导数复数推理证明测试题二
复变函数考试试题与答案各种总结
《复变函数》考试试题与答案各种总结(总24页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( )二.填空题(20分)1、=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分)1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题1. 2101i n n π=⎧⎨≠⎩ ;2. 1;3. 2k π,()k z ∈;4. z i =±;5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞. 三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑. 2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰.3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内,()()2()c f z dz i z zϕλπϕλ==-⎰. 所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数). 所以12()f z c ic =+为常数.2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)if eπ-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( ) 二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题 1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =. 所以4()if i e π=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-,因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n n n n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f .( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________. 3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
高三数学第2、3章《极限》《导数》测试及答案
高三数学第2、3章《极限》《导数》测试及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项正确 1.(理)若复数z 满足方程022=+z ,则=3z( )A .22±B . 22-C .i 22-D . i 22±(文)曲线y=4x -x 3在点(-1,-3)处的切线方程是( )A . y=7x+4B . y=7x+2C . y=x -4D . y=x -22.函数y=x 2(-21≤x ≤21)图像上一点P,以点P 为切点的切线为直线l,则直线l 的倾斜角的范围是( )A .[0,4π]∪[43π,π]B .[0,π]C .[4π,43π]D .[0,4π]∪(2π,43π) 3.(理)若2lim →x 434222=--+x ax x ,则a 的值为( )A .0B .1C .-1D .21(文)在曲线y=x 2+1的图像上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx∆∆为( ) A .Δx+x∆1+2 B .Δx -x ∆1-2 C .Δx+2D .2+Δx -x ∆14.曲线y=51x 5+3x 2+4x 在x =-1处的切线的倾斜角是( )A .-4πB .4πC .43πD .45π5.函数f(x)=x 3-ax 2-bx+a 2在x=1时,有极值10,则a 、b 的值为( )A .⎩⎨⎧=-=⎩⎨⎧-==1143,3b a b a 或 B .⎩⎨⎧==⎩⎨⎧=-=1141,4b -a b a 或 C .⎩⎨⎧=-=51b aD .以上皆错6.(理)已知()23,12,1x x f x x +≠⎧=⎨=⎩,下面结论正确的是( )A .()f x 在1x =处连续B .()5f x =C .()1lim 2x f x -→= D .()1lim 5x f x +→=(文)设f (x )=a x 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313 D .3107.函数f(x )=x 3-3x +1,x ∈[-3,0]的最大值、最小值分别是( )A .1,-1B .1,-17C .3, -17D .9,-198.(理)数列{a n }中,a 1=1,S n 是前n 项和.当n ≥2时,a n =3S n ,则∞→n lim311-++n n S S 的值是( )A .-31B .-2C .1D .-54(文)曲线y=x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y=3x -4B .y=-3x+2C .y=-4x+3D .y=4x -5 9.(理)2+23i 的平方根是( )A .3+iB .3±iC .±3+iD .±(3+i)(文)已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对10.已知函数)(x f x y '=的图像如右图所示(其中 )(x f '是函数)(x f 的导函数),下面四个图像中)(x f y =的图像大致是11.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-' >0.且g(3)=0.则不等式f(x)g(x)<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,- 3)∪(3,+∞)D .(-∞,- 3)∪(0, 3)12.已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,2+n P 是线段n P 1+n P 的中点,则点n P 的极限位置应是( ) A .(2a ,2b) B .(3,3b a ) C .(32,32b a ) D . (43,43ba )二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.垂直于直线2x -6y+1=0且与曲线y=x 3+3x 2-1相切的直线方程的一般式是__________.14.(理) (2006年安徽卷)设常数0a >,42ax ⎛ ⎝展开式中3x 的系数为32,则2lim()n n a a a →∞++⋅⋅⋅+=_____.(文)(2006福建高考)已知直线10x y --=与抛物线2y ax =相切,则______.a = 15.函数f(x)=2x 3+3x 2-12x -5,则函数f(x)的单调增区间是______. 16.(理)用数学归纳法证)"(212111211214131211"*N n nn n n n ∈+++++=--++-+- 的过程中,当n=k 到n=k+1时,左边所增加的项为_______________.(文)若函数f (x )=x 3+x 2+mx+1是R 上的单调递增函数,则m 的取值范围是______________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(理)设函数⎪⎪⎩⎪⎪⎨⎧≥-<≤-+-<≤<=)3(4)31(24)10()0(0)(2x xx x x x x x x f(1)画出函数的图像;(2)在x=0,x=3处函数)(x f 是否连续; (3)求函数)(x f 的连续区间. (文)已知函数ax ax x f 313)(23-+-=. (1)讨论函数)(x f 的单调性;(2)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.18.(本题满分12分)(理)已知复数z 1=cosθ-i ,z 2=sinθ+i ,求| z 1·z 2|的最大值和最小值.(文)(2006福建高考)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。
2019_2020学年高中数学2019年数学高考真题新人教A版选修2_2
2019年数学高考真题剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.虽然难度上会有一些差异,但在试卷结构、命题方向上基本都是相同的.试题稳中求新、稳中求变.与往年相比,三角、数列、立体几何、圆锥曲线、函数与导数等依然是考查的重点,注重基础知识,凸显主干知识.试卷结构、题型保持一致,各题型所占分值与分值分布没有变化,试题顺序有较大变化,考查方式有所改变,难度明显增加,客观题与去年的难度相当,主观题难易梯度明显增加,解决了区分度低的诟病.今年试题立足学科素养,落实关键能力,加强数学应用,渗透数学文化.以真实情境为载体,贴近生活,联系社会实际,注重能力考查,增强综合性、应用性,在各部分内容的布局和考查难度上都进行了调整和改变,这在一定程度上有助于考查学生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于打破考试题的僵硬化,更好地提升学生的综合分析能力,打破了传统的应试教育.全国Ⅰ、Ⅱ、Ⅲ卷对选修2-2推理与证明、数系的扩充与复数的引入的考查,相对来说比较常规、难度不大、变化小、综合性低,属于基础类必得分试题;对导数及其应用的考查,难度大、综合性强、运算能力要求高、得分比较困难,主要考查导数的计算、几何意义,利用导数研究函数的单调性、极值、最值、零点、不等式等.其他省市试题和全国卷类似,难度相当.要想学好这部分知识不仅要有扎实的基础知识、基本能力,还要注意一些数学思想的培养,比如分类讨论思想、数形结合思想、转化与化归思想等!下面列出了2019年全国Ⅰ、Ⅱ、Ⅲ卷及各地区对选修2-2所考查的全部试题,请同学们根据所学知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性地试做!)穿越自测一、选择题1.(2019·全国卷Ⅰ,理2)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( )A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1 D .x 2+(y +1)2=1答案 C解析 由已知条件,可得z =x +y i.∵|z -i|=1, ∴|x +y i -i|=1,∴x 2+(y -1)2=1.故选C.2.(2019·全国卷Ⅱ,理2)设z =-3+2i ,则在复平面内 z -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 z -=-3-2i ,故z -对应的点(-3,-2)位于第三象限.故选C. 3.(2019·全国卷Ⅲ,理2)若z (1+i)=2i ,则z =( ) A .-1-i B .-1+i C .1-i D .1+i答案 D解析 由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=2i (1-i )2=i(1-i)=1+i.故选D. 4.(2019·北京高考,理1)已知复数z =2+i ,则z ·z -=( ) A. 3 B. 5 C .3 D .5答案 D解析 解法一:∵z =2+i ,∴z -=2-i ,∴z ·z -=(2+i)(2-i)=5.故选D. 解法二:∵z =2+i ,∴z ·z -=|z |2=5.故选D.5.(2019·全国卷Ⅲ,理6)已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1 D .a =e -1,b =-1答案 D解析 y ′=a e x+ln x +1,k =y ′|x =1=a e +1, ∴切线方程为y -a e =(a e +1)(x -1), 即y =(a e +1)x -1. 又∵切线方程为y =2x +b ,∴⎩⎪⎨⎪⎧a e +1=2,b =-1,即a =e -1,b =-1.故选D.6.(2019·天津高考,理8)已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( )A .[0,1]B .[0,2]C .[0,e]D .[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立,即a ≤x ln x 恒成立.设g (x )=xln x ,则g ′(x )=ln x -1(ln x )2.令g ′(x )=0, 得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, 所以g (x )min =g (e)=e ,∴a ≤e.综上,a 的取值范围是0≤a ≤e,即[0,e].故选C. 7.(2019·浙江高考,9)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( )A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >0答案 C解析 由题意,b =f (x )-ax =⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.设y =b ,g (x )=⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.即以上两个函数的图象恰有3个交点,根据选项进行讨论. ①当a <-1时,1-a >0,可知g (x )在(-∞,0)上单调递增; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知g (x )在(0,+∞)上单调递增.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时, 因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去.综上,-1<a <1,b <0.故选C. 二、填空题8.(2019·全国卷Ⅰ,理13)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 答案 y =3x解析 y ′=3(2x +1)e x+3(x 2+x )e x =e x (3x 2+9x +3),∴斜率k =e 0×3=3,∴切线方程为y =3x .9.(2019·天津高考,理9)i 是虚数单位,则⎪⎪⎪⎪⎪⎪5-i 1+i 的值为________.答案13解析 ∵5-i 1+i =(5-i )(1-i )(1+i )(1-i )=2-3i ,∴⎪⎪⎪⎪⎪⎪5-i 1+i =|2-3i|=13.10.(2019·浙江高考,11)复数z =11+i (i 为虚数单位),则|z |=________.答案22解析 z =11+i =1-i (1+i )(1-i )=1-i 1-i 2=12-12i ,易得|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 11.(2019·江苏高考,2)已知复数(a +2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是________.答案 2解析 (a +2i)(1+i)=a -2+(a +2)i ,因为其实部为0,故a =2.12.(2019·江苏高考,11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.答案 (e,1)解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点(-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1. 故点A 的坐标为(e,1). 三、解答题13.(2019·全国卷Ⅰ,理20)已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数. 证明:(1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点;(2)f (x )有且仅有2个零点. 证明 (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝⎛⎭⎪⎫α,π2时,g ′(x )<0.所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝⎛⎭⎪⎫-1,π2存在唯一极大值点.(2)f (x )的定义域为(-1,+∞).①当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.②当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝⎛⎭⎪⎫β,π2单调递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝⎛⎭⎪⎫1+π2>0,所以当x ∈⎝⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝⎛⎦⎥⎤0,π2没有零点.③当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点.④当x ∈(π,+∞)时,ln (x +1)>1.所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.14.(2019·全国卷Ⅱ,理20)已知函数f (x )=ln x -x +1x -1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x的切线.解 (1)f (x )的定义域为(0,1)∪(1,+∞). 因为f ′(x )=1x +2(x -1)2>0,所以f (x )在(0,1),(1,+∞)单调递增.因为f (e)=1-e +1e -1<0,f (e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f (x )在(1,+∞)有唯一零点x 1(e<x 1<e 2), 即f (x 1)=0.又0<1x 1<1,f ⎝ ⎛⎭⎪⎫1x 1=-ln x 1+x 1+1x 1-1=-f (x 1)=0,故f (x )在(0,1)有唯一零点1x 1.综上,f (x )有且仅有两个零点. (2)证明:因为1x 0=e -ln x 0,所以点B ⎝⎛⎭⎪⎫-ln x 0,1x在曲线y =e x上.由题设知f (x 0)=0,即ln x 0=x 0+1x 0-1, 故直线AB 的斜率k =1x 0-ln x 0-ln x 0-x 0=1x 0-x 0+1x 0-1-x 0+1x 0-1-x 0=1x 0.曲线y =e x在点B ⎝⎛⎭⎪⎫-ln x 0,1x处切线的斜率是1x 0,曲线y =ln x 在点A (x 0,ln x 0)处切线的斜率也是1x 0,所以曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x的切线. 15.(2019·全国卷Ⅲ,理20)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.解 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a3,+∞时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞单调递增,在⎝ ⎛⎭⎪⎫0,a3单调递减. 若a =0,则f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫a3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)单调递增,在⎝ ⎛⎭⎪⎫a3,0单调递减.(2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1. 16.(2019·北京高考,理19)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ;(3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.解 (1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,f ⎝ ⎛⎭⎪⎫83=827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83,即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4]. 由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.当x 变化时,g ′(x ),g (x )的变化情况如下:所以g (x )的最小值为-6,最大值为0. 故-6≤g (x )≤0,即x -6≤f (x )≤x . (3)由(2)知,当a <-3时,M (a )=F (0)=|g (0)-a |=-a >3; 当a >-3时,M (a )=F (-2)=|g (-2)-a |=6+a >3; 当a =-3时,M (a )=3. 综上,当M (a )最小时,a =-3.17.(2019·天津高考,理20)设函数f (x )=e xcos x ,g (x )为f (x )的导函数. (1)求f (x )的单调区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,证明f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0; (3)设x n 为函数u (x )=f (x )-1在区间⎝ ⎛⎭⎪⎫2n π+π4,2n π+π2内的零点,其中n ∈N ,证明2n π+π2-x n <e-2n πsin x 0-cos x 0.解 (1)由已知,有f ′(x )=e x(cos x -sin x ). 因此,当x ∈⎝ ⎛⎭⎪⎫2k π+π4,2k π+5π4(k ∈Z )时,有sin x >cos x ,得f ′(x )<0,则f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫2k π-3π4,2k π+π4(k ∈Z )时,有sin x <cos x , 得f ′(x )>0,则f (x )单调递增.所以,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-3π4,2k π+π4(k ∈Z ),f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ). (2)证明:记h (x )=f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x .依题意及(1),有g (x )=e x(cos x -sin x ), 从而g ′(x )=-2e xsin x . 当x ∈⎝⎛⎭⎪⎫π4,π2时,g ′(x )<0,故h ′(x )=f ′(x )+g ′(x )⎝ ⎛⎭⎪⎫π2-x +g (x )(-1)=g ′(x )⎝ ⎛⎭⎪⎫π2-x <0. 因此,h (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递减,进而h (x )≥h ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫π2=0. 所以,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,f (x )+g (x )⎝ ⎛⎭⎪⎫π2-x ≥0. (3)证明:依题意,u (x n )=f (x n )-1=0,即e xn cos x n =1.记y n =x n -2n π,则y n ∈⎝ ⎛⎭⎪⎫π4,π2,且f (y n )=e yn cos y n =e xn -2n πcos(x n -2n π)=e -2n π(n ∈N ).由f (y n )=e-2n π≤1=f (y 0)及(1),得y n ≥y 0.由(2)知,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,g ′(x )<0, 所以g (x )在⎣⎢⎡⎦⎥⎤π4,π2上为减函数, 因此g (y n )≤g (y 0)<g ⎝ ⎛⎭⎪⎫π4=0. 又由(2)知,f (y n )+g (y n )⎝⎛⎭⎪⎫π2-y n ≥0,故π2-y n ≤-f (y n )g (y n )=-e -2n πg (y n )≤-e-2n πg (y 0) =e -2n πe y 0(sin y 0-cos y 0)<e -2n πsin x 0-cos x 0. 所以2n π+π2-x n <e-2n πsin x 0-cos x 0.18.(2019·浙江高考,22)已知实数a ≠0,设函数f (x )=a ln x +1+x ,x >0. (1)当a =-34时,求函数f (x )的单调区间;(2)对任意x ∈⎣⎢⎡⎭⎪⎫1e 2,+∞均有f (x )≤x 2a ,求a 的取值范围. 注:e =2.71828…为自然对数的底数.解 (1)当a =-34时,f (x )=-34ln x +1+x ,x >0.f ′(x )=-34x +121+x=(1+x -2)(21+x +1)4x 1+x,所以函数f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞). (2)由f (1)≤12a ,得0<a ≤24.当0<a ≤24时,f (x )≤x 2a 等价于x a 2-2 1+x a-2ln x ≥0. 令t =1a,则t ≥2 2.设g (t )=t2x -2t 1+x -2ln x ,t ≥22, 则g (t )=x ⎝⎛⎭⎪⎫t -1+1x 2-1+xx-2ln x . ①当x ∈⎣⎢⎡⎭⎪⎫17,+∞时, 1+1x≤22,则g (t )≥g (22)=8x -421+x -2ln x . 记p (x )=4x -221+x -ln x ,x ≥17,则p ′(x )=2x-2x +1-1x=2x x +1-2x -x +1x x +1=(x -1)[1+x (2x +2-1)]x x +1(x +1)(x +1+2x ).故所以p (x )≥p (1)=0.因此g (t )≥g (22)=2p (x )≥0.②当x ∈⎣⎢⎡⎭⎪⎫1e 2,17时,g (t )≥g ⎝⎛⎭⎪⎫1+1x =-2x ln x -(x +1)x. 令q (x )=2x ln x +(x +1),x ∈⎣⎢⎡⎦⎥⎤1e 2,17,则q ′(x )=ln x +2x+1>0,故q (x )在⎣⎢⎡⎦⎥⎤1e 2,17上单调递增,所以q (x )≤q ⎝ ⎛⎭⎪⎫17. 由①,得q ⎝ ⎛⎭⎪⎫17=-277p ⎝ ⎛⎭⎪⎫17<-277p (1)=0. 所以q (x )<0. 因此,g (t )≥g ⎝⎛⎭⎪⎫1+1x =-q (x )x>0. 由①②知对任意x ∈⎣⎢⎡⎭⎪⎫1e 2,+∞,t ∈[22,+∞),g (t )≥0,即对任意x ∈⎣⎢⎡⎭⎪⎫1e2,+∞,均有f (x )≤x 2a. 综上所述,所求a 的取值范围是⎝ ⎛⎦⎥⎤0,24. 19.(2019·江苏高考,19)设函数f (x )=(x -a )(x -b )(x -c ),a ,b ,c ∈R ,f ′(x )为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和f ′(x )的零点均在集合{-3,1,3}中,求f (x )的极小值; (3)若a =0,0<b ≤1,c =1,且f (x )的极大值为M ,求证:M ≤427.解 (1)因为a =b =c ,所以f (x )=(x -a )(x -b )(x -c )=(x -a )3. 因为f (4)=8,所以(4-a )3=8,解得a =2.(2)因为b =c ,所以f (x )=(x -a )(x -b )2=x 3-(a +2b )x 2+b (2a +b )x -ab 2,从而f ′(x )=3(x -b )⎝ ⎛⎭⎪⎫x -2a +b 3. 令f ′(x )=0,得x =b 或x =2a +b3.因为a ,b ,2a +b3都在集合{-3,1,3}中,且a ≠b ,所以2a +b 3=1,a =3,b =-3.此时,f (x )=(x -3)(x +3)2,f ′(x )=3(x +3)(x -1).令f ′(x )=0,得x =-3或x =1.列表如下:所以f (x )的极小值为f (1)=(1-3)(1+3)2=-32. (3)证明:因为a =0,c =1,所以f (x )=x (x -b )(x -1)=x 3-(b +1)x 2+bx ,f ′(x )=3x 2-2(b +1)x +b .因为0<b ≤1,所以Δ=4(b +1)2-12b =(2b -1)2+3>0, 则f ′(x )有2个不同的零点,设为x 1,x 2(x 1<x 2). 由f ′(x )=0,得x 1=b +1-b 2-b +13,x 2=b +1+b 2-b +13.列表如下:1证法一:M =f (x 1)=x 31-(b +1)x 21+bx 1=[3x 21-2(b +1)x 1+b ]⎝ ⎛⎭⎪⎫x 13-b +19-2(b 2-b +1)9x 1+b (b +1)9=-2(b 2-b +1)(b +1)27+b (b +1)9+227(b 2-b +1)3=b (b +1)27-2(b -1)2(b +1)27+227(b (b -1)+1)3≤b (b +1)27+227≤427.因此M ≤427. 证法二:因为0<b ≤1,所以x 1∈(0,1).当x ∈(0,1)时,f (x )=x (x -b )(x -1)≤x (x -1)2. 令g (x )=x (x -1)2,x ∈(0,1),则g ′(x )=3⎝ ⎛⎭⎪⎫x -13(x -1). 令g ′(x )=0,得x =13.列表如下:所以当x =13时,g (x )取得极大值,且是最大值,故g (x )max =g ⎝ ⎛⎭⎪⎫13=427.所以当x ∈(0,1)时,f (x )≤g (x )≤427.因此M ≤427.。
新高考II卷数学试题真题及答案(精选3篇)
新高考II卷数学试题真题及答案(精选3篇)新高考II卷数学试题真题及答案(精选篇1)必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
选修2--2:1、导数与微积分;2、推理证明:一般不考3、复数。
高三数学期末复习(六)导数、推理与证明、复数
高三数学期末复习(六)导数、推理与证明、复数编写:陈为霞 审核:郭立效一、填空题1. 设117,,12i a b R a bi i-∈+=-,则a b +的值为 .2. 复数21i z i=+的共轭复数z = .3. 若复数z 满足346z i ++≤,则z 的最小值和最大值分别为 .4. 设()()()()()()()010211cos ,,,,n n f x x f x f x f x f x f x f x +'''====,则()2013f x = .5. 命题“,a b 是实数,若110a a -+-=,则1a b -=”,用反证法证明时,反设为 .6. 用数学归纳法证明()11111231n N n n n *+++>∈+++,第1步左边= .7. 设()()1111123431f n n N n *=+++++∈-,则()()1f n f n +-= .8. 曲线32242y x x x =--+在点()1,3-处的切线方程为 .9. 曲线xy e =在点()22,e 处的切线与坐标轴所围成三角形的面积为 .10. 已知()()3261f x x ax a x =++++有极大值和极小值,则a 的取值范围为 .11. 已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围是 .12. 已知曲线313y x =,则过()82,3P 的切线方程为 .13. 函数()()cos ,0,22x f x x x π=+∈在区间 上是增函数.14. 设0a >,函数()()2,ln a f x x g x x x x=+=-,若对[]121,x x e ∀∈,都有()()12f x g x ≥成立,则实数a 的取值范围为 .二、解答题15. 已知:m R ∈,复数()()22231m m z m m i m -=++--,当m 为何值时.⑴z R ∈;⑵z 是纯虚数;⑶z 对应的点位于复平面的第二象限;⑷z 对应的点在直线30x y ++=上.16. 用数学归纳法证明:()()13nx n N *-+∈能被2x +整除.17. 已知,a b 是实数,1和1-是函数()32f x x ax bx =++的两个极值点.⑴求a 和b 的值;⑵设函数()g x 的导数()()2g x f x '=+,求()g x 的极值点.18. 求函数()33f x x x =-在区间[]0,a 的最大值.19. 已知函数()2ln f x x b x =-+(实数b 为常数),若()f x 在()0,+∞上是增函数,求b 的取值范围.20. 如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB=20km ,BC=10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为ykm . (1)按下列要求建立函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数; ②设OP=x (km ),将y 表示成x 的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.。
2013-2014学年高二文科数学4月考试原创试题 (复数、导数)、不等式)
2013-2014学年度第二学期明德衡民中学5月份考试试题高二数学(文)时量:120分钟 满分:150分 命题人 :尹伟云注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生将自己的班 级、姓名、准考证号填写在答题卡相应位置.2.答题时,用签字笔把答案写在答题卡对应位置,写在本试卷上无效. 3.考试结束后,将答卷交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的.(1)复数3(2i)+的共轭复数对应的点,在复平面内位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)若复数2i()1im m +∈+R 的实部与虚部的和为零,则m 的值为 (A )0 (B )1 (C )2 (D )3 (3)若110a b<<,则下列结论不正确...的是 (A )33a b > (B )22a b > (C )33a b > (D )a b a b +=+(4)函数x x y ln 212-=的单调递减区间是 (A )(1)+∞, (B )(0)+∞, (C )(01),(D )(11)-, (5)若复数z 满足(2i)5i 10z +=-,则=z(A )25 (B )55 (C )5 (D )5 (6)已知函数9()1(1)1f x x x x =-+>-+.当a x =时,()f x 取得最小值,则=a (A )2 (B )1 (C )3- (D )4- (7)若关于x 的不等式12x x -++<a 的解集为空集,则实数a 的取值范围是(A ) (3)-∞,(B )(3]-∞, (C )[3)+∞, (D )(3)+∞,(8) 已知函数32()(0)f x ax bx cx d a =+++≠,则下列情况不可能...出现的是 (A )()f x 有两个极值点,且极大值点大于极小值点 (B )()f x 有两个极值点,且极大值点小于极小值点 (C )()f x 有且只有一个极值点 (D )()f x 无极值点(9)已知a b c d ,,,均为实数,给出下列命题: ① 若0ab >,0bc ad ->,则0c da b->;② 若0ab >,0c d a b ->,则0b c a d ->; ③ 若0c da b->,0bc ad ->,则0ab >. 其中正确的命题的个数是(A )3 (B )2 (C )1 (D )0 (10)在不等式14x x -+-≥3中,等号成立的充要条件是(A )x ≥4或x ≤1 (B )1≤x ≤4 (C )4x =或1x = (D )x ∈R (11)设'()f x 是()f x 的导函数,'()y f x =的图象如图1所示,则()y f x = 的图象可能是(A ) (B ) (C ) (D )(12)曲线e xy =在点2(2e ),处的切线与坐标轴所围三角形的面积为(A )29e 4 (B )22e (C )2e (D )2e 2第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答;第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在题中横 线上.(13)函数32()x f x x x =-+的单调递增区间为 . (14)关于x 的不等式25x -<的最小整数解为 .(15)曲线e x y =-在点A 处的切线与直线30x y -+=垂直,则点A 的坐标是________. (16)已知0x >,则函数24xy x =+的最大值是________. 1图O yx12O y x12O 12y x O y x 12O y x12三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) 若0a b c >,,,求证:(I )222222a b b c c a ab bc ca +++++≥6; (II )222a b b c c a +++≥abc .(18)(本小题满分12分)解下列不等式:(I )21210x x +-->; (II )21x --≤1.(19)(本小题满分12分)已知函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(02)P ,,且在点P 处有相同的切线42y x =+,求a b c d ,,,的值.(20)(本小题满分12分)已知函数3()f x ax bx c =++在2x =处取得极值为16c -.(I )求a b ,的值; (II )若)(x f 有极大值28,求)(x f 在[33]-,上的最小值.(21)(本小题满分12分)已知函数32()331f x x ax x =-++.(I )当1a =时,判断()f x 的单调性,并求其单调区间;(II )若(0)x ∈+∞,时,'()f x ≥0恒成立,求a 的取值范围.请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号.(22)(本小题满分10分)若a b c +∈R ,,,且111123a b c++=,求23a b c ++的最小值.(23)(本小题满分10分)已知221a b +=,221c d +=,求证:1ac bd +≤.(24)(本小题满分10分)已知不等式211x -<的解集为M .(I )求集合M ; (II )若a b M ∈,,试比较1ab +与a b +的大小.2013-2014学年度第二学期明德衡民中学5月份考试答卷高 二 数 学(文)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题 5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在题中横线上.(13) (14) (15) (16)三、解答题:本大题共8小题,其中第17~21题各12分,第22~24题各10 分. 解答应写出文字说明,证明过程或演算步骤.(17)( 本小题满分12分)得分 评卷人题号 1 2 3 4 5 6 7 8 9 10 11 12 答案得分 评卷人得分 评卷人年级 班级 姓名 考号密封线内请不要答题(19)(本小题满分12分)得分评卷人(21)(本小题满分12分)得分评卷人请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号.(本小题满分10分)得分评卷人2013-2014学年度第二学期明德衡民中学5月份考试答案高 二 数 学(文)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题 5分,共60分.在每小题给出的四个选项中只有一个是符合题目要求的. 二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在题中横 线上.(13)()-∞+∞, (14)2- (15) (01),- (16)14三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)证明: (I )0a b c >,,,∴222222a b b c c a ab bc ca+++++≥2222226ab bc caab bc ca ++=++=,即222222a b b c c a ab bc ca+++++≥6. …………………………………………………………6分 (II )222a b b c c a +++≥222222ab bc caab bc ca abc ==,即222a b b c c a+++≥abc . ……………………………………………………12分(18)(本小题满分12分)解: (I )原不等式化为2121x x +>-,两边平方得22(21)4(1)x x +>-, ……3分展开得22441484x x x x ++>-+,即得原不等式的解集为1()4+∞,. …………6分 (II )由21x --≤1得1-≤21x --≤1,即0≤2x -≤2, …………9分此不等式可转化为2022x x ⎧-⎪⎨-⎪⎩≥,≤,得4x x ∈⎧⎨⎩R ,0≤≤,所以原不等式的解集为{}4x x 0≤≤. ………………………………………………………12分(19)(本小题满分12分)解: 由()f x 得'()2f x x a =+. ……………………………………………2分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DABCDABCABCD∵曲线()y f x =过点(02)P ,,∴2(0)f =,即2002a b +⨯+=,得2b =. ……4分 ∵曲线()y f x =在点P 处的切线为42y x =+,∴='(0)4k f =切,得204a ⨯+=,即4a =. …………………………………………………………………6分同理,由()g x 得'()()xxg x e cx d ce =++,则有(0)2'(0)4g g =⎧⎨=⎩,, ………………9分得000(0)2(0)4e c d e c d ce ⎧⨯+=⎪⎨⨯++=⎪⎩,,解得22d c =⎧⎨=⎩,.综上,4a =,2b c d ===. ……………………………………12分 (20)(本小题满分12分)解: (I )由()f x 得2'()3f x ax b =+, ………………………………1分 依题意有(2)6'(2)0f c f =-⎧⎨=⎩,,即322216320a b c c a b ⎧⨯++=-⎪⎨⨯+=⎪⎩,,…………………………5分 解得112a b =⎧⎨=-⎩,, ……………………………………………………6分(II )由(I )知3()12f x x x c =-+,2'()3123(2)(2)f x x x x =-=+-,令'()0f x >,得2x >,2x <-;令'()0f x <,得22x -<<.所以)(x f 在2x =-处有极大值28,在2x =处有极小值. ……………………………………………………8分由(2)28f -=,得3(2)12(2)28c --⨯-+=,得12c =. ……………10分从而3()1212f x x x =-+,得(2)4f =-,(3)21f -=,(3)3f =,所以()f x 在[33]-,上的最小值为4-. …………………………………………………………………12分 (21)(本小题满分12分)解: (I )1a =时,32()331f x x x x =-++,则22'()3633(1)f x x x x =-+=-≥0,所以()f x 在R 上为增函数,增区间为()-∞+∞,. ………………………6分 (II )'()f x ≥0恒成立,即2363x ax -+≥0恒成立,得212x a x+≤, ………8分令21()2x g x x+=,只需min ()]a g x ≤[, ………………………………………10分高二数学(文) 第 11 页 (共 11 页) 而1111()()2122g x x x x x=+=≥,即min ()]1g x =[,所以1a ≤. ………12分 请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号.(22)(本小题满分10分)解: ∵111123a b c ++=,∴11123(23)()23a b c a b c a b c ++=++++111=++ 2332()()()2323b a c a c b a b a c b c ++++++23323222322292323b a c a c b a b a c b c+++=+++=≥,即239a b c ++≥,∴23a b c ++的最小值为9. ………………………………10分(23)(本小题满分10分)证明: 要证1ac bd +≤,只需证2()1ac bd +≤, ………………………3分由于221a b +=,221c d +=,所以只需证2()ac bd +≤2222()()a b c d ++, ……6分展开整理得2()0bc ad -≥,而此式显然成立,所以原不等式成立. …………10分(24)(本小题满分10分)解: (I )2111211022x x x -<⇒-<-<⇒<<⇒{}01M x x =<<. ……5分 (II )1()()(1)(1)(1)(1)(1)ab a b ab a b a b b b a +-+=---=---=--, …………8分∵a b M ∈,,即1a <,且1b <,∴(1)(1)0b a -->,即1()0ab a b +-+>, ∴1ab a b +>+. ………………………………………………………10分。
高二数学同步训练16选修2-2复习学案
高二数学同步训练第1页(共1页)第16讲 复数、推理证明与导数复习1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a =2.复数65i +,23i -+对应的点分别为,A B ,若C 为线段AB 的中点,则点C 对应的复数是3.在复平面内,复数sin 2cos 2z i =+对应的点位于第 象限4.复数32322323i ii i+--=-+ 5.方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z6.已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为7.数列 ,4,4,4,4,3,3,3,2,2,1的第50项是8.在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是 9.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .10.已知12n n n a +=,n S 为{}n a 的前n 项和,试比较n S 与521nn +的大小,并予以证明。
11.已知数列{}n a 的各项都是正数,且满足:0111,(4),.2n n n a a a a n N +==-∈ 证明:21<<+n n a a12.设3()f x x =11()f x dx -⎰的值等于13.给出以下命题:⑴若()0b af x dx >⎰,则f(x)>0; ⑵20sin 4xdx =⎰π;⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则()()a a T Tf x dx f x dx+=⎰⎰;其中正确命题的个数为14.已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=且点0P 在第三象限, ⑴求0P 的坐标;⑵若直线1l l ⊥, 且l 也过切点0P ,求直线l 的方程.15.某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格下跌.现有三种价格模拟函数:①xq p x f ⋅=)(;②2()1f x px qx =++;③2()()f x x x q p =-+.(以上三式中p q ,均为常数,且1q >) ⑴为准确研究其价格走势,应选哪种价格模拟函数,为什么?⑵若(0)4f =,(2)6f =,求出所选函数()f x 的解析式(注:函数的定义域是[05],).其中0x =表示4月1日,1x =表示5月1日,…,依此类推;⑶为保护果农的收益,打算在价格下跌期间积极拓宽外销,请你预测该果品在哪几个月内价格下跌. 16.已知函数()ln (,)f x ax x b a b R =∙+∈,在点(,())e f e 处的切线方程是20x y e --=(e 为自然对数的底)。
德州市实验中学高二年级下学期期中测试数学试题(空间几何+导数+推理证明+复数+排列组合)
德州市实验中学高二年级下学期期中测试数学试题2011.4一、选择题(本大题共12个小题,每小题5分,共60分)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m A D .2120+m A 2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m=( )A.1B.2C.21 D.33.函数)0,4(2cos π在点x y =处的切线方程是 ( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x4.4本不同的书放入两个不同的抽屉中(设每个抽屉足够大),共有不同的放法为( )A .6种B .8种C .16种D .20种5.下列积分的值等于1的是 ( )A .10xdx ⎰B .10(1)x dx +⎰C .11dx ⎰D .1012d x ⎰6. 复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +17. 3名男生与3名女生站在一排,如果要求男女生相间站,那么站法有 ( ) A .36种 B .72种 C .108种 D .144种8. 若425225+=x x C C ,则x 的值为( )A .4B .7C .4或7D .不存在9.函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤10.在复平面内,复数1i i++(1+3i )2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11. 有甲、乙、丙三项任务,甲需2人承担, 乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有( )种.A .2520B .2025C .1260D .504012. )(21312111)(+∈+⋅⋅⋅++++++=N n nn n n n f ,则)()1(n f n f -+等于( )A .121+n B .221+n C .221121+++n n D .221121+-+n n二、填空题(本大题共4小题,每小题4分,共16分)13.函数xx x f ln )(=的最大值为 ;14.已知复数z 1=3+4i, z 2=t+i,且z 1·2z 是实数,则实数t 等于 ;15.5名大学生排队上山游玩,其中甲要求不在排头,乙要求不排在尾,则不同的排法种数是 (用数字表示结果);16.若三角形内切圆半径是r ,三边长为,,,c b a 则有三角形面积)(21c b a S ++=r。
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
湖南省衡阳八中2017届高三上学期第四次月考试题 数学(理) 含答案
衡阳市八中2017届高三第四次月考试题卷理科数学(考试内容:集合与简易逻辑、函数、导数、三角函数、向量、复数、数列、不等式、推理与证明)命题人:蒋金元、郭端香审题人:赵永益考生注意:本试卷满分150分,考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.a为正实数,i为虚数单位,a i=2,则a=()A.2 B3C2D.1 2.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为( )A.8 B.4 C.3 D.23.下列关于命题的说法错误的是( )A.命题“若x2﹣3x+2=0,则x=2"的逆否命题为“若x≠2,则x2﹣3x+2≠0”B.“a=3”是“函数f(x)=log a x在定义域上为增函数”的充分不必要条件C.若命题p:∃n∈N,3n>100,则¬p:∀n∈N,3n≤100 D.命题“∃x∈(﹣∞,0),3x<5x”是真命题4.已知数列{a n}是等比数列,且a3=1,a5a6a7=8,则a9=()A.2 B.4 C.6 D.85.已知212sin 2cos 1=+αα,则=αtan () A .2 B .3 C .21D .316.已知公差不为0的等差数列{}na 满足134a ,a ,a 成等比数列,nS 为数列{}na 的前n 项和,则3253SS S S --的值为( )A .2- B .3- C .2D .37.已知3sin 5ϕ=,且(,)2πϕπ∈,函数()sin()(0)f x x ωϕω=+>的图像的相邻两条对称轴之间的距离等于2π,则()4f π的值为( ) A .35-B .45-C .35D .458.已知函数()log (4)1a f x x (0,1)a a的图像恒过定点A ,若直线2-=+ny mx (,0m n)也经过点A ,则3m+n 的最小值为( )A .16B .8C .26611+ D .149.已知:函数())20162016log 20162xx f x x -=+-+,则关于x 的不等式()()314f x f x ++>的解集为()A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,4⎛⎫-∞- ⎪⎝⎭C .()0,+∞D .(),0-∞ 10.设m >1,在约束条件1y xy mx x y 下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A .(1,12)B .(12,) C .(1,3) D .(3,)11.已知函数22 x 0()2 x<0x f x x x 则不等式(())3 f f x 的解集为()A. (-,1]B.(-,2]∞∞∞12.设函数()f x 在R 上存在导数()f x ,对任意的x∈R,有2()()f x f x x ,且(0,)()xf x x 时,.若(2)()22f a f a a ,则实数a 的取值范围为()A .[1,)B .(,1]C .(,2]D .[2,)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上) 13.已知a =4,b =2,且2a b=a 与b 的夹角为___________.14.已知222,,,238,49a b cR a b ca b c 则的最小值为___________.15。
高考数学一轮复习测试卷2-人教版高三全册数学试题
2015届高三一轮复习测试卷二文科数学考查X 围:集合、逻辑、函数、导数、复数、圆锥曲线、概率第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.) 1.复数z=ii++-23 的共轭复数是( ) A .2+i B .2-i C .-1+i D .-1-i 2.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 3.下列命题中,真命题是 ( )A .2,x R x x ∀∈≥ B .命题“若21,1x x ==则”的逆命题C .2,x R x x ∃∈≥ D .命题“若,sin sin x y x y ≠≠则”的逆否命题4.函数21()4ln(1)f x x x =+-+的定义域为( )(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-5.已知()1-x f =x x 62+,则()x f 的表达式是( )A .542-+x xB .782++x xC .322-+x xD .1062-+x x 6.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ).A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)7.设a =log 0.50.8,b =log 1.10.8,c =1.10.8,则a ,b ,c 的大小关系为( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b8.函数()()14214xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩则f (log 23)等于().A .1 B.18 C.116D.1249.函数13y x x =-的图象大致为().10. 与椭圆1422=+y x 共焦点且过点P )1,2(的双曲线方程是:( ) A .1422=-y x B .1222=-y x C .13322=-y x D .1222=-y x 11.“a =-1”是“函数2()21f x ax x =+-只有一个零点”的( ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .非充分必要条件12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有( )A.10个B.9个C.8个D.1个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上.13.已知2x =5y=10,则1x +1y=________.14.设函数()3cos 1f x x x =+,若()11f a =,则()f a -=15.设抛物线的顶点在原点,其焦点F 在x 轴上,抛物线上的点(2,)P k 与点F 的距离为3,则抛物线方程为。
专题07 推理与证明(4月)(期中复习热点题型)(理)(原卷版)
专题07 推理与证明一、单选题 1.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为 A .8=24(8)4n n n n -+--- B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+- D .15=2(1)4(5)4n n n n ++++-+-2.有一个三段论推理:“等比数列中没有等于0的项,数列{}n a 是等比数列,所以0n a ≠”,这个推理 A .大前提错误 B .小前提错误 C .推理形式错误D .是正确的3.在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为A .x ,y 都小于0B .x ,y 至少有一个大于0C .x ,y 都大于0D .x ,y 至少有一个小于04<A .22< B .22<C .22<D .(22<5.用数学归纳法证明()224nn n ≥≥时,第二步应假设A .2n k =≥时,22k k ≥B .3n k =≥时,22k k ≥C .4n k =≥时,22k k ≥D .5n k =≥时,22k k ≥6.某学习小组有甲、乙、丙、丁四位同学,某次数学测验有一位同学没有及格,当其他同学问及他们四人时,甲说:“没及格的在甲、丙、丁三人中”;乙说:“是丙没及格”;丙说:“是甲或乙没及格”;丁说:“乙说的是正确的”.已知四人中有且只有两人的说法是正确的,则由此可推断未及格的同学是 A .甲 B .乙 C .丙D .丁7.下列三句话按“三段论”模式排列顺序正确的是①cos y x =(x ∈R )是三角函数:②三角函数是周期函数;③cos y x =(x ∈R )是周期函数 A .①②③ B .②①③ C .②③①D .③②①8.根据下列图案中圆圈的排列规律,第2008个图案的组成情况是A .其中包括了100320081⨯+个○B .其中包括了100320081⨯+个●C .其中包括了10042008⨯个○D .其中包括了10032008⨯个●9.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉、甲戌、己亥、丙子、……、癸未、甲申、乙酉、丙戌、……、癸巳、……,共得到60个组合,周而复始,循环记录.已知1894年是“干支纪年法”中的甲午年,那么2021年是“干支纪年法”中的 A .庚子年 B .辛丑年 C .己亥年D .戊戌年10.如图所示,4个小动物换座位,开始时鼠,猴,兔,猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,…,这样交替进行下去,那么第2014次互换座位后,小兔坐在号座位上.A .1B .2C .3D .411.将正奇数按如图所示规律排列,则第31行从左向右的第3个数为351715131191921232527172931A .1915B .1917C .1919D .192112.某电视综艺节目中,设置了如下游戏环节:工作人员分别在四位嘉宾甲、乙、丙、丁的后背贴上一张数字条,数字是1或2中的一个,每人都能看到别人的号码,但看不到自己后背的号码.丁问:“你们每人看到几个1、几个2?” 甲说:“我看到三个1.”乙说:“我看到一个2和两个1.”丙说:“我看到三个2.”三个回答中,只有号码是1的嘉宾说了假话,则号码为2的嘉宾有 A .乙 B .甲、乙 C .丁D .乙、丁13.已知函数()cos sin f x x x =-,()'f x 为() f x 的导函数,定义1()()f x f x '=,[]21()()f x f x '=,…,[]()1()()n n f x f x n *+'=∈N ,经计算,1()sin cos f x x x =--,2()cos sin f x x x =-+,3()sin cos f x x x =+,…,照此规律,则2021()f x =A .cos sin x x -+B .cos sin x x -C .sin cos x x +D .sin cos x x --14.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点(2,1)A -,且法向量为(1,2)n →=-的直线(点法式)方程为1(2)2(1)0x y -⨯-+⨯+=,化简得240x y --=.类比以上方法,在空间直角坐标系中,经过点(1,1,2)B --,且法向量为(1,2,1)m →=-的平面的方程为 A .210x y z +++= B .210x y z ---= C .210x y z ++-=D .210x y z +--=15.在等差数列{}n a 中,若20200a =,则有等式12124039n na a a a a a -+++=+++(4039n <且n *∈N )成立,类比上述性质,在等比数列{}n b 中,若20211b =,则有 A .12124041n n b b b b b b -⋅=⋅⋅⋅(4041n <且n *∈N ) B .12124040n n b b b b b b -⋅=⋅⋅⋅⋅⋅(4040n <且n *∈N )C .12124041n n b b b b b b -+++=+++(4041n <且n *∈N )D .12124040n n b b b b b b -+++=+++(4040n <且n *∈N )16.下列推理正确的是A .如果不买体育彩票,那么就不能中大奖,因为你买了体育彩票,所以你一定能中大奖B .若命题“0x ∃∈R ,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是(2,6)C .在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a ⋅>⋅, 类比上述性质,在等比数列{}n b 中,若0n b >,公比1q >,则4857b b b b +>+D .如果m ,n 均为正实数,则lg lg m n +≥17.请阅读下列材料:若两个正实数1a ,2a ,满足22122a a +=,求证:122a a +.证明:构造函数()()2212()f x x a x a =-+-()212222x a a x =-++,因为对一切实数x ,恒有()0f x ,所以Δ0,即()2124160a a +-,所以122a a +. 根据上述证明方法,若 n 个正实数1a ,2a ,,n a ,满足222122n a a a n +++=,你能得到的结论是 A .12na a a n +++B .1222nn a a a +++C .12n a a a n +++D .122na a a n +++18.设a ,b 两个实数,能推出“a ,b 中至少有一个大于1”的条件是 A .a +b >1 B .a +b =2 C .ab >1D .a +b >219.实数x ,y ,0z >,4a x y =+,4b y z =+,4c z x=+,则a ,b ,c 三个数 A .都小于4 B .至少有一个不小于4 C .都大于4D .至少有一个不大于420.下列表述正确的是①归纳推理是由部分到整体的推理:②归纳推理是由一般到一般的推理:③演绎推理是由一般到一般的推理:④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .②③④ B .①③⑤ C .②④⑤D .①⑤21.下列推理形式正确的是A .大前提:老虎是食肉者 小前提:老李是食肉者 结论:所以老李是老虎B .大前提:凡对顶角都相等 小前提:A B ∠=∠ 结论:A ∠和B 是对顶角C .大前提:白马是马 小前提:白马有四条腿 结论:马有四条腿D .大前提:所有演说家都是骗子 小前提:所有说谎者都是演说家 结论:所有说谎者都是骗子22.高三上学期期末考试结束后,甲、乙、丙、丁四位同学不清楚自己的总分,仅打听到他们的总分在年级的位次(按总分由高到低的顺序排列且四人总分均不相同)是2、5、7、9中的某一个,他们向数学老师打听自己总分的具体位次,由于成绩暂时不能公布,老师只能给出如下答复:“命题p :甲、丙总分的位次之和大于乙、丁总分的位次之和,命题q :丁的总分最高,命题r :四位同学中,甲的总分不是最低的,且()p q ⌝∧,()q r ⌝∨均为真命题.”据此,下列判断错误的是A .甲、乙总分的位次之和一定小于丙、丁总分的位次之和B .若丁总分的位次是7,则丙总分的位次一定是5C .乙的成绩一定比其他三个都好D .丙总分的位次可能是223.已知各项均大于1的数列{}n a 满足()1 2.71828a e e =≈,{}n a 中任意相邻两项具有差为2的关系.记n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈,下列四个结论: ①2A 为单元素集; ②6312S e =+; ③2212n n S S n --=;④若将23n A +中所有元素按照从小到大的顺序排列得到数列{}n b ,则{}n b 是等差数列. 其中所有正确结论的编号为 A .①② B .①③ C .①③④D .②③④24.关于x 的方程20x ax b -+=,有下列四个命题:甲:1x =是方程的一个根;乙:4x =是方程的一个根; 丙:该方程两根之和为3;丁:该方程两根异号. 如果只有一个假命题,则假命题是. A .甲 B .乙 C .丙D .丁25.形状、节奏、声音或轨迹,这些现象都可以分解成自复制的结构.即相同的形式会按比例逐渐缩小,并无限重复下去,也就是说,在前一个形式中重复出现被缩小的相同形式,依此类推,如图所示,将图1的正三角形的各边都三等分,以每条边中间一段为边再向外做一个正三角形,去掉中间一段得到图2,称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,称为“二次分形”;依次进行“n 次分形”,得到一个周长不小于初始三角形周长100倍的分形图,则n 最小值是(取lg30.4771,lg 20.3010≈≈)A .15B .16C .17D .18二、多选题1.16世纪时,比利时数学家罗门向全世界数学家提出了一个具有挑战性的问题:“45次方程454341534594595364379545x x x x x x C -+-⋅⋅⋅+-+=的根如何求?”,法国数学家韦达利用三角知识成功解决了该问题,并指出当2sin C α=时,此方程的全部根为22sin(),(0,1,2,,44)45k x k πα+==⋅⋅⋅,根据以上信息可得方程4543415345945953643795450x x x x x x -+-⋅⋅⋅+-+=的根可以是A B .1-C .D .22.定义空间两个向量的一种运算||||sin a b a b a =<⊗,b >,则关于空间向量上述运算的以下结论中恒成立的有 A .a b b a ⊗=⊗ B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗D .若1(a x =,1)y ,2(b x =,2)y ,则1221||a b x y x y =-⊗3.新学期到来,某大学开出了新课“烹饪选修课”,面向2020级本科生开放.该校学生小华选完内容后,其他三位同学根据小华的兴趣爱好对他选择的内容进行猜测.甲说:小华选的不是川菜干烧大虾,选的是烹制中式面食.乙说:小华选的不是烹制中式面食,选的是烹制西式点心.丙说:小华选的不是烹制中式面食,也不是家常菜青椒土豆丝.已知三人中有一个人说的全对,有一个人说的对了一半,剩下的一个人说的全不对,由此推断小华选择的内容A .可能是家常菜青椒土豆丝B .可能是川菜干烧大虾C .可能是烹制西式点心D .可能是烹制中式面食4.如图所示,某地区为了绿化环境,在区域{()|00}x y x y ≥≥,,内大面积植树造林,第1棵树在点1(01)A ,处,第2棵树在点11(1)B ,处,第3棵树在点1(10)C ,处,第4棵树在点2(20)C ,处,根据此规律按图中箭头方向每隔1个单位种1棵树,则.A .第n 棵树所在点的坐标是(440),,则1935n = B .第n 棵树所在点的坐标是(440),,则1936n = C .第2021棵树所在点的坐标是(344), D .第2021棵树所在点的坐标是(443),5.不等式()2(1)430x x x +-+>有多种解法,其中有一种方法如下,在同一直角坐标系中作出11y x =+和2243=-+y x x 的图象,然后根据图象进行求解,请类比此方法求解以下问题:设,a b Z ∈,若对任意0x ≤,都有()2(4)0--+≤ax x b 成立,则+a b 的值可以是 A .0 B .3- C .15D .2三、填空题1.观察图中5个图形的相应小圆圈的个数的变化规律,猜想第n 个图中有____________小圆圈.2.用数学归纳法证明11151236n n n +++>++(n >1且n ∈N *),第一步要证明的不等式是____________.3.某同学准备用反证法证明如下一个问题:函数()f x 在[]0,1上有意义,且()()01f f =,如果对于不同的1x 、[]20,1x ∈,都有()()1212f x f x x x -<-,求证:()()1212f x f x -<.那么他的反设应该是____________. 4.观察下列各式:211121122C -+=, 3122211211233C C -++=, 41233331112112344C C C -+++=, 512344444111121123455C C C C -++++=, ……照此规律,当*n N ∈时,121111231nn n n C C C n ++++=+____________. 5.甲、乙、丙三位同学是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙、丙多,但没去过C 城市;乙说:我去过某一个城市,但没去过B 城市;丙说:我去过的城市甲和乙都没去过.由此可以判断乙去过的城市为____________.6.观察下列式子:2222221311511171,1,1,,222332344+<++<+++<根据以上式子可以猜想:2221111232021++++<_____________. 7.已知点(,ln )A a a ,(,ln )B b b 是函数ln y x =的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的下方,因此有结论ln ln ln 22a b a b++<成立,运用类比思想方法可知,若点(),2aA a ,(),2bB b 是函数2xy =的图象上任意不同的两点,则类似地有结论____________成立. 8.观察下列不等式:111223++<,11113237++++<,111142315++++<,…,可归纳的一个不等式是11123++++____________n <(n *∈N 且1n >).9.已知复数z 对应的点在复平面第一象限内,甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:2z z +=;乙:z z -=;丙:4z z ⋅=;丁:22z z z =.在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则复数z =____________.10.如图,它满足①第n 行首尾两数均为n ,②表中的递推关系类似杨辉三角,则第n 行(2n ≥)第2个数是____________.11.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是____________.(1)各棱长相等,同一顶点上的任两条棱的夹角都相等; (2)各面都是全等的正三角形,相邻两个面所成二面角都相等; (3)各面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.12.凸n 边形有()f n 条对角线,则凸1n +边形的对角线条数(1)()f n f n +=+____________.13.2223sin 30sin 90sin 1502︒+︒+︒=,2223sin 8sin 68sin 1282︒+︒+︒=.通过观察上述两等式的共同规律,请你写出一个一般性的命题____________.14.若三角形的内切圆半径为r ,三边的长分别为a ,b ,c ,则三角形的面积()12S r a b c =++,根据类比思想,若四面体的内切球半径为R ,四个面的面积分别为1S 、2S 、3S 、4S ,则此四面体的体积V =____________.15.如图数表,它的第一行数由正整数从小到大排列得到,此后下一行数由前一行每两个相邻的数的和写在这两个数正中间下方得到.依次类推,则该数表中,第n 行第1个数是____________.四、双空题1.如图所示,某地区为了绿化环境,在区域{()|00}x y x y ≥≥,,内大面积植树造林,第1棵树在点1(01)A ,处,第2棵树在点11(1)B ,处,第3棵树在点1(10)C ,处,第4棵树在点2(20)C ,处,根据此规律按图中箭头方向每隔1个单位种1棵树,那么:(1)第n 棵树所在点的坐标是(440),,则n =____________; (2)第2021棵树所在点的坐标是____________.2.用数学归纳法证明“当n ∈N +时,1+2+22+23+…+25n -1是31的倍数”,当n=1时,原式为___________,从k 到k+1时需增添的项是___________. 3.将正奇数按如图所示的规律排列:13 5 79 11 13 15 1719 21 23 25 27 29 31………………………则2021在第____________行,从左向右第____________个数.4.观察下列的图形中小正方形的个数,则第6个图中有___________个小正方形,第n 个图中有___________个小正方形.5.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是从一级分形图的每条线段的末端出发再生成两条长度为原来的13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.(1)n 级分形图中共有____________条线段; (2)n 级分形图中所有线段长度之和为____________. 五、解答题1.双曲线与椭圆有许多优美的对称性质,对于双曲线22221x y a b -=(0a >,0b >),有下列性质:若AB 是双曲线22221x y a b-=(0a >,0b >)不平行于对称轴且不过原点的弦,M 为AB 的中点,O 为坐标原点,则22OM ABb k k a⋅=为定值,椭圆22221(0)x y a b a b +=>>也有类似的性质.若AB 是椭圆22221(0)x y a b a b+=>>不平行于对称轴且不过原点的弦,M 为AB 的中点,O 为坐标原点,猜想OM AB k k ⋅的值,并证明.2.对于正整数集合12{,,,}n A a a a =(n *∈N ,3n ≥),如果去掉其中任意一个元素ia (1,2,,i n =)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”. (1)判断集合{1,2,3,4,5}是否是“和谐集”(不必写过程); (2)求证:若集合A 是“和谐集”,则集合A 中元素个数为奇数; (3)若集合A 是“和谐集”,求集合A 中元素个数的最小值. 3.已知函()(01)1xxf x a a x =+<<-. (1)用导数法证明()f x 在(1,)+∞上为减函数; (2)用反证法证明方程()0f x =没有负数根.4.已知数列{}n a 的前n 项和n S ,满足1122n n na S a =+-,且0n a >. (1)求1a 、2a 、3a ;(2)猜思{}n a 的通项公式,并用数学归纳法证明.5.已知正数列{}n a 满足233312n a n =+++.(1)求1a ,2a ,3a 的值;(2)试猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.。
《极限、导数、复数》单元自测题
按规律
~
s
( £)
口
产+ 1 作 直 线 运 动 ( 位 移
M
.
单位
A
e rn
时 间单位
e r n s
,
:s
)
,
若质点
a
在
£一
2
时 的瞬时
专
3
;
,
一
;
言
3
,
速度为
18
.
8
求常数
M
一
的值
一
C
5
.
一
在 (a
A
B C D
6
.
)内
厂(
z
) > 0 是 ,( z ) 在 ( 口
6)
内单 调 递 增
19
.
求 曲线
,
口
为 常数 ) 且
1i r a
若
一
I 2i 是
-
关于
z
的方 程
z
。
f (
.
z
)
一
寺 则
z
一
a
一
.
—
—
+ p
z
+ q
.
—
O( p
,
q ∈ R )
的
个根 则
,
q
的值是 (
)
15
.
设 复数
口
+ bi(a
—
Hale Waihona Puke ,b ∈R )—
,
则
z
为纯 虚数 的
一
个
A C
4
.
26 13
西安外国语学校高中数学选修2-2第一章《推理与证明》检测卷(答案解析)
一、选择题1.2018年暑假期间哈六中在第5届全国模拟联合国大会中获得最佳组织奖,其中甲、乙、丙、丁中有一人获个人杰出代表奖,记者采访时,甲说:我不是杰出个人;乙说:丁是杰出个人;丙说:乙获得了杰出个人;丁说:我不是杰出个人,若他们中只有一人说了假话,则获得杰出个人称号的是( ) A .甲B .乙C .丙D .丁2.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于23.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是( ) A .甲 B .乙 C .丙 D .丁5.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .326.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4B .2C .3D .17.我们把顶角为的等腰三角形称为黄金三角形......其作法如下:①作一个正方形;②以的中点为圆心,以长为半径作圆,交延长线于;③以为圆心,以长为半径作D ;④以为圆心,以长为半径作A 交D 于,则为黄金三角形.根据上述作法,可以求出( )A .B .C .D .8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( ) A .大前提错误B .小前提错误C .推理形式错误D .以上都不是10.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯11.用反证法证明命题:“若x ,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,反设正确的是( ) A .假设(1)f ,(2)f ,(3)f 至多有两个小于12 B .假设(1)f ,(2)f ,(3)f 至多有一个小于12C .假设(1)f ,(2)f ,(3)f 都不小于12D .假设(1)f ,(2)f ,(3)f 都小于1212.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.125二、填空题13.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项. 14.观察下列关系式:11x x +=+;()2112x x +≥+;()3113x x +≥+;由此规律,得到的第n 个关系式为__________15.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.16.已知函数()xf x xe =,()1'f x 是函数()f x 的导数,若()1n f x +表示()'n f x 的导数,则()2017f x =__________.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列数表: 1 3 5 7 9 11 1315 17 19 21 23 25 27 29设2017是该表第m 行的第n 个数,则m n +的值为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234Sh h h h k+++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 三、解答题21.设数列{}n a 的前n 项和为n S ,且满足2n n S a n =-. (1)求1234,,,a a a a ;(2)猜想数列{}n a 的通项公式n a ,并用数学归纳法证明.22.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性.23.已知等差数列{}n a 的公差不为零,且33a =,1a 、2a 、4a 成等比数列,数列{}n b 满足()1222*n n b b nb a n +++=∈N(1)求数列{}n a 、{}n b 的通项公式;(2)11*n n nb a n b +++>-∈N . 24.已知数列{}n a 各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.25.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明. 26.设a >0,f (x )=axa x+,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别假设甲、乙、丙、丁获得冠军,看是否满足“只有一人说了假话,”,即可得出结果. 【详解】若甲获个人杰出代表奖,则甲、乙、丙三人同时回答错误,丁回答正确,不满足题意; 若乙获个人杰出代表奖,则甲、丙,丁回答正确,只有乙回答错误,满足题意; 若丙获个人杰出代表奖,则乙、丙回答错误,甲、丁回答正确,不满足题意; 若丁获个人杰出代表奖,则甲、乙回答正确,丙、丁回答错误,不满足题意, 综上,获得杰出代表奖的是乙,故选B. 【点睛】本题主要考查推理案例,属于难题.推理案例的题型是高考命题的热点,由于条件较多,做题时往往感到不知从哪里找到突破点,解答这类问题,一定要仔细阅读题文,逐条分析所给条件,并将其引伸,找到各条件的融汇之处和矛盾之处,多次应用假设、排除、验证,清理出有用“线索”,找准突破点,从而使问题得以解决.2.D解析:D【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.3.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.4.A解析:A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.5.B解析:B【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n的所有可能的取值.详解:如果正整数n按照上述规则施行变换后第八项为1,则变换中的第7项一定为2,变换中的第6项一定为4,变换中的第5项可能为1,也可能是8,变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.6.B解析:B【解析】分析:根据题意,结合题中所给的新定义,根据形状相同,大小不一定相同的几何体被视为相似体,逐一判断,可得结论.详解:两个长方体的长宽高的比值不能确定,两个正三棱柱的高与底面边长的比不能确定,两个正四棱锥的高与底面边长不能确定,所以②④⑤不能确定是正确的,只有所有的球体和所有的正四面体都是相似体,所以有两个是正确的,故选B.点睛:该题属于新定义的问题,属于现学现用型,这就要求我们必须把握好题中的条件,然后对选项中的几何体逐一判断,最后求得结果.7.B解析:B 【分析】不妨假设2AD =,则1DG =,故cos36︒= 故选B.8.D解析:D 【解析】甲说:“我无法确定.”说明两球编号的和可能为7包含(2,5),(3,4),可能为8包含(2,6),(3,5),可能为9包含(3,6),(2,7)乙说:“我无法确定.”说明两球编号的乘积为12包含(3,4)或(2 ,6) 根据以上信息,可以推断出抽取的两球中可能有6号球 故选D点睛:本题是一道通俗易懂的合情推理题目,主要考查同学们的逻辑思维能力和推理能力,问题难度不大,认真审题是关键.9.C解析:C 【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C.10.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.11.D解析:D 【解析】试题分析:根据题意,由于反证法证明命题:“若2()f x x px q =++,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,即将结论变为否定就是对命题的反设,因此可知至少有一个的否定是一个也没有,或者说假设(1)f ,(2)f ,(3)f 都小于12,故选D.考点:反证法. 12.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C二、填空题13.【分析】分析题意根据数学归纳法的证明方法得到时不等式左边的表示式是解答该题的突破口当时左边由此将其对时的式子进行对比得到结果【详解】当时左边当时左边观察可知增加的项数是故答案是【点睛】该题考查的是有解析:2k . 【分析】分析题意,根据数学归纳法的证明方法得到1n k =+时,不等式左边的表示式是解答该题的突破口,当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--,由此将其对n k =时的式子进行对比,得到结果.【详解】当n k =时,左边11112321k =++++-…, 当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--, 观察可知,增加的项数是1121(21)222k k k k k ++---=-=, 故答案是2k . 【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.14.【解析】左边为等比数列右边为等差数列所以第个关系式为解析:()11nx nx +≥+【解析】左边为等比数列,右边为等差数列,所以第n 个关系式为()11nx nx +≥+.15.【解析】根据归纳推理可知每对数字中两个数字不相等且第一组每一对数字和为第二组每一对数字和为第三组每对数字和为第组每一对数字和为第组第一对数为第二对数为第对数为第对数为故答案为 解析:(17,15)【解析】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为3,第二组每一对数字和为4,第三组每对数字和为5,......,第30组每一对数字和为32, ∴第30组第一对数为()1,31,第二对数为()2,30,.......,第15对数为()15,17,第16对数为()17,15,故答案为()17,15.16.【解析】依题意以此规律可推出故答案为 解析:()2017xx e +【解析】依题意()()11xxxf x e xe x e '=+=+,()()()()2112x x x x f x x e e x e x e '⎡⎤=+=++=+⎣⎦,()()()()3223x x x x f x x e e x e x e '⎡⎤=+=++=+⎣⎦,以此规律,可推出()()20172017x f x x e =+,故答案为()2017x x e +.17.【解析】计算可得:①设方程a0x+a1=0的1个根是x1则;②设方程a0x2+a1x+a2=0的2个根是x1x2则;③设方程a0x3+a1x2+a2x+a3=0的3个根是x1x2x3则;④设方程a0 解析:()01nna a - 【解析】 计算可得:①设方程a 0x +a 1=0的1个根是x 1,则110a x a =-; ②设方程a 0x 2+a 1x +a 2=0的2个根是x 1,x 2,则2120a x x a =; ③设方程a 0x 3+a 1x 2+a 2x +a 3=0的3个根是x 1,x 2,x 3,则31230a x x x a =-;④设方程a 0x 4+a 1x 3+a 2x 2+a 3x +a 4=0的4个根是x 1,x 2,x 3,x 4,则412340a x x x x a =; …观察式子的变化规律,发现每一个方程的一个根都可能写成规律性的式子,是首项与尾项的分式形式,且符号是正负相间: 312000,,a a a a a a -- 依此类推,第n 个式子是()01n na a -. 点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.18.【解析】根据数表的数的排列规律都是连续奇数第一行有个数第二行有个数且第一个数是;第三行有个数且第一个数是;第四行有个数且第一个数是第行有个数且第一个数是在第行是第行的第个数故答案为解析:508【解析】根据数表的数的排列规律,1,3,5,...都是连续奇数第一行,有1个数,第二行,有2个数,且第一个数是221-;第三行,有3个数,且第一个数是321-;第四行,有4个数,且第一个数是42 1...-,第n 行,有n 个数,且第一个数是21n - ,1011211023,212047-=-=, 2017∴在第10行,()20171023+12,498n n =-⨯=,2017∴是第10行的第498个数,10498508m n ∴+=+=,故答案为508.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加 解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.【解析】试题分析:根据三棱锥的体积公式V=Sh 得:S1H1+S2H2+S3H3+S4H4=V 即S1H1+2S2H2+3S3H3+4S4H4=3V ∴H1+2H2+3H3+4H4=考点:平面问题与空间问 解析:3V K【解析】 试题分析:根据三棱锥的体积公式 V=13Sh 得:13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=V , 即S 1H 1+2S 2H 2+3S 3H 3+4S 4H 4=3V , ∴H 1+2H 2+3H 3+4H 4=3V K 考点:平面问题与空间问题中的类比思想.三、解答题21.(1)11a =,233,7a a ==,415a =;(2)21n n a =-,证明见解析【分析】(1)先求得1a 的值,利用11n n n a S S ++=-求得1n a +的表达式,由此求得234,,a a a 的值.(2)根据(1)猜想21n n a =-,用数学归纳法证明数列{}n a 的体积公式为21nn a =-. 【详解】(1)2n n S a n =-111n a ∴==当时,且1121n n S a n ++=--于是121n n a a +=+从而可以得到233,7a a ==,415a =猜想通项公式21n n a =-(2)下面用数学归纳法证明21n n a =-.①当1n =时,11a =满足通项公式;②假设当n k =时,命题成立,即21k k a =-由(1)知()1212211k k k a a +=+=-+ 1121k k a ++=-即证当1n k =+时命题成立;由①②可证21n n a =-成立.【点睛】本小题主要考查已知n S 求n a ,考查数学归纳法证明与数列的通项公式.22.(1)112S =,223S =,334S =,1n n S n =+,*n N ∈;(2)证明见解析.【分析】(1)1n =时,可求出1S ,2n ≥时,利用1n n n a S S -=-可得到关于n S 的递推关系,即可求出2S ,3S 的值,进而猜想出n S 的表达式;(2)根据数学归纳法的步骤证明即可.【详解】(1)当1n =时,()22111S S -=,∴112S =, 当2n ≥时,()()211n n n n S S S S --=-,∴112n n S S -=-, ∴223S =,334S =, 猜想1n n S n =+,*n N ∈; (2)下面用数学归纳法证明:①当1n =时,112S =,112n n =+,猜想正确; ②假设n k =时,猜想正确,即1k k S k =+, 那么当1n k =+时, 可得()111121121k k k S k S k k ++===-++-+,即1n k =+时,猜想也成立. 综上可知,对任意的正整数n ,1n n S n =+都成立. 【点睛】本题考查数学猜想和数学归纳法的应用,属于中档题.23.(1)n a n =,2n b n =,*n ∈N ;(2)证明见解析. 【分析】(1)设等差数列{}n a 的公差为d ,0d ≠,运用等差数列的通项公式和等比数列的中项性质,解方程可得首项和公差,进而得到n a ,可令1n =,求得1b ,再将n 换为1n -,相减可得n b ;(211n n n +>++意检验1n =时不等式成立,再假设n k =时不等式成立,证明1n k =+时,不等式也成立,注意运用分析法证明.【详解】(1)等差数列{}n a 的公差d 不为零,33a =,可得123a d +=,1a 、2a 、4a 成等比数列,可得2142a a a =,即()()21113a a d a d +=+, 解方程可得11a d ==,则()11n a a n d n =+-=.数列{}n b 满足1222n n b b nb a +++=,可得1122b a ==, 当2n ≥时,由12222n n b b nb a n +++==,可得()()1212121n b b n b n -+++-=-, 相减可得2n nb =,则2n b n =,12b =也适合2n b n =,则2n b n =,*n ∈N ; (2)*11n nnb an b +++>∈N 即为 +11n n n >++, 下面应用数学归纳法证明.(i )当1n ==,右边为2>右边,不等式成立;(ii )假设n k =+11k kk >++ 当1n k =++11k kk >+++21k kk >++只要证12k k+>+1>-即证10⎛>⎝, 由*k ∈N ,可得上式成立,可得1n k =+时,不等式也成立.综上可得,对一切*n ∈N11n n n +>++ )*11n n nb a n b +++>∈N . 【点睛】本题考查等差数列通项公式的求解,同时也考查了利用n S 求通项以及数列不等式的证明,考查了数学归纳法的应用,考查计算能力与推理能力,属于中等题.24.(1)11a =,22a =,33a =;(2)猜想:n a n =;证明见解析.【解析】【分析】(1)分别代入1,2,3n =,根据0n a >,解方程可求得结果;(2)猜想n a n =,验证1n =时成立;假设n k =时成立,则1n k =+时,利用假设可证得结论成立,从而证得结果.【详解】(1)当1n =时,231212a ⋅⎛⎫= ⎪⎝⎭,又0n a > 11a ∴= 当2n =时,23323122a ⋅⎛⎫+= ⎪⎝⎭,解得:22a = 当3n =时,2333341232a ⋅⎛⎫++= ⎪⎝⎭,解得:33a = (2)猜想:n a n =证明:(1)当1n =时,由(1)可知结论成立;(2)假设当n k =时,结论成立,即k a k =成立,则当1n k =+时,由()23331122k a k k ⎛⎫++++= ⎪⎝⎭与()()2313321212k a k k +⎛⎫+++++= ⎪⎝⎭得: ()()()()()2222311212112222k k k a k a k a k k k k ++⎛⎫⎛⎫⎛⎫⎛⎫+++++=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()()()()()2322222221241114412k a k k k k k k k k k +∴+=+++=+++=++ 又0n a > 11k a k +∴=+成立根据(1)、(2)猜想成立,即:n a n =【点睛】本题考查数列中的项的求解、利用数学归纳法证明问题.利用数学归纳法证明时,要注意在证明1n k =+时结论成立时,必须要用到n k =时假设成立的结论,属于常规题型. 25.(1) 26a =,312a =,420a =,29b =,316b =,425b = (2) 猜想(1)n a n n =+,2(1)n b n =+,证明见解析【解析】分析:(1)根据条件中n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得12n n n b a a +=+,211n n n a b b ++=,由此算出26a =,312a =,420a =,29b =,316b =,425b =.(2)由(1)的计算可以猜想()1n a n n =+,()21n b n =+, 下面用数学归纳法证明:①当1n =时,由已知12a =,14b =可得结论成立.②假设当n k =(2k ≥且*k N ∈)时猜想成立,即()1k a k k =+,()21k b k =+. 则当1n k =+时,()()212211k k k a b a k k k +=-=+-+ ()()23212k k k k =++=++, ()()()()22221121221k k k k k a b k b k ++++===++, 因此当1n k =+时,结论也成立.由①②知,对一切*n N ∈都有()1n a n n =+,()21n b n =+成立. 点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行验证,初始值的验证是归纳假设的基础;第二步的证明是递推的依据,证明时必须要用到归纳假设,否则就不是数学归纳法.26.(1)见解析(2)见解析【解析】试题分析:(1)根据递推关系依次求出a 2,a 3,a 4的值,并根据分母变化规律猜想数列a n }的通项公式;(2)先证明起始项成立,再根据递推关系证明n=k+1成立,最后总结 试题(1)因为a 1=1,所以a 2=f (a 1)=f (1)=,a 3=f (a 2)=,a 4=f (a 3)=,猜想a n = (n ∈N *). (2)证明:①易知,n =1时,猜想正确;②假设n =k (k ∈N *)时, a k =成立,则a k +1=f (a k )====. 这说明,n =k +1时成立.由①②知,对于任何n ∈N *,都有a n =.。
复变函数期末考试题大全
____________________________________________________________________________________________________一、填空题〔每题2分〕1、复数i 212--的指数形式是2、函数w =z1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是3、假设01=+z e ,那么z =4、()ii +1=5、积分()⎰+--+idz z 2222=6、积分⎰==1sin 21z dz zzi π 7、幂级数()∑∞=+01n n nz i 的收敛半径R=8、0=z 是函数ze z 111--的 奇点 9、=⎪⎪⎭⎫⎝⎛-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单项选择题〔每题2分〕 1、设α为任意实数,那么α1=〔 〕A 无意义B 等于1C 是复数其实部等于1D 是复数其模等于1 2、以下命题正确的选项是〔 〕A i i 2<B 零的辐角是零C 仅存在一个数z,使得z z -=1D iz z i=13、以下命题正确的选项是〔 〕 A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛D 如果v 是u 的共轭调和函数,那么u 也是v 的共轭调和函数 4、根式31-的值之一是〔 〕Ai 2321- B 223i - C 223i +- D i 2321+- 5、以下函数在0=z 的去心邻域内可展成洛朗级数的是〔 〕A z1sin 1B z 1cosC zctg e 1D Lnz6、以下积分之值不等于0的是( )A ⎰=-123z z dzB ⎰=-121z z dzC⎰=++1242z z z dzD ⎰=1cos z z dz7、函数()z z f arctan =在0=z 处的泰勒展式为〔 〕A ()∑∞=+-02121n n nn z 〔z <1〕 B ()∑∞=+-01221n n n n z〔z <1〕C ()∑∞=++-012121n n nn z 〔z <1〕 D ()∑∞=-0221n n n n z〔z <1〕8、幂级数n n n z 201)1(∑∞=+-在1<z 内的和函数是〔 〕A211z - B 211z + C 112-z D 211z+- 9、设a i ≠,C :i z -=1,那么()=-⎰dz i a zz C2cos 〔 〕A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是〔 〕A )1(1>--=a z a a z e w i βB )1(1<--=a za az e w i β____________________________________________________________________________________________________C )1(>--=a a z a z ew i βD )1(<--=a az az e w i β 三、判断题〔每题2分〕1、〔 〕对任何复数z,22z z =成立2、〔 〕假设a 是()z f 和()z g 的一个奇点,那么a 也是()()z g z f +的奇点3、〔 〕方程01237=+-z z 的根全在圆环21<<z 内4、〔 〕z=∞是函数()=z f ()251z z-的三阶极点5、〔 〕解析函数的零点是孤立的四、计算题〔每题6分〕1、())(2222y dxy cx i by axy x z f +++++=在z S 上解析,求a,b,c,d 的值2、计算积分⎰=--22)1(25z dz z z z 3、将函数()11+-=z z z f 在1=z 的邻域内展成泰勒级数,并指出收敛范围4、计算实积分I=⎰∞+++0222)4)(1(dx x x x5、求211)(zz f +=在指定圆环+∞<-<i z 2内的洛朗展式 6、求将上半平面0Im >z 共形映射成单位圆1<w 的分式线性变换()z L w =,使符合条件()0=i L ,()0>'i L五、证明题〔每题7分〕1、设〔1〕函数)(z f 在区域D 内解析〔2〕在某一点D z ∈0有0)(0)(=z fn ,〔 ,2,1=n 〕证明:)(z f 在D 内必为常数2、证明方程015=++n z z e 在单位圆1<z 内有n 个根 一填空题〔每题2分,视答题情况可酌情给1分,共20分〕 1 i eπ654-,2 21=u , 3 (2k+1)i π,(k=0, 2,1±±), 4 ⎪⎭⎫⎝⎛+-ππk i e e 242ln (k=0, 2,1±±)5 3i -,6 0 ,7 21 , 8 可去, 9 2e , 10 z 1-二 单项选择题〔每题2分,共20分〕1 D2 D3 A4 A5 B6 B7 C8 D9 A 10 A 三 判断题〔每题2分,共10分〕1⨯ 2 ⨯ 3 ∨ 4 ∨ 5 ⨯ 四 计算题〔每题6分,共36分〕1解:22by axy x u ++=,22y dxy cx v ++= 3 分 y x v u = y dx ay x 22+=+x y v u -= dy cx by ax --=+22 …5分解得:1,2-====c b d a 6 分2 解:被积函数在圆周的2=z 内部只有一阶极点z=0及二阶极点z=1 2 分2)1(25)(Re 02-=--===z z z z z f s2225)(Re 1211=='⎪⎭⎫⎝⎛-====z z z z z z z f s 分5⎰=--22)1(25z dz z z z =π2i(-2+2)=0 6 分____________________________________________________________________________________________________3 解:()11+-=z z z f = ()nn nz z z 1211211111210-⎪⎭⎫ ⎝⎛--=-+-=+-∑∞= …4分 〔1-z <2〕 …6分 4 解: 被积函数为偶函数在上半z 平面有两个一阶极点i,2i …1分I=⎰∞+∞-++dx x x x )4)(1(21222…2分 =[])(Re )(Re 2212z sf z f s i iz i z ==+π …3分=]iz iz i z z z z i z z i 22222)2)(1()4)((==+++⎢⎣⎡++π …5分=6π…6分 5 解:))((1)(i z i z z f +-=…1分=iz i i z -+-211)(12…3分=∑∞=---02)()2()1()(1n nnni z i i z +∞<-<i z 2 …6分 6 解: w =L(i)=kiz iz +- 2 分 2)(2i z ikw +=' …3分0)(=>'='i L w i k =∴ …4分 iz iz iw +-= …6分 五 证明题〔每题7分,共14分〕1 证明:设)(:0D k R z z k ⊂<- )(z f 在0z 解析 由泰勒定理 ∑∞=-=000)()(!)()(n n n z z n z fz f )(D k z ⊂∈ …2分 由题设 0)(0)(=z fn ∴)()(0z f z f ≡ ,)(D k z ⊂∈ …4分由唯一性定理 )()(0z f z f ≡ )(D z ∈ …7分 2 证明:令n z z f 5)(= ,1)(+=z e z ϕ 2 分 (1〕()z f 及()z ϕ在1≤z 解析 (2〕1=z 上,()55==n z z f()1111+=+≤+≤+=e e e e z zz z ϕ<5 4 分故在1=z 上()()z z f ϕ>,由儒歇定理在1=z 内()()()n z z f N z z z f N ====+)1,()1,(ϕ …7分一、填空题〔每题2分〕1、()()323sin 3cos 5sin 5cos ϕϕϕϕi i -+的指数形式是 2、i i = 3、假设0<r<1,那么积分()⎰==+rz dz z 1ln4、假设v 是u 的共轭调和函数,那么v 的共轭调和函数是5、设0=z 为函数)(z f =33sin z z -的m 阶零点,那么m =6、设a z =为函数()z f 的n 阶极点,那么()()⎥⎦⎤⎢⎣⎡'=z f z f s a z Re = 7、幂级数∑∞=0!n nn z 的收敛半径R=____________________________________________________________________________________________________8、0=z 是函数zz 1sin 5的 奇点9、方程01237=+-z z 的根全在圆环 内 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w二、单项选择题〔每题2分〕1、假设函数()z f 在区域D 内解析,那么函数()z f 在区域D 内〔 〕A 在有限个点可导B 存在任意阶导数C 在无穷多个点可导D 存在有限个点不可导 2、使22z z =成立的复数是〔 〕A 不存在B 唯一的C 纯虚数D 实数 3、⎰==-22)1(cos z dz z z〔 〕A -i πsin1B i πsin1C -2i πsin1D 2i πsin1 4、根式3i 的值之一是〔 〕A223i- B 223i -- C i D i - 5、π=z 是π-z zsin 的〔 〕A 可去奇点B 一阶极点C 一阶零点D 本质奇点6、函数()()()411++=z z z z f ,在以0=z 为中心的圆环内的洛朗展式有m 个,那么m=( )A 1B 2C 3D 4 7、以下函数是解析函数的为〔 〕A xyi y x 222--B xyi x +2C )2()1(222x x y i y x +-+-D 33iy x + 8、在以下函数中,()0Re 0==z f s z 的是〔 〕A ()21z e z f z -=B ()zz z z f 1sin -=C ()z z z z f cos sin +=D ()ze zf z 111--= 9、设a i ≠,C :i z -=1,那么()=-⎰dz i a zz C2cos 〔 〕A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是〔 〕A )1(1>--=a z a a z e w i βB )1(1<--=a z a az e w i β C )1(>--=a a z a z e w i βD )1(<--=a az az e w i β三、判断题〔每题2分〕1、〔 〕幂级数∑∞=0n n z 在z <1内一致收敛2、〔 〕z=∞是函数2cos 1zz-的可去奇点 3、〔 〕在柯西积分公式中,如果D a ∉,即a 在D 之外,其它条件不变,那么积分()=-⎰dz az z f i C π210,()D z ∈ 4、〔 〕函数()=z f zctg e1在0=z 的去心邻域内可展成洛朗级数5、〔 〕解析函数的零点是孤立的 四、计算题〔每题6分〕1、计算积分()⎰+-Cdz ix y x 2,C :i →1+i 的直线段____________________________________________________________________________________________________2、求函数()()()211+-=z z zz f 在所有孤立奇点〔包括∞〕处的留数3、将函数()iz i z z f --+=11在i z =的去心邻域内展成洛朗级数,并指出收敛域 4、计算积分()⎰+Cz z dz122 , C:1222+=+y y x , 5、计算实积分I=⎰+πθθ20cos a d )1(>a6、求将单位圆1<z 共形映射成单位圆1<w 的分式线性变换()z L w =使符合条件021=⎪⎭⎫⎝⎛L ,()11-=L五、证明题〔每题7分〕1、设函数()z f 在区域D 内解析,证明:函数()z f i 也在D 内解析2、证明:在0=z 解析,且满足的nn f 21121=⎪⎭⎫ ⎝⎛-,n n f 2121=⎪⎭⎫ ⎝⎛〔 2,1=n 〕的函数()z f 不存在一填空题〔每题2分,视答题情况可酌情给1分,共20分〕 1 ϕ19i e ,2 ππk e22--(k=0,±…) , 3 0, 4 u -, 5 96 n - ,7 ∞+ ,8 本质,9 21<<z , 10 z 1-二 单项选择题〔每题2分,共20分〕1 B2 D3 C4 D5 A6 C7 C8 D9 A 10 A 三 判断题〔每题2分,共10分〕1⨯ 2 ⨯ 3 ∨ 4 ⨯ 5 ⨯ 四 计算题〔每题6分,共36分〕1解:C 的参数方程为: z=i+t, 01≤≤t dz=dt 3 分 ()⎰+-Cdz ix y x 2=()⎰+-121dt it t =321i+-6 分 2解: 1=z 为()z f 一阶极点 1 分1-=z 为()z f 二阶极点 2 分()411Re 11-='⎪⎭⎫⎝⎛-=-=-=z z z z z f s 3 分()()411Re 121=+===z z z zz f s 5 分 ()0Re =∞=z f s z …6分3 解:()iz i z z f --+=11=⎪⎪⎪⎪⎭⎫ ⎝⎛-++--i i z i i z 211211 …2分 = ()()()10211+∞=--+--∑n nn n i i z i z …5分 〔0<i z -<2〕 …6分 4 解:在C 内()z f 有一个二阶极点z =0和一个一阶极点i z = …1分()011Re 020='⎪⎭⎫⎝⎛+===z z z z f s …3分()ii z z z f s iz iz 21)(1Re 2-=+=== …5分 所以原式=π2i π-=⎪⎭⎫ ⎝⎛-i 210 …6分5 解:令θi e z =____________________________________________________________________________________________________iz dzz z a I z ⎰=-++=1121 …1分=[][]⎰=-----+--122)1()1(2z a a z a a z dzi …3分被积函数在1=z 内的有一个 一阶极点12-+-=a a z121)(Re 212-=-+-=a z f sa a z …5分I=121212222-=-a a i iππ …6分6解:2212112121--=--=⎪⎭⎫ ⎝⎛=z z k z z kL w 2 分 ()121212111-=-=--=k kL 所以2=k 4 分 于是所求变换 2122212--=--=z z z z w 6 分 五 证明题〔每题7分,共14分〕1 证明: 设f(z)=u 〔x ,y 〕+iv 〔x ,y 〕)(z f = u 〔x ,y 〕-iv 〔x ,y 〕)(z f i = v 〔x ,y 〕-i u 〔x ,y 〕 2 分 f 〔z 〕在D 内解析,x y y x v u v u -==,)(z f i 四个偏导数为 v x ,v y ,-u x ,-u y 4 分比拟f 〔z 〕的C -R 方程 )(z f i 也满足C-R 方程且四个偏导数在D 内连续 ∴)(z f i 在D 内解析 7 分2 证明:假设在0=z 解析的函数()z f 存在且满足n n f 21121=⎪⎭⎫ ⎝⎛-,n n f 2121=⎪⎭⎫ ⎝⎛〔 2,1=n 〕 2 分 点列⎭⎬⎫⎩⎨⎧n 21=n 21以0=z 为聚点在点列⎭⎬⎫⎩⎨⎧n 21上,n n f 2121=⎪⎭⎫ ⎝⎛由解析函数的唯一性定理在0=z 的邻域内()z f =z 5 分但在这个邻域内又有n n f 21121=⎪⎭⎫ ⎝⎛-矛盾 ∴在0=z 解析的函数()z f 不存在 7 分【复变函数论】试题库梅一A111【复变函数】考试试题〔一〕1、=-⎰=-1||00)(z z n z z dz__________.〔n 为自然数〕 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,那么)(z f 的孤立奇点有__________.____________________________________________________________________________________________________5.幂级数0nn nz ∞=∑的收敛半径为__________.6.假设函数f(z)在整个平面上处处解析,那么称它是__________.7.假设ξ=∞→n n z lim ,那么=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.假设0z 是)(z f 的极点,那么___)(lim 0=→z f z z .三.计算题〔40分〕:1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d zz f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.【复变函数】考试试题〔二〕二. 填空题. (20分) 1. 设i z-=,那么____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,那么=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z n z z dz_________.〔n 为自然数〕 4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 假设z 0是f (z )的m 阶零点且m >0,那么z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,那么)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为〔1〕单位圆〔1||=z 〕的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数根本定理.____________________________________________________________________________________________________【复变函数】考试试题〔三〕二. 填空题. (20分)1. 设11)(2+=z z f ,那么f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 假设n n n i n n z )11(12++-+=,那么=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.〔n 为自然数〕 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,那么f (z )的孤立奇点有__________.8. 设1-=ze ,那么___=z .9. 假设0z 是)(z f 的极点,那么___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算以下积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
函数与导数经典常考压轴大题
函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。
导数推理复数
导数1 )(x f0000000()()()limlim x x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆.2 几种常见函数的导数:(1) 0='C (C 为常数).(2) 1()()n n x nx n Q -'=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) x x 1)(ln =';1(log )log a a x e x'=. (6) xxe e =')(; a a a xxln )(='.3 导数的运算法则:(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 4. 复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅' 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 基本步骤是:分解——求导——相乘——回代 5 函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.6 一般地,设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数;如果在某区间内恒有0)(='x f ,则)(x f 为常数;7. 已知函数)(x f y =在),(b a 上单调递增,则0)(≥'x f已知函数)(x f y =在),(b a 上单调递减,则0)(≤'x f8 极值的概念:设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. 9 求可导函数极值的步骤:① 求导数)(x f '; ② 求方程0)(='x f ;③ 检验)(x f '在方程0)(='x f 的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .10.函数的最大值与最小值:⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =)(x f 在(a ,b )内有导数,则函数y =)(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 . 11可导函数在某点处的导数为零,函数在这一点处存在极值的必要而不充分条件。
2022高考数学试卷答案(全国1卷)
2022高考数学试卷答案(全国1卷) 2022高考数学试卷答案(新高考全国1卷)2023高考数学试卷分析(全国1卷)2023年新高考全国卷1数学科目考试已经落下帷幕,大家期待已久的高考数学试题终露庐山真面目。
2023年是湖南高考改革后文理卷合一的第一年,此套试题从高考数学评价体系出发,秉承重基础,重本质,贴近中学数学教学实际的一贯命题思路,在全面考查基础知识和基本技能的同时,贯彻德智体美劳全面发展的方针,聚焦核心素养,强调数学学科素养与关键能力,以基础性、综合性、应用性、创新性为导向,突出理性思维的考查。
整张试卷情景熟悉,朴实灵活,全面考査学生的数学知识、、能力与素养,整体符合高考改革的理念,同时,还充分汲取了其他省份试卷在数学试卷命题上的新思维,实现了稳中有变,变中有新,体现出较强的区分度和选拔功能。
对协同推进新高考综合改革、引导中学数学教学都将起到积极的作用。
一、考查内容分布(一)双向细目表单选题1、以不等式为媒介的集合运算2、复数的运算,共轭复数3、圆锥的有关计算4、正弦函数的单调性5、椭圆的几何性质6、三角函数的求值7、函数导数的应用与不等关系8、相互独立事件的概率多选题9、样本数字特征的性质10、三角函数与平面向量11、直线与圆方程12、立体几何与平面向量填空题13、函数的奇偶性14、抛物线15、绝对值函数的最值16、数列求和(数学文化题)解答题17、递推数列求通项公式与求和公式18、概率分布列与期望19、解三角形20、立体几何中垂直关系的证明与二面角、体积的计算21、双曲线方程与定值问题22、导数与函数单调性、不等式的证明(二)试题结构分析1、试卷结构,吻合联考老高考试卷由选择题、填空题、解答题共三部分组成,其中单项选择题12题,填空题4题,解答题7题(含5个必考题和2个选考题),全卷总题量为23题。
新高考对试卷结构进行了改革和调整。
新高考卷包括单项选择题、多项选择题、填空题、解答题四部分,其中单项选择题8题40分,多项选择题4题20分,填空题4题20分,解答题部分取消了选考题内容,共6题70分,全卷总题量为22题。
职高 集合 复数 导数 指数函数及对数函数综合习题及部分答案
试卷一、 选择题1、设集合}312|{<+=x x A ,}23|{<<-=x x B ,则B A ⋂等于( )。
A 、}13|{<<-x xB 、}21|{<<x xC 、}3|{->x xD 、}1|{<x x2、设集合}21{,=A ,则满足3}2{1,,=⋃B A 的集合B 的个数是( ) A 、1 B 、3 C、4 D、83、已知函数x x f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则N M ⋂=( ) A 、}1|{>x x B 、}1|{<x x C 、}11|{<<-x x D 、∅4、设1>a ,函数x x f a log )(=在区间[]a a 2,上的最大值与最小值之差为21,则a =( )A 、2B 、2C 、22D 、45、已知集合}1,1{-=M ,}4221|{1<<∈=+x Z x N ,则N M ⋂=( )A 、}1,1{-B 、}1{-C 、}0{D 、}0,1{-6、若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.32 D.13 7、定义运算bc ad d c ba -=,,,则合条件01121=+-+i i iz ,,的复数_z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;8、若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( 符 )A.-4;B.4;C.-1;D.1;9、复数i i ⋅--2123=( )A .-IB .IC . 22-iD .-22+i10、若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或11、已知复数z 满足2)1()1(i z i +=-,则z =( )(A) -1+ i (B) 1+i (C) 1-i (D) -1-i12、.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A 充分条件B 必要条件C 充要条件D 必要非充分条件13、已知点P(1,2)是曲线y=2x2上一点,则P 处的瞬时变化率为 ( )A .2B .4C .6D .2114、设函数()f x =x 3﹣x 2,则)1(f '的值为( )A .-1B .0C .1D .515、已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞B .]3,3[-C .),3()3,(+∞--∞D .)3,3(-16、一点沿直线运动,如果由始点起经过t 秒后的距离为43215243s t t t =-+,那么速度为零的时刻是 ( )A .1秒末B .0秒C .4秒末D .0,1,4秒末17、设3<2731<x )(, 则( )正确–1<x<3; (B) x<-1或x>3; (C) –3<x<-1; (D) 1<x<3.二、填空题(共16分)1、若函数12)(22-=--a ax x x f 的定义域为R ,则实数a 的取值范围_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数、推理与证明、复数测试卷
(满分150分,时间120分钟)
一、选择题(本题满分60分)
1.设复数z 满足(1+i)z=2,其中i 为虚数单位,则z=( )
A .1+i
B .1-i
C .2+2i
D .2-2i
2、复数234
1i i i i ++=-( )
A .1122i --
B .1122i -+
C .
1122i - D .1122i + 3. 若000(2)()lim 1x f x x f x x ∆→+∆-=∆,则0()f x '等于( )
A .2
B .-2
C . 12
D .12-
4.cos sin y x x x =-函数 的导数为( )
.cos sin A x x - .sin B x x .s i n C x x - .sin cos D x x ⋅
5.若()ln f x x x x 2=-2-4,则'()f x >0的解集为
A. (,)0+∞
B. -+10⋃2∞(,)(,)
C. (,)2+∞
D. (,)-10
6
、213
l x x x =函数y=n -在( ) .30o A .60o B .120o C .150o D
7.观察下列各式:55=3125,65=15625,75=78125,…,则20115的末四位数字为( )
A .3125
B .5625
C .0625
D .8125
8.已知函数53
123-++=ax x x y ,若函数在),1[+∞上是单调函数,则a 的取值范围为( )
A.(- ∞,-3)
B.(-3,+∞)
C. (3,+∞)
D. (- ∞,3)
9. 定义在R 上的函数f(x)满足(x)<f 2)x '+(0,又)3f(log a 2
1=,])31[(3.0f b =,)3(ln f c =,则( )
A.a <b <c
B. b <c <a.
C. c <a <b.
D. c <b <a
10.函数2sin 2
x y x =-的图象大致是
11.设函数)(x f '是函数f(x)(x ≠0)的导函数,,x
x f <
x f )(2)('函数y=f(x) (x ≠0)的零点为1和-2,则不等式xf(x)<0解集为( )
A.(- ∞,-2) ∪(0,1)
B.(- ∞,-2) ∪(1,+∞)
C. (-2,0) ∪(0,1)
D. (- 2,0) ∪(1, +∞)
12.设直线t x =与函数()()x x g x x f ln ,2==的图像分别交于点N M ,,则当MN 达到最小时的t 值为 A. 1 B. 21 C. 25 D. 22 二、填空题(本题满分20分)
13、设
i i z 21+=,则复数=_z ; 14.函数32()31f x x x =-+在x = 处取得极小值;
15.观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
照此规律,第n 个等式为 ;
16.为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:明文 加密密钥码 密文 发送 密文 解密密钥码 明文。
现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”。
问:若接受方接到密文为“4”,则解密后得到明文为 。
三、解答题(本题满分70分)
17.(本小题10分)已知复数).1(216)2(2i i
m m i z ----+=当实数m 取何值时,复数z 是:
(1)虚数;
(2)纯虚数;
(3)复平面第二、四象限角平分线上的点对应的复数。
18.(本小题12分)已知32()2=+-+f x ax bx x c 在2x =-时有极大值6,在1x =时有极小值,求a ,b ,c 的值;并求()f x 区间[3,3]-上的最大值和最小值.
19.(本小题12分)若函数4)(3+-=bx ax x f ,当2=x 时,函数)(x f 有极值3
4-. (1)求)(x f 的解析式;
(2)求)(x f 的单调区间及极值;
(3)若方程k x f =)(有三个解,求实数k 的取值范围。
20.(本小题12分)已知抛物线C:22
1x y =,直线l:y=x-1,设P 为直线l 上的动点,过点P 作抛物线的两条切线,切点分别为A 、B.
(1)当点P 在y 轴上时,求线段AB 的长;
(2)求证:直线AB 恒过定点。
21. (本小题12分)已知函数))(3(ln )(2R a x x a x x f ∈-+=.
(1)当a=1时,求函数f(x)的极值;
(2)讨论函数f(x)的单调性。
22. (本小题12分)已知函数
0(0)f f (x)(x)f 1)a 0(52
3)(2=''≠-+-=的导函数,为,,且a >x bx a x f x . (1)求a ,b 满足的关系式(用a 表示b);
(2)当a=e(e 为自然对数的底数)时,若不等式f(x)<0在开区间),(21n n 上恒成立)Z ,(21∈n n ,求12n -n 的最大值;
(3)当a >1时,若存在[]21)()(,1,1,2121-
≥--∈e x f x f x x 使成立,求a 的取值范围.
1、已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又
13()22
f '=. (1)求)(x f 的解析式;
(2)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.
2、已知函数ln ()x x k f x e
+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.
(Ⅰ)求k 的值;
(Ⅱ)求()f x 的单调区间;
3、设()321f x x ax bx =+++的导数()f x '满足(1)2,(2),f a f b ''==-其中常数,a b R ∈. (Ⅰ)求曲线().y f x =在点()1,(1)f 处的切线方程。
(Ⅱ)设()().x g x f x e -'=求函数()g x 的极值。