最新人教版九年级数学相似三角形第一课-图形的位似

合集下载

27.3 位似 课件 2024-2025学年人教版(2012)九年级下册数学

27.3 位似  课件 2024-2025学年人教版(2012)九年级下册数学

综合应用创新
(2)在网格纸中,以点O为位似中心画出△ABC的位似图形, 使△ABC与它的位似图形的相似比为12(不要求写画法). 思路引导:
综合应用创新
解:△ABC的位似图形如图27.3-10中的△A′B′C′和△A″B″C″.
综合应用创新
技巧点拨 画位似图形的技巧: 1. 对应点可以在位似中心的同侧,也可以在位似中心的异
感悟新知
(2)若△ABC的面积为7,求△A′B′C′的面积. 解:根据题意,得SS△△AA′BB′CC′=(12)2=14, 即S△A7′B′C′=14, ∴ S△A′B′C′=7×4=28.
知2-练
感悟新知
知2-练
3-1. 如图,以点O为位似中心,将△ABC放大得到△DEF, 若AD=OA,△ABC的面积为4,则△DEF的面积为( C ) A. 2 B. 8 C. 16 D. 24
学习目标
第二十七章 相似
27.3 位似
感悟新知
知识点 1 位似图形的定义
知1-讲
位似图形 与位似中

如果两个图形不仅相似,而且对应顶点的连 线相交于一点, 并且这点与对应顶点所连线段 成比例,那么这两个图形叫做位似图形, 这个 交点叫做位似中心
位似多边 形
对于两个多边形, 如果它们的对应顶点的连线 相交于一点, 并且这点与对应顶点所连线段成 比例,那么这两个多边形就是位似多边形
感悟新知
续表
知1-讲
位似 (1)相似仅要求两个图形形状完全相同,而位似是在 与相 相似的基础上要求对应顶点的连线相交于一点,并 似的 且这点与对应顶点所连线段成比例; 区别 (2)位似图形是相似图形的特例,如果两个图形是位 与联 似图形, 那么这两个图形一定是相似图形, 但相似的 系 两个图形不一定是位似图形

人教版九年级下册数学课件 位似 第一课时

人教版九年级下册数学课件 位似 第一课时

∴∠A=∠B′A′C′,
∴AC∥A′C′.
(2)∵△ABC与△A′B′C′位似,
∴△ABC∽△A′B′C′,


∴OC=10,∴CC′=OC-OC′=5.
OC AB 2 OC AB
C C′
A B A′ B′ OBiblioteka 课堂小结1 位似图形的概念:
B′
两个相似图形,如果对应 点的连线都经过同一点,则这 样的两个图形称为位似图形。
则△OAB∽△OCD,又因为对应
A
点连接交于O点,所以△OAB与
△OCD是位似图形.
O
D B
即学即练
下面哪些相似图形是位似图形?


× √×
知识点3 画位似图形
例2 把图1中的四边形ABCD缩小到原来的 1 。
2
A
分析:把原图形缩小到原
D
来的 1 ,也就是使新图形
上各顶2 点到位似中心的距
离与原图形各对应顶点到
27.3 位似
第1课时
学习目标
1.知道位似图形以及相似与位似的关系,能说出位似 图形的性质.
2.能按要求作一个图形的位似图形,会利用位似作图 将一个图形放大或缩小.
新课导入
1、我们学过的图形变换形式有哪些?
平移、旋转、对称
2、什么叫相似?相似与全等有什么区别与联系?
相似:形状相同。 全等:大小、形状相同,能够重合 区别:相似不一定全等,但全等一定相似。 联系:形状相同
在日常生活中,我们经常见到这样一类相 似的图形,它们有什么特征?
在日常生活中,经常遇到一些把图形放大或 缩小,但不改变图形的形状的情形。经过放大或 缩小的图形,与原图形是相似的.用这样的方法, 我们可以得到真实的图片和满意的照片.

最新人教版九年级数学下册《27.3 位似(1)》课件

最新人教版九年级数学下册《27.3 位似(1)》课件

画法:①作射线OA 、OB 、 OC
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
OA OB OC 1
B'
OA' OB ' OC ' 2
A'
③顺次连结A' 、B' 、C'
B
就是所要求图形
A C'
C
O
课堂检测 1. 选出下面不同于其他三组的图形 ( B )
A
B
C
D
2. 如图,正五边形 FGHMN 与正五边形 ABCDE 是位似图形,
2.掌握位似图形的画法,能够利用作位似图 形的方法将一个图形放大或缩小。
3.培养学生分类讨论问题的能力。
探究新知
新知一 位似的定义
下列图形中有相似多边形吗?如果有,那 么这种相似有什么特征?
【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?
两个相似多边形,如果它们对应顶点的连线相交于一点, 我们就把这样的两个图形叫做位似图形,这个交点叫做位似 中心.
(2) 以点 C 为位似中心.
A
A′

B

B′
● C ( C′ )
5.如图,F 在 BD 上,BC、AD 相交于点 E,且 AB∥CD∥EF,
(1) 图中有哪几对位似三角形? 选其中一对加以证明;
答案:△DFE 与 △DBA,△BFE 与 △BDC, △AEB 与 △DEC 都是位似图形;证明略.
巩固练习
3. 如图,四边形木框 ABCD 在灯泡发出的光照射下形成
的影子是四边形 A′B′C′D′,若 OB : OB′=1 : 2,则四边形

人教版九年级下册数学《位似》相似PPT教学课件

人教版九年级下册数学《位似》相似PPT教学课件
如果两个图形不仅形状相同,而且每组 对应顶点所在的直线都经过同一个点,那么 这样的两个图形叫做位似图形。
这个点叫做位似中心。 这时的相似比又称为位似比.
2. 位似图形的性质:
✓ 位似图形上的任意一对对应点到位似中心的距 离之比等于位似比。 ✓ 以坐标原点为位似中心的位似变换有以下性质: 若原图形上点的坐标为(x,y),与原图形的位 似比为k,则像上的对应点的坐标为(kx,ky) 或(―kx,―ky)。
小练习
使新图形与原图形对应线段的比是 在原图2上∶取几1.个关键点A,B,C,D,E,F,G;图外任取一点
作射线A 在这些射线上依次取点A′,B′,C′,D′,E′,F′,G′,使
E′
D′
A ●
BG CF
DE
F′
C′
G′
B′
A′
顺次连接点A′, B′, C′, D′, E′, F′,G′,所得到的图形(向下的 箭头)就是符合要求的图形。
位似图形的性质
✓ 对应点与位似中心共线。 ✓ 不经过位似中心的对应边平行。 ✓ 位似图形上任意一对应点到位似中心的 距离之比等于位似比。
位似的作用 位似可以将一个图形放大或缩小。
小练习
请以坐标原点O为位似中心,作□ ABCD
的位似图形,并把它的边长放大3倍。
分析:根据位似图形上任意一对对应点到位似中 心的距离之比等于位似比,我们只要连结位似中心O
作法一
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得
OA OB OC OD 1 ; OA OB OC OD 2
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形
A′B′C′D′,如图2.
A

九年级数学下学期-相似三角形(图形的位似及应用)

九年级数学下学期-相似三角形(图形的位似及应用)

位似多边形+应用1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.【作位似变换】【方法点拨】画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。

②外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形)③内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)(5) 在平面直角坐标系中,如果位似变换是以原点O 为位似中心,相似比为k (k>0),原图形上点的坐标为(x,y ),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),【典型例题】【例1】下列每组的两个图形不是位似图形的是( ).A. B. C. D.【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知A B 的长度,无法判断【例2】如图,是规格为9×9的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中画出平面直角坐标系,使A 的坐标为(﹣2,4),B 的坐标为(﹣4,2);(2)在第二象限内的格点上画一点C ,使点C 与线段AB 组成一个以AB 为底的等腰三角形,且腰长是无理数,则点C 的坐标是 ,△ABC 的周长是 (结果保留根号);(3)把△ABC 以点C 为位似中心向右放大后得到△A 1B 1C ,使放大前后对应边长的比为1:2,画出△A 1B 1C 的图形并写出点A 1的坐标.【变式1】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.【变式2】在坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在第一象限中画出将△A1B1C1按照2:1放大后的位似图形△A2B2C2;(3)△A2B2C2面积为.(直接写出答案)【变式3】如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().用相似三角形解决问题要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样在平行光的照射下,物体所产生的影称为平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点二、中心投影若一束光线是从一点发出的,在点光源的照射下,物体所产生的影称为中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点四、相似三角形的应用1.测量高度要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

人教版数学九年级下27.3第1课时位似图形的概念及画法教案及教学反思

人教版数学九年级下27.3第1课时位似图形的概念及画法教案及教学反思

27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有( )A.0个 B.1个 C.2个 D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 画位似图形 按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可.解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC=23,∴BE BC =EF DC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。

人教版九年级数学《位似图形》第一课时课件

人教版九年级数学《位似图形》第一课时课件

从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
位似图形的性质
1.一般性质:具有相似多边形的一切性质
(1)相似边之比等于位似比,对应角相等 (2)周长比等于位似比 (3)面积比等于位似比的平方
2.特殊性质:
位似图形上任意一对对应顶点到位似中心 的距离之比等于位似比.
三、位似的作法
作出下列位似图形的位似中心:
作出下列位似图形的位似中心
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1. 在四边形外任选一点O(如图), 2. 分别在线段OA、OB、OC、OD上取点A'、B'、 C'、D',使得 OA' OB' OC' OD' 1 3. 顺次连接点OA'A、BO'B、C'O、C D'O,D所得2 四边形 A'B'C'D'就是所要求的图形.
(3) 图(3)中的△ABC与△A′B′C′ 不是
C
B′
A′
O
A
B
C′
图(3)
练习2、判断下列各对图形哪些是位似图形.
①DE∥BC
②∠AED=∠B
相似且位似
相似但不是位似
A ③两个正方形
D E
相似但不是位似
B C
结论:位似图形是相似图形的特殊 情形,对应顶点的连线应交于一点

【人教版】九年级下册数学《相似》全章教案

【人教版】九年级下册数学《相似》全章教案

27.1 图形的相似(第 1 课时)【学习目标】1.经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.2.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.3.能根据相似比进行有关计算.【自学指导】第一节1.相似三角形的定义及记法三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ ABC与△ DEF相似,记作△ ABC∽△ DEF。

A与 D,D注意:其中对应顶点要写在对应位置,如AB 与 E,C与 F 相对应. AB∶DE等于相似比.2.想一想B C E F如果△ ABC∽△ DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?3.议一议(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?归纳:【典例分析】例 1:有一块呈三角形形状的草坪,其中一边的长是 20m,在这个草坪的图纸上,这条边长 5cm,其他两边的长都是 3.5cm,求该草坪其他两边的实际长度.(14m)例 2:如图,已知△ ABC∽△ ADE,AE=50cm,EC=30cm,BC=70cm,∠ BAC=45°,∠ACB=40°,求(1)∠AED和∠ ADE的度数;(2)DE的长.5.想一想:在例 2 的条件下,图中有哪些线段成比例?练习:等腰直角三角形 ABC与等腰直角三角形 A′B′C′相似,相似比为 3∶1,已知斜边 AB=5cm,求△ A′B′C′斜边A′B′上的高.(第 2 课时)【自学指导】第二节1、相似多边形的定义:两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。

注意:与相似三角形的定义的不同点。

2、叫做相似比。

3、判断:( 1)各角都对应相等的两个多边形是相似多边形。

27.3 位似(第1课时)(教学设计)九年级数学下册(人教版)

27.3 位似(第1课时)(教学设计)九年级数学下册(人教版)

27.3位似(第1课时)1.通过观察实例理解位似图形的定义,能够熟练准确地找到位似中心.2.掌握位似图形的性质和画法,并且能够熟练准确地利用图形的位似将一个图形放大或缩小.3.掌握位似与相似的联系与区别.位似图形的定义、性质和画法.位似图形的性质和画法.新课导入在日常生活中,我们经常见到这样一类相似的图形.例如,(1)放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.(2)在照相馆中,摄影师通过照相机,把景物的形象缩小在底片上.这样的放大或缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【师生活动】教师展示图片,让学生观察特点.教学目标教学重点教学难点教学过程【设计意图】通过情境,展示位似图形的情况,为下面讲位似图形的概念作铺垫.新知探究一、探究学习【问题】与上面放映幻灯片时把图形放大或照相时把图形缩小类似,下图中的多边形相似,这种相似有什么特征?【师生活动】学生观察思考得出结论,让几名学生回答,教师总结.【答案】经过观察与测量计算发现,对应顶点的连线相交于一点O,且OAOA'=OBOB'=…=OPOP'=….【新知】如图,如果一个图形上的点A,B,…,P,…和另一个图形上的点A′,B′,…,P′,…分别对应,并且它们的连线AA′,BB′,…,PP′,…都经过同一点O,OAOA'=OBOB'=…=OPOP'=…,那么这两个图形叫做位似图形,点O是位似中心.【设计意图】通过这个问题,引出位似图形和位似中心的概念,提高学生观察、思考及概括的能力.【问题】位似图形与相似图形有什么区别呢?【师生活动】学生小组讨论,然后教师找学生代表回答.【答案】(1)相似只要求两个图形的形状完全相同,而位似不仅要求图形相似,还必须有特殊的位置关系,即对应顶点的连线相交于同一点;(2)如果两个图形是位似图形,那么这两个图形必是相似图形,但相似的两个图形不一定是位似图形.【设计意图】通过这个问题,让学生掌握位似图形与相似图形之间的关系,加深学生对位似图形的理解.【问题】类比位似图形的概念,你能给出位似多边形的概念吗?【师生活动】学生小组讨论,然后教师找学生代表回答,最后教师总结,得出结论.教师补充:本节课下面所讲的位似图形只包括位似多边形.【答案】对于两个多边形,如果它们的对应顶点的连线相交于一点,并且这点与对应顶点所连线段成比例,那么这两个多边形就是位似多边形.【设计意图】运用类比的方法,让学生了解位似多边形的概念,提高学生的抽象思维能力.【问题】下列各组图中的两个图形是不是位似图形,如果是位似图形,请指出其位似中心.【师生活动】学生动手画一画,并找4名学生板演.【答案】如图,它们都是位似图形,位似中心是点O.【追问】由此可知,位似中心可在两个图形的同侧,或两个图形的中间,除此之外,还有其他情况吗?【师生活动】学生思考并动手画一画,小组讨论,找几名学生代表举例,教师总结.【答案】如图,位似中心还可在图形内、边上、顶点处.【设计意图】让学生能够熟练准确地找到位似中心,并了解常见的位似中心的位置.【问题】位似图形有哪些性质呢?【师生活动】学生思考,小组讨论,找学生代表回答,学生比较容易得出下面的性质:(1)位似图形是相似图形,那么位似图形有相似图形的性质,即对应角相等,对应边成比例;(2)根据定义,位似图形的所有对应点的连线相交于一点,这个点就是位似中心;(3)根据定义,位似中心与对应顶点(在不重合的情况下)所连线段成比例.教师引导:(3)中这个比是多少呢?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:根据相似三角形的判定和性质可知,位似图形上任意一对对应点到位似中心的距离之比等于相似比.教师继续引导:位似图形的对应边有什么位置关系吗?然后教师给出示例图形(前面找位似中心的图形即可),让学生猜想并给出简单证明思路,得出结论:位似图形的对应边互相平行(根据相似三角形的性质和平行线的判定可知),或在同一条直线上(观察可知).最后教师总结.【答案】(1)对应角相等,对应边成比例;(2)对应点的连线相交于一点;(3)位似图形上任意一对对应点(到位似中心的距离为0的点除外)到位似中心的距离之比等于相似比;(4)对应边互相平行或在同一条直线上.【设计意图】通过小组讨论及教师设置问题引导的方式,得到位似图形的性质,通过讨论探究,加深学生对位似图形的性质的理解与掌握.【问题】如何利用位似将一个图形放大或缩小呢?例如,把四边形ABCD缩小到原来的12.【师生活动】教师提示:结合探究位似图形的性质的过程,就能找到作图方法,动手试一试.学生思考,并动手画一画,小组讨论,找学生代表回答,教师修正,并出示规范的作图过程.【答案】①如图,在四边形外任选一点O.②分别在线段OA,OB,OC,OD上取点A′,B′,C′,D′,使得12 OA OB OC ODOA OB OC OD''''====.③顺次连接点A′,B′,C′,D′,所得四边形A′B′C′D′就是所要求的图形.【追问】如果在四边形外任选一个点O,分别在OA,OB,OC,OD的反向延长线上取A′,B′,C′,D′,使得12OA OB OC ODOA OB OC OD''''====呢?如果点O取在四边形ABCD内部呢?分别尝试画出对应的四边形A′B′C′D′.【师生活动】学生动手画一画,并找4名学生板演,教师讲评.【答案】如图,【归纳】画位似图形的一般步骤:1.确定位似中心并找出原图形的关键点;2.分别连接位似中心和原图形的关键点;3.根据相似比,在位似中心与各关键点所确定的直线上取点,确定所画位似图形的关键点的位置;4.顺次连接所作各点,得到放大或缩小的图形.【设计意图】通过这个问题,让学生能够熟练准确地利用图形的位似将一个图形缩小,锻炼学生的动手能力.二、典例精讲【例1】如图,以点O 为位似中心,将△ABC 放大为原来的2倍.【答案】解:①作射线OA ,OB ,OC .②分别在线段OA ,OB ,OC 上取点A′,B′,C′,使得2OA OB OC OA OB OC'''===. ③顺次连接A′,B′,C′,△A′B′C′就是所要求图形.【设计意图】检验学生对利用图形的位似将一个图形放大的掌握情况.【例2】下列图形中△ABC ∽△DEF ,但这两个三角形不是位似图形的是( ). A . B .C .D .【答案】B【解析】观察对应点的连线是否交于一点,若交于一点,则是位似图形;否则,不是位似图形.【归纳】位似图形必须同时满足两个条件:1.两个图形是相似图形;2.两个相似图形的对应顶点的连线相交于同一点.【设计意图】检验学生对判断所给图形是否是位似图形的掌握情况.课堂小结板书设计一、位似图形的概念二、位似图形的性质三、位似图形的画法课后任务完成教材第48页练习第1~2题.。

相似教案(27.3位似第1课时)

相似教案(27.3位似第1课时)

27.3位似(第1课时)教学目标:知识与技能:1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.过程与方法1.学生经历对位似图形的观察、画图、分析、交流,体验探索得出结论,培养学生分析问题、解决问题的能力.2.进一步提高学生利用图形的变换解决问题的能力及小组合作、共同探究的能力,养成良好的数学思维习惯.情感态度与价值观1.使学生亲身经历位似图形的概念的形成过程和位似图形、位似变换的性质的探索,感受数学学习的应用性和挑战性.2.经历将一个图形放大或者缩小的过程,培养学生动手操作的良好习惯,培养学生的数学应用意识.3.通过探究等数学活动,让学生感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心.教学重点位似图形的有关概念、性质及作位似图形.教学难点利用位似图形将一个图形放大或缩小.教学过程一、新课导入图中有相似多边形吗?如果有,这种相似有什么特征?二、新知构建1、位似图形的概念如果两个相似多边形的对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这点叫做位似中心.这时我们说这两个图形关于这点位似.思考:(1)位似图形一定是相似图形吗?反之成立吗?(位似图形一定是相似图形,相似图形不一定是位似图形,位似图形是特殊的相似图形)(2)如何判断两个图形是位似图形?(首先判断两个图形是相似图形,其次判定每一对对应点所在的直线都经过同一点)(3)判断下列图形是不是位似图形?2、位似图形的性质如图所示的两组多边形是位似图形,观察思考.(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?(2)在各图中,对应点到位似中心的距离与两个图形的相似比有什么关系?(3)在各图中,两个图形中的对应线段有什么位置关系?总结:(1)位似图形可能在位似中心的同侧,也可能在位似中心的异侧.(2)位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比.(3)位似图形中的对应线段平行或在同一条直线上.3、将图形放大或缩小(教材47页)如图所示,将四边形ABCD缩小为原来的.解析:将四边形缩小为原来的,可以画出与该四边形相似比为1∶2的位似图形,利用位似图形的性质可以将图形放大或缩小.位似图形一定在位似中心的同侧吗?尝试画出位似图形在位似中心异侧的图形.作法:如图所示.(1)在四边形ABCD外任取一点O;(2)过O点分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A',B',C',D',使得====;(4)顺次连接A',B',C',D'.所得的四边形A'B'C'D'就是所求作的四边形.类似的方法可以画出在位似中心异侧的位似图形,如图所示.当位似中心选取在四边形内部时,画出的图形如图所示.归纳作位似图形的一般步骤:(1)确定位似中心,画位似图形时,位似中心可能在图形的内部,也可能在图形的外部,还可能在图形的边上.(2)找出关键点(多边形常取顶点),连接位似中心和关键点.(3)根据相似比,确定能代表所作的位似图形的关键点,顺次连接所得的关键点,得到新的图形.(4)写出作图的结论.三、课堂小结1.位似图形的概念.2.位似图形与相似图形的关系:位似图形一定是相似图形,相似图形不一定是位似图形.3.位似图形的性质:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比;位似图形中的对应线段平行或在同一条直线上.4.画位似图形: 确定位似中心;对应点与位似中心的距离比相等.四、检测反馈1.下列说法:①相似图形一定是位似图形;②位似图形一定是相似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的,且相似比相等.其中正确的有()A.1个B.2个C.3个D.4个2.△ABC和△A'B'C'是位似图形,且面积之比为1∶9,则△ABC和△A'B'C'的对应边AB和A'B'的比为()A.3∶1B.1∶3C.1∶9D.1∶273.△ABC与△A'B'C'是位似图形,且△ABC与△A'B'C'的相似比是1∶2,已知△ABC的周长是3,则△A'B'C'的周长是.4.如图所示,已知△EFH和△MNK是位似图形,那么其位似中心是点.五、板书设计位似(第1课时)1.位似图形的概念2.位似图形的性质3.将图形放大或缩小例题六、课堂作业【必做题】教材第51页习题27.3第1,2题.【选做题】教材第51页习题27.3第4题.教学反思:。

人教版九年级下册数学 《位似》相似PPT教学课件

人教版九年级下册数学 《位似》相似PPT教学课件
27.3位似
O C’
B’
A’
A B
C
2020/11/09
1
1. 前面我们已经学习了图形的哪些变换?
对称(轴对称与轴对称图形,中心对称与中心对 称图形):对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度. 相似:相似比.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
20
你能得到的是正立放大的 “像”、正立缩小的“像”、 倒立缩小的“像”吗?
P
得到的是倒立放大的“像”
2020/11/09
21
复习回顾
如何把三角形ABC放大为原来的2倍?
E
B
O
C
F
D
A
D
B
O
C
F
A
E
对应点连线都交于_位___似__中___心___ 对应线段____平__行___或__在___一___条__直___线___上______
A
D
不是
E
F
(1)
B
C
G
显然,位似图形是相似图形的特殊情形.相似图形不 一定是位似图形,可位似图形一定是相似图形
思考:位似图形有何性质?
2020/11/09
8
2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,则OAO′A =
OB OB′
=A′ABB′
.从第(3)图中同样可以看到AAFD
是位似图形。 位似中心是点A, 位似比是1:2。
2020/11/09
11
哪些图形是位似图形并指出位似图形的位似中 心。

人教版数学九年级下册27.3《位似》课件

人教版数学九年级下册27.3《位似》课件
解:利用相似中对应点的坐
标的变化规律,分别取点A″ (3, - 6),B″(3,0), O(0,0).顺次连接点A ″, B ″,O,所得的△A ″B ″O
就是要画的一个图形.
应用提高
例:如图,四边形 ABCD的坐标分别为 A(-6,6),B(-8,2), C(-4,0),D(-2,4),
画出它的一个以原点 O为位似中心,相似 比为 1 的位似图形.
坐标为(4,2),则这两个正方形位似
中心的坐标是(-2,0).
y
3.已知,如右图, O(0,0),
A(-4,2),B(-2,-2) ,以点O
为位似中心,按比例尺1:2把△OAB
A
缩小,则点A的对应点A′的坐标为
(-2,1)或(2,-1),点B的对应点B ′的
O
x
坐标为(-1,-1)或(1,1).
B
D
EF B 不是 C G

显然,位似图 形是相似图形的特 殊情形.相似图形不 一定是位似图形, 可位似图形一定是 相似图形.
练习1 2. 如图,△OAB和△OCD是位似图形,
AB与CD平行吗?为什么?
解:AB∥CD.理由如下: ∵△OAB与△OCD是位似图形, ∴△OAB∽△OCD,
∴∠OAB=∠C,
246 8
-4
-6
-8
练习2 2.如图,△ABO三个顶点 的坐标分别为A(4,-5), B(6,0),O(0,0).以 原点O为位似中心,把这个 三角形放大为原来的2倍,
得到△A′B′O′.写出△A′B′O′三个 顶点的坐标.
解:A′(8,-10), B ′(12,0), O ′(0,0) 或A′(-8,10), B ′ (-12,0), O ′ (0,0)

(名师整理)最新中考数学专题复习《位似图形和相似三角形的应用》精品教案

(名师整理)最新中考数学专题复习《位似图形和相似三角形的应用》精品教案

1中考数学人教版专题复习:位似图形和相似三角形的应用一、教学内容位似图形和相似三角形的应用1. 了解位似图形的概念、画法和性质.2. 会利用相似三角形的知识测量物体的高度或宽度.3. 能利用位似图形和相似三角形的性质解决一些简单的实际问题.二、知识要点1. 位似图形(1)定义:两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心,这时的相似比又叫位似比.ABC DEA'B'C'D'E'(2)画法:画位似图形的方法根据位似中心与图形的位置关系可以分为三种:①位似中心在图形的一侧;②两个图形分居在位似中心的两侧;③位似中心在两个图形的内部.OADC BC'D'A'B'ABCDA'B'C'D'O A BC DA'B'C'D'O22. 测量物体的高度 (1)利用阳光下的影子A B C A'B'C'人的影长(可测)人被测物体的影长(可测)被测物体(2)利用标杆A BCDEFM N旗杆标杆(3)利用镜子的反射A BCDE人旗杆三、重点难点本讲重点是位似图形的概念和性质、相似三角形的应用. 难点是应用相似三角形解决实际问题.四、考点分析从历届中考题来看,相似形在中考中的位置越来越重要,试题分值也逐渐增加,特别是相似三角形的判定和性质的应用,在解答题中出现的频率较高,近两年来,相似形在实际生活中的应用性问题也开始出现.3【典型例题】例1. 如图所示,试回答下列问题,并说明理由.(1)分别在△ABC 的边AB 、AC 上取点D 、E ,使DE ∥BC ,那么△ADE 与△ABC 是位似图形吗?若是,是放大了还是缩小了;(2)分别在△ABC 的边AB 、AC 的反向延长线上取点D 、E ,使DE ∥BC ,那么△ADE 与△ABC 是位似图形吗?若是,是放大了还是缩小了?ABCDE ABCED(1) (2)分析:解答此题的关键是正确理解位似图形的定义,即(1)必须是相似图形;(2)所有对应顶点的连线都经过同一点. 这两条缺一不可. 若再要判定是放大了还是缩小了,就看位似比是大于1还是小于1就行了.解:(1)是,缩小了. 理由是△ADE ∽△ABC ,且对应点的连线都经过一点A ,位似比AD AB <1.(2)是,无法确定放大还是缩小,理由是△ADE ∽△ABC ,且对应点的连线都经过一点A . 但ADAB 的值可能大于1,也可能小于1,无法确定.例2. 如图所示,分别按下列要求作出四边形ABCD 以O 点为位似中心的位似四边形A'B'C'D'.(1)沿OA 方向放大为原图形的2倍; (2)沿AO 方向放大为原图形的2倍.ABC DO分析:此题两问都是将原图形放大2倍,也就是位似比为2∶1,而(1)问是沿OA方向,即从O点向A点的方向,而(2)问是沿AO方向,即从A点向O点的方向放大.解:如图1所示.①连接OA,并延长OA到A',使AA'=OA;②连接OB,并延长OB到B',使BB'=OB;③连接OC,并延长OC到C',使CC'=OC;④连接OD,并延长OD到D',使DD'=OD;⑤连接A'B',B'C',C'D',D'A'.则四边形A'B'C'D'是四边形ABCD关于O点的位似图形,且位似比为2∶1.A'B'C'D'A BC DO图1(2)如图2所示.①连接AO,并延长AO到A',使OA'=2OA;②连接OB、OC、OD,并延长BO、CO、DO到B'、C'、D',使OB'=2OB,OC'=2OC,OD'=2OD.③连接A'B',B'C',C'D',D'A'.则四边形A'B'C'D'是四边形AB CD关于O点的位似图形,且位似比为2∶1.45A'B'C'D'图2ABC DO例3. 如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距墙1.60m ,梯上点D 距墙1.4m ,BD 长0.55m ,则梯子的长为( )A . 3.85mB . 4.00mC . 4.40mD . 4.50mABCD E分析:找出图中的相似三角形,列出相应的比例式AD AB =DEBC ,代入求值即可. BC =1.6m ,DE =1.4m ,DE ∥BC ,BD =0.55m ,设AB =x m ,则AD =(x -0.55)m . 由△ADE ∽△ABC ,可得AD AB =DEBC ,即x -0.55x =1.41.6,解得x =4.40,故选C . 解:C例4. 如图所示,小明为了测量一高楼MN 的高度,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若AC =1.5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度. (精确到0.1m )ABCMN分析:根据物理学定律:光线的入射角等于反射角,这样△BCA 与△MNA 的相似关系就明确了.6解:因为BC ⊥CA ,MN ⊥AN ,∠BAC =∠MAN ,所以△BCA ∽△MNA ,所以MN BC =ANAC , 即MN ∶1.6=20∶1.5,所以MN =1.6×20÷1.5≈21.3(m ).评析:这是一道实际应用题,利用了两角对应相等的两个三角形相似,且相似三角形对应边成比例.例5. 一条河的两岸是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m ,在这岸离开岸边16m 处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有1棵树,但对岸被遮住的两棵树之间有4棵树,则河宽是多少米? 分析:先按题意画图,如图所示,可得AD =16m ,DE =20m ,BC =50m ,由题意可知△ADE ∽△ACB ,从而AD AC =DECB ,可求河宽.ABCDE解:如图所示,AD =16m ,DE =20m ,BC =50m ,CB 、DE 表示互相平行的河两岸,AD ⊥DE ,图中CB 、DE 两端的点表示树木,本题求DC 的长,因为DE ∥CB ,所以△ADE ∽△ACB .所以AD AC =DE CB ,即AD AD +DC =DE CB ,则1616+CD =2050,解得CD =24(m ),所以河宽为24m .评析:有关测量问题的计算,要应用相似三角形的性质——相似三角形的对应边成比例,这是解决实际问题的重要方法之一.【方法总结】71. 关于位似图形和相似图形:①位似图形一定是相似图形;②两个相似形,当对应点的连线交于同一点时,这两个图形又叫做位似图形;③位似比即相似形的相似比;④位似图形具有相似形的性质.2. 能够把实际问题转化成数学问题,利用影长计算或测量时,注意同一时刻:物体的实际高度影长=被测物体的实际高度被测物体的影长.【模拟试题】(答题时间:50分钟) 一、选择题1. 如图所示,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB ∶FG =2∶3,则下列结论正确的是( )ABCDEFG HMNA . 2DE =3MNB . 3DE =2MNC . 3∠A =2∠FD . 2∠A =3∠F 2. 图中的两个三角形是位似图形,它们的位似中心是( ) A . 点PB . 点OC . 点MD . 点NPO MN3. 小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A . 0.5mB . 0.55mC . 0.6mD . 2.2m4. 如图所示,身高为1.6m 的某学生测量一棵大树的高度,她沿着树影BA 由B 向A 走8去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m ,CA =0.8m ,则树的高度为( )ABE DA . 4.8mB . 6.4mC . 8mD . 10m*5. 下列命题中真命题的个数是( ) ①两个相似多边形的面积之比等于相似比的平方; ②两个相似三角形的对应高之比等于它们的相似比;③在△ABC 与△A'B'C'中,AB A'B'=ACA'C',∠A =∠A',那么△ABC ∽△A'B'C'; ④已知△ABC 及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5. A . 1个B . 2个C . 3个D . 4个*6. 如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a ,b ),那么大“鱼”上对应“顶点”的坐标为( )xyA . (-a ,-2b )B . (-2a ,-b )C . (-2a ,-2b )D . (-2b ,-2a )二、填空题91. 如图,△ABC 与△A ’B ’C ’是位似图形,且顶点都在格点上,则位似中心的坐标是__________.19876543210119876543211011O A'B'C'A B C yx2. 要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD ∶BC =5∶4,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上(如图所示),量得DE 的长为30m ,则AB 的距离为__________m .ABCDEF3. 为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.4米,观察者目高CD =1.6米,则树(AB )的高度约为__________米(精确到0.1米).EDCB4. 如图,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的高度为4.5cm ,OA =16cm ,OD =48cm ,那么火焰的高度是__________cm .10*5. 如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆. 小丽站在离南岸岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__________米.**6. 如图,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.ABCDO E FGx y三、解答题1. 如图所示,把图(1)中的图形在图(2)中放大(形状完全一样).(1) (2)2.正方形网格中有一条简笔画“鱼”,请你以点O为位似中心放大,使新图形与原图形的对应线段的比是2∶1(不要求写作法).OABCD3.用一桶农药给果树防虫,桶高0.7米,桶内有一斜放的木棒,一端在桶底,另一端恰好在桶盖小口处,抽出木棒量得木棒的总长为1米,上面浸有农药部分长0.7米,你能求出桶内药液的高度是多少吗?4.如图所示,小明手拿一把刻有厘米刻度的尺子,站在距电线杆30m的地方,把手臂向前伸直,小尺竖直,看到尺子上12cm的长度恰好遮住电线杆,已知手臂长60cm,求电线杆的高度.**5.马戏团让狮子和公鸡表演跷跷板节目.跷跷板支柱AB的高度为1.2米.(1)若吊环高度为2米,支点A为跷跷板PQ的中点,狮子能否将公鸡送到吊环上?为什么?(2)若吊环高度为3.6米,在不改变其他条件的前提下移动支柱,当支点A移到跷跷板PQ的什么位置时,狮子刚好能将公鸡送到吊环上?ACQ1112【试题答案】一、选择题1. B2. A3. A4. C5. C6. C二、填空题1.(9,0)2. 243. 5.64. 1.55. 22.56.(1,0)或(-5,-2)三、解答题1.如图所示:2.下图中的A’B’C’D’就是所求.OABCD B'D'3.设桶内药液高度为x米,则0.7-x0.7=1-0.71,解得x=0.49米4.设电线杆的高度为x米,则603000=12x,解得x=600(cm)=6(米)5.(1)狮子能将公鸡送到吊环上.当狮子将跷跷板P端按到底时可得到R t△PHQ,∵点A是PQ的中点,∴△PAB∽△PQH,且相似比是1∶2,AB=1.2(米)∴QH=2.4>2(米).13(2)支点A移到跷跷板PQ的三分之一处(PA=13PQ),狮子刚好能将公鸡送到吊环上,△PAB∽△PQH,∴QH=3AH=3.6(米).14。

九年级数学上册相似三角形4.7图形的位似导学课件

九年级数学上册相似三角形4.7图形的位似导学课件

4.7 图形的位似
2.线段 AB 两个端点的坐标分别为 A(6,6),B(8,2),以坐 1 标原点 O 为位似中心, 将线段 AB 缩小为原来的 后得到对应的线 2 段 CD(A 的对应点为 C, B 的对应点为 D), 则端点 C 的坐标为( B ) A.(3,3) C.(-4,-1) B.(3,3)或(-3,-3) D.(4,1)
(2)观察可知B′(-6,2),C′(-4,-2). (3)M′(-2x,-2y).
4.7 图形的位似
【归纳总结】画位似图形的一般步骤 ①确定位似中心;②分别连结并延长位似中心和能代表原图形的关 键点;③根据位似比确定关键点的对应点;④顺次连结上述各对应 点,得到放大或缩小的图形.除此之外,位似图形在不确定位置时, 一般会有两个,分别在位似中心的同侧和异侧.
4.7 图形的位似
勤反思
小结
①相似 概念 ②对应顶点的连线交于一点 每一对对应点与位似中心共线
位似比 对应点与位似中心的距离之比等于____________
位 似 图 形
性质
坐标系下的位似变换
4.7 图形的位似
反思
如图4-7-3,.
图4-7-3
4.7 图形的位似
解:∵矩形ABCD和矩形EFGH是位似图形, ∴它们的对应点A与E,B与F,C与G,D与H的连线相交于一点. 如图4-7-4,点O即是它们的位似中心.
图4-7-4
以上解答是否完整?若不完整,请给予补充.
4.7 图形的位似
【答案】不完整,补充如下:
两个位似矩形的对应顶点还可能是:A与G,B与H,C与E,D与F,因此它们的
[解析]∵线段 AB 两个端点的坐标分别为 A(6,6),B(8,2),以 1 坐标原点 O 为位似中心,将线段 AB 缩小为原来的 后得到对应的 2 线段 CD,∴端点 C 的坐标为(3,3)或(-3,-3).

三角形相似与位似

三角形相似与位似

知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、相似三角形的性质相似三角形的对应角相等,对应边成比例,对应线段的比等于相似比,根据这一性质,可计算角的度数或边的长度。

平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4、如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

人教版九年级数学下册 (位似)相似教学课件(第1课时位似图形的概念及画法)

人教版九年级数学下册 (位似)相似教学课件(第1课时位似图形的概念及画法)

归纳:
两个相似多边形,如果它们对应顶点所在的直线相交 于一点,并且这点与对应顶点所连线段成比例,我们就把 这样的两个图形叫做位似图形,这个交点叫做位似中心.
例1 请指出下列图形那些是位似图形?并指出位似图形图的位似中心?
o
P
方法技巧: 判断两个图形是不是位似图形,需要从两方 面去考察:一是这两个图形是相似的,二是要有特殊的位 置关系,即每组对应点所在的直线都经过同一点.
解:(1)连接AA′,BB′,相交于点O,则点O 为位似中心; (2)作射线CO,DO ; (3)分别过点A′,B′作A′ D′∥AD 交射线DO 于点D′,B′ C′∥ BC 交射线CO 于点C′ ; (4)连接C′D′,四边形A′ B′ C′D′即为所要画的图形(如图 所示).
课堂小结
定义
位似图形的概念
★ 位似图形的画法
例3 如图,已知△ABC,以点O为位似中心画△DEF,使
其与△ABC位似,且位似比为2.
解:画射线OA、OB、OC;
D
在射线OA、OB、OC上分别取点D、E、F,
使OD = 2OA,OE = 2OB,OF = 2OC;
A
顺次连结D、E、F,使△DEF与△ABC位似,
E
相似比为2.
应顶点的连线必经过__位_ 似中____.

2.位似图形上某一对对应心点到位似中心的距离分别为5和10, 则它们的位似比为__1:2 _.
1:16
4.已知边长为1的正方形ABCD2且与它位
解似:的画正射方线形O. A、OB、OC、
E
H
OD;在射线OA、OB、OC、
及画法
性质
画法
两个相似多边形,如果它们对应顶点所在的直线相交于 一点,并且这点与对应顶点所连线段成比例,我们就把这 样的两个图形叫做位似图形,这个交点叫做位似中心.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档