2014中考数学模拟试题含答案(精选5套)

合集下载

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣12.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10105.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.27.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1010.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.2014年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣1【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1608000000用科学记数法表示为:1.608×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.2【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于x3.【考点】同底数幂的除法.【分析】同底数幂相除底数不变,指数相减,【解答】解:x5÷x2=x3故答案为:x3.【点评】此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【专题】计算题.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.【考点】作图—应用与设计作图.【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【解答】解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.【点评】此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【考点】圆周角定理;等边三角形的判定与性质;勾股定理.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【考点】解直角三角形的应用.【专题】应用题.【分析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.【点评】本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】综合题.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【点评】本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.【点评】本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.祝福语祝你考试成功!。

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

2014年北京市中考数学试卷(含答案和解析)

2014年北京市中考数学试卷(含答案和解析)

算 2014 年该小区成年国民阅读图书的总数量约为
_________ 本.
?
21.( 5 分)( 2014?北京)如图, AB 是 eO 的直径, C 是 AB 的中点, eO 的切线 BD 交 AC 的延长线于点 D ,E 是 OB 的中点, CE 的延长线交切线 BD 于点 F,AF 交 eO 于点 H,连接 BH . ( 1)求证: AC=CD ; ( 2)若 OB=2,求 BH 的长.
AB , FE ,FD 之间的数量关系,并证明.
25.( 8 分)( 2014?北京) 对某一个函数给出如下定义: 若存在实数 M > 0,对于任意的函数值 y,都满足﹣ M <y≤M ,
则称这个函数是有界函数,在所有满足条件的
M 中,其最小值称为这个函数的边界值.例如,如图中的函数是有
界函数,其边界值是 1.
=所求情况数与总情况数之比.
4.( 4 分)(2014 ?北京)如图是几何体的三视图,该几何体是(

A .圆 锥
B.圆柱
C. 正 三棱柱
D .正 三棱锥
考点 : 由三视图判断几何体. 分析: 如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状. 解答: 解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,
五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分)
23.( 7 分)( 2014?北京)在平面直角坐标系 ( 1)求抛物线的表达式及对称轴;
2
xOy 中,抛物线 y=2x +mx+n 经过点 A (0,﹣ 2), B (3, 4).
( 2)设点 B 关于原点的对称点为 C,点 D 是抛物线对称轴上一动点,记抛物线在 A , B 之间的部分为图象 G(包

中考数学模拟试题含答案(精选5套)

中考数学模拟试题含答案(精选5套)

2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1 B.23 C. 2 D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个 3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( ) 7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( )A. (x + 2)2 = 9B. (x - 2)2= 9 C. (x + 2)2 = 1 D. (x - 2)2 =19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )圆弧 角 扇形 菱形A. B. C.(第7题A. 1∶2B. 1∶4C. 1∶ 3D. 2∶3 10. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 1 11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( ) A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 .(第11题(第12题(第17题三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 -n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x + 1. ……② (第21题图)°(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本(第23题(第24题图)次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个(第26题特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S△MPQ=21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC=41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+= 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分 ∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9-x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. (2)分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴…………… 4分180 a + 220(200-a)≤40880.解得78≤a≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、 选择题 1、数2-中最大的数是( )A 、1- B、0 D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +)A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( ) A 、0个 B 、5个 C 、6个 D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若x DE则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点 B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2014年河南省中考数学试题(含答案)

2014年河南省中考数学试题(含答案)

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-35×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放置,则所构成的几何体的左视图可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC →CB →BA运动,最终回到A点。

设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C的运动能路径为/CC,则图中阴影部分的面积为.15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.北京初中数学周老师的博客:l18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。

2014年浙江省宁波市中考数学试题(含答案)

2014年浙江省宁波市中考数学试题(含答案)

浙江省宁波市2014年中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)(2014•宁波)下列各数中,既不是正数也不是负数的是()A.0B.﹣1 C.D.2考点:实数;正数和负数.分析:根据实数的分类,可得答案.解答:解:0既不是正数也不是负数,故选:A.点评:本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.(4分)(2014•宁波)宁波轨道交通1号线、2号线建设总投资亿元,其中亿用科学记数法表示为()A.×108B.×109C.×1010D.×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:亿×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2014•宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.考点:翻折变换(折叠问题).分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和一个顶点处小于90°,另一顶点处大于90°,故本选项错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故本选项错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故本选项错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.4.(4分)(2014•宁波)杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为A.千克B.千克C.千克D.千克考点:正数和负数分析:根据有理数的加法,可得答案.解答:﹣)+5×(千克),故选:C.点评:本题考查了正数和负数,有理数的加法运算是解题关键.5.(4分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π考点:圆锥的计算专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=•4•2π•2=8π.故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(4分)(2014•宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10 B.8C.6D.5考点:菱形的性质;勾股定理.分析:根据菱形的性质及勾股定理即可求得菱形的边长.解答:解:∵四边形ABCD是菱形,AC=8,BD=6,∴OB=OD=3,OA=OC=4,AC⊥BD,在Rt△AOB中,由勾股定理得:AB===5,即菱形ABCD的边长AB=BC=CD=AD=5,故选D.点评:本题考查了菱形的性质和勾股定理,关键是求出OA、O B的长,注意:菱形的对角线互相平分且垂直.7.(4分)(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.考点:概率公式专题:网格型.分析:找到可以组成直角三角形的点,根据概率公式解答即可.解答:解:如图,C1,C2,C3,均可与点A和B组成直角三角形.P=,故选C.点评:本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(4分)(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,A.2:3 B.2:5 C.4:9 D.:考点:相似三角形的判定与性质.分析:先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出△ABC与△DCA的面积比=.解答:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比=.9.(4分)(2014•宁波)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0考点:命题与定理;根的判别式专题:常规题型.分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解答:解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.10.(4分)(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.11.(4分)(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.(4分)(2014•宁波)已知点A(a﹣2b,2﹣4ab)在抛物线y=x+4x+10上,则点A A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)考点:二次函数图象上点的坐标特征;坐标与图形变化-对称.分析:把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.解答:解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,(a+2)2+4(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴a﹣2b=﹣2﹣2×1=﹣4,2﹣4ab=2﹣4×(﹣2)×1=10,∴点A的坐标为(﹣4,10),∵对称轴为直线x=﹣=﹣2,∴点A关于对称轴的对称点的坐标为(0,10).故选D.点评:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2014•宁波)﹣4的绝对值是4.考点:绝对值专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣4|=4.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(4分)(2014•宁波)方程=的根x= ﹣1.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)(2014•宁波)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是150支.考点:扇形统计图分析:首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.解答:解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%,∴售出雪糕总量为200÷40%=500支,∵水果口味的占30%,∴水果口味的有500×30%=150支,故答案为150.点评:本题考查了扇形统计图的知识,解题的关键是正确的从扇形统计图中整理出进一步解题的有关信息.16.(4分)(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.点评:本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.17.(4分)(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.()考点:解直角三角形的应用.分析:如图,根据三角函数可求BC,CE,则BE=BC+CE可求,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:×sin45°×米,CE=5×sin45°=5×米,BE=BC+CE≈,÷sin45°÷米,(56﹣)÷÷≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.18.(4分)(2014•宁波)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6cm2.考点:垂径定理;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:作三角形DBF的轴对称图形,得到三角形AGE,三角形AGE的面积就是阴影部分的面积.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.点评:本题考查了平行线的性质,垂径定理,勾股定理的应用.三、解答题(本大题有8小题,共78分)19.(6分)(2014•宁波)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;考点:整式的混合运算;解一元一次不等式分析:(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.解答:解:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,移项、合并同类项得3x>15,系数化为1,得x>5.点评:本题考查了整式的混合运算以及解一元一次不等式,是基础知识要熟练掌握.20.(8分)(2014•宁波)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费元,求2014年租车费收入占总投入的百分率(精确到).考点:条形统计图;加权平均数;中位数;众数专题:计算题.分析:(1)找出租车量中车次最多的即为众数,将数据按照从小到大顺序排列,找出中间的数即为中位数,求出数据的平均数即可;(2)由(1)求出的平均数乘以30即可得到结果;(3)求出2014年的租车费,除以总投入即可得到结果.解答:解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;,8,8,8,9,9,10,中位数为8;)÷;(2)根据题意得:30×(万车次),则估计4月份(30天)共租车255万车次;(3)根据题意得:=,则2014年租车费收入占总投入的百分率为.点评:此题考查了条形统计图,加权平均数,中位数,以及众数,熟练掌握各自的定义是解本题的关键.21.(8分)(2014•宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;考点:解直角三角形的应用分析:(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.解答:解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×千米,AH=AC•cos∠CAB=AC•cos25°≈10×千米,在Rt△BCH中,BH=CH÷tan∠÷tan37°≈÷千米,∴千米.故改直的公路AB的长千米;(2)在Rt△BCH中,BC=CH÷sin∠÷sin37°≈÷千米,则AC+BC﹣AB=10+7﹣千米.千米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.22.(10分)(2014•宁波)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)利用“HL”证明△AOB≌△DCA;(2)先利用勾股定理计算出AC=1,再确定C点坐标,然后根据点E为CD的中点可得到点E的坐标为(3,1),则可根据反比例函数图象上点的坐标特征求得k=3;(3)根据中心对称的性质得△BFG≌△DCA,所以FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,则可得到G点坐标为(1,3),然后根据反比例函数图象上点的坐标特征判断G点是否在函数y=的图象上.解答:(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x 轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,∴Rt△AOB≌Rt△DCA;(2)解:在Rt△ACD中,CD=2,AD=,∴AC==1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),∴k=3×1=3;(3)解:点G是否在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y=的图象上.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、中心对称的性质和三角形全等的判定与性质;会利用勾股定理进行几何计算.23.(10分)(2014•宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.考点:待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组)分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.解答:解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C (4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.点评:本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?考点:一元一次方程的应用;列代数式.分析:(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.解答:解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三考点:相似形综合题;图形的剪拼分析:(1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和°,再以°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾AEC在同一直线上,易得2种三角形ABC.根据图形易得x的值.(3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.(3)如图4,CD、AE就是所求的三分线.设∠B=a,则∠DCB=∠DCA=∠EAC=a,∠ADE=∠AED=2a,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2x=(x+y):2,所以联立得方程组,解得,即三分线长分别是和.点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.考点:圆的综合题分析:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.解答:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.点评:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.。

中考数学一模试题(含答案解析)

中考数学一模试题(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。

中考数学模拟卷(含答案)

中考数学模拟卷(含答案)

中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。

中考初中数学圆的最值问题含答案分析

中考初中数学圆的最值问题含答案分析

数学组卷圆的最值问题一.选择题(共7小题)1.(2014春•兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是()A.m≥0 B.C.D.2.(2013•武汉模拟)如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA 长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3 B.6 C. D.3.(2014•武汉模拟)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C 两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2 B.3 C.D.34.(2015•黄陂区校级模拟)如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D 重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3D.r=35.(2010•苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.6.(2013•市中区模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()A.63 B.31C.32 D.307.(2013•枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.90°B.60°C.45°D.30°二.填空题(共12小题)8.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE 交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.9.(2015•黄陂区校级模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M 为BD的中点,在D点运动过程中,线段CM长度的取值范围是.10.(2012•宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.11.(2015•峨眉山市一模)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=10,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.若⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则半径r的取值范围是:.12.(2013•长春模拟)如图,在△ABC中,∠C=90°,AC=12,BC=5,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则PQ长的最小值为.13.(2013•陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.14.(2013•咸宁)如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(点Q为切点),则切线PQ的最小值为.15.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.16.(2011•苏州校级一模)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.则线段AB的最小值是.17.(2015秋•江阴市校级期中)如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为28,且DE=4,则sin∠ODE=.18.(2014春•兴化市校级月考)如图所示,已知A(1,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.19.(2015•泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.三.解答题(共5小题)20.(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.21.(2014春•泰兴市校级期中)如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.22.已知:如图,AB是⊙O的直径,在AB的两侧有定点C和动点P,AB=5,AC=3.点P在上运动(点P不与A,B重合),CP交AB于点D,过点C作CP的垂线,与PB的延长线交于点Q.(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.O A D B C E FOD CE A B 23.(2013•日照)问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B ′,连接AB ′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b ),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 .(2)知识拓展:如图(c ),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程.24.(2012•苏州)如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x(2<x <4).(1)当x=时,求弦PA 、PB 的长度;(2)当x 为何值时,PD •CD 的值最大?最大值是多少?25、如图,在等腰Rt △ABC 中,∠C=90°,AC =BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F,在此运动变化的过程中,线段EF 长度的最小值为 .26、如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE,则⊙O 半径的最小值为( ).A 。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2014年泸州市中考数学试卷及答案(解析版)

2014年泸州市中考数学试卷及答案(解析版)

2014年四川省泸州市中考数学试题参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分. 只有一项是符合题目要求的.)1.5的倒数为(A)A.B.5C.D.﹣52.计算x2•x3的结果为(B)A.2x2B.x5C.2x3D.x63.如图的几何图形的俯视图为(C )A.B.C.D.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是(C)A.38 B.39 C.40 D.425.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为(C)A.30°B.60°C.120°D.150°6.已知实数x、y 满足+|y+3|=0,则x+y的值为(A)A.﹣2 B.2C.4D.﹣47.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为(B)A.9cm B.12cm C.15cm D.18cm8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是(A)A.B.C.D.9.“五一节"期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(C)10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是(D)A.外切B.相交C.内含D.内切11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是(C)A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.二、填空题(本大题共4小题,每小题3分,共12分. 请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.16.如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).解答:解:命题①错误.理由如下:∵k=4,∴E(,3),F(4,1),∴CE=4﹣=,CF=3﹣1=2.∴S△OEF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△CEF=S矩形AOBC﹣OA•AE﹣OB•BF﹣CE•CF=4×3﹣×3×﹣×4×1﹣××2=12﹣2﹣2﹣=,∴S△OEF≠,故命题①错误;命题②正确.理由如下:∵k=,∴E(,3),F(4,),∴CE=4﹣=,CF=3﹣=.如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;在线段BM上取一点N,使得EN=CE=,连接NF.在Rt△EMN中,由勾股定理得:MN===,∴BN=OB﹣OM﹣MN=4﹣﹣=.在Rt△BFN中,由勾股定理得:NF===.∴NF=CF,又∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称, 故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的解析式为y=ax+b,则有,解得,∴y=x+3m+3.令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=AD=OD﹣OA=3m,AE=4m,由勾股定理得:DE=5m;在Rt△MEG中,MG=OG﹣OM=(4m+4)﹣4m=4,EM=3,由勾股定理得:EG=5.∴DE•EG=5m×5=25m=,解得m=,∴k=12m=1,故命题④正确.综上所述,正确的命题是:②④,故答案为:②④.三、(本大题共3小题,每题6分,共18分)17.计算:﹣4sin60°+(π+2)0+()﹣2.解答:解:原式=2﹣4×+1+4=5.18.计算:(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣)=﹣•=﹣.19.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.解答:证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=90°∠ABG+∠CBF=90°,∵∠ABG+∠FNC=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.四、(本大题共2小题,每小题7分,共14分)20.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.解答:解:(1)∵x%+15%+10%+45%=1,∴x=30;∵调查的总人数=90÷45%=200(人),∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),如图:(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,所以选出的2人来自不同小组的概率==.21.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解答:解:(1)y=700x+1200(50﹣x),即y=﹣500x+60000;(2)由题意得,解得16≤x≤30y=﹣500x+60000,y随x的增大而减小,当x=16时,y最大=58000,生产B种产品34件,A种产品16件,总利润y有最大值,y最大=58000元.五、(本大题共2小题,每小题8分,共16分)22.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)解答:解:如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,过点A作AF⊥FD,垂足为F,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°===,解得:x=15(+1),∵tan30°=,∴=,解得:BN=15+5,∴AB=AN+BN=15(+1)+15+5=30+20,答:灯塔A、B间的距离为(30+20)海里.23.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.六、(本大题共2小题,每小题12分,共24分)24.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.解答:(1)证明:∵DC2=CE•CA,∴=,∴△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=,∴PC=4又∵PC•PD=PB•PA,∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°,∴∠FDA+∠BDC=90°,∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°,∴△AFD∽△ACB,∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.25.如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).。

2014年上海市闸北区中考数学二模试卷含答案解析(word版)

2014年上海市闸北区中考数学二模试卷含答案解析(word版)

2014年上海市闸北区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的.1.(4分)9的平方根是()A. 3 B.﹣3 C.3和﹣3 D. 9分析:根据平方根的定义解答即可.解答:解:∵(±3)2=9,∴9的平方根是3或﹣3.故选C.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.2.(4分)下列实数中,是无理数的是()A. B.C.D. cos60°考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、cos60°=,是分数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(4分)在下列二次根式中,与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:先将各选项化简,再找到被开方数为a的选项即可.解答:解:A、a与被开方数不同,故不是同类二次根式;B、=|a|与被开方数不同,故不是同类二次根式;C、=|a|与被开方数相同,故是同类二次根式;D、=a2与被开方数不同,故不是同类二次根式.点评:此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.4.(4分)下列方程有实数根的是()A.x2﹣x+1=0 B.x4=0 C.=D.=0考点:根的判别式;高次方程;无理方程;分式方程的解.分析:本题是根的判别式的应用试题,不解方程而又准确的判断出方程解的情况,那只有根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.解答:解:A、x2﹣x+1=0,△=b2﹣4ac=1﹣4=﹣3<0,所以没有是实数根,故选项错误;B、x4=0的实数根是x=0,故选项正确;C、去掉分母后x=1有实数根,但是使分式方程无意义,所以舍去,故选项错误;D、=0,两边平方得x2+1=0的△=b2﹣4ac=0﹣4<0,也没有实数根,故选项错误.故选:B.点评:本题是对方程实数根的考查,求解时一要注意是否有实数根,二要注意有实数根时是否有意义.5.(4分)某中学篮球队14名队员的年龄情况如表,则这些队员年龄的众数和中位数分别是()年龄(单位:岁)14 15 16 17 18人数 2 3 4 3 2A.15,16 B.16,16 C.16,16.5 D. 17,16.5考点:众数;中位数.分析:根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),即可得出答案.解答:解:16出现了4次,出现的次数最多,则众数是16;因为共有14个数,把这组数据从小到大排列,最中间两个数的平均数是第7个数和第8个数的平均数,所以中位数是(16+16)÷2=16;点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(4分)如图,EF是⊙O的直径,CD交⊙O于M、N,H为MN的中点,EC⊥CD于点C,FD⊥CD于点D,则下列结论错误的是()A.CM=DN B.C H=HD C.O H⊥CD D.=考点:垂径定理;梯形中位线定理.分析:根据垂径定理的推论以及梯形的中位线定理,可判断A、B、C正确,再由排除法可知D错误.解答:解:∵H为MN的中点,∴OH⊥CD,故C正确;∵EC⊥CD于点C,FD⊥CD于点D,∴EC∥OH∥FD,又∵EF是⊙O的直径,OE=OF,∴CH=HD,故B正确;∵CH=HD,H为MN的中点,∴CM=DN,故A正确;由排除法可知D错误,故选:D.点评:本题主要考查了垂径定理的推论以及梯形的中位线定理,熟练掌握定理及推论是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)我国最长的河流长江全长约为6300千米,用科学记数法表示为 6.3×103千米.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n>0,n=3.解答:解:6 300=6.3×103.答:用科学记数法表示为6.3×103千米.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).8.(4分)计算:x4n÷x n=x3n.考点:同底数幂的除法.分析:运用同底数幂的除法法则计算.解答:解:x4n÷x n=x3n.故答案为:x3n.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.9.(4分))因式分解:2a2﹣2=2(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).点评:本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(4分)化简﹣的结果是.考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:﹣==.故答案为:.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.11.(4分)方程的根是x=3.考点:无理方程.分析:方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.解答:解:方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边==2,则左边=右边.故x=3是方程的解.故答案是:x=3.点评:本题考查了无理方程的解法,解无理方程的基本思路是转化成整式方程,并且解方程时必须要检验.12.(4分)已知反比例函数y=的图象如图所示,则实数m的取值范围是m>1.考点:反比例函数的性质.分析:先根据反比例函数的图象在一、三象限列出关于m的不等式,求出m的取值范围即可.解答:解:∵由图可知反比例函数的图象在一、三象限,∴m﹣1>0,即m>1.故答案为:m>1.点评:本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.13.(4分)从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为.考点:概率公式;关于原点对称的点的坐标.分析:根据中心对称图形的定义得出所有的中心对称图形,进而利用概率公式求出即可.解答:解:∵等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中,中心对称图形有:平行四边形、矩形、菱形、圆共4个,∴6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为:=.故答案为:.点评:此题主要考查了中心对称图形的定义以及概率公式的应用,正确把握中心对称图形的定义是解题关键.14.(4分)某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图根据图形所提供的样本数据,可得学生参加科技活动的频率是0.2.考点:条形统计图;频数与频率.分析:首先根据统计图,得到总人数和参加科技活动的人数;再根据频率=频数÷总数进行计算即可.解答:解:根据图可得:共有(15+30+20+35)=100人,参加科技活动的频数是20,则参加科技活动的频率0.2.故答案为:0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(4分)已知||=3,||=5,且与反向,则用向量表示向量,即=﹣.考点:*平面向量.分析:先表示出两个向量模的关系,再根据反向解答即可.解答:解:∵||=3,||=5,∴||=||,∵与反向,∴=﹣.故答案为:﹣.点评:本题考查了平面向量,难点在于反向向量的表示方法.16.(4分)如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为20sinα米(结果用含α的三角比表示).考点:解直角三角形的应用-坡度坡角问题.分析:利用所给角的正弦函数求解.解答:解:∵sinα=,∴BC=AB•sinα=20sinα.点评:此题主要考查三角函数定义的应用.17.(4分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.考点:平行线的性质;三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.解答:解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.点评:本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.18.(4分)如图,等腰△ABC的顶角A的度数是36°,点D是腰AB的黄金分割点(AD>BD),将△BCD绕着点C按照顺时针方向旋转一个角度后点D落在点E处,联结AE,当AE∥CD时,这个旋转角是72或108度.考点:旋转的性质;黄金分割.分析:先证出点D是腰AB的黄金分割点时,CD是∠ACB的平分线,当AE∥CD时,分两种情况,利用图形解出旋转角为72°或108°.解答:解:假设CD为∠ACB的平分线,∵∠A=36°,∴∠B=∠ACB=72°,∴∠ACD=∠DCB=36°,∴BC=DC=AD,∴△CDB∽△ABC,∴=,∴AD:AB=DB:AD,点D是腰AB的黄金分割点,∴CD是∠ACB的平分线,①如图1,∵AE∥CD时,∴∠EAC=∠ACD=36°,∴EC∥AD,∵AD=CD∴四边形ADCE是菱形.∴此时这个旋转角72°②如图2,∵AE∥CD时,∴∠EAC=∠ACD=36°,∴EC∥AD,∵AD=CD∴四边形ADCB′是菱形.∴∠B′CD=72°,∴∠EB′C=72°,∠B′EC=72°,∴此时这个旋转角36°+36°+36°=108°,故答案为:72或108.点评:本题主要考查了旋转的性质及黄金分割,解题的关键是求出CD为∠ACB的平分线.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(π﹣1)0+|﹣|+().考点:二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=+1++2,然后分母有理化后合并即可.解答:解:原式=+1++2=﹣1+1++2=2+2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、分数指数幂和特殊角的三角函数值.20.(10分)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:解不等式①得:x>﹣1,解不等式②得:x≤4,所以不等式组的解集为﹣1<x≤4,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.21.(10分)已知:如图,在梯形ABCD中,DF平分∠D,若以点D为圆心,DC长为半径作弧,交边AD于点E,联结EF、BE、EC.(1)求证:四边形EDCF是菱形;(2)若点F是BC的中点,请判断线段BE和EC的位置关系,并证明你的结论.考点:梯形;全等三角形的判定与性质;菱形的判定与性质.分析:(1)根据圆的性质可得ED=DC,根据SAS证明△EDF≌△CDF,可得EF=CF,根据梯形的性质和平行线的性质,由等角对等边可得CF=CD,再根据菱形的判定即可求解;(2)先根据平行四边形的判定可证四边形BEDF是平行四边形,再根据菱形的性质即可求解.解答:解:(1)∵DF平分∠D,∴∠EDF=∠CDF,∵DC长为半径作弧,∴ED=DC,在△EDF与△CDF中,,∴△EDF≌△CDF(SAS)∴EF=CF,∵四边形ABCD是梯形,∴AD∥BC,∴∠EDF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴ED=DC=CF=EF,∴四边形EDCF是菱形.(2)线段BE和EC的位置关系是垂直.∵点F是BC的中点,∴BF=CF,∴BF=ED,∵ED∥BF,∴四边形BEDF是平行四边形,∴BE∥DF∵四边形EDCF是菱形,∴EC⊥DF∴BE⊥EC.点评:考查了梯形,解决此问题,要弄清梯形的性质、全等三角形的判定与性质、平行四边形的判定和性质及菱形的判定.22.(10分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.23.(12分)已知:如图,点D是线段BC上的任意一点,△ABD和△DCE都是等边三角形,AD与BE交于点F.(1)求证:△BDE≌△ADC;(2)求证:AB2=BC•AF;(3)若BD=12,CD=6,求∠ABF的正弦值.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)由△ABD和△DCE都是等边三角形,得出BD=AD,DE=DC,∠FAB=∠ABC=∠ADB=∠EDC,进而得出∠BDE=∠ADC,即可求证△BDE≌△ADC;(2)由△FAB∽△ABC,得出=,即可得出AB2=BC•AF,(3)由△FAB∽△ABC,得出∠ABF=∠ACB,可求sin∠ACB,即可得出∠ABF的正弦值.解答:证明:(1)∵△ABD和△DCE都是等边三角形∴BD=AD,DE=DC,∠FAB=∠ABC=∠ADB=∠EDC=60°,∴∠BDE=∠ADC.在△BDE和△ADC中,,∴△BDE≌△ADC(SAS);(2)∵△BDE≌△ADC∴∠DBE=∠DAC∵∠ABC=∠ADB=60°∴∠ABF=∠BCA∵∠FAB=∠ABC,∠ABF=∠BCA,∴△FAB∽△ABC,∴=,即AB2=BC•AF,(3)如图,∵△FAB∽△ABC∴∠ABF=∠ACB,过A作AM⊥BC于点M∵△ABD是等边三角形,BD=12∴MD=6,AM=6,在Rt△AMC中,AC===12,∴sin∠ACB===,即sin∠ABF=.点评:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质及勾股定理,解题的关键是证出△FAB∽△ABC.24.(12分)已知:如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B 的左侧),与y轴交于点C,且cos∠CAO=.(1)求二次函数的解析式;(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,请求出点P坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)对于二次函数解析式,令x=0求出y的值确定出C坐标,根据题意得到三角形AOC为等腰直角三角形,确定出A坐标,代入二次函数解析式求出a的值,即可确定出解析式;(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,由圆O与直线AC相切于点D,得到OD垂直于AC,由OA=OC,利用三线合一得到D为AC 中点,进而求出DE与DF的长,确定出D坐标即可;(3)分两种情况考虑:经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,与抛物线解析式联立求出P坐标;经过点O且与直线AC平行的直线的解析式为y=x,与抛物线解析式联立求出P坐标即可.解答:解:(1)∵二次函数y=ax2+4的图象与y轴交于点C,∴点C的坐标为(0,4),∵二次函数y=ax2+4的图象与x轴交于点A,cos∠CAO=,∴∠CAO=45°,∴OA=OC=4,∴点A的坐标为(﹣4,0),∴0=a(﹣4)2+4,∴a=﹣,∴这二次函数的解析式为y=﹣x2+4;(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,∵⊙O与直线AC相切于点D,∴OD⊥AC,∵OA=OC=4,∴点D是AC的中点,∴DE=OC=2,DF=OA=2,∴点D的坐标为(﹣2,2);(3)直线OD的解析式为y=﹣x,如图2所示,则经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,解方程组,消去y,得x2﹣4x﹣32=0,即(x﹣8)(x+4)=0,∴x1=8,x2=﹣4(舍去),∴y=﹣12,∴点P1的坐标为(8,﹣12);直线AC的解析式为y=x+4,则经过点O且与直线AC平行的直线的解析式为y=x,解方程组,消去y,得x2+4x﹣16=0,即x=﹣2+2,∴x1=﹣2﹣2,x2=﹣2+2(舍去),∴y=﹣2﹣2,∴点P2的坐标为(﹣2﹣2,﹣2﹣2).点评:此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,坐标与图形性质,直线与抛物线的交点,直线与圆相切的性质,锐角三角函数定义,以及等腰直角三角形的性质,熟练掌握二次函数的性质是解本题的关键.25.(14分)已知:如图①,△ABC中,AB=AC=6,BC=4,点D在BC的延长线上,联结AD,以AD为一边作△ADE,使点E与点B位于直线AD的两侧,且AD=AE,∠DAE=∠BAC.(1)如果AE∥BC,请判断四边形ABDE的形状并证明;(2)如图②,设M是BC中点,N是DE中点,联结AM、AN、MN,求证:△ABD∽△AMN;(3)设BD=x,在(2)的前提下,以BC为直径的⊙M与以DE为直径的⊙N存在着哪些位置关系?并求出相应的x的取值范围(直接写出结论).考点:相似形综合题;等腰三角形的性质;勾股定理;平行四边形的判定;圆与圆的位置关系;相似三角形的判定与性质.专题:综合题.分析:(1)已知AE∥BC,则有∠EAB+∠B=180°,要证四边形ABDE是平行四边形,只需证AB∥ED,只需证到∠EAB+∠E=180°,只需得到∠B=∠E,只需证到△ABC∽△ADE 即可.(2)易证∠MAN=∠BAD,根据相似三角形对应中线的比等于相似比可得=,就可得到△AMN∽△ABD.(3)利用相似三角形的性质可以用x的代数式表示出MN及r N的长,只需求出两圆外切时的x的值,就可解决问题.解答:(1)答:四边形ABDE是平行四边形.证明:如图(1),∵AB=AC,AD=AE,∴=.∵∠BAC=∠DAE,∴△ABC∽△ADE.∴∠E=∠ACB.∵AB=AC,∴∠ACB=∠B.∴∠E=∠B.∵AE∥BC,∴∠EAB+∠B=180°.∴∠EAB+∠E=∠EAB+∠B=180°.∴AB∥ED.∴四边形ABDE是平行四边形.(2)证明:如图(2),∵AB=AC,M是BC中点,∴AM⊥BC,∠BAM=∠CAM=∠BAC.同理:AN⊥DE,∠DAN=∠EAN=∠DAE.∵∠BAC=∠DAE,∴∠BAM=∠DAN.∵∠MAN=∠MAC+∠CAD+∠DAN,∠BAD=∠BAM+∠MAC+∠CAD,∴∠MAN=∠BAD.∵△ABC∽△ADE(已证),M是BC中点,N是DE中点,∴=.∴△AMN∽△ABD.(3)解:∵AM⊥BC,∴AM2=AB2﹣BM2=AD2﹣MD2.∵AB=6,BM=2,MD=x﹣2,∴AM2=62﹣22=AD2﹣(x﹣2)2.∴AM=4,AD=.∵△ABC∽△ADE,∴=.∴AB•DE=AD•BC.∴6×DE=×4.∴DE=.∴r N=.∵△AMN∽△ABD,∴=.∴AB•MN=AM•BD.∴6MN=4x.∴MN=x.当⊙M与⊙N外切时,MN=r M+r N.∴x=2+.∴x﹣2=.∴2x﹣6=.∴8x2﹣24x+36=x2﹣4x+36.∴7x2=(24﹣4)x.∵点D在BC的延长线上,∴x>4.∴x=.∴当x=时,两圆外切;当4≤x<时,两圆相交;当x>时,两圆外离.点评:本题重点考查了相似三角形的判定与性质,另外还考查了平行四边形的判定、两圆的位置关系、等腰三角形的性质、勾股定理、平行线的判定与性质等知识,综合性比较强,而考虑两圆外切这个临界位置是解决第(3)小题的关键.。

中考预测卷《数学试题》含答案解析

中考预测卷《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1. 若实数a、b互为相反数,则下列等式中成立的是()A. a﹣b=0B. a+b=0C. ab=1D. ab=﹣12.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是2 10000000人一年的口粮.将210000000用科学记数法表示为【】A. 2.1×109B. 0.21×109C. 2.1×108D. 21×1073. 如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A. 200cm2B. 600cm2C. 100πcm2D. 200πcm24. 在下列的计算中,正确的是( )A. m3+m2=m5B. m5÷m2=m3C. (2m)3=6m3D. (m+1)2=m2+15. 2是同类二次根式的是( )A. 18B. 12C. 23D.326. 《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()7. 若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是( )A. a≤﹣3B. a<﹣3C. a>3D. a≥38. (2018商丘模拟)如图,将一副三角板叠放在一起,使直角的顶点重合于点,//AB OC,DC与OB交于点,则DEO∠的度数为().A. 85︒B. 70︒C. 75︒D. 60︒9. 如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为( )A. (35,265) B. (35,65)C. (25,65) D. (25,365)10. 如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC 于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( )A. B. C D.二.填空题(共5小题,满分15分,每小题3分)11. 计算:255÷= _____;532--= _____;20152014(32)(32)+⨯- =_____.12. 将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____ 13. 甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为_____.14. 如图,在ABCD 中,以点为圆心,AB 的长为半径的圆恰好与CD 相切于点,交AD 于点,延长BA 与A 相交于点.若EF 的长为2π,则图中阴影部分的面积为________.15. 如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____.三.解答题(共8小题,满分75分)16. 先化简,再求值:(x+y)(x ﹣y)+y(x+2y)﹣(x ﹣y)2,其中3y=2317. 数学课上学习了圆周角的概念和性质:”顶点在圆上,两边与圆相交”,”同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为AB所对的一个圆外角.(1)请在图2中画出AB所对的一个圆内角;提出猜想:(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填”大于”、”等于”或”小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决:经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)18. 如图所示,半圆O的直径AB=4,CD=BD,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF正方形.19. 如图是小强洗漱时侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm.洗漱时下半身与地面成80°角(即∠FGK=80°),身体前倾成125°角(即∠EFG=125°),脚与洗漱台的距离GC=15cm(点D、C、G、K在同一直线上).(1)求此时小强头部E点与地面DK的距离;(2)小强希望他的头部E点恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(结果精确到0.1cm,参考数据:cos80°≈0.17,sin80°≈0.98,2≈1.41)20. 如图,反比例函数y=kx(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21. 某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22. 问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23. 如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.答案与解析一.选择题(共10小题,满分30分,每小题3分)1. 若实数a 、b 互为相反数,则下列等式中成立的是( )A. a ﹣b =0B. a +b =0C. ab =1D. ab =﹣1【答案】B【解析】∵a b 、互为相反数,∴0a b +=.故选B.2.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为【 】A. 2.1×109B. 0.21×109C. 2.1×108D. 21×107 【答案】C【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】210000000一共9位,从而210000000=2.1×108.故选C. 3. 如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )A. 200 cm 2B. 600 cm 2C. 100πcm 2D. 200πcm 2【答案】D【解析】 试题解析:由三视图可知,该几何体为圆柱,由俯视图可得底面周长为10π cm ,由主视图可得圆柱的高为20 cm ,所以圆柱的侧面积为1020200ππ⨯= 2cm .所以本题应选D.点睛:圆柱体的侧面积=底面周长×高.4. 在下列的计算中,正确的是( )A. m3+m2=m5B. m5÷m2=m3C. (2m)3=6m3D. (m+1)2=m2+1【答案】B【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5. 是同类二次根式的是( )D.2【答案】A【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A. ;B. 不是同类二次根式;C. 不是同类二次根式;D. ;故选A.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.6. 《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中等量关系.7. 若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是( )A. a≤﹣3B. a<﹣3C. a>3D. a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法”同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.8. (2018商丘模拟)如图,将一副三角板叠放在一起,使直角的顶点重合于点,//AB OC ,DC 与OB 交于点,则DEO ∠的度数为( ).A. 85︒B. 70︒C. 75︒D. 60︒ 【答案】C【解析】【详解】∵AB OC ,30B ∠=︒,∴30BOC ∠=︒,∴453075DEO C BOC ∠=∠+∠=︒+︒=︒.9. 如图,以矩形ABOD 的两边OD 、OB 为坐标轴建立直角坐标系,若E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交OD 于F 点.若OF =1,FD =2,则G 点的坐标为( )A (3526) B. (3546) C. (25,65) D. (25,365) 【答案】B【解析】【分析】连结EF ,作GH ⊥x 轴于H ,根据矩形的性质得AB =OD =OF +FD =3,再根据折叠的性质得BA =BG =3,EA =EG ,∠BGE=∠A=90°,而AE=DE,则GE=DE,于是可根据”HL”证明Rt△DEF≌Rt△GEF,得到FD=FG=2,则BF=BG+GF=5.在Rt△OBF中,利用勾股定理计算出OB,然后根据△FGH∽△FBO,利用相似比计算出GH和FH,根据OH=OF﹣HF,即可得到G点的坐标.【详解】连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3.∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°.∵点E为AD的中点,∴AE=DE,∴GE=DE.在Rt△DEF和Rt△GEF中,∵ED EG EF EF=⎧⎨=⎩,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5.在Rt△OBF中,OF=1,BF=5,∴OB=∵GH∥OB,∴△FGH∽△FBO,∴GH FH FG OB OF FB==,215FH==,∴GH=FH25 =,∴OH=OF﹣HF=123 55 -=,∴G点坐标为(35).故选B.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了坐标与图形的性质和相似三角形的判定与性质.10. 如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC 于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为( )A. B.C. D.【答案】D【解析】【分析】根据题意易知,分①当点P在BD上,Q在BC上时(即0≤t≤2),②当P在DE上,Q在BC上时(即2<t≤4),③P在EC上时,由∠C=45°易求得EC236(即4<t6)三种情况求出函数解析式,根据相应函数的性质即可求出答案.【详解】∵PQ⊥BQ,∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=12 PQ•BQ,①当点P在BD上,Q在BC上时(即0≤t≤2),BP =t ,BQ =PB •cos60°=12t ,PQ =BP •sin60°=2t ,S △BPQ =12PQ •BQ =12•12t •2t =8t 2, 此时S △BPQ 的图象是关于t (0≤t ≤2)的二次函数.∵0,∴抛物线开口向上; ②当P 在DE 上,Q 在BC 上时(即2<t ≤4),PQ =BD BQ =BD •cos60°+(t –2)=t –1,S △BPQ =12PQ •BQ =12(t –1)=2t –2, 此时S △BPQ 的图象是关于t (2<t ≤4)的一次函数.∵0,∴S △BPQ 随t 的增大而增大,直线由左向右依次上升.③P 在EC 上时,由∠C =45°易求得EC (即4<t ),PQ =2t (4<t ),BQ =32t -,S △BPQ =12PQ •BQ =12×(2t )×(32t -),其二次项系数是12×⎛ ⎝⎭14<0, ∴图象应为开口向下的抛物线.故选D .【点睛】本道题考查了动点问题的函数图像,用到的知识点有三角形的面积公式,锐角三角函数的知识,一次函数的图像与性质及二次函数的图像与性质.熟练掌握锐角三角函数的知识及二次函数的图像与性质是解答本题的关键,此题充分体现了数形结合及分类讨论的数学思想.二.填空题(共5小题,满分15分,每小题3分)11. = _____;= _____;201520142)2)⨯ =_____.【答案】 (1).(2). 2 (3). +2.【解析】【分析】原式利用二次根式除法法则计算即可得到结果;原式利用五次方根定义计算即可得到结果;原式变形后,逆用积的乘方运算法则计算即可得到结果.原式=2;原式=+2)[2)]2014.2【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12. 将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____【答案】25(5)3y x =-+-【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】∵抛物线y=-5x 2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13. 甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为_____. 【答案】14【解析】【分析】根据题意画出树状图即可解题.【详解】解:根据题意画出树状图,如下图,其中一种有8中可能, 甲、乙、丙三名学生到同一个书店购书的可能一共有2种, ∴甲、乙、丙三名学生到同一个书店购书的概率为14. 【点睛】本题考查了用树状图的方法求概率问题,属于简单题,会画树状图是解题关键.14. 如图,在ABCD 中,以点为圆心,AB 的长为半径的圆恰好与CD 相切于点,交AD 于点,延长BA 与A 相交于点.若EF 的长为2π,则图中阴影部分的面积为________.【答案】22π-【解析】【分析】 连接AC ,首先利用切线的性质和平行四边形的性质得出45FAE ∠=︒,然后根据弧长公式求出半径r ,最后利用三角形面积减去扇形的面积即可求出阴影部分的面积.【详解】连接AC ,∵CD 与圆相切,∴AC CD ⊥90ACD ∴∠=︒ .∵四边形ABCD 是平行四边形,//,//AD BC AB CD ∴ ,90BAC ACD ∴∠=∠=︒ .又AB AC =,45B ∴∠=︒,45FAE B ∴∠=∠=︒ . 2EF π=, 451802r ππ∴=, 解得2r ,∴阴影部分的面积为2145222223602ππ⨯⨯⨯-=-, 故答案为:22π-.【点睛】本题主要考查阴影部分的面积,掌握切线的性质,平行四边形的性质,扇形的弧长和面积公式是解题的关键.15. 如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____.【答案】13【解析】【分析】根据题意作出合适的辅助线,利用三角形中位线定理、三角形的相似可以求得PH 和QH 的长,然后根据勾股定理即可求得PQ 的长.【详解】作QM ⊥EF 于点M ,作PN ⊥EF 于点N ,作QH ⊥PN 交PN 的延长线于点H ,如图所示, ∵正方形ABCD 的边长为12,BE=8,EF ∥BC ,点P 、Q 分别为DG 、CE 的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM ⊥EF ,PN ⊥EF ,BE=8,DF=4,∴△EGB ∽△FGD , ∴EG BE FG DF =, 即1284FG FG -=, 解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4, ∵PH=PN+QM ,∴PH=6,∴PQ=22PH QH +=213,故答案为213.【点睛】本题考查了三角形中位线定理、正方形的性质、勾股定理、相似三角形的判定与性质,正确添加辅助线、结合图形熟练应用相关性质和定理进行解题是关键.三.解答题(共8小题,满分75分)16. 先化简,再求值:(x+y)(x ﹣y)+y(x+2y)﹣(x ﹣y)2,其中3y=23【答案】3xy,3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x 、y 的值代入化简后的式子即可解答本题.【详解】(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2=x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2=3xy ,当3y=23原式=3×(2+3)×(2﹣3)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.17. 数学课上学习了圆周角的概念和性质:”顶点在圆上,两边与圆相交”,”同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为AB所对的一个圆外角.(1)请在图2中画出AB所对的一个圆内角;提出猜想:(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填”大于”、”等于”或”小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决:经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)【答案】(1)见解析(2)小于;大于(3)见解析(4)见解析【解析】【分析】(1)在⊙O内任取一点M,连接AM,BM;(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解;(3)(i)BM与⊙O相交于点C,连接AC,利用三角形外角的性质可得出∠ACB=∠M+∠MAC,进而可证出∠ACB>∠M;(ii)延长BM交⊙O于点C,连接AC,利用三角形外角的性质可得出∠AMB=∠ACB+∠CAM,进而可证出∠AMB>∠ACB;(4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P.【详解】(1)如图2所示.(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角.故答案为小于;大于.(3)证明:(i)如图1,BM与⊙O相交于点C,连接AC.∵∠ACB=∠M+∠MAC,∴∠ACB>∠M;(ii)如图4,延长BM交⊙O于点C,连接AC.∵∠AMB=∠ACB+∠CAM,∴∠AMB>∠ACB.(4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点P.【点睛】本题考查圆的综合应用以及三角形外角的性质,解题的关键是:(1)依照题意画出图形;(2)观察图形,找出结论;(3)利用三角形外角的性质证出:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角;(4)利用(2)的结论找出点P的位置.18. 如图所示,半圆O的直径AB=4,CD=BD,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.【答案】(1)证明见解析;(2)33)2.【解析】【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,再根据HL,即可证明;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,可得∠DBA 的度数,根据三角函数值,即可求解;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,即可求出AD的长.详解】(1)证明:∵CD BD=,∴CD=BD,∠FAD=∠BAD.∵DF⊥AC,DE⊥AB,∴DF=DE,∠BED=∠CFD=90°.在Rt△CFD和Rt△BED中,BD CD DE DF=⎧⎨=⎩∴△CDF≌△BDE(HL).(2)四边形AODC是菱形时,OD=CD=BD=OB,∴∠DBA=60°,∴AD=AB·sin∠DBA=4sin60°=23.(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理得AD=22=22.OA OD【点睛】此题主要考查圆内的综合问题,解题的关键是熟知圆周角定理、全等三角形三角形的判定、菱形的性质、正方形的性质与判定.19. 如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm.洗漱时下半身与地面成80°角(即∠FGK=80°),身体前倾成125°角(即∠EFG=125°),脚与洗漱台的距离GC=15cm(点D、C、G、K在同一直线上).(1)求此时小强头部E点与地面DK的距离;(2)小强希望他的头部E点恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(结果精确到0.1cm,参考数据:cos80°≈0.17,sin80°≈0.982≈1.41)?【答案】(1) 小强头部E点与地面DK相距约为144.5cm.(2) 他应向前10.5cm.【解析】【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH 、PH 的值即可判断;【详解】解:(1) 过点作FN DK ⊥于点,过点作EM FN ⊥于点M .∵80FGK ∠=︒∴100sin8098FN =︒≈∵166,100EF FG FG +==∴66EF =又∵125EFG ∠=︒∴1801251045EFM ∠=︒-︒-︒=︒∴664546.53FM cos =︒=≈∴144.5MN FN FM =+≈∴他头部点与地面DK 相距约144. 5cm.(2)过点作EP AB ⊥于点,延长OB 交MN 于点.∵48AB =,点为AB 的中点∴24AO BO ==∵66sin 4546.53EM =︒≈即46.53PH EM =≈又100cos8017,15GN CG =︒≈=∴24151756OH =++=5646.539.479.5OP OH PH =-=-=≈∴他应向前9. 5cm.【点睛】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20. 如图,反比例函数y=k x(x >0)的图象过格点(网格线的交点)P . (1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P;②矩形的面积等于k 的值.【答案】(1)4yx;(2)作图见解析.【解析】分析:(1)将P点坐标代入y=kx,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=kx(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=4x;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21. 某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【答案】(1)A为100吨,B为150吨(2)19800元【解析】【分析】(1)根据题意设未知数,然后根据所需要的运费和的等量关系列方程组,解二元一次方程组可得解;(2)设A 种货物为a 吨,则B 种货物为(330-a )吨,根据6月的运费单价可列式求出运费的式子(是一个一次函数),然后根据A 货物的数量不大于B 货物的2倍,可列不等式求出a 的范围,最后根据一次函数的增减性判断求出结果.【详解】(1)解:设A 种货物运输了吨,,B 种货物运输了吨,依题意得:50309500{704013000x y x y +=+= 解之得:100150x y =⎧⎨=⎩ (2)设A 种货物为吨,则B 种货物为330a -()吨,设获得的利润为W 元 依题意得:(330)2a a ≤-⨯①7040(330=)3013200W a a a =+-+②由①得220a ≤由②可知W 随着的增大而增大故W 取最大值时=220,即W=19800元22. 问题:(1)如图①,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 ;探索:(2)如图②,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:(3)如图③,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.【答案】(1)BC =DC +EC ;(2)BD 2+CD 2=2AD 2;(3)AD =6.【解析】【分析】(1)易证△BAD ≌△CAE ,即可得到BC =DC +EC(2)连接CE,易证△BAD≌△CAE,再得到ED =2AD,然后在Rt△ECD中利用勾股定理即可求得其关系;(3)将线段AD绕点A顺时针旋转90°得到AE,连接CE,BE,先证△ABE≌△ACD,再利用在Rt△BED 中,由勾股定理,得DE2=BD2-BE2,故2AD2=BD2-CD2,再解出AD的长即可.【详解】解:(1)BC=DC+EC.∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD.(2)BD2+CD2=2AD2.证明如下:连接CE,如解图1所示.∵∠BAC=∠BAD+∠DAC=90°,AB=AC,∴∠ABC=∠ACB=45°.∵∠DAE=∠CAE+∠DAC=90°,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=90°.∵∠EAD=90°,AE=AD,∴ED=2AD.在Rt△ECD中,由勾股定理,得ED2=CE2+CD2,∴BD2+CD2=2AD2.(3)将线段AD绕点A顺时针旋转90°得到AE,连接CE,BE,如解图2所示,则AE=AD,∠EAD=90°,∴△EAD是等腰直角三角形,∴DE=2AD,∠AED=45°.∵∠ABC=∠ACB=ADC=45°,∴∠BAC=90°,AB=AC.同(2)的方法,可证得△ABE≌△ACD,∴BE=CD,∠AEB=∠ADC=45°,∴∠BEC=∠AEB+∠AED=90°.在Rt△BED中,由勾股定理,得DE2=BD2-BE2,∴2AD2=BD2-CD2.∵BD=9,CD=3,∴2AD2=92-32=72,∴AD=6(负值已舍去).【点睛】此题主要考查全等三角形的性质及判定,解题的关键是熟知等腰三角形的性质及勾股定理的应用.23. 如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(352,5+5)或3+555-.【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标.【详解】(1)由题意可得309330a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD =S△ACD+S△FCD=12×2×3+12×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ 和抛物线解析式可得2523y x y x x =-+⎧⎨=-++⎩,解得14x y =⎧⎨=⎩或23x y =⎧⎨=⎩, ∴Q(1,4);ii .当∠AQD=90°时,设Q(t ,﹣t 2+2t+3),设直线AQ 的解析式为y=k 1x+b 1,把A 、Q 坐标代入可得11211023k b tk b t t -+=⎧⎨+=-++⎩,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y=k 2x+b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t(t ﹣3)=﹣1,解得当t=32-时,﹣t 2+2t+3=52, 当t 2∴Q 点坐标为或综上可知Q 点坐标为(1,4)或或. 【点睛】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键.。

2014年湖北省荆门市中考数学试题(含答案)

2014年湖北省荆门市中考数学试题(含答案)

湖北省荆门市2014年初中毕业生学业水平及升学考试试卷数 学满分120分 考试时间120分钟一、选择题(本大题共12小题,每小题只有唯一正确答案.每小题3分,共36分)1.若( )×(-2)=1,则括号内填一个实数应该是( ) A .12 B .2 C .-2 D .-122.下列运算正确的是( )A .3-1=-3 B .9=±3 C .(a b 2)3=a 3b 6 D .a 6÷a 2=a 3 3.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠F AG 的度数是( )A .155°B .145°C .110°D .35° 4.将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .y =(x -4)2-6B .y =(x -4)2-2C .y =(x -2)2-2D .y =(x -1)2-3 5.已知α是一元二次方程x 2-x -1=0较大的根,则下面对α的估计正确的是( ) A .0<α<1 B .1<α<1.5 C .1.5<α<2 D .2<α<36.如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连结AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误..的是( ) A .∠ACD =∠DAB B .AD =DE C .AD 2=BD ·CD D .AD ·AB =AC ·BD7.如图所示,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b >kx -1的解集在数轴上表示正确的是( )8.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ) A .12 B .13C .14D .16 9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个ABED第6题图C 10 1 1 0 1 2 0 1 2 01 A . B . C . D .xO y-1 -1P第7题图第9题图A B CD第8题图EC D FABG第3题图以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种B.3种C.4种D.5种10.已知:点P(1-2a,a-2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程1xx a+-=2的解是( )A.5 B.1 C.3 D.不能确定11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )A.(12)n·75°B.(12)n-1·65°C.(12)n-1·75°D.(12)n·85°12.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( )A.42dm B.22dm C.25dm D.45dm二、填空题(本大题共5小题,每小题3分,共15分)13.若-2x m-n y2与3x4y2m+n是同类项,则m-3n的立方根是▲.14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶2,点A的坐标为(0,1),则点E的坐标是▲.15.我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3=x,则x=0.3+110x,解得x=13,即0.3=1 3.仿此方法,将0.45化成分数是▲.AB C第12题图A1AA3A CBDEF…第11题图xyOABC第17题图AB CEF第16题图xOyA BCD EF第14题图16.如图,在□A BCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若EF 的长为2π,则图中阴影部分的面积为 ▲ . 17.如图,已知:点A 是双曲线y =2x在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =kx(k >0)上运动,则k 的值是 ▲ . 三、解答题(本大题共7题,共69分)18.(本题满分8分)(1)计算:24×13-4×18×(1-2)0;(2)先化简,再求值:222222()2a b a b b a a ab b a ab-+÷--+-, 其中a ,b 满足1a ++|b -3|=0.19.(本题满分9分)如图①,正方形ABCD 的边AB ,AD 分别在等腰直角△AEF 的腰AE ,AF 上,点C 在△AEF 内,则有DF =BE (不必证明).将正方形ABCD 绕点A 逆时针旋转一定角度α(0°<α<90°)后,连结BE ,DF .请在图②中用实线补全图形,这时DF =BE 还成立吗?请说明理由.20.(本题满分10分)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A 处和正东方向的B 处,这时两船同时接到立即赶往C 处海域巡查的任务,并测得C 处位于A 处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC ,BC 方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C 处. (参考数据:cos59°≈0.52,sin46°≈0.72)21.(本题满分10分)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a ,b .AEFA E F BCD图① 图②第19题图BC59°第20题图44°钓鱼岛队别 平均分 中位数 方差 合格率 优秀率 七年级 6.7 m 3.41 90% n 八年级7.17.51.6980%10%(1)请依据图表中的数据,求a ,b 的值; (2)直接写出....表中的m ,n 的值; (3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由. 北京初中数学周老师的博客:22.(本题满分10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y (台)与售价x (元/台)之间的函数关系式; (2)求售价x 的范围;(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?23.(本题满分10分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2. ①求抛物线的解析式;②作点A 关于y 轴的对称点D ,连结BC ,DC ,求sin ∠DCB 的值.24.(本题满分12分)如图①,已知:在矩形ABCD 的边AD 上有一点O ,OA =3,以O 为圆心,OA 长为半径作圆,交AD 于M ,恰好与BD 相切于H ,过H 作弦HP ∥AB ,弦HP =3.若点E 是CD 边上一动点(点E 与C ,D 不重合),过E 作直线EF ∥BD 交BC 于F ,再把△CEF 沿着动直线EF 对折,点C 的对应点为G .设CE =x ,△EFG 与矩形ABCD39 58610 71 1 1 1 1 12 2 4ab选手/人数成绩分七年级队 八年级队重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出....FG与⊙O相切时,S的值.湖北省荆门市2014年初中毕业生学业水平及升学考试试卷数学考试答案及评分说明一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C B B C D A A C C C A7.解:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.8.解:第一个开关第二个开关结果:任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是12.故选A.9.解:如图,组成的图形是轴对称图形,又是中心对称图形,这个格点正方形的作法共有4种.故选C.10.解:根据题意,点P在第三象限内,∵120;20,aa-<⎧⎨-<⎩解得122a<<,∵a为整数,∴a=1.解方程121xx+=-得3x=.故选C.11.解:∵A1B=CB,∠B=30°,∴∠C=∠C A1B=12(180°-∠B)=75°.又∵A1A2=A1D,∴∠A1D A2=∠A1 A2D=12∠C A1B.也就是说:自A1以后,这样得来的每一个角都等于前一个角的12.∴∠A n=(12)n-1·75°.故选C.AB CDFEOPHMGAB CDOHM图①图②(备用图)第24题图第9题图CBA第12题图12.解:过点A 沿直径BC 将圆柱纵向切开,得到半圆柱,并将半圆柱, 并将展开为矩形(如图),由题意可知RT △ABC 中,AB=BC =2, ∴AC=22,∴属丝周长的最小值为2AC=42.故选A .二、填空题(本大题共5小题,每小题3分,共15分)13.解:∵-2x m -n y 2与3x 4y 2m+n是同类项,∴4;22,m n m n -=⎧⎨=+⎩解得2,2.m n =⎧⎨=-⎩∴m -3n =8. ∴382=.14.解:根据题意,∵相似比为1∶2,∴OA :OD =1∶2, ∵点A 的坐标为(0,1),即OA =1,∴OD =2, ∵四边形ODEF 是正方形,∴DE = EF =OD =2. ∴E 点的坐标为(2,2). 15.解:设x =0.45……,那么100x ……,…………,∴100x =45+x 化简得99x =45,解得4599x =, ∴0.45=4599.16.解:连接AC ,∵DC 是⊙A 的切线,∴AC ⊥CD .又∵AB =AC =CD ,∴△ACD 是等腰直角三角形,∴∠CAD =45°. 又∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAD =∠ACB =45°. 又∵AB =AC ,∴∠ACB =∠B =45°,∴∠F AD =45°. ∵EF 的长为2π,∴452180rππ=,解得:2r =. ∴21452===22223602ACD ACE S S S ππ∆⨯⨯⨯-=-阴影扇形.17.解:设A 2()a a,,∵点A 与点B 关于原点对称,∴OA =OB .∵△ABC 为等边三角形,∴AB ⊥OC ,OC =3AO , ∵AO =222()a a +,∴CO =22123a a+. 第16题图过点C 作CD ⊥x 轴于点D ,则可得∠AOD =∠OCD (都是∠COD 的余角),设点C 的坐标为()x y ,,则tan ∠AOD =tan ∠OCD ,即2x a a y=-,解得:22a y x =-. 在Rt △COD 中,222CD OD OC +=,即2222123y x a a+=+. 将22a y x =-代入,可得:2212x a =,故23x a =, ∴22332a y a a =-⨯=-,则23(3)6xy a a=⨯-=-.三、解答题(本题包括7个小题,共69分)18.解:(1)原式=26×33-4×24×1 ······················································· 1分=22-2 ······························································································ 2分 =2. ···································································································· 3分 (2)原式=22()()()[]()a b a b a a b a a b a b b -+----=2()a a b ba b b --=ab . ················································································ 5分 ∵1a +≥0,|b -3|≥0,1a ++|b -3|=0,∴a +1=0且b -3=0.∴a =-1,b =3. ················································· 7分∴原式=13-=-33.················································································ 8分 19.解:补全图形如图所示. ········································································ 3分 DF =BE 还成立,理由是: ············································································ 4分 ∵正方形ABCD 和等腰△AEF ,∴AD =AB ,AF =AE ,∠F AE =∠DAB =90°. ··················································· 6分 ∴∠F AD =∠EAB . ······················································································ 7分在△ADF 和△ABE 中,,,.AD AB FAD EAB AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS).∴DF =BE . ····························································· 9分第17题图20.解:过C 作CD ⊥AB 于D ,设CD =h (海里),两船从A ,B 到C 的时间分别是t 甲、t 乙(小时),则∠ACD =59°,∠CBD =90°-44°=46°. 在Rt △ACD 中,cos59°=CD AC =h AC =0.52,则AC =0.52h. ······························ 3分 在Rt △BCD 中,sin46°=CD BC =h BC =0.72,则BC =0.72h . ∴t 甲=20AC =0.5220h ⨯=10.4h ,t 乙=18BC =0.7218h ⨯=12.96h. ∵12.96>10.4,∴t 甲>t 乙,即乙船先到达C 处. ··································································· 10分21.解:(1)依题意得:31671819110 6.710,11190%10111110.a b a b a b ⨯++⨯+⨯+⨯+=⨯⎧⎨++++=⨯+++++=⎩或 ··············· 4分解得5,1.a b =⎧⎨=⎩································································································ 6分(2)m =6,n =20%; ····················································································· 8分 (3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游,所以支持八年级队成绩好.(注:任说两条即可) ······················· 10分 22.解:(1)依题意得: y =200+50×40010x-. ················································································ 2分 化简得:y =-5x +2200. ············································································· 3分 (2)依题意有:∵300,52200450.x x ⎧⎨-+⎩≥≥ ···················································································· 5分解得300≤x ≤350. ····················································································· 6分 (3)由(1)得:w =(-5x +2200)(x -200)=-5x 2+3200x -440000=-5(x -320)2+72000. ·············································· 8分 ∵x =320在300≤x ≤350内,∴当x =320时,w 最大=72000.即售价定为320元/台时,可获得最大利润为72000元. ···································· 10分 23.解:(1)①当a =0时,y =-x +1,有两个交点(0,1),(1,0); ······················· 1分DBC59°20题答案图 44°A E FBCDα 19题答案图②当a ≠0且图象过原点时,2a +1=0,a =-12,有两个交点(0,0),(1,0); ········ 2分 ③当a ≠0且图象与x 轴只有一个交点时,令y =0有:△=(3a +1)2-4a (2a +1)=0.解得a =-1,有两个交点(0,-1),(1,0); 综上得:a =0或-12或-1时,函数图象与坐标轴有两个交点. ··························· 3分 (2)①依题意令y =0时,x 1+x 2=31a a +,x 1x 2=21a a +. ······································ 4分 由x 2-x 1=2得:(x 2-x 1)2=4,则(31a a +)2-4(21)a a+=4. 化简得:3a 2-2a -1=0.解得:a 1=-13,a 2=1. ············································ 5分∵△=(3a +1)2-4a (2a +1)=(a +1)2>0,且a >0,∴a =-13应舍去.a =1符合题意.∴抛物线的解析式为y =x 2-4x +3.(注:其它方法,请参照给分) ························ 6分 ②令y =0得:x 2-4x +3=0.解得:x =1或3.由x 2-x 1=2>0知x 2>x 1,∴A (1,0),B (3,0),D (-1,0),C (0,3). 如图,过D 作DE ⊥BC 于E ,则有OB =OC =3,OD =1. ∴DE =BD ·sin45°=. 而CD∴在Rt △CDE 中,sin ∠DCB =DE CD. ······································· 10分24.(1)连结OH ,如图①.∵AB ∥HP ,∠BAD =90°,∴AQ ⊥HP .而AM 是直径, ∴HQ =12HP =32. 在Rt △OHQ 中,sin ∠HOQ =HQ OH =32,∴∠HOQ =60°,则∠OHQ =30°,∠APH =60°.又BD 与⊙O 相切,∴∠QHD =90°-∠OHQ =60°.∴∠APH =∠QHD .23题答案图∴AP ∥BH .又∵AB ∥HP ,∴四边形ABHP 是平行四边形. ················································· 3分 由AB ⊥AM ,AM 是直径知AB 是⊙O 的切线,而BD 也是⊙O 的切线, ∴AB =BH .∴四边形ABHP 是菱形.(注:其它方法,请参照给分) ······································· 4分(2)G 点能落在⊙O 上,如图①.方法一:过C 作射线CR ⊥EF 交EF 于R ,交AD 于M 1,交BD 于R 1,交AP 于P 1,则C 关于EF 对称点G 在射线CR 上.当G 点落在M 1上时,M 1E =CE =x ,AB =CD =HP =3,AD =AB ·tan60°=ED =CD -CE =3-x .在Rt △M 1DE 中,cos60°=1ED M E=3x x =12.解得x =2. ·································· 6分sin60°=11M D M E =1M Dx,∴M 1D而MD =AD -AMM 1与M 重合. ······················································· 7分 ∴M 在CP 1上,则MP 1⊥AP ,而MP ⊥AP , ∴P 与P 1重合,这校射线CR 与⊙O 交于M ,P .由AP ∥BD ,CP ⊥AP ,CR 1=PR 1,知C 与P 关于BD 对称. 由于点E 不与点D 重合,故点G 不可能落在P 点.∴点G 只能落在⊙O 的M 点上,此时x =2. ···················································· 8分 方法二:连结CM ,PM ,如图①,由(1)知∠AMP =∠APH =60°,tan ∠CMD =CD MD=CMD =∠AMP =60°.∴C ,M ,P 三点共线.∵∠BDA =30°,∴CM ⊥BD .而BD ∥EF , ∴CM ⊥EF ,点C 关于EF 的对称点G 落在CP 上.又∵点P 到BD 的距离等于点C 到BD 的距离(即点A 到BD 的距离),EF 与BD 不重合,∴点G 不能落在P 点,可以落在⊙O 上的M 点. ················································· 6分 当点G 落在⊙O 上的M 点时,ME =CE =x ,D 24题答案图①在Rt △MDE 中,x =sin 60MD ︒=2. ∴点G 落在床⊙O 上的M 点,此时x =2. ······················································· 8分 方法三:证法略.提示:过C 作C ′P ⊥AP 于P ′,交BD 于R ′,可求CP ′=2CR ′=PM +CM =CP ′=CM +MP ,从而C ,M ,P 三点共线,x 的值求法同上.(3)由(2)知:①当点G 在CM 上运动时,0<x ≤2,S =12xx 2. ················································································ 9分 ②当点G 在PM 上运动时,2<x <3,设FG 交AD 于T ,EG 交AD 于N ,如图②,则:EG =CE =x ,ED =3-x ,S △EFG =12CE ·CFx 2. NE =sin 30ED ︒=6-2x ,GN =GE -NE =3x -6. ∵TG =GN ·tan30°=(3x -6)-. S =S △EFG -S △TGNx 2x 2+x -x 2+-········································································· 11分综上所述,S=22(02),3).x x <⎨⎪+-<<⎩≤当FG 与⊙O 相切时,S-6. ···························································· 12分B24题答案图②。

中考数学模试试题(5)含答案解析

中考数学模试试题(5)含答案解析

中考数学模试卷一、选择题(每小题4分,共48分)1.(4分)计算正确的是()A.(﹣5)0=0 B.x3+x4=x7C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a2.(4分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°3.(4分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣1 B.a•b>0 C.﹣b<0<﹣a D.|a|>|b|4.(4分)如图,下列水平放置的几何体中,左视图不是矩形的是()A. B.C.D.5.(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.246.(4分)如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.(4分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系内的图象大致是()A.B.C.D.8.(4分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>59.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.310.(4分)以来,把扶贫开发工作纳入“四个全面”并着力持续推进,据统计的某省贫困人口约484万,截止底,全省贫困人口约210万,设这两年全省贫困人口的年平均下降率为x,则下列方程正确的是()A.484(1﹣2x)=210 B.484x2=210C.484(1﹣x)2=210 D.484(1﹣x)+484(1﹣x)2=21011.(4分)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A. B. C.4 D.2+12.(4分)如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题4分,共24分)13.(4分)x2+kx+9是完全平方式,则k=.14.(4分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.(4分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.16.(4分)如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.17.(4分)如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为.18.(4分)如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD=AM2.其中正确结论的是.三、解答题(7小题,共78分)19.(8分)先化简,再求值:,其中x是满足不等式﹣(x ﹣1)≥的非负整数解.20.(10分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有 名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A 的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.21.(10分)在Rt △ABC 中,∠ACB=90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF=6,⊙O 的半径为5,求CE 的长.22.(12分)如图所示,二次函数y=﹣2x 2+4x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B .且与y 轴交于点C .(1)求m 的值及点B 的坐标;(2)求△ABC 的面积;(3)该二次函数图象上有一点D (x ,y ),使S △ABD =S △ABC ,请求出D 点的坐标.23.(12分)浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.24.(12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB 于点D,且AD=3.(1)设点A的坐标为(4,4)则点C的坐标为;(2)若点D的坐标为(4,n).①求反比函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.25.(14分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.参考答案与试题解析一、选择题(每小题4分,共48分)1.【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答】解:(A)原式=1,故A错误;(B)x3与x4不是同类项,不能进行合并,故B错误;(C)原式=a4b6,故C错误;故选:D.【点评】本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠AEF,根据三角形内角和定理求出∠AFE,即可得出答案.【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠AEF的度数,注意:两直线平行,同位角相等.3.【考点】29:实数与数轴;15:绝对值.【分析】直接利用a,b在数轴上的位置,进而分别分析得出答案.【解答】解:由a,b在数轴上的位置可得:A、a<﹣1,故此选项错误;B、ab<0,故此选项错误;C、﹣b<0<﹣a,正确;D、|a|<|b|,故此选项错误;故选:C.【点评】此题主要考查了实数与数轴,正确利用a,b的位置分析是解题关键.4.【考点】U1:简单几何体的三视图.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.5.【考点】X8:利用频率估计概率.【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.6.【考点】R5:中心对称图形;D3:坐标确定位置;P3:轴对称图形.【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【解答】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx ﹣k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx ﹣k的图象经过一、二、四象限,故本选项错误.故选:C.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.8.【考点】97:二元一次方程组的解;C6:解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选:D.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.9.【考点】LB:矩形的性质.【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.【点评】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.10.【考点】AC:由实际问题抽象出一元二次方程.【分析】等量关系为:贫困人口×(1﹣下降率)2=贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x,根据题意得:484(1﹣x)2=210,故选:C.【点评】本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键11.【考点】MN:弧长的计算.【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.【点评】本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.12.【考点】E7:动点问题的函数图象.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(每小题4分,共24分)13.【考点】4E:完全平方式.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x 和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【考点】AA:根的判别式.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】本题考查了根的判别式以及解一元一次不等式组,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.15.【考点】X4:概率公式;K6:三角形三边关系.【分析】由一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,可得共有4种等可能的结果,又由这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,然后利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,∴共有4种等可能的结果,∵这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,∴能构成三角形的概率是:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.【考点】H3:二次函数的性质.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.【点评】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x轴上的两点之间的距离的知识,解答本题的关键是求出点A的坐标,此题难度不大.17.【考点】MA:三角形的外接圆与外心;M2:垂径定理.【分析】连接BO并延长交AC于F,如图,先利用垂径定理得到BF⊥AC,BD=CD,再证明Rt△BOD∽Rt△EOF得到==,则设OF=x,则OD=x,接着证明Rt△DBO∽Rt△DEC,利用相似比得到=,所以DB2=3x2+2x,然后利用勾股定理得到关于x的方程,最后解方程求出x后,计算x即可.【解答】解:连接BO并延长交AC于F,如图,∵BA=BC,∴=,∴BF⊥AC,∵直径MN⊥BC,∴BD=CD,∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===,设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x1=,x2=﹣(舍去),∴OD=x=2.故答案为2.【点评】本题考查了三角形外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理.熟练应用相似比是解决问题的关键.18.【考点】LO:四边形综合题.【分析】先证明△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,由三角形的外角性质求出∠DMF=∠BDC=60°,再求出∠BMD=120°,从而判定②正确;根据三角形的外角性质和平行线的性质求出∠ABM=∠ADH,由SAS证明△ABM ≌△ADH,根据全等三角形的性质得出AH=AM,∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,得出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.【解答】解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,=AM2,故④正确,∴S四边形ABMD综上所述,正确的是①②③④.故答案为:①②③④.【点评】本题是四边形综合题目,考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.三、解答题(7小题,共78分)19.【考点】6D:分式的化简求值;C7:一元一次不等式的整数解.【分析】根据分式的运算法则即可求出答案.【解答】解:∵﹣(x﹣1)≥,∴x﹣1≤﹣1∴x≤0,非负整数解为0∴x=0原式=÷(﹣)=×==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【考点】VD:折线统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)根据合格的男生有2人,女生有1人,得出合格的总人数,再根据评级合格的学生占6%,即可得出全班的人数;(2)根据折线统计图和扇形统计图以及全班的学生数,即可得出女生评级3A 的学生和女生评级4A的学生数,即可补全折线统计图;(3)根据题意画出图表,再根据概率公式即可得出答案.【解答】解:因为合格的男生有2人,女生有1人,共计2+1=3人,又因为评级合格的学生占6%,所以全班共有:3÷6%=50(人).故答案为:50.(2)根据题意得:女生评级3A的学生是:50×16%﹣3=8﹣3=5(人),女生评级4A的学生是:50×50%﹣10=25﹣10=15(人),如图:(3)根据题意如表:∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种,∴P=,答:选中一名男生和一名女生的概率为:.【点评】此题考查的是折线统计图、扇形统计图和用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.【考点】ME:切线的判定与性质.【分析】(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH的长,进而求出CE的长.【解答】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.22.【考点】HA :抛物线与x 轴的交点;H5:二次函数图象上点的坐标特征.【分析】(1)直接将点A 的坐标代入到二次函数的解析式即可求出m 的值,写出二次函数的解析式,求出y=0时x 的值即可点B 的坐标;(2)计算当x=0时y 的值,根据三角形的面积公式可得;(3)因为S △ABD =S △ABC ,则根据同底等高的两个三角形的面积相等,所以只要高与OC 的长相等即可,因此要计算y=6和y=﹣6时对应的点即可.【解答】解:(1)∵函数过A (3,0),∴﹣18+12+m=0,∴m=6,∴该函数解析式为:y=﹣2x 2+4x +6,∴当﹣2x 2+4x +6=0时,x 1=﹣1,x 2=3,∴点B 的坐标为(﹣1,0);(2)当x=0时,y=6,则C 点坐标为(0,6),∴S △ABC ==12;(3)∵S △ABD =S △ABC =12,∴S △ABD ==12,∴|h |=6,①当h=6时:﹣2x 2+4x +6=6,解得:x 1=0,x 2=2∴D 点坐标为(0,6)或(2,6);②当h=﹣6时:﹣2x 2+4x +6=﹣6,解得:x 1=1+,x 2=1﹣ ∴D 点坐标为(1+,﹣6)、(1﹣,﹣6);∴D点坐标为(2,6)、(1+,﹣6)、(1﹣,﹣6).【点评】本题考查了利用待定系数法求二次函数的解析式和抛物线与两坐标轴的交点,待定系数法就是将已知的点代入解析式中列方程或方程组求解,对于抛物线与x轴的交点,令y=0代入即可,抛物线与y轴的交点,令x=0代入即可.23.【考点】HE:二次函数的应用.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,=1000元,当x=35时,w最大故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.24.【考点】GB:反比例函数综合题.【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【解答】解:(1)∵点C是OA的中点,A(4,4),O(0,0),∴C(,),∴C(2,2);故答案为(2,2);(2)①∵AD=3,D(4,n),∴A(4,n+3),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线y=上,∴,∴,∴反比例函数解析式为y=;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=﹣x+3;(3)如图,由(2)知,直线CD的解析式为y=﹣x+3,设点E(m,﹣m+3),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线y=于F,∴F(m,),∴EF=﹣m+3﹣,∴S=(﹣m+3﹣)×m=(﹣m2+3m﹣4)=﹣(m﹣3)2+,△OEF∵2<m<4,最大,最大值为∴m=3时,S△OEF【点评】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公与m的函数关系式.式,解本题的关键是建立S△OEF25.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC 即可;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可;(3)根据(1)(2)知:点P在运动中保持∠APD=90°,得出点P的路径是以AD 为直径的圆,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,求出QC即可.【解答】解:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=或2,理由是:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,QC===,∴CP=QC+QP=+1,即线段CP的最大值是+1.【点评】本题考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质和判定,等腰三角形的性质,三角形的内角和定理的应用,能综合运用性质进行推理是解此题的关键,用了分类讨论思想,难度偏大.。

2014年云南省中考数学试题与答案

2014年云南省中考数学试题与答案

2014 年云南省中考数学试卷一、选择题(本大题共8 小题,每小题只有一个正确选项,每小题 3 分,满分24 分)1.( 3 分)(2014年云南省) |﹣ |=()A .﹣B .C.﹣7D. 7考点:绝对值.菁优网版权所有分析:根据负数的绝对值是它的相反数,可得答案.解答:解: |﹣ |=,故选: B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.( 3 分)(2014年云南省)下列运算正确的是()A .3x2+2 x3=5x6B .50=0C. 2﹣ 3=D.( x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.菁优网版权所有分析:根据合并同类项,可判断A,根据非 0 的 0 次幂,可判断B,根据负整指数幂,可判断 C,根据幂的乘方,可判断D.解答:解: A、系数相加字母部分不变,故 A 错误;B、非 0 的 0 次幂等于1,故 B 错误;C、2,故C错误;D、底数不变指数相乘,故 D 正确;故选: D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.( 3 分)(2014年云南省)不等式组的解集是()A . x>B .﹣1≤x<C. x<D. x≥﹣ 1考点:解一元一次不等式组.菁优网版权所有分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选 A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.( 3 分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A .圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.菁优网版权所有分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.( 3 分)(2014年云南省)一元二次方程2﹣x﹣ 2=0 的解是()xA . x1=1,x2=2B . x1=1,x2 =﹣ 2C. x1 =﹣1, x2=﹣ 2D. x1=﹣ 1, x2=2考点:解一元二次方程-因式分解法.菁优网版权所有分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解: x2﹣ x﹣ 2=0(x﹣ 2)( x+1) =0 ,解得: x1=﹣ 1,x2=2.故选: D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.( 3 分)(2014年云南省)据统计,2013 年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A . 1.394 ×107B . 13.94×107C. 1.394×106D. 13.94×105考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n是正数;当原数的绝对值< 1 时, n 是负数.解答:解: 13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.( 3 分)(2014年云南省)已知扇形的圆心角为 45°,半径长为12,则该扇形的弧长为()A .B . 2πC. 3πD. 12π考点:弧长的计算.菁优网版权所有分析:根据弧长公式 l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选: C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.( 3 分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18 名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A . 9.70, 9.60B . 9.60, 9.60C. 9.60, 9.70D. 9.65,9.60考点:分析:众数;中位数.菁优网版权所有根据中位数和众数的概念求解.解答:解:∵共有18 名同学,则中位数为第9 名和第 10 名同学成绩的平均分,即中位数为:=9.60 ,众数为:故选 B.9.60.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共 6 个小题,每小题 3 分,满分18 分)9.( 3 分)(2014年云南省)计算:﹣=.考点:二次根式的加减法.菁优网版权所有分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式 =2﹣ = .故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.( 3 分)(2014年云南省)如图,直线a∥ b,直线 a,b 被直线 c 所截,∠ 1=37 °,则∠ 2= 143° .考点:平行线的性质.菁优网版权所有分析:根据对顶角相等可得∠3= ∠ 1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠ 3= ∠1=37°(对顶角相等),∵a∥ b,∴∠ 2=180°﹣∠ 3=180°﹣ 37°=143°.故答案为: 143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3 分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx( k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.菁优网版权所有专题:开放型.分析:根据正比例函数y=kx 的图象经过一,三象限,可得k> 0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx 的图象经过一,三象限,∴k> 0,取k=2 可得函数关系式y=2x.故答案为: y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k> 0 时,图象经过一、三象限,y 随 x 的增大而增大;当k<0 时,图象经过二、四象限,y 随 x 的增大而减小.12.( 3 分)( 2014?天津)抛物线y=x2﹣ 2x+3 的顶点坐标是(1,2).考点:二次函数的性质.菁优网版权所有专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵ y=x2﹣ 2x+3=x2﹣2x+1﹣ 1+3=( x﹣ 1)2+2,∴抛物线y=x2﹣2x+3 的顶点坐标是(1, 2).点评:此题考查了二次函数的性质,二次函数2y=a( x﹣ h) +k 的顶点坐标为( h,k),对称轴为 x=h,此题还考查了配方法求顶点式.13.( 3 分)(2014年云南省)如图,在等腰△ ABC 中, AB=AC,∠ A=36 °,BD ⊥ AC 于点 D ,则∠ CBD = 18° .考点:等腰三角形的性质.菁优网版权所有分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC 的度数.解答:解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=72°.∵BD⊥AC 于点 D,∴∠ CBD =90°﹣ 72°=18°.故答案为: 18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.( 3 分)(2014年云南省)观察规律并填空(1﹣)=?=;(1﹣)( 1﹣)=???==(1﹣)( 1﹣)( 1﹣)=?????=?=;(1﹣)( 1﹣)( 1﹣)( 1﹣)=???????=?=;⋯(1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣) =.(用含 n 的代数式表示,n 是正整数,且 n≥2)考点:规律型:数字的变化类.菁优网版权所有分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的( 1﹣)和( 1+)相乘得出结果.解答:解:( 1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣)=??????⋯=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9 个小题,满分60 分)15.( 5 分)(2014年云南省)化简求值:?(),其中x=.考点:分式的化简求值.菁优网版权所有专题:计算题.x 分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将的值代入计算即可求出值.解答:解:原式 =?=x+1,当 x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.( 5 分)(2014年云南省)如图,在△ ABC 和△ ABD 中, AC 与 BD 相交于点E,AD =BC,∠DAB =∠ CBA,求证: AC =BD .考点:专题:分析:解答:全等三角形的判定与性质.菁优网版权所有证明题.根据“SAS”可证明△ ADB ≌△ BAC,由全等三角形的性质即可证明证明:在△ ADB 和△ BAC 中,AC=BD.,∴△ ADB ≌△ BAC( SAS),∴AC =BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.( 6 分)(2014年云南省)将油箱注满k 升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量 a(单位:升 /千米)之间是反比例函数关系 S= ( k 是常数, k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油 0.1 升的速度行驶,可行驶 700 千米.(1)求该轿车可行驶的总路程S 与平均耗油量 a 之间的函数解析式(关系式);(2)当平均耗油量为 0.08 升 /千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.菁优网版权所有分析:(1)将 a=0.1,s=700 代入到函数的关系S= 中即可求得 k 的值,从而确定解析式;(2)将 a=0.08 代入求得的函数的解析式即可求得s 的值.解答:解:( 1)由题意得: a=0.1, s=700,代入反比例函数关系S=中,解得: k=sa=70,所以函数关系式为:s=;(2)将 a=0.08 代入 s=得: s= ==875 千米,故该轿车可以行驶多875 米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.( 9 分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B( 89~ 80 分)、C( 79~ 60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.菁优网版权所有分析:(1)抽查人数可由 C 等所占的比例为 50%,根据总数 =某等人数÷比例来计算;(2)可由总数减去 A、 C、 D 的人数求得 B 等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200 乘以样本中测试成绩等级在80 分(含 80 分)以上的学生所占百分比即可.解答:解:( 1) 20÷50%=40 (人),答:这次随机抽取的学生共有40 人;(2) B 等级人数: 40﹣ 5﹣20﹣ 4=11(人)条形统计图如下:(3) 1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.( 7 分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.菁优网版权所有分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:( 1)根据题意列表得:123412345234563456745678(2)由列表得:共16 种情况,其中奇数有8 种,偶数有8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.( 6 分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000 元购进第一批盒装花,上市后很快售完,接着又用5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?考点:分析:是:解答:2×分式方程的应用.菁优网版权所有设第一批盒装花的进价是x 元 /盒,则第一批进的数量是:,第二批进的数量,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x 元 /盒,则=,解得x=30经检验,x=30 是原方程的根.答:第一批盒装花每盒的进价是30 元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.( 6 分)(2014年云南省)如图,小明在AB 的顶端 B 的仰角为 30°,再向旗杆方向前进M 处用高10 米到1 米( DM=1 米)的测角仪测得旗杆F 处,又测得旗杆顶端 B 的仰角为60°,请求出旗杆AB 的高度(取≈ 1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠ BDE=30°,∠ BCE=60°,∴∠ CBD =60°﹣∠ BDE =30°=∠ BDE ,∴BC =CD=10 米,在 Rt△ BCE 中, sin60°=,即=,∴BE =5,AB=BE+AE=5+1≈ 10米.答:旗杆 AB 的高度大约是10 米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.( 7 分)(2014年云南省)如图,在平行四边形ABCD 中,∠ C=60 °, M、N 分别是 AD、BC 的中点, BC=2CD .(1)求证:四边形MNCD 是平行四边形;(2)求证: BD=MN .考点:平行四边形的判定与性质.菁优网版权所有专题:证明题.分析:(1)根据平行四边形的性质,可得AD 与 BC 的关系,根据 MD 与 NC 的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC 的度数,根据三角形外角的性质,可得∠ DBC 的度数,根据正切函数,可得答案.解答:证明:( 1)∵ ABCD 是平行四边形,∴AD =BC, AD ∥ BC,∵M 、 N 分别是 AD 、 BC 的中点,∴MD =NC, MD∥ NC,∴MNCD 是平行四边形;(2)如图:连接ND ,∵MNCD 是平行四边形,∴MN =DC.∵N 是 BC 的中点,∴BN =CN,∵BC =2CD ,∠ C=60°,∴△ NVD 是等边三角形.∴ND =NC,∠ DNC=60°.∵∠ DNC 是△ BND 的外角,∴∠ NBD +∠NDB =∠DNC ,∵DN =NC=NB,∴∠ DBN =∠BDN =∠ DNC=30°,∴∠ BDC =90°.∵tan,∴DB= DC= MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.( 9 分)(2014年云南省)已知如图平面直角坐标系中,点O 是坐标原点,矩形ABCD 是顶点坐标分别为A( 3,0)、B( 3,4)、C( 0,4).点 D 在y 轴上,且点 D 的坐标为(0,﹣5),点P 是直线AC上的一动点.(1)当点 P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点 P 沿直线 AC 移动时,过点 D、 P 的直线与 x 轴交于点 M.问在 x 轴的正半轴上是否存在使△ DOM 与△ ABC 相似的点 M?若存在,请求出点 M 的坐标;若不存在,请说明理由;(3)当点 P 沿直线 AC 移动时,以点P 为圆心、 R( R> 0)为半径长画圆.得到的圆称为动圆 P.若设动圆P 的半径长为,过点D作动圆F.请探求在动圆P 中是否存在面积最小的四边形P 的两条切线与动圆P 分别相切于点E、DEPF ?若存在,请求出最小面积S 的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC 中点 P 的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△ DOM 与△ ABC 相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出 OM 的长,即可求出点 M 的坐标.(3)易证 S△PED =S△PFD.从而有 S 四边形DEPF =2S△PED =DE .由∠ DEP =90 °得 DE2=DP 2﹣ PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当 DP⊥ AC 时,DP 最短,此时 DE 也最短,对应的四边形 DEPF 的面积最小.借助于三角形相似,即可求出 DP ⊥AC 时 DP 的值,就可求出四边形 DEPF 面积的最小值.解答:解:( 1)过点 P 作 PH ∥ OA,交 OC 于点 H,如图 1 所示.∵PH ∥ OA,∴△ CHP ∽△ COA .∴= = .∵点 P是AC中点,∴CP = CA.∴HP = OA,CH = CO.∵A( 3,0)、 C( 0, 4),∴OA=3, OC=4.∴HP =,CH=2.∴OH =2.∵PH ∥ OA,∠ COA=90°,∴∠ CHP =∠COA=90°.∴点 P 的坐标为(,2).设直线 DP 的解析式为y=kx+b,∵D ( 0,﹣ 5), P(,2)在直线DP 上,∴∴∴直线 DP 的解析式为y=x﹣5.(2)①若△ DOM ∽△ ABC,图 2( 1)所示,∵△ DOM ∽△ ABC,∴ = .∵点 B 坐标为( 3,4),点 D 的坐标为( 0.﹣ 5),∴BC =3, AB=4, OD=5.∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0)②若△ DOM ∽△ CBA,如图2( 2)所示,∵△ DOM ∽△ CBA,∴= .∵BC =3, AB=4, OD=5,∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0).综上所述:若△ DOM 与△ CBA 相似,则点 M 的坐标为(, 0)或(, 0).(3)∵OA=3,OC=4,∠AOC =90°,∴AC =5.∴PE =PF = AC= .∵DE 、 DF 都与⊙ P 相切,∴DE =DF ,∠ DEP =∠ DFP =90°.∴S△PED=S△PFD.∴S 四边形DEPF =2S△PED=2× PE?DE=PE?DE = DE.∵∠ DEP =90°,∴DE 2=DP 2﹣PE2. =DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥ AC 时, DP 最短,此时 DE 取到最小值,四边形DEPF 的面积最小.∵DP ⊥ AC,∴∠ DPC =90°.∴∠ AOC=∠DPC .∵∠ OCA=∠PCD ,∠ AOC =∠DPC ,∴△ AOC∽△ DPC .∴=.∵AO=3, AC=5,DC =4﹣(﹣ 5) =9,∴= .∴DP =.∴DE 2=DP 2﹣=() 2﹣=.∴DE =,∴S 四边形DEPF = DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3 小题的关键.另外,要注意“△ DOM 与△ ABC 相似”与“△ DOM ∽△ ABC“之间的区别.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )A. 1200名B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2= 1 D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x= x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 1圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为( ) A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( ) A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3; (2)化简:(1 - n m n+)÷22nm m -.(第11题图)(第12题图)(第17题图)(第18题图)°20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1.……②(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是( )A 、1-B 、5C 、0D 、2 2、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( )A 、正方形B 、矩形C 、菱形D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >> 10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

相关文档
最新文档