概率论与数理统计
概率论与数理统计
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
概率论与数理统计
一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,
概率论与数理统计公式整理(超全免费版)
「 ef(x) w0,其中 0,则称随机变量X 服从参数为X 的分布函数为1xe, xF(x)'0,x<0。
记住积分公式:x ne xdx n!指数分布的指数分布如果二维随机向量(X, Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机(1)联合分离散型布设=(X,Y)的所有可能取值为(X i,y j)(i,j 1,2,),且事件{ =(X i,y j)}的概率为P ij,,称P{(X,Y) (X i,y j)} P j(i,j 1,2,)为=(X,Y)的分布律或称为X和Y的联合分布律。
联合分布有时也用下面的概率分布表来表示:这里P ij具有下面两个性质(1)P ij>0 (i,j=1,2,…);(2)P j 1.i j(1)大数定律X 切比雪夫大数定律设随机变量冶,X2,…相互独立,均具有有限方差,且被同一常数C所界:D (X i) <C(i=1,2,…),则对于任意的正数£,有limnPLx,丄n i 1 n° E(X i)i 11特殊情形: 若X1,X2,…具有相同的数学期望 E (X)=「则上式成为lim Pn1n X i大数定辛钦大数定律1.设卩是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数£,有limn伯努利大数定律说明,当试验次数小,即limn这就以严格的数学形式描述了频率的稳定性。
很大时,事件1.A发生的频率与概率有较大判别的可能性很0.设X1, X2,…,Xi,…是相互独立同分布的随机变量序列,且 E ( X n) =g,则对于任意的正数£有lim Pn1 nX in i 11.(2)中心极限定理2X N(,)n 格定理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:E(X k) ,D(X k) 0(k 1,2, ),则随机变量的分布函数F n(x)对任意的实数X,Y nnX k nk 1X k nlim F n(x) limn n此定理也称为独立同分布的中心极限定理。
概率论与数理统计完整ppt课件
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计公式整理(超全版)
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
(15)全概公式 (16)贝叶斯公式 (17)伯努利概型
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
泊松分布为二项分布的极限分布(np=λ ,n→∞)。
P( X
k)
CMk
C nk N M
CNn
k 0,1,2,l , l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
P( X k ) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足
1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 , 则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
第 1 章 随机事件及其概率
(1)排列组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m
n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可
。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结(超详细版)
概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
概率论与数理统计(完整版)
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
可列个A事 1, A2件 ,的和事件记 Ak.为
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.
概率论与数理统计最简单讲解
概率论与数理统计最简单讲解1 简介概率论是研究随机现象和概率规律的数学分支,一般分为经典概率、几何概率和统计概率。
数理统计是一个应用概率论于实际问题的统计学分支,主要研究样本及其分布、估计和假设检验等内容。
2 概率论的基本概念概率是指某件事情发生的可能性大小,用数字表示。
0表示不可能发生,1表示肯定发生,0~1之间的数字表示可能性大小。
概率分为主观概率和客观概率。
主观概率是指根据经验、知识、直觉等主观因素来判断某件事情发生的可能性大小。
而客观概率则是通过实验、统计等客观方法来计算某件事情发生的可能性大小。
3 经典概率和几何概率经典概率适用于“随机事件有限且等可能”的情形,如掷骰子,扑克牌等。
设事件A发生的可能性为P(A),则概率公式为:P(A)=有利样本数/总样本数。
几何概率适用于具有可度量性的随机现象,如从一个圆环上随机抽取有色球的概率,可以通过求圆环表面积和有色球的面积比来计算概率。
4 统计概率和条件概率统计概率是指基于概率分布函数,用频率的稳定性代替概率来计算随机事件发生的可能性大小。
条件概率指已知事件B发生的前提下,事件A发生的概率大小。
条件概率公式为:P(A|B)=P(AB)/P(B)。
5 数理统计的基本概念数据分为总体和样本两类。
总体是指研究对象的全体。
样本是指从总体中选出的一部分观测值。
统计量是从样本数据得到的量,通常用统计量来描述总体的某些特征。
6 样本分布样本的分布会受到样本容量、总体分布和抽样方式等因素的影响。
常见的样本分布有正态分布、t分布、F分布等。
其中正态分布是最重要的一种样本分布,因为它在自然界和社会方面都普遍存在。
7 参数估计参数估计是指通过样本数据来推断总体参数的值。
根据点估计和区间估计两种方式,可以计算出总体平均数、标准差、比例等各类参数的值。
8 假设检验假设检验是指将总体分布的某个特性提出一个假设,并利用样本数据来检验该假设的正确性。
假设检验包括两类错误:一类是将假设的否定但事实上是正确的,称为第一类错误;另一类是将假设的接受但事实上是错误的,称为第二类错误。
概率论与数理统计
E: 球编号, 一次取出 m个球, 记下颜色.
(或 Ab )1) #S P (a ,b)( a
k # A Cm Pak Pbmk ,
m ab
m ab
#b S n C , (a 1)
m ab
k mk # A Ca Cb ,
—— 超几何分布—— 注: 不放回地逐次取 m 个球与一次取 m 个球所得结果相同.
解: A = “取到的数被 6 整除”, B = “取到的数被 8 整除”.
则
P ( A) 333 , 2000 P ( B) 250 , 2000 P( AB) 83 , 2000
所求为:P( A
B ) P ( A B) 1 P ( A B )
1 [ P( A) P( B) P( AB )] 1 ( 333 250 83 ) 3 . 4 2000 2000 2000
1
例1. 一个盒中装有10个大小形状完全相同的球. 依次将球
编号为1-10 . 把球搅匀,蒙上眼睛,从中任取一球 . 1. 样本空间 S = { 1 2 3 4 5 6 7 8 9 10 }?
2. 记 A = “摸到 2 号球”,则 P(A) = ?
A = { 2 },
P( A) # A 1 ; # S 10
5 1 9 4 6 7 2 3 10 8
3. 记 B = “摸到红色球”,则 P(B) = ? B = { 1 2 3 4 5 6 }, P( B) # B 6 . # S 10
第一章 概率论的基本概念
2
例2 (p.13 例6). 在 1~2000 的整数中随机地取一个数,求
该数既不能被 6 整除, 又不能被 8 整除的概率.
概率论与数理统计总结
3、分布函数与概率的关系 ∞<<∞-≤=x x X P x F ),()()()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<4、离散型随机变量的分布函数 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B n k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松定理 0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nkn n λλ(3) 泊松分布 )(λP = ,2,1,0,!)(===-k k e k X P kλλ〔5〕几何分布 p q k p qk X P k -====-1,2,1}{1dt t f x F x ⎰∞-=)()(则称X 为连续型随机变量,其中函数f(x)称为随机变量X 的概率密度函数, 2、分布函数的性质:〔1〕连续型随机变量的分布函数F(x )是连续函数。
〔2〕对于连续型随机变量X 来说,它取任一指定实数a 的概率均为零,即P{X=a }=0。
3、常见随机变量的分布函数 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F (2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ ⎰∞---=xt t ex F d 21)(222)(σμσπN (0,1) — 标准正态分布+∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t ex x t d 21)(22π2、连续型随机变量函数的分布: 〔1〕分布函数法;(){}⎰⎰<==∈=yx g X l X y Y dx x f dx x f l X P y F y)()()(〔2〕设随机变量X 具有概率密度f X (x ),又设函数g(x )处处可导且恒有g '(x )>0 (或恒有g '(x )<0) ,则Y=g(X )的概率密度为()()[]()⎩⎨⎧<<'=其他βαy y h y h f y f X Y 其中x =h(y )为y =g(x )的反函数,()()()()()()∞+∞-=∞+∞-=g g g g ,max ,,min βα 3、 二维连续型随机变量 〔1〕联合分布函数为dudv v u f y x F y x ⎰⎰∞-∞-=),(),(函数 f (x ,y )称为二维向量(X ,Y )的(联合)概率密度. 其中: 0),(≥y x f ,⎰⎰∞∞-∞∞-=1),(dxdy y x f〔2〕基本二维连续型随机向量分布均匀分布:⎪⎩⎪⎨⎧∈=其他),(1),(G y x Ay x f二维正态分布:+∞<<-∞+∞<<∞--=-+------y x ey x f y y x x ,121),(])())((2)([)1(212212222212121212σμσσμμρσμρρσπσ3、离散型边缘分布律:4、 连续型边缘概率密度,),()(dy y x f x f X ⎰∞+∞-= dx y x f y f Y ⎰∞+∞-=),()(F (x ,y )=F x (x )F Y (y ) 则称随机变量X 和Y 是相互独立的3、连续型随机变量独立的等价条件 设(X ,Y )是连续型随机变量,f (x ,y ),f x (x ),f Y (y )分别为(X ,Y )的概率密度和边缘概率密度,则X 和Y 相互独立的充要条件是等式 f (x ,y ) = f x (x )f Y (y ) 对f (x ,y ),f x (x ),f Y (y )的所有连续点成立. 五、条件分布1、离散型随机变量的条件分布律: 〔3〕条件分布函数:2、连续型随机变量的条件分布 〔1〕条件分布函数⎰⎰∞-∞-==x Y Y X Y x Y X du y f y u f y x F y f du y u f y x F )(),()|()(),()|(||或写成, 〔2〕条件概率密度在Y=y 条件下X 的条件概率密度)(),()|(|y f y x f y x f Y Y X =同理 X=x 条件下X 的条件概率密度)(),()|(|x f y x f x y f X X Y =六、多维随机函数的分布1、离散型随机变量函数分布:二项分布:设X 和Y 独立,分别服从二项分布b (n 1,p ), 和b (n 2,p ),则 Z=X+Y 的分布律:Z ~b (n 1+n 2,p ).泊松分布:假设X 和Y 相互独立,它们分别服从参数为21,λλ的泊松分布,则Z=X+Y 服从参数为21λλ+的泊松分布。
概率论与数理统计公式整理(完整版)
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
(15)全概 公式
布,所以(0-1)分布是二项分布的特例。
5 / 27
概率论与数理统计 公式(全)
泊松分布
设随机变量 X 的分布律为 P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
2 / 27
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
设事件 B1, B2 ,…, Bn 及 A 满足
概率论与数理统计
制作人---张 页
古典概型概率的计算步骤: 古典概型概率的计算步骤 (1) 选取适当的样本空间 使它满足有限等可能的 选取适当的样本空间S, 要求, 且把事件A表示成 的某个子集. 表示成S的某个子集 要求 且把事件 表示成 的某个子集 (2) 计算样本点总数 及事件 包含的样本点数 计算样本点总数n及事件 包含的样本点数k. 及事件A包含的样本点数
A中的基本事件数 k = (3) 用下列公式计算 P( A) = 用下列公式计算: S中的基本事件总数 S中的基本事件总数 n
乘法原理: 乘法原理 加法原理: 加法原理 完成一件工作, 个步骤, 类方法有n 步有n 完成一件工作 需要m个步骤 而第1步有 完成一件工作, 需要 个步骤 而第 步有 种 类方法, 完成一件工作 有m类方法 而第 类方法有 1 1 种 类方法 而第1类方法有 方法, 2步有n2种方法 种方法,…,第 第 类方法有n 方法 类方法有 步 步 类方法有 方法, 第2类方法有 2种方法,…,第m类方法有法,种方 方法 第类方法有n 种方法 第m步有nm种方 m 依 次完成这m步时这项工作才完成 步时这项工作才完成, 次完成这 步时这项工作才完成 那么完成这项工 任选一种此工作就完成, 法, 任选一种此工作就完成 那么完成这项工作共有 种不同的方法. 作共有 +…+nm种不同的方法 N=n1+n2N=n1×n2 × … × nm种不同的方法 种不同的方法.
德
制作人---张德平 制作人---张德平
第 12 页
P(B) ≥ P(A).
一般地有: 一般地有 P(B-A)=P(B)-P(AB).
制作人---张德平 制作人---张德平
德
第
4 页
4 A 性质 . 对任一事件 , P(A) ≤ 1.
概率论与数理统计总结
概率论与数理统计总结3、分布函数与概率的关系 ∞<<∞-≤=x x X P x F ),()()()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<4、离散型随机变量的分布函数 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B nk p p C k X P k n k k n,,1,0,)1()(Λ=-==- 泊松定理 0lim >=∞→λnn np有Λ,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk nn λλ(3) 泊松分布 )(λP =Λ,2,1,0,!)(===-k k ek X P kλλ(5)几何分布 p q k p q k X P k -====-1,2,1}{1Λ dt t f x F x ⎰∞-=)()(则称X 为连续型随机变量,其中函数f(x)称为随机变量X 的概率密度函数, 2、分布函数的性质:(1)连续型随机变量的分布函数F(x )是连续函数。
(2)对于连续型随机变量X 来说,它取任一指定实数a 的概率均为零,即P{X=a }=0。
3、常见随机变量的分布函数 (1) 均匀分布 ),(b a Uf (x ,y )称为二维向量(X ,Y )的(联合)概率密度.其中: 0),(≥y x f ,⎰⎰∞∞-∞∞-=1),(dxdy y x f(2)基本二维连续型随机向量分布均匀分布:⎪⎩⎪⎨⎧∈=其他),(1),(G y x Ay x f二维正态分布:+∞<<-∞+∞<<∞--=-+------y x ey x f y y x x ,121),(])())((2)([)1(212212222212121212σμσσμμρσμρρσπσ3、离散型边缘分布律:3、 连续型边缘概率密度 ,),()(dy y x f x f X⎰∞+∞-= dx y x f y f Y⎰∞+∞-=),()(F (x ,y )=F x (x )F Y (y ) 则称随机变量X 和Y 是相互独立的3、连续型随机变量独立的等价条件 设(X ,Y )是连续型随机变量,f (x ,y ),f x (x ),f Y (y )分别为(X ,Y )的概率密度和边缘概率密度,则X 和Y 相互独立的充要条件是等式 f (x ,y ) = f x (x )f Y (y ) 对f (x ,y ),f x (x ),f Y (y )的所有连续点成立. 五、条件分布1、离散型随机变量的条件分布律: (3)条件分布函数:2、连续型随机变量的条件分布 (1)条件分布函数⎰⎰∞-∞-==x Y Y X Y x YX du y f y u f y x F y f du y u f y x F )(),()|()(),()|(||或写成,(2)条件概率密度在Y=y 条件下X 的条件概率密度)(),()|(|y f y x f y x fY Y X =同理 X=x 条件下X 的条件概率密度)(),()|(|x f y x f x y f X X Y =六、多维随机函数的分布 1、离散型随机变量函数分布:二项分布:设X 和Y 独立,分别服从二项分布b (n 1,p ), 和b (n 2,p ),则 Z=X+Y 的分布律:Z ~b (n 1+n 2,p ).泊松分布:若X 和Y 相互独立,它们分别服从参数为21,λλ的泊松分布,则Z=X+Y 服从参数为21λλ+的泊松分布。
概率论与数理统计ppt课件(完整版)
25
2.概率的性质:
性质1. P() 0.
性质2. 若 A1 , A 2 ,, An 是两两互不相容的事件 , 则 P( A1 A 2 An)
P( A1) P( A 2) P( A n). (有限可加性)
性质3. 若A B, 则有 P(B A) P(B) P( A);
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“
恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算 1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况.
E2: 将一枚硬币抛三次,观察正反面出现的情况.
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
A
s
B
(4)A B
10
5.事件的互不相容(互斥): 若A B , 则称A与B是互不相容的 , 或互斥的,即
A与B不能同时发生 .
B
A
AB
11
6. 对立事件(逆事件):
为对立事件. 即 : 在一次实验中 , 事件A与B中必然有一 个发生, 且仅有一个发生 .
若A B S且A B ,则称A与B互为逆事件,也称
概率论与数理统计公式(完整精华版)
(6)事件 的关系与 运算
加法原理(两种方法均能完成此事:)m+ n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种 方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事:)m× n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个 步骤可由 n 种方法来完成,则这件事可由 m× n 种方法来完成。 重复排列和非重复排列(有序)
1° f (x) 0。
2°
+¥ -¥
f
(
x)dx
=
1。
4
概率论与数理统计 公式(全)
知识点总结
(3)离 散与连 续型随 机变量 的关系 (4)分 布函数
P(X = x) » P(x < X £ x + dx) » f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P(X = xk) = pk 在离散型随机变量理论中所起的作用相类似。
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用w 来表示。
基本事件的全体,称为试验的样本空间,用 W 表示。
一个事件就是由 W 中的部分点(基本事件 w )组成的集合。通常用
大写字母 A,B,C,„表示事件,它们是 W 的子集。
W 为必然事件,Ø为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定 是必然事件。
①关系: 如果事件 A的组成部分也是事件 B 的组成部分,(A 发生必有事件
B 发生): A Ì B 如果同时有 A Ì B , B A ,则称事件 A 与事件 B 等价,或称 A
概率论与数理统计公式(全)
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用
)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k
n k k
n n q p k P C -=)(,n k ,,2,1,0Λ=。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
概率论与数理统计超全公式总结
~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±
zα
/2
⎝
σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2
≥
χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你们可以在算拒绝域时进行置信区间计算。
⑦ 拟合优度检验:
������
Z = ∑(������������ − ������������)2/(������������������)
������=1
数理统计部分习题:
四. (20 分) 假设总体 X 的概率分布为
六. (10 分) 为研究人们每天阅读电子书的时间(T)长短与购买实体书(Y)两者之间
的关系, 随机调查了 210 个人, 结果如下:
试在水平 α=0.05 下判断每天阅读电子书的时间长短和购买实体书两者之间是否
有关? 阅读电子书的时间长短和购买实体书之间呈现何种特点?
ANSWER: 六. (10 分) 假设每天阅读电子书时间长短与购买实体书之间无关,则由 Pearson 卡方检验有
试问甲乙两家工厂生产这种标称为 500 克的袋装盐重量上有无差异(α=0.05).
ANSWER:
五. (15 分布,则
(1) 考虑方差是否一致: 对假设 H0:σ21=σ22↔H1:σ21≠σ22, 由
检验统计量
, 因此在 0.05 水平下不能拒绝零假设。
只是一些小小的总结,希望能帮助你们复习 O(∩_∩)O~ 概率论:
① 很基本的概念性问题,比如 A∪(B∩C)=(A∪B)∩(A∪C)
② 条件概率
全概率公式:
Bayes 公式(已知结果,分析原因):
③
,则 AB 相互独立
④ Bernoulli 分布(两点分布):
EX=p Var(X)=p(1-p) 二项分布[B(n,p)]:
√������ 2
√������ 2
方差未知,求均值的置信区间:
采用统计量:
[���̅���
−
������ √������
������������−1
������ (2)
,
���̅���
+
������ √������
������������−1
������ (2)]
均值已知,求方差的置信区间:
采用统计量:
采用统计量: 方差σ2置信区间为:[(���������������2���−(���1���)⁄���2���2) , ������(���2������(���−1−1)���������⁄���22)]
⑥ 假设检验: 单样本正态总体:
在假设检验中统计量的选取与置信区间中选择是一样的,最好能够理解,如果不 能理解,上述列出的统计量就…….背下来吧………在计算接受域的过程中其实就算 出了置信区间,最重要的是搞清楚应该如何选用检验统计量,配合课后习题做完 还是能够比较好的理解的。 俩样本正态总体: 的样本相互独立 则有考虑价值的是均值差和方差比的检验
, EX=np Var(X)=np(1-p) 泊松分布[P( )]:
EX=
Var(X)=
均匀分布[U(a,b)]:
EX = 1
������−������
var(x) = (������−������)2
12
正态分布:
EX=u
var(x) = σ2
指数分布:
EX
=
1 ������
,������������������(������)
=
1 ������2
⑤
考点一般是第二点
多维情况
⑥ 边缘分布与条件分布: (X,Y)有概率密度函数 f(x,y) X 的边缘密度函数为 Y 的边缘密度函数为
记为
⑦ 随机变量的函数: 和与商:
记为
通
用
:
⑧
概率论部分习题: 建议:⑥七点已经连出了四次期末试卷了,相关系数也连着出了俩次,全概率公式和 BAYES 公式的题型也可以看看,把书上例题搞懂应该就可以做明白了。以上我列出的知 识点历年都有考核,不过我并没有看到今年的试卷,所以并不是我没列出来的就不考, 做这个文档只是方便大家在复习时查阅同时列出高频知识点。
X1,…,Xn 为从该总体中抽取的一组简单样本, 则
(1) 据此给出参数 p 的矩估计量p̂1和极大似然估计量p̂2
(2) p̂1和p̂2是否为无偏估计? 何者更有效?
(3) 若 n=100, 且一组样本值中统计发现其中等于 0 的有 23 个, 等于 1 的有 53 个, 等于 2 的有 24 个. 在显著性水平 α=0.05 下, 利用p̂2和拟合优度检验方法, 我们能否认为``该组样本来自于总体 X"? ANSWER:
为 p,各卵是否孵化相互独立,
试求
(1) 一个昆虫产生 m 个幼虫的概率。 (2) 若已知某个昆虫产生了 m 个幼虫,求该昆虫产了 n(n≥m)个卵的概率。
answer: (1)
(2)
数理统计部分: 【其实主要是置信区间,参数检验,和一部分极大似然估计和矩估计以及拟合优度】
① 一些概念,比如统计量,置信区间,检验中的第一二类错误,无偏性渐近正态性 等等
三.(15 分) 设随机变量 X,Y 相互独立, 且 X 服从均匀分布 U(−1,1), Y 服从均值为 1/2
的指数分布, 则
(1) 求随机变量 Z=(X+1)Y 和 X 的相关系数. (2) 求条件概率 P(Z>1|X=0).
Answer:
Answer:
二. (15 分) 设昆虫产卵数目服从参数为 1 的 Poisson 分布,而每个卵孵化为幼虫的概率
五. (15 分) 设甲乙两家食用盐工厂生产的食盐每袋重量均服从正态分布(忽略重 量不可取负值). 现从这两家工厂产品中各随机抽出 10 件标称为 500 克 的袋装食盐, 分别测得抽出各袋食盐的重量(单位为克)为 甲厂: 495, 494, 500, 502, 501, 492, 495, 495, 499, 503; 乙厂: 494, 506, 496, 505, 500, 508, 502, 504, 502, 499.
,因此在 0.05 水平下拒绝“每天阅读电子书时间长短与购买实体书之间无关”这一 假设。注意到在三类阅读时间下,购买实体书人的比例分别为 0.23,0.71 和 0.33, 因此每天阅读电子书时间在 1 小时和 3 小时之间的人群购买实体书的比例最高, 而当每天阅读电子书时间长于 3 小时后, 购买实体书的人比例反而下降为 0.33. 【PPS:上述这道题这三年也出过俩次,比较简单,分值都是 10 分,因为在比较后 面的部分我列出来让你们看看】
(2) 考虑均值是否一致:考虑假设 H0:μ1=μ2↔H1:μ1≠μ2, 由(1)结果知可以 使用两样本 t 检验,由检验统计量
因此拒绝零假设。即在 0.05 水平下拒绝“两家工厂的袋装食盐平均重量一致”这一 假设。 PS:区间估计和假设检验部分的作业题选取得已经非常具有代表性了,就我批改的 问题来说,大部分人还是没有弄懂….所以你们弄懂庄老师选取的课后题应该就没 有太大问题了
② 三大分布:
③ 正态样本的各种性质 ④ 矩估计和极大似然估计
极大似然估计:
⑤ 置信区间求法: 单个正态总体参数的置信区间:
���̅���和������̅为样本均值和样本方差 方差已知,求均值的置信区间:
采用统计量:
置信区间为[X̅ − ������ ������������ , X̅ + ������ ������������]
方差σ2置信区间为:[∑���������������=������1���2(���(���������������−⁄2������))2
,
] ∑������������=1(������������ −������)2
������������2(1−������⁄2)
均值未知,求方差置信区间:
最后,祝大家考试顺利 O(∩_∩)O~再次重申,我并未看过今年试卷,以上都是我 个人整理出来的算是考试频率比较高的知识点,努力让大家都能好好回家过年 __(:з)∠)_ 有关作业部分__(:з)∠)_那个太多了建议你们抱学霸大腿直接复印他们作业本吧 (-“-) 我们平常改作业的答案笔记实在是太混乱了,身为助教就帮你们到这里了, 如果有错漏记得告诉我Σ( ° △ °|||)︴ 我赶紧及时修改。