苏教版八年级上数学知识点总结
苏教版八年级数学知识点总结

苏教版八年级数学知识点总结八年级数学是初中数学中的一项重要内容,对于学生的数学思维能力的培养和数学基础的奠定有着至关重要的作用。
而苏教版八年级数学则是较为常见并被广泛使用的一套教材。
本文将对苏教版八年级数学的知识点进行综述和总结。
一、代数代数是八年级数学的核心内容之一,主要包括:一元一次方程与等式,二元一次方程组,根式与分式,整式,一次函数及其应用等知识点。
1. 一元一次方程与等式一元一次方程指一个未知数为一次的方程,可以表示为ax+b=0 (a≠0),如2x+3=7。
对于一元一次方程,我们需要掌握基本的方程变形、用加减乘除消元、移项变号、去分母等方法来解方程。
同时,还需要理解为什么一元一次方程只有一个解或没有解。
在实际应用中,我们可以将问题转化为一元一次方程,进而解决问题。
比如有一道题目:“一堆苹果,分给a,b,c三人,分完后c 多得a,b两人分的各一半,若原来有21个苹果,则c得到多少个苹果?” 我们根据题意可以写出方程。
设a,b,c三人分别得到x,y,z个苹果,则有:x+y+z = 21;z = (x+y)/2;整理得:x + y - 2z = 0;插入第一个公式可得:x+y = 2z;代入第一个公式得:3z = 21,解得z=7。
所以c得到的苹果数是7个。
2. 二元一次方程组二元一次方程组由两个未知数的一次方程组成,一般写成:ax+by=c;dx+ey=f;我们需要掌握用消元法和代入法解二元一次方程组的基本方法和步骤。
同时还需要理解解出的解集的含义,如有唯一解、无解、无穷解等情况。
在实际应用中,二元一次方程组也有广泛的应用,如数学建模、物理力学等。
例如有一道题目:“使用8个10W和4个20W的灯泡,排成两排,第一排4个,第二排8个,第一排亮的灯泡功率大于等于第二排。
求每只灯有几瓦?” 我们根据题意可以写出方程组。
设第一排4个灯泡中有x个10W的和y个20W的,第二排8个灯泡中有m个10W的和n个20W的,则有:x+y = 4;m+n = 8;10x+20y >= 10m+20n;代入第三个方程可以得到: y>=n;n>=x;m>=y;插入第一个公式可得:n+m = 8-x;插入第二个公式可得:x+2y <= 4;整理可得:5y-2n >=2,解得y=2,n=1。
(完整版)苏教版初中数学知识点总结(适合打印)

1.分式的加、减、乘、除、乘方、开方法则2.分式的性质
⑴基本性质: = (m≠0) ⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;
⑤ 技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法
7.角的平分线及其表示8.对顶角及性质
9.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
1.配料问题:溶质=溶液×浓度2.溶液=溶质+溶剂3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
苏科版初二数学上册知识点

苏科版初二数学上册知识点苏科版初二数学上册知识点在日复一日的学习中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
还在苦恼没有知识点总结吗?以下是店铺帮大家整理的苏科版初二数学上册知识点,仅供参考,大家一起来看看吧。
苏科版初二数学上册知识点1(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来店铺就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
苏教版初中数学八年级上册实数知识点总结

苏教版初中数学八年级上册实数知识点总结一、平方根1、定义:一般地,如果x2=a(a≥0),那么这个数x就叫做a的平方根(或二次方根)。
2、表示方法:正数a的平方根记做,读作“正、负根号a”。
3、性质:(1)一个正数有两个平方根,它们互为相反数。
(2)零的平方根是零。
(3)负数没有平方根。
二、开平方1、定义:求一个数a的平方根的运算,叫做开平方。
三、算术平方根1、定义:一般地,如果x2=a(a≥0),那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
2、表示方法:记作,读作“根号a”。
3、性质:①一个正数只有一个算术平方根。
②零的算术平方根是零。
③负数没有算术平方根。
4、注意的双重非负性:四、立方根1、定义:一般地,如果x3=a那么这个数x就叫做a 的立方根(或三次方根)。
2、表示方法:记作,读作“三次根号a”。
3、性质:(1)一个正数有一个正的立方根。
(2)一个负数有一个负的立方根。
(3)零的立方根是零。
4、注意:,这说明三次根号内的负号可以移到根号外面。
5、五、开立方1、定义:求一个数a的立方根的运算,叫做开立方。
六、实数定义与分类1、无理数:无限不循环小数叫做无理数。
理解:常见类型有三类(1)开方开不尽的数:如等。
(2)有特定意义的数:如圆周率π,或化简后含有π的数,如π+8等。
(3)有特定结构的数:如0.1010010001……等;(注意省略号)。
2、实数:有理数和无理数统称为实数。
3、实数的分类:(1)按定义来分(2)按符号性质来分七、实数比较大小法理解1、正数大于零,负数小于零,正数大于一切负数。
2、数轴比较:数轴上的两个点所表示的数,右边的总比左边的大。
3、绝对值比较法:两个负数,绝对值大的反而小。
4、平方法:a、b是两负实数,若a2>b2,则a<b。
八、实数的运算1、六种运算:加、减、乘、除、乘方、开方。
2、实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
八年级上册苏教数学知识点

八年级上册苏教数学知识点八年级上册数学苏教教材为初中数学的一门重要课程,也是学生学习数学的基础。
本文将为你详细介绍八年级上册苏教数学的知识点。
一、有理数有理数是指可以用整数表示为分子,分母的数,包括正数、负数、整数和分数等。
在八年级数学中,我们需要掌握有理数的加减乘除、有理数的大小比较以及有理数的约分和通分等基础知识。
二、代数式代数式是用字母和数的组合表示的计算式,代表着一类数的集合。
在八年级上册数学中,我们需要掌握代数式的加减乘除、代数式的化简和合并、代数式的因式分解和分式运算等基础知识。
三、平面图形与空间图形八年级上册数学中,我们需要掌握平面图形的分类、平面图形的性质和判定、平面图形的面积和周长计算以及空间图形的分类、空间图形的性质和判定、空间图形的体积和表面积计算等基础知识。
四、函数函数是指两个集合之间的一种对应关系,在八年级上册数学中,我们需要掌握函数的概念、函数的图象和特征、函数的关系式和解析式、函数的定义域和值域、函数的最值和单调性等基础知识。
五、统计统计是指对事物数量、质量或某种属性等所进行的收集、整理、加工、分析和描述等一系列有关工作过程。
在八年级上册数学中,我们需要掌握数据的收集和整理、数据的描述和分析、概率的基本概念和计算等基础知识。
六、几何变换几何变换是指对平面图形进行的平移、旋转、翻折和对称等一系列规则操作。
在八年级上册数学中,我们需要掌握平移的概念和特征、旋转的概念和特征、翻折的概念和特征、对称的概念和特征等基础知识。
以上就是八年级上册苏教数学的主要知识点介绍,只有掌握好这些基础知识点,才能在该学年的数学学习中更好的前行。
苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]
![苏教版八年级上册数学[平方根(基础)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/f7818a54011ca300a6c390f5.png)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥是a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0 ||00a aa aa a>⎧⎪===⎨⎪-<⎩()()20a a a =≥ 知识点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】 类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________.【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2016春•庐江县期末)已知()22230x y x y ++++=,求2x y -的平方根.【答案】解:, 解得,∴ 2x y -=1﹣2×(﹣2)=5,∴5的平方根是±.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
苏教版初二数学上册知识点归纳

这篇关于苏教版初⼆数学上册知识点归纳的⽂章,是特地为⼤家整理的,希望对⼤家有所帮助!第⼀章轴对称图形⼀、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的⼀种关系,⽽轴对称图形是两部分能完全重合的⼀个图形。
联系:两者都有完全重合的特征,都有对称轴,都有对称点。
⼆、轴对称的性质1、定义——垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线。
2、把⼀个图形沿着⼀条直线折叠,如果它能够与另⼀个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
3、把⼀个图形沿着⼀条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
4、成轴对称的两个图形全等。
如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
三、线段、⾓的轴对称性1、线段是轴对称图形,线段的垂直平分线是它的对称轴。
线段的垂直平分线上的点到线段两端的距离相等;2、到线段两端距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线是到线段两端距离相等的点的集合。
3、⾓是轴对称图形,⾓平分线所在直线是它的对称轴。
⾓平分线上的点到⾓的两边距离相等;⾓的内部到⾓的两边距离相等的点,在这个⾓的平分线上。
四、等腰三⾓形的轴对称性1、等腰三⾓形是轴对称图形,顶⾓平分线所在直线是它的对称轴。
2、等腰三⾓形的两个底⾓相等(简称“等边对等⾓”)。
等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼互相重合。
3、如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(简称“等⾓对等边”)。
4、直⾓三⾓形斜边上的中线等于斜边的⼀半。
5、直⾓三⾓形中30°⾓所对的直⾓边是斜边的⼀半。
6、三边相等的三⾓形叫做等边三⾓形或正三⾓形。
等边三⾓形是轴对称图形,并且有3条对称轴。
等边三⾓形的每个⾓都等于60°。
7、三条边都相等的三⾓形是等边三⾓形。
苏教版新课标数学八年级上册知识点总结

千里之行,始于足下。
苏教版新课标数学八年级上册知识点总结
以下是苏教版新课标数学八年级上册的知识点总结:
一、小数的认识与数的运算
1. 小数的概念和性质:小数的进位和退位,0的引入和化简。
2. 小数的四则运算:加减乘除、小数乘法的规律、小数除法的规律。
二、有理数
1. 有理数的概念和性质:有理数的正负,有理数的比较和排序,有理数的绝对值。
2. 有理数的运算:有理数的加减乘除,有理数的乘方和开方。
三、平面直角坐标系
1. 平面直角坐标系的引入:点的横纵坐标,坐标轴和坐标系。
2. 平面直角坐标系的认识:点的坐标、点的位置关系、求两点之间的距离、中点坐标。
四、一次函数
1. 一次函数的引入:函数的概念,一次函数的定义和表示。
2. 一次函数的性质:函数的自变量和函数值、一次函数的图象和图象特征。
3. 一次函数的运算:一次函数的加减、一次函数的乘除。
五、等式与方程
1. 等式的性质和运算:等式的性质、等式的加减乘除运算。
2. 一元一次方程:一元一次方程的解、特殊方程的解、方程的解集表示。
这些是八年级上册数学中的主要知识点总结,希望能对你有所帮助。
第1页/共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
五、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(第三章 中心对称图形(一)一、平移1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
三、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n ,则多边形的对角线共有2)3(-n n 条。
从n 边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
四.平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab六、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积 S 菱形=底边长×高=两条对角线乘积的一半七.正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积设正方形边长为a ,对角线长为b S 正方形=222b a八、梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形等腰梯形(三)等腰梯形 1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。
(选择题和填空题可直接用) (四)梯形的面积 (1)如图,DE AB CD SABCD ∙+=)(21梯形 (2)梯形中有关图形的面积: ①BAC ABD S S ∆∆=; ②BOC AOD S S ∆∆=; ③BCD ADC S S ∆∆=八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
第四章 数量、位置的变化一、 在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。
它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。
点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。