x, y)在有界闭区域D上连续, 则函数z=f(x, y)在D上必定能取得最大值和最小值,且函数 最大值点或最小值点必在函数的极值点或在D的边界上。 因此,只需求出f(x, y)在各驻点和不可导点的函数值及在边 界上的最大值和最小值,将这些值加以比较即可。
多元函数极值的判定

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function of manyvariablesAbstract :This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义 1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-=V V V V V 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y fx∂∂.定义1.3[]3 设n D R ⊂为开集,12(,,,)n P x x x D ∈L ,0000122(,,,)P x x x D ∈L :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x L 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---L 为n 维列向量. 注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂L ,它是一个n 维向量函数.定义 1.4[]3(二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn ff f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭L L L L L L L此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1 (必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂. 定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂V 则1)当0<V 时,点00(,)x y 不是函数的极值点;2)当0>V 是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=V 时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=V 的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =L 在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)L ).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf f ff P x x x ∂∂∂'==∂∂∂L . 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =L 在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足00012(,,,)n x x x L 与12(,,,)n x x x L ,且0()P U P ⊂,0i i i x x x =-V ,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑V V V L V V V L V V V L V V 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x V V L V 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >V V L V ,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥V V L V .故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥V ,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<L L 的限制下,求函数12(,,,)n y f x x x =L 的极值问题,其中f 与(1,2,,)k k m ϕ=L 在区域D 有连续的一阶偏导数.若D 的点000012(,,,)n P x x x L 是上述问题的极值点,且雅可比矩阵01111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫ ⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭K M O M L的秩为m ,则存在m 个常数(0)(0)(0)12,,,mλλλL ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑L L L L的稳定点,即000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为下述n m +个方程: 111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑L L L L L L L L L L L L L L L L L L L L 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明. 由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =L 在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =L 在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =L 在0P 点取得极大值.证明 11n nL LdL dx dx x x ∂∂=++∂∂L , 2121222212121211()()n nn n L L Ld L d dL ddx d dx d dx x x x L L Ldx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂L L22212221222222122212()()n n n n n nL L L dx dx dx dx x x x x x L L L dx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂L L L22211112221(,,)n n n nn L L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭K L MO M L L11(,,)()n n dx dx dx f P dx ⎛⎫⎪''= ⎪ ⎪⎝⎭L L .又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。
多元函数的极值判别式

多元函数的极值判别式多元函数的极值判别式一般用于多元函数的极值问题的求解。
在数学中,极值是指函数在给定函数定义域内的最大值或最小值。
求解多元函数的极值问题可以应用于各种实际问题,例如在经济学中,我们可以利用极值来确定最优的产量、价格等策略。
本文将介绍多元函数的极值判别式与其求解方法。
一、多元函数定义在多元函数中,变量不仅有一个,而是可以有多个,因此,多变量函数通常被表示为$f(x_1, x_2,...,x_n)$,其中$x_1,x_2,...,x_n$是自变量。
因此,多变量函数的极值点也是$n$维的向量$(x_1,x_2,...,x_n)$。
二、多元函数的极值定义多元函数$f(x_1,x_2,...,x_n)$在点$(x_{1_0},x_{2_0},...,x_{n_0})$处取得最大值或最小值,可以通过判定定义域内所有局部的最大值和最小值,即极值点,然后比较这些点的函数值来确定。
三、多元函数的极值判别对于多元函数$f(x_1,x_2,...,x_n)$,考虑在点$(x_{1_0},x_{2_0},...,x_{n_0})$处是否取得极值,其必要条件为$f$在此处的所有偏导数均为零或不存在。
此外,还需要检查$f$在此处的二次型,即$f$的Hessian矩阵的行列式$\Delta$和特征值,来确定极值点的分类,即判断该点是否为极大值点或极小值点。
1、$\Delta>0$且所有特征值均为正,此时函数取得极小值。
2、$\Delta>0$且所有特征值均为负,此时函数取得极大值。
3、$\Delta<0$,此时函数在该点没有极值。
4、$\Delta=0$,需要进一步讨论。
若存在至少一个特征值为$0$,则函数在该点没有极值。
若存在特征值不为$0$,则需要进一步判定此点是否为鞍点。
四、多元函数的极值求解方法1、首先,我们需要求出$f$的所有偏导数。
2、将所有的偏导数设置为零,得到方程组。
3、解方程组,找到所有的极值点。
大学数学多元函数的极值与最值

大学数学多元函数的极值与最值多元函数是数学领域中的重要概念之一,研究多元函数的极值与最值对于优化问题的解决具有重要作用。
在本文中,将介绍多元函数的极值与最值的概念、计算方法以及应用。
一、多元函数的极值与最值概念多元函数是指涉及多个自变量和依赖变量的函数。
对于多元函数而言,极值即为函数在某个特定点上取得的最大值或最小值。
最值则是指函数在整个定义域上取得的最大值和最小值。
二、求多元函数的极值与最值的方法1. 隐函数求导法当函数无法直接表示为显式解析式时,可以通过隐函数求导的方法来求解极值。
该方法主要依靠链式法则来计算导数,进而确定极值的位置。
2. 梯度法梯度法是一种常用的优化算法,可以用来求解多元函数的极值问题。
其基本思想是沿着函数值下降最快的方向进行搜索,直到找到极值点。
3. 条件极值对于多元函数在一定条件下的极值问题,可以利用拉格朗日乘数法求解。
该方法通过引入约束条件,将多元函数的极值问题转化为带约束条件的无条件极值问题。
三、多元函数极值与最值的应用1. 经济学中的应用多元函数的极值与最值在经济学中有着广泛的应用。
以生产成本函数为例,通过求取其极小值可以得到最低成本的生产方案,帮助企业提高效益。
2. 工程优化问题在工程领域中,多元函数的极值与最值的求解能够帮助工程师找到最优设计方案,减少资源的浪费,提高整体效益。
3. 金融学中的投资问题在金融学中,多元函数的极值与最值的计算可以被应用于投资组合方面。
通过求取最大收益或最小风险的投资组合,可以帮助投资者制定合理的投资策略。
四、总结通过本文对大学数学多元函数的极值与最值的介绍,我们了解了多元函数极值的概念以及求解方法。
多元函数的极值与最值在实际问题中有着广泛应用,对于优化问题的解决具有重大意义。
因此,学好多元函数的极值与最值的相关知识,对于我们深入理解数学的应用和发展具有重要意义。
多元函数极值判定及应用

多元函数极值判定及应用多元函数的极值判定是求解多元函数在给定约束条件下的最大值或最小值的问题。
在数学分析中,通常利用求导和二阶导数的方法来判定多元函数的极值。
下面将详细介绍多元函数极值判定以及其应用。
一、多元函数的极值判定方法:1. 首先,对于多元函数f(x1, x2, ..., xn),我们需要找到其取得极值的条件。
由于计算多元函数的极值需要对每个自变量求偏导,所以要求多元函数在定义域内函数有定义并且可偏导。
2. 其次,求取多元函数的一阶偏导数并令其等于零,得到方程组。
设f 的极值点为(x1*, x2*, ..., xn*),则方程组为:∂f/∂x1 = 0, ∂f/∂x2 = 0, ..., ∂f/∂xn = 0。
3. 解方程组,求得极值点(x1*, x2*, ..., xn*)。
4. 接下来,根据二阶求导的结果来判定极值类型:(1)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素大于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极小值;(2)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素小于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极大值;(3)若二阶偏导数的行列式小于零,则多元函数在该点处不存在极值。
二、多元函数极值的应用:多元函数的极值判定在经济学、物理学、工程学等各个领域都有重要的应用。
下面以几个具体例子来介绍多元函数极值的应用。
1. 最小二乘法:在统计学中,我们常用最小二乘法来拟合数据,即通过拟合直线或曲线来描述数据的趋势。
最小二乘法的基本思想是选择一个合适的函数模型,使得模型与实际数据之间的残差平方和最小。
这就可以看作是一个多元函数极值的问题,利用极值点来确定最佳拟合曲线。
2. 生产优化问题:在工程学中,我们常遇到生产优化的问题,即如何在有限的资源条件下获得最大的产出。
这个问题可以用多元函数的极值来解决。
我们设生产函数为f(x1, x2, ..., xn),表示产出与各个生产因素之间的关系,然后根据生产约束条件求函数的最大值或最小值,得到生产过程中的最优方案。