四川省广元市朝天中学2019年中考数学模拟试卷(含解析)
四川省广元市2019-2020学年第三次中考模拟考试数学试卷含解析
四川省广元市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将1、2、3、6按如图方式排列,若规定(m 、n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A .6B .6C .2D .32.下列二次根式,最简二次根式是( ) A .8 B .12 C .13 D .0.13.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧;其中正确说法的个数为( )A .4B .3C .2D .14.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 5.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A . B . C . D .6.工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm .A 119B .119C .46D 111927.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.8.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+9.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a610.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个11.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个12.如图所示几何体的主视图是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度14.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.15.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .16.百子回归图是由1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10 个数之和、每列10 个数之和、每条对角线10 个数之和均相等,则这个和为______.百子回归17.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.18.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p 倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!20.(6分)如图,直角坐标系中,直线12y x =-与反比例函数k y x =的图象交于A ,B 两点,已知A 点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x =-沿x 轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P 在y 轴正半轴上运动,当线段PA 与线段PC 之差达到最大时,求点P 的坐标.21.(6分)对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比y x 称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______;②如图,)3,1C ,C e 的半径为1.若点Q 在C e 上,则点Q 的“理想值”Q L 的取值范围是_______.(2)点D 在直线33y x =+上,D e 的半径为1,点Q 在D e 上运动时都有03Q L ≤≤求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M e 上任意一点,当022Q L ≤≤时,画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)22.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.23.(8分)如图,在△ABC 中,∠ACB=90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相切于点D ,与AB 交于点E ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE=AF ;(2)若DE=3,sin ∠BDE=13,求AC 的长.24.(10分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.25.(10分)如图,将矩形OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴的正半轴上,B (8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).26.(12分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).27.(12分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1,则(1,5)与(13,1)表示的两数之积是1.故选B.2.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A==,不是最简二次根式,故本选项不符合题意;B2C=,不是最简二次根式,故本选项不符合题意.D10故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.3.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A 为圆心,大于12AB 的长为半径所画的弧,错误; (4)弧④是以P 为圆心,任意长为半径所画的弧,正确.故选C .【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.4.D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=()663684m m ÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 5.A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B ,C ,D 是轴对称图形,A 不是轴对称图形,故选A .“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.详解:由题意可得圆锥的母线长为:24cm ,设圆锥底面圆的半径为:r ,则2πr=15024180π⨯, 解得:r=10,(cm ).故选B .点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.7.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B .考点:由三视图判断几何体.8.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.9.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.10.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.11.D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.12.C【解析】【分析】从正面看几何体,确定出主视图即可.【详解】解:几何体的主视图为故选C.【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.14.1.57×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1570000用科学记数法表示为1.57×1.故答案为1.57×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.1 3【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为26=13.故答案为13.点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.16.505【解析】【分析】根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【详解】1~100的总和为:()11001002+⨯=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案17.y=x.(答案不唯一)【解析】【分析】首先设一次函数解析式为:y=kx+b(k≠0), b 取任意值后,把(1,1)代入所设的解析式里,即可得到k 的值,进而得到答案.【详解】解:设直线的解析式y=kx+b ,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b 可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.18.58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是58. 故答案为58. 【点睛】本题考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.方案二能获得更大的利润;理由见解析【解析】【分析】方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润;方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润. 【详解】解:设涨价x 元,利润为y 元,则方案一:涨价x 元时,该商品每一件利润为:50+x−40,销售量为:500−10x ,∴22(5040)(50010)10400500010(20)9000y x x x x x =+--=-++=--+,∵当x=20时,y 最大=9000,∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p ,广告费用为:1000m 元,∴()2250405001000200090002000( 2.25)10125y p m m m m =-⨯-=-+=--+, ∴方案二的最大利润为10125元;∴选择方案二能获得更大的利润.【点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.20.(1)8y x=-;(2)P (0,6) 【解析】试题分析:(1)先求得点A 的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC 的解析式,即可求得点P 的坐标.试题解析: ()1令一次函数12y x =-中2y =,则122x =-, 解得:4x =-,即点A 的坐标为(-4,2).∵点A (-4,2)在反比例函数k y x =的图象上, ∴k=-4×2=-8, ∴反比例函数的表达式为8y x=-. ()2连接AC ,根据三角形两边之差小于第三边知:当A 、C 、P 不共线时,PA-PC<AC ;当A 、C 、P 不共线时,PA-PC=AC ;因此,当点P 在直线AC 与y 轴的交点时,PA-PC 取得最大值.设平移后直线于x 轴交于点F ,则F (6,0) 设平移后的直线解析式为12y x b =-+, 将F (6,0)代入12y x b =-+得:b=3 ∴直线CF 解析式:132y x =-+ 令12x -+3=8x-,解得:128(2x x ==-舍去),, ∴C (-2,4)∵A 、C 两点坐标分别为A (-4,2)、C (-2,4)∴直线AC 的表达式为6y x =+,此时,P 点坐标为P (0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.21.(1)①﹣3;②0Q L ≤≤(2D x ≤≤(3 【解析】【分析】(1)①把Q (1,a )代入y=x-4,可求出a 值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与x 轴夹角越大,可得直线OQ 与D e 相切时理想值最大,C e 与x 中相切时,理想值最小,即可得答案;(2)根据题意,讨论D e 与x 轴及直线y =相切时,L Q 取最小值和最大值,求出D 点横坐标即可;(3)根据题意将点M 转化为直线2x =,Q 点理想值最大时点Q 在y =上,分析图形即可.【详解】(1)①∵点()1,Q a 在直线4y x =-上,∴143a =-=-,∴点Q 的“理想值”31Q L -==-3, 故答案为:﹣3.②当点Q 在D e 与x 轴切点时,点Q 的“理想值”最小为0.当点Q 纵坐标与横坐标比值最大时,Q 的“理想值”最大,此时直线OQ 与D e 切于点Q ,设点Q (x ,y ),C e 与x 轴切于A ,与OQ 切于Q ,∵C ,1),∴tan ∠COA=CA OA =3, ∴∠COA=30°,∵OQ 、OA 是C e 的切线,∴∠QOA=2∠COA=60°,∴y x=tan ∠QOA=tan60°,∴点Q 的“理想值”故答案为:03Q L ≤≤(2)设直线与x 轴、y 轴的交点分别为点A ,点B ,当x=0时,y=3,当y=0时,3,解得:x=33 ∴()33,0A ,()0,3B . ∴33OA =3OB =, ∴tan ∠OAB=3OB OA =, ∴30OAB ∠=o . ∵03Q L ≤≤ ∴①如图,作直线3y x =.当D e 与x 轴相切时,L Q =0,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E ,∴11D E OB P , ∴111D E AE BO AO=. ∵D e 的半径为1,∴111D E =. ∴13AE ∴1123OE OA AE =-= ∴123D x =②如图当D e 与直线3y x =相切时,L Q 32D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E OA ⊥. 设直线3y x =与直线33y =+的交点为F . ∵直线3y x =中,3∴60AOF ∠=o ,∴OF AB ⊥,点F 与Q 重合, 则39cos 332AF OA OAF =⋅∠==.∵D e 的半径为1,∴21D F =. ∴2272AD AF D F =-=. ∴227373cos 224AE AD OAF =⋅∠=⨯=, ∴2253OE OA AE =-=. ∴253D x =由①②可得,D x 5323D x ≤≤ (3)∵M (2,m ),∴M 点在直线x=2上, ∵022Q L ≤≤∴L Q 取最大值时,y x =2, ∴作直线y=2x ,与x=2交于点N ,当e M 与ON 和x 轴同时相切时,半径r 最大,根据题意作图如下:e M 与ON 相切于Q ,与x 轴相切于E ,把x=2代入y=22得:2,∴2,OE=2,22NE OE +,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ ,∴NQM NEO ∆∆:, ∴MQ MN NE ME OE ON ON -==,即226r r =, 解得:2. 2.【点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.22.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒=213?3=,在Rt△BDC中,CDBD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.23.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.24.(1)2 yx =(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为kyx=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=5,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为kyx=(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在kyx=上,∴k21-=-,解得k=2.,∴反比例函数的解析式为2yx =.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.(3)四边形OABC是菱形.证明如下:∵A(﹣1,﹣2),∴22OA125=+=.由题意知:CB∥OA且CB=5,∴CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴22OC215=+=.∴OC=OA.∴平行四边形OABC是菱形.25.(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.26.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33,∵DH=1.5,∴3,在Rt△CDE中,∵∠CED=60°,sin ∠CED=CD CE , ∴CE=23 1.53+=(4+3)(米), 答:拉线CE 的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题27.3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.试题解析:∵BD 3+AD 3=63+83=303=AB 3,∴△ABD 是直角三角形, ∴AD ⊥BC ,在Rt △ACD 中,222217815AC AD -=-=,∴S △ABC =12BC•AD=12(BD+CD)•AD=12×33×8=3, 因此△ABC 的面积为3.答:△ABC 的面积是3.考点:3.勾股定理的逆定理;3.勾股定理.。
四川省广元市2019-2020学年中考数学一模试卷含解析
四川省广元市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-42.下列各图中,∠1与∠2互为邻补角的是( )A.B.C.D.3.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.4.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π5.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且»BC,»CD,»DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m6.如图所示,把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得等腰△EBA ,那么结论中:①∠A=30°;②点C 与AB 的中点重合;③点E 到AB 的距离等于CE 的长,正确的个数是( )A .0B .1C .2D .37.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 8.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .5010.在直角坐标系中,已知点P (3,4),现将点P 作如下变换:①将点P 先向左平移4个单位,再向下平移3个单位得到点P 1;②作点P 关于y 轴的对称点P 2;③将点P 绕原点O 按逆时针方向旋转90°得到点P 3,则P 1,P 2,P 3的坐标分别是( ) A .P 1(0,0),P 2(3,﹣4),P 3(﹣4,3) B .P 1(﹣1,1),P 2(﹣3,4),P 3(4,3) C .P 1(﹣1,1),P 2(﹣3,﹣4),P 3(﹣3,4)D .P 1(﹣1,1),P 2(﹣3,4),P 3(﹣4,3) 11.下列函数是二次函数的是( ) A .y x =B .1y x=C .22y x x =-+D .21y x =12.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______. 14.方程1125x x ++-=的根为_____. 15.已知a <0,那么|2a ﹣2a|可化简为_____.16.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x +]=5,则x 的取值范围是_____. 17.在中,,,点分别是边的中点,则的周长是__________.18.分解因式:x 2y ﹣xy 2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AM 是△ABC 的中线,D 是线段AM 上一点(不与点A 重合).DE ∥AB 交AC 于点F ,CE ∥AM ,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; (2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由. (3)如图3,延长BD 交AC 于点H ,若BH ⊥AC ,且BH=AM . ①求∠CAM 的度数;②当FH=3,DM=4时,求DH 的长.20.(6分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.21.(6分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=12,OB=4,OE=1.(1)求该反比例函数的解析式;(1)求三角形CDE的面积.22.(8分)如图,一次函数y=kx+b的图象与反比例函数y= mx(x>0)的图象交于A(2,﹣1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.23.(8分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)24.(10分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)25.(10分)如果a2+2a-1=0,求代数式24()2aaa a-⋅-的值.26.(12分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由. 27.(12分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;如果a =3+m ,b =m ﹣2,试说明“如意数”c 为非负数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【详解】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1. 当x=1时,m+4=1﹣1,m=﹣4, 故选D . 2.D 【解析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是. 故选D . 3.C 【解析】. 详解:49911,4<<Q 由被开方数越大算术平方根越大,<<即73,2<< 故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计11的大小. 4.B 【解析】 【分析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可. 【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°, ∵OB =OC ,∴△OBC 是等边三角形, ∴OB =OC =BC =1,∴»BC的长=6011803ππ⋅⋅=, 故选B . 【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型. 5.C 【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确. B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确. C.分析图2可知甲车从G 口出,乙车从F 口出,故错误. D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确. 故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键. 6.D 【解析】 【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.7.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.8.C【解析】【分析】求得不等式组的解集为x<﹣1,所以C是正确的.解:不等式组的解集为x<﹣1.故选C.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.10.D【解析】【分析】把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).11.C【解析】【分析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解. 【详解】A. y=x 是一次函数,故本选项错误;B. y=1x是反比例函数,故本选项错误; C.y=x-2+x 2是二次函数,故本选项正确; D.y=21x 右边不是整式,不是二次函数,故本选项错误. 故答案选C. 【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义. 12.D 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2019年四川省中考数学模拟试卷(含答案解析)
2019年四川省中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列等式正确的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣32.若成立,则()A.a≥0,b≥0B.a≥0,b≤0C.ab≥0D.ab≤03.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度4.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含5.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm26.若点B(a,0)在以点A(﹣1,0)为圆心,2为半径的圆外,则a的取值范围为()A.﹣3<a<1B.a<﹣3C.a>1D.a<﹣3或a>17.在半径等于5cm的圆内有长为5cm的弦,则此弦所对的圆周角为()A.120°B.30°或120°C.60°D.60°或120°8.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD10.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二.填空题(共10小题,满分30分,每小题3分)11.若分式的值为0,则x=.12.当x时,二次根式有意义.13.某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是cm.14.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.15.如图所示,AB是⊙O的直径,CD是⊙O的弦,连接AC,AD,若∠CAB=36°,则∠ADC的度数为.16.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是.17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是.A.①;B.①②;C.①②③;D.①②③④18.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=°.19.如图,将扇形AOC围成一个圆锥的侧面.已知围成的圆锥的高为12,扇形AOC的弧长为10π,则圆锥的侧面积为.20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).三.解答题(共9小题,满分90分)21.计算题(1)|﹣|+(﹣1)2018﹣2cos45°+.(2)÷(a+2)22.解方程:(1)x2﹣3x=4(2)2x(x﹣3)=3﹣x23.先化简,再求值:(x﹣2+)÷,其中x=﹣.24.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,则m的值为;(3)若x1、x2是原方程的两根,且+=2x1x2+1,求m的值.25.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.26.如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.27.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,求⊙O的半径及EC的长.28.如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.求证:EF与圆O相切.29.已知开口向上的抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于C 点,∠ACB不小于90°.(1)求点C的坐标(用含a的代数式表示);(2)求系数a的取值范围;(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.2019年四川省中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据二次根式的性质把各个二次根式化简,判断即可.【解答】解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.【点评】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.2.【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵成立,∴a≥0,b≤0.故选:B.【点评】此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.3.【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.【分析】先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,∵5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P.外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.5.【分析】这个圆锥的全面积为底面积与侧面积的和,底面积为半径为3的圆的面积,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求测面积.【解答】解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】熟记“设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d <R时,点在圆内”即可解答【解答】解:以A(﹣1,0)为圆心,以2为半径的圆交x轴两点的坐标为(﹣3,0),(1,0),∵点B(a,0)在以A(1,0)为圆心,以2为半径的圆外,∴a<﹣3或a>1.故选:D.【点评】本题考查了对点与圆的位置关系的判断的知识点,解答本题的关键是理解点B在以A(1,0)为圆心,以2为半径的圆内的含义,本题比较简单.7.【分析】根据题意画出相应的图形,连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,根据垂径定理得到D为AB的中点,由AB的长得出AD的长,再由OA=OB,OD与AB垂直,根据三线合一得到OD为角平分线,在直角三角形AOD中,利用锐角三角函数定义及AD与OA的长,求出∠AOD的度数,可得出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,可得出∠AEB的度数,再利用圆内接四边形的对角互补可得出∠AFB的度数,综上,得到此弦所对的圆周角的度数.【解答】解:根据题意画出相应的图形为:连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,则D为AB的中点,∵AB=5cm,∴AD=BD=cm,又OA=OB=5,OD⊥AB,∴OD平分∠AOB,即∠AOD=∠BOD=∠AOB,∴在直角三角形AOD中,sin∠AOD===,∴∠AOD=60°,∴∠AOB=120°,又圆心角∠AOB与圆周角∠AEB所对的弧都为,∴∠AEB=∠AOB=60°,∵四边形AEBF为圆O的内接四边形,∴∠AFB+∠AEB=180°,∴∠AFB=180°﹣∠AEB=120°,则此弦所对的圆周角为60°或120°.故选:D.【点评】此题考查了圆周角定理,垂径定理,等腰三角形的性质,锐角三角函数定义,以及圆内接四边形的性质,是一道综合性较强的题.本题有两解,学生做题时注意不要漏解.8.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.【分析】根据垂径定理得出=,=,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.10.【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a(x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y1=(x+2)2﹣3=﹣,y2=(x﹣3)2+1=,∴y2﹣y1=+=,所以③错误;抛物线y1=a(x+2)2﹣3的对称轴为直线x=﹣2,抛物线y2=(x﹣3)2+1的对称轴为直线x =3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.二.填空题(共10小题,满分30分,每小题3分)11.【分析】分式为零时:分子等于零且分母不等于零.【解答】解:依题意得:|x|﹣4=0且4﹣x≠0.解得x=﹣4.故答案是:﹣4.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.12.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.13.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,最中间的数是152,所以这组数据的中位数是152cm,故答案为:152.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.14.【分析】第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.【解答】解:设湖里有鱼x条,则,解可得x=800.故答案为:800.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.15.【分析】连接BC,推出Rt△ABC,求出∠B的度数,即可得出结论.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=36°,∴∠B=54°,∴∠ADC=54°故答案为:54°.【点评】本题主要考查了圆周角的有关定理,作出辅助线,构建直角三角形,是解本题的关键.16.【分析】连接OE,由题意得:OE=OA=R,ED=DF=4,再解Rt△ODE即可求得半径的值.【解答】解:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA﹣AD,∴OD=R﹣2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R﹣2)2+42,∴R=5.故答案为:5.【点评】本题考查了垂径定理和解直角三角形的运用.17.【分析】根据抛物线的开口方向确定a的取值范围;根据对称轴的位置确定b的取值范围;根据抛物线与y轴的交点确定c的取值范围;根据图象与x轴的交点坐标确定方程ax2+bx+c=0的根,也可以确定当y>0时x的取值范围;根据抛物线的开口方向和对称轴我的抛物线的增减性.【解答】解:∵抛物线的开口方向向下,∴a<0,∵对称轴在y轴的右边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道抛物线与x轴的交点的横坐标分别为x=﹣1或x=3,∴方程ax2+bx+c=0的根为x1=﹣1、x2=3,故②正确;根据图象知道当x>1时,y随x值的增大而减小,故③正确;根据图象知道当y>0时,﹣1<x<3,故④正确.故选D.【点评】此题主要考查了抛物线的系数与图象的关系,其中二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.18.【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.【解答】解:∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°﹣90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为:45【点评】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.19.【分析】求出圆锥的底面半径,根据勾股定理求出圆锥的母线长,根据扇形面积公式计算即可.【解答】解:∵扇形AOC的弧长为10π,∴圆锥的底面半径为:=5,∴圆锥的母线长为:=13,则圆锥的侧面积为:×10π×13=65π,故答案为:65π.【点评】本题考查的是圆锥的计算,掌握弧长公式、扇形面积公式、圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.20.【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C为的中点,得到=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【解答】解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.【点评】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.三.解答题(共9小题,满分90分)21.【分析】(1)先计算绝对值、乘方、代入三角函数值和算术平方根,再计算乘法,最后计算加减即可得;(2)先计算括号内分式的减法、将被除式因式分解,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=+1﹣2×+4=+1﹣+4=5;(2)原式=÷(﹣)=÷=•==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的混合运算顺序和运算法则.22.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先变形得到2x(x﹣3)+x﹣3=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(2)2x(x﹣3)+x﹣3=0,(x﹣3)(2x+1)=0,x﹣3=0或2x+1=0,所以x1=3,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.【分析】(1)先计算判别式得到△=(m+1)2,根据非负数的性质即可得到△≥0,于是利用判别式的意义即可得到结论;(2)根据二次函数的性质得m<0且=0,然后解方程即可;(3)先根据根与系数的关系得到x1+x2=,x1x2=﹣,再把+=2x1x2+1变形得到=2x1x2+1,则=2•(﹣)+1,然后解关于m的方程即可.【解答】(1)证明:m≠0,△=(m﹣1)2﹣4m×(﹣1)=(m+1)2,∵(m+1)2≥0,即△≥0,∴这个一元二次方程总有两个实数根;(2)解:∵二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,∴m<0且=0,∴m=﹣1;故答案为﹣1.(3)解:x1+x2=,x1x2=﹣,∵+=2x1x2+1,∴=2x1x2+1,∴=2•(﹣)+1,整理得m 2+m ﹣1=0,∴m =或m =.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.也考查了根的判别式和二次函数的性质.25.【分析】(1)用表格列出所有等可能结果,再根据概率公式计算可得;(2)分别计算出小红、小亮获胜的概率,比较大小即可得出结论.【解答】解:(1)如下表所示:由表可知,共有9种等可能结果,其中配成紫色的有3种结果,所以P (能配成紫色)=;(2)∵P (小红赢)=,P (小亮赢)=∴P (小红赢)=P (小亮赢),因此,这个游戏对双方是公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】根据CE 和α的正切值可以求得AE 的长度,根据AB =AE +EB 即可求得AB 的长度,即可解题.【解答】解:在中Rt △ACE ,∴AE =CE •tan α,=BD •tan α,=25×tan22°,≈10.10米,∴AB =AE +EB =AE +CD ≈10.10+1.20≈11.3(米).答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.27.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r 的值,连接BE,由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了勾股定理、圆周角定理,作出恰当的辅助线是解答此题的关键.28.【分析】连接OD,作出辅助线,只要证明OD⊥EF即可,根据题目中的条件可知,∠FOD与∠FAD的关系,由AD平分∠CAB,可知∠EAF与∠FAD之间的关系,又因为AE⊥EF,从而可以推出OD垂直EF,本题得以解决.【解答】证明:连接OD,如右图所示,∵∠FOD=2∠BAD,AD平分∠CAB,∴∠EAF=2∠BAD,∴∠EAF=∠FOD,∵AE⊥EF,∴∠AEF=90°,∴∠EAF+∠EFA=90°,∴∠DFO+∠DOF=90°,∴∠ODF=90°,∴OD⊥EF,即EF与圆O相切.【点评】本题考查切线的判定,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.29.【分析】(1)由抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),得出c与a的关系,即可得出C点坐标;(2)利用已知得出△AOC∽△COB,进而求出OC的长度,即可得出a的取值范围;(3)作DG⊥y轴于点G,延长DC交x轴于点H,得出抛物线的对称轴为x=﹣1,进而求出△DCG∽△HCO,得出OH=3,过B作BM⊥DH,垂足为M,即BM=h,根据h=HB sin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤,即可求出答案;=S (4)连接CE,过点N作NP∥CD交y轴于P,连接EF,根据三角形的面积公式求出S△CAEF,根据NP∥CE,求出,设过N、P两点的一次函数是y=kx+b,代入N、四边形EFCBP的左边得到方程组,求出直线NP的解析式,同理求出A、C两点的直线的解析式,组成方程组求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),∴消去b,得c=﹣3a.∴点C的坐标为(0,﹣3a),答:点C的坐标为(0,﹣3a).(2)当∠ACB=90°时,∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,∴∠ACO=∠OBC,∴△AOC∽△COB,,即OC2=AO•OB,∵AO=3,OB=1,∴OC=,∵∠ACB不小于90°,∴OC≤,即﹣c≤,由(1)得3a≤,∴a≤,又∵a>0,∴a的取值范围为0<a≤,答:系数a的取值范围是0<a≤.(3)作DG⊥y轴于点G,延长DC交x轴于点H,如图.∵抛物线y=ax2+bx+c交x轴于A(﹣3,0),B(1,0).∴抛物线的对称轴为x=﹣1.即﹣=﹣1,所以b=2a.又由(1)有c=﹣3a.∴抛物线方程为y=ax2+2ax﹣3a,D点坐标为(﹣1,﹣4a).于是CO=3a,GC=a,DG=1.∵DG∥OH,∴△DCG ∽△HCO ,∴,即,得 OH =3,表明直线DC 过定点H (3,0).过B 作BM ⊥DH ,垂足为M ,即BM =h ,∴h =HB sin ∠OHC =2 sin ∠OHC .∵0<CO ≤,∴0°<∠OHC ≤30°,0<sin ∠OHC ≤.∴0<h ≤1,即h 的最大值为1,答:△BCD 中CD 边上的高h 的最大值是1.(4)由(1)、(2)可知,当∠ACB =90°时,,,设AB 的中点为N ,连接CN ,则N (﹣1,0),CN 将△ABC 的面积平分,连接CE ,过点N 作NP ∥CE 交y 轴于P ,显然点P 在OC 的延长线上,从而NP 必与AC 相交,设其交点为F ,连接EF ,因为NP ∥CE ,所以S △CEF =S △CEN ,由已知可得NO =1,,而NP ∥CE ,∴,得,设过N 、P 两点的一次函数是y =kx +b ,则,解得:,即,①同理可得过A 、C 两点的一次函数为,②解由①②组成的方程组得,,故在线段AC 上存在点满足要求.答:当∠ACB =90°,在线段AC 上存在点F ,使得直线EF 将△ABC 的面积平分,点F 的坐标是(﹣,﹣).【点评】本题主要考查对用待定系数法求二次函数、一次函数的解析式,三角形的面积,解二元一次方程,相似三角形的性质和判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。
2019年广元市中考数学模拟试题与答案
2019年广元市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
) 1. 用科学记数法表85000为A.0.85×105B.8.5×104C.85×10-3D.8.5×10-42. 7的相反数是A. 7B. -7C.71 D. 71- 3.下列图案属于轴对称图形的是4. 不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是5.下列计算中,正确的是A .532632a b a =⨯B .()2242a a -=- C .()725a a= D .221x x =- 6. 一次函数y=x-2的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为A .120元B .100元C .80元D .60元 8.如图,△ABC 中,∠C=70°,若沿图中虚线截去∠C ,则∠1+∠2=A .360°B .250°C .180°D .140°9. 世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极参加“献爱心”捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A.20,20B.30,20C.30,30D.20,3010.如图,四边形ABCD 中,∠BAD =∠ACB=90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .y =225x 2B .y =425x 2C .y =25x 2D .y =45x 2第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11. 因式分解:()233x x x -+-= .12.若31=+x x ,则=+xx 221▲ . 13.若正多边形的一个外角是45°,则该正多边形的边数是 ▲ .14. 如图,反比例函数)0( x xky = 与一次函数y=x+4的图象交于A 、B 两点的横坐标分别为 -3,-1,则关于x 的不等式)0(4<+<x kx xk的解集为_______.15.如图,线段AC 与BD 相交于点O ,CD AB ∥,若OA ∶OC =4∶3,ABO △的面积是2,则CD O △的面积等于 ▲ .16.如图,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在抛物线y =ax 2(a <0)的图象上,则该抛物线的解析式为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:()()()︒⨯---+-+⎪⎭⎫ ⎝⎛-30tan 3312120172018311001218.(本题8分)化简aa a a a a --+-÷-2123422,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数. 19.(本题10分)如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于 点F ,连接BE ,∠F=45°. (1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值。
四川省广元市2019-2020学年中考数学考前模拟卷(4)含解析
四川省广元市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .42.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里3.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32πC .2πD .3π4.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A .B .C .D .5.下列标志中,可以看作是轴对称图形的是( )6.实数a b、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A.a+b>0 B.a-b<0 C.ab<0 D.2a>2b7.下列图形中,是正方体表面展开图的是()A.B.C. D.8.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与12D.2与|﹣2|10.函数y=113xx+--自变量x的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤311.下列计算正确的是()A.2m+3n=5mn B.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m312.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.14.因式分解:4x2y﹣9y3=_____.15.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,16.若代数式211x--的值为零,则x=_____.17.若代数式1x-在实数范围内有意义,则x的取值范围是_______.18.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?20.(6分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.21.(6分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C 处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP 与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.22.(8分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?23.(8分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分≈≈)别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:2 1.41,?3 1.7324.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.25.(10分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音音速y(m/s)331 334 337 340 343(1)求y与x之间的函数关系式:(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?26.(12分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒13个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.27.(12分)已知y是x的函数,自变量x的取值范围是0x 的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(3)在画出的函数图象上标出2x =时所对应的点,并写出m = .(4)结合函数的图象,写出该函数的一条性质: .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】∵点(6,4)A -,D 是OA 中点∴D 点坐标(3,2)-∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k =- ∴6k =-∵点C 在直角边AB 上,而直线边AB 与x 轴垂直∴点C 的横坐标为-6又∵点C 在双曲线6y x -=∴点C 坐标为(6,1)- ∴22(66)(14)3AC =-++-=从而1136922AOC S AC OB ∆=⨯⨯=⨯⨯=,故选B 2.D根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=22303AB AP-=(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.3.D【解析】【分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积=2 1203360π⨯=3π.故选D.【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.4.D【解析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.考点:列表法与树状法.5.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.C【解析】【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、ab<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.7.C【解析】【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.8.D【解析】【分析】根据菱形,平行四边形,正方形的性质定理判断即可.【详解】A.菱形的对角线不一定相等,A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C错误;D.正方形的对角线相等且互相垂直,D 正确;故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义. 10.Bx-1≥0且x-3≠0,∴x≥1且x≠3.故选B.11.C【解析】【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2•m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.12.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.y(2x+3y)(2x-3y)【解析】【分析】直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.15.6【解析】【分析】作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.【详解】如图:作DE⊥AB,交BA的延长线于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=3∴tan∠DAE=3∴设AE=a,DE=3 a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-(不合题意舍去)∴AE=1=AF,DE=3=CF∴BF=AB-AF=3在Rt△BFC中,BC==6【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.16.3【解析】由题意得,21x1--=0,解得:x=3,经检验的x=3是原方程的根.17.1x≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.1x-∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.18.18 1【解析】【分析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18; 按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n 的最大值为1.故答案为:18;1.【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解析】【分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y ==答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系20.(1)见解析,(2)CF 65cm. 【解析】【分析】(1)要求证:BF=BC 只要证明∠CFB=∠FCB 就可以,从而转化为证明∠BCE=∠BDC 就可以;(2)已知AB=4cm ,AD=3cm ,就是已知BC=BF=3cm ,CD=4cm ,在直角△BCD 中,根据三角形的面积等于12BD•CE=12BC•DC ,就可以求出CE 的长.要求CF 的长,可以在直角△CEF 中用勾股定理求得.其中EF=BF-BE ,BE 在直角△BCE 中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠CDB+∠DBC =90°.∵CE ⊥BD ,∴∠DBC+∠ECB =90°.∴∠ECB =∠CDB .∵∠CFB =∠CDB+∠DCF ,∠BCF =∠ECB+∠ECF ,∠DCF =∠ECF ,∴∠CFB =∠BCF∴BF =BC(2)∵四边形ABCD 是矩形,∴DC =AB =4(cm ),BC =AD =3(cm ).在Rt △BCD 中,由勾股定理得BD 2222435AB AD ++=. 又∵BD•CE =BC•DC ,∴CE =·125BC DC BD =. ∴BE 22221293()55BC CE -=-=. ∴EF =BF ﹣BE =3﹣9655=. ∴CF 22221265()()555CE EF +=+=cm . 【点睛】 本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.21.(1)证明见解析(2142(3)EP+EQ=2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ ,即可证△ACP ≌△BCQ ,可得 AP=CQ ;作 CH ⊥PQ 于 H ,由题意可求 2,可得 2,根据勾股定理可求 14,即可求 AP 的长;作 CM ⊥BQ 于 M ,CN ⊥EP 于 N ,设 BC 交 AE 于 O ,由题意可证△CNP ≌△ CMQ ,可得 CN=CM ,QM=PN ,即可证 Rt △CEM ≌Rt △CEN ,EN=EM ,∠CEM=∠CEN=45°,则可求得 EP 、EQ 、EC 之间的数量关系.【详解】解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=22,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EN,∴EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.22.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.23.5.5米【解析】【分析】过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中表示出AD ,在Rt △BCD 中表示出BD ,再由AB=4米,即可得出关于x 的方程,解出即可.【详解】解:过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中,∠CAD=30°,则33在Rt △BCD 中,∠CBD=45°,则BD=CD=x. 3x ﹣x=4, 解得:)x 231 5.531==≈-. 答:生命所在点C 的深度为5.5米.24.(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】【分析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;(3)过点D 作DE ⊥AB 于点E ,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B .根据AD ⋅BC=AP ⋅BP ,就可求出t 的值.解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴2253-,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∴∠A=∠B ,又∵∠DPC=∠A ,∴∠DPC=∠A=∠B ,由(2)(2)的经验得AD•BC=AP•BP ,又∵AP=t ,BP=6-t ,∴t (6-t )=2×2,∴t=2或t=2,∴t 的值为2秒或2秒.【点睛】本题考查圆的综合题.25. (1) y=35x+331;(2)1724m. 【解析】【分析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b ,∴3315334b k b =⎧⎨+=⎩ ∴k=35, ∴y=35x+331. (2)当x=23时,y=35 x23+331=344.8 ∴5⨯344.8=1724.∴此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.26.(1)y=﹣x 2+2x+3;(2)y=﹣x ﹣1;(3)P (3,05)或P (﹣4.5,0);当t=2时,S △MDN 的最大值为52. 【解析】【分析】(1)把A (-1,0),C (0,3)代入y=ax 2+2x+c 即可得到结果;(2)在y=-x 2+2x+3中,令y=0,则-x 2+2x+3=0,得到B (3,0),由已知条件得直线BC 的解析式为y=-x+3,由于AD ∥BC ,设直线AD 的解析式为y=-x+b ,即可得到结论;(3)①由BC ∥AD ,得到∠DAB=∠CBA ,全等只要当BC PB AD AB =或BC PB AB AD=时,△PBC ∽△ABD ,解方程组2231y x x y x ⎧=-++⎨=--⎩得D(4,−5),求得AD =4,AB =BC =设P 的坐标为(x ,0),代入比例式解得35x =或x=−4.5,即可得到3,05P ⎛⎫ ⎪⎝⎭或P(−4.5,0); ②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,在Rt △AFB 中,∠BAF=45°,于是得到sin ∠BAF BF AB =,求得42BF BD =⨯==求得sin BF ADB BD ∠=== 由于,DM t DN ==,于是得到12MDN S DM NE =⋅V ()1225t t =⋅215t =-+21()5t =--215522t ⎛=--+ ⎝⎭,即可得到结果.【详解】(1)由题意知:023a c c =-+⎧⎨=⎩,解得13a c =-⎧⎨=⎩, ∴二次函数的表达式为223y x x =-++;(2)在2y x 2x 3=-++ 中,令y=0,则2230x x -++=,解得:121,3x x ,=-= ∴B(3,0),由已知条件得直线BC 的解析式为y=−x+3,∵AD ∥BC ,∴设直线AD 的解析式为y=−x+b ,∴0=1+b ,∴b=−1,∴直线AD 的解析式为y=−x−1;(3)①∵BC ∥AD ,∴∠DAB=∠CBA , ∴只要当:BC PB AD AB =或BC PB AB AD =时,△PBC ∽△ABD , 解2231y x x y x ⎧=-++⎨=--⎩得D(4,−5), ∴52,4,32AD AB BC ===,设P 的坐标为(x,0), 即323452x -=或32452=, 解得35x =或x=−4.5, ∴3,05P ⎛⎫⎪⎝⎭或P(−4.5,0),②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,在Rt △AFB 中,45BAF ∠=o ,∴sin ∠BAF BF AB=, ∴242,262BF BD =⨯==, ∴22213sin 26BF ADB BD ∠=== ∵1352,DM t DN ==, 又∵132132sin ,5NE ADB NE t DN ∠===,∴1,2MDN S DM NE =⋅V ()1225t t =⋅215t =-21(),5t =-- 215522t ⎛⎫=--+ ⎪ ⎪⎝⎭,∴当t =时,MDN S V 的最大值为5.2 【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.27.(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】【分析】(1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示, 且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.。
四川省广元市2019年中考数学二模试卷(解析版)
四川省广元市2019年中考数学二模试卷(解析版)一、选择题(共15小题,每小题3分,满分45分)1.下列各式中,正确的是()A.a5+a3=a8B.a2•a3=a6C.(﹣3a2)3=﹣9a6D.【分析】分别根据合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则分别计算出各选项即可.【解答】解:A、由于a5和a3不是同类项,故不能合并,故本选项错误;B、根据同底数幂的乘法法则可知a2•a3=a5,故本选项错误;C、幂的乘方与积的乘方法则可知(﹣3a2)3=﹣27a6,故本选项错误;D、由负整数指数幂的运算法则可知=9,故本选项正确.故选D.【点评】本题考查的是合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则等知识,熟知以上知识是解答此题的关键.2.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形【分析】根据菱形的判定方法对A进行判定;根据矩形的判定方法对B进行判定;根据正方形的判定方法对C、D进行判定.【解答】解:A、两邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、四个角相等的菱形是正方形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.已知不等边三角形的一边等于5,另一边等于3,若第三边长为奇数,则周长等于()A.13 B.11 C.11,13或15 D.15【分析】已知两边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围;再根据x为奇数,可知三角形的周长.【解答】解:设第三边为c,根据题意可得:2<c<8,又知第三边边长为奇数,即c=3,5,7,又知三角形是不等边三角形,故c=7,则三角形的周长为3+5+7=15,故选D.【点评】本题考查三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.还要注意奇数这一条件.4.下列根式是最简二次根式的是()A. B.C. D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的两个条件,故本选项正确;B、被开方数含分母,不是最简二次根式,故本选项错误;C、被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误.故选A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.直线y=x﹣1与坐标轴交于A、B两点,点C在x轴上,若△ABC为等腰三角形且S△ABC=,则点C的坐标为()A.、(0,0 )B.(1﹣,0)或(1,0)C.、(+1,0 )D.、(﹣﹣1,0)或(﹣+1,0)【分析】由题意可得AC边上的高为BO=1,所以要使S△ABC=,则AC一定等于,在RT△AOB中,AB==,从而可得AC=AB,找到点C满足AC=即可.【解答】解:∵函数解析式为:y=x﹣1,故可得点A坐标为(1,0),点B坐标为(0,﹣1),在Rt△AOB中,AB==,又∵AC边上的高为BO=1,S△ABC=,∴只需满足AC=即可,①当点C在x轴左端时可得点C坐标为:(1﹣,0);②当点C在x轴右端时,可得点C坐标为:(1+,0).故点C的坐标为:(1﹣,0)或(1+,0).故选B.【点评】此题考查了一次函数的综合题,涉及了等腰三角形的性质,解答本题的关键是根据AC边上的高为1,确定AC=,注意不要漏解,有一定难度.6.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y3【分析】根据反比例函数图象的性质,点A1在第二象限,y1>0,所以,A2、A3在第四象限,因为在每个象限内,y随x的增大而增大,所以y2<y3.【解答】解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.7.函数y=中自变量x的取值范围是()A.1<x<2 B.1≤x≤2C.x>1 D.x≥1【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.圆锥的轴截面是()A.梯形 B.等腰三角形C.矩形 D.圆【分析】根据圆锥的形状特点判断即可.【解答】解:圆锥的轴垂直于底面且经过圆锥的底面的圆心,因此圆锥的轴与将轴截面分成了两个全等的三角形,因此,轴截面应该是等腰三角形.故选B.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.9.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90°B.60°C.45°D.30°【分析】根据旋转的性质,观察图形,中心角是由8个度数相等的角组成,结合周角是360°求得每次旋转的度数.【解答】解:∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°.故选C.【点评】本题把一个周角是360°和图形的旋转的特点结合求解.注意结合图形解题的思想.10.一个等腰三角形的顶角是120°,底边上的高是1cm,那么它的周长是()A.(2)cm B.2(2)cm C.cm D.2cm【分析】根据等腰三角形的性质、三角形内角和定理求出∠C,根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】解:∵∠BAC=120°,AB=AC,∴∠C=30°,∴AC=2AD=2,∴CD=,则BC=2,∴三角形的周长为2+2+2=2(2)cm,故选:B.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.11.下列命题正确的个数是()①等腰三角形的腰长大于底边长;②三条线段a、b、c,如果a+b>c,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A.0个 B.1个C.2个 D.3个【分析】根据三角形三边关系以及轴对称图形的性质和全等三角形的性质分别判断得出即可.【解答】解:①等腰三角形腰长大于底边,此选项不正确;②三条线段a、b、c,如果a+b>c,则这三条线段不一定可以组成三角形,c必须大于两边之差,此选项不正确;③等腰三角形是轴对称图形,它的对称轴是底边上的高所在直线,此选项不正确;④面积相等的两三角形不一定全等,故此选项错误.故正确的有0个.故选:A.【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.12.直角梯形的一个内角为120°,较长的腰为6cm,有一底边长为5cm,则这个梯形的面积为()A.cm2B.cm2C.25cm2D.cm2或cm2【分析】根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高为6×sin60°=3,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.【解答】解:根据题意可作出下图,BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=×(5+8)×3=cm2;当CD=5cm时,AB=5﹣3=2cm,梯形的面积=×(2+5)×3=cm2;故梯形的面积为cm2或cm2,选D.【点评】本题考查了直角梯形的性质及面积公式,涉及到特殊角的三角函数计算,注意当题意所给数据不明确时,要注意分类讨论思想.13.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边【分析】根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.【点评】本题很简单,考查的是三角形中位线的性质及菱形的性质.14.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B. C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选A.【点评】本题的关键是利用垂径定理和勾股定理.15.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的大致图象应是()A.B.C.D.【分析】根据已知条件,采用数形结合的方法,探究图象经过的点,字母系数的符号对图象的影响,逐一排除.【解答】解:因为a+b+c=0,故函数图象过(1,0)排除D;因为a+b+c=0,a>b>c,所以a>0,排除C;由图B可知,c=1>0,对称轴x=﹣>0,得b<0,与b>c矛盾,排除B故选A.【点评】解答本题要结合图象进行验算,关键是掌握二次函数y=ax2+bx+c系数符号的确定.二、解答题(共5小题,满分40分)16.(8分)计算:.【分析】分别根据数的开方、0指数幂、特殊角的三角函数值计算出各数,再根据二次根式混合运算的法则进行计算即可.【解答】解:原式=+2﹣1+2﹣=3.【点评】本题考查的是二次根式的混合运算、零指数幂及特殊角的三角函数值,熟知二次根式混合运算的法则是解答此题的关键.17.(8分)先化简,再求值,并求a=1时的值.【分析】先将a﹣1根据平方差公式化为()(﹣1),a﹣2+1是完全平方公式为:,约分后再分母有理化,化简后代入计算可得结果.【解答】解:,=+,=﹣1,=﹣1,=,=,当a=1时,原式===4+2.【点评】本题是二次根式的化简求值问题,考查了分母有理化、完全平方公式和平方差公式及二次根式的混合运算法则,注意把a看作是.18.(8分)已知x=3是方程的一个根,求k的值和方程其余的根.【分析】本题考查解分式方程的能力,先由x=3求出k值,再将k代入原方程,通过去分母,解方程,检验,求出方程的另一个解.【解答】解:把x=3代入,得+=1,解得k=﹣3.将k=﹣3代入原方程得:,方程两边都乘以x(x+2),得10x﹣3(x+2)=x(x+2),整理得x2﹣5x+6=0,解得x1=2,x2=3.检验:x=2时,x(x+2)=8≠0∴x=2是原方程的根.x=3时,x(x+2)=15≠0∴x=3是原方程的根.∴原方程的根为x1=2,x2=3.故k=3,方程其余的根为x=2.【点评】解分式方程时要注意根据方程特点选择合适的方法.19.(8分)要用12米长的木条,做一个有一条横挡的矩形窗户(如图),怎样设计窗口的高和宽的长度,才能使这个窗户透进的光线最多.【分析】光线最多就是面积最大,可设高为x米,则宽为米,表示出面积为y,运用函数性质求解.【解答】解:要使窗户透进的光线最多,就是要使窗户的面积最大.设窗户的高为x(x<6)米,窗户的面积为y(平方米),则宽为米,因此可得到y与x的关系式为:y=x•(x<6),整理得:y=﹣+4x,在这个二次函数中,a=﹣,b=4,c=0,∴当x=﹣=﹣=3时,y取得最大值:=6(平方米),当x=3时,=2(米),所以取矩形窗户的高为3米,宽为2米时,窗户的面积最大(最大值为6平方米),即窗户透进的光线最多.【点评】本题是二次函数的应用,此题的关键是理解光线最多就是窗子面积最大时,据此求面积表达式,运用函数性质求解.20.(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24厘米,AB=8厘米,BC=30厘米,动点P从A开始沿AD边向D以每秒1厘米的速度运动,动点Q从点C开始沿CB边向B以每秒3厘米的速度运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒.(1)当t在什么时间范围时,CQ>PD?(2)存在某一时刻t,使四边形APQB是正方形吗?若存在,求出t值;若不存在,请说明理由.【分析】(1)根据CQ>PD列出方程即可解决问题;(2)若四边形是正方形,则AP=AB且BQ=AB,则1×t=8且30﹣3t=8,显然无解,即不存在t的值使得四边形APQB是正方形;【解答】解:(1)∵CQ=3t,24﹣t,∴由CQ>PD有3t>24﹣t,解得t>6.又∵P、Q点的运动时间只能是30÷3=10(s),∴6<t≤10,即当6<t≤10时,CQ>PD.(2)若四边形是正方形,则AP=AB且BQ=AB,∴1×t=8且30﹣3t=8,显然无解,即不存在t的值使得四边形APQB是正方形.【点评】本题考查直角梯形、正方形的判定等知识,解题的关键是学会构建方程或不等式解决问题,属于中考常考题型.三、填空题(共7小题,每小题3分,满分21分)21.已知:不等式2x﹣m≤0只有三个正整数解,则化简+|m﹣9|=5.【分析】首先根据不等式2x﹣m≤0只有三个正整数解即可求得m的值,然后根据二次根式以及绝对值的意义即可化简求值.【解答】解:解不等式2x﹣m≤0得:x≤∵不等式2x﹣m≤0只有三个正整数解.∴=3,∴m=6,∴+|m﹣9|=|4﹣m|+|m﹣9|=m﹣4+9﹣m=5.故答案是:5.【点评】本题主要考查了不等式的解的求解,以及二次根式的化简求值,正确求得m的值是解题的关键.22.数据80,82,85,89,100的标准差为7.1(小数点后保留一位).【分析】根据题目中的数据,先求出这组数据的平均数,然后根据标准差的定义即可解答本题.【解答】解:数据80,82,85,89,100的平均数是:=87.2,∴这组数据的标准差是:s=≈7.1,故答案为:7.1.【点评】本题考查标准差,解答本题的关键是明确题意,利用标准差的公式进行解答.23.请给出一元二次方程x2﹣x+=0的一个常数项,使这个方程有两个相等的实数根.【分析】根据根的判别式,方程有两个相等的实数根,△=0,列式计算即可.【解答】解:设方程的常数项为m,∵方程有两个相等的实数根,∴△=b2﹣4ac=0,即1﹣4×1×m=0,解得m=,故答案为【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣8,﹣5),白棋④的坐标为(﹣7,﹣9),那么黑棋①的坐标应该是(﹣4,﹣8).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣8,﹣5),白棋④的坐标为(﹣7,﹣9)得出:棋盘的横坐标是以左侧第一条线为﹣10,从左向右依次为﹣10,﹣9,﹣8,…;纵坐标是以下边第一条线为﹣1,向上依次为﹣9,﹣8,﹣7,….∴黑棋①的坐标应该是(﹣4,﹣8).故答案为:(﹣4,﹣8).【点评】本题主要考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.25.三角形的内切圆的切点将该圆周分为5:9:10三条弧,则此三角形的最小的内角为30°.【分析】连接OF、OE、OD,设弧ED:弧EF:弧FD=5:9:10,求出∠EOF,∠EOD,∠FOD,根据⊙O是△ABC的内切圆得出∠AFO=∠AEO=∠CEO=∠CDO=∠BDO=∠BFO=90°,求出∠B的度数即可.【解答】解:连接OF、OE、OD,设弧ED:弧EF:弧FD=5:9:10,则∠EOF=×360°=135°,∠EOD=×360°=75°,∠FOD=×360°=150°,∵⊙O是△ABC的内切圆,切点分别为E、D、F,∴∠AFO=∠AEO=∠CEO=∠CDO=∠BDO=∠BFO=90°,∴∠FOD对的角B最小,即∠B=180°﹣150°=30°,故答案为:30°.【点评】本题考查了三角形的内切圆与内心的应用,关键是求出∠FOD的度数和得出∠B=180°﹣∠FOD.26.如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的直径AB是毫米.【分析】已知钢珠的直径是12毫米,本题是有关圆的半径,弦长,弦心距之间的运算,通常是利用垂径定理,转化为解直角三角形问题.【解答】解:连接OA,通过圆心O,作弦AB的垂线交AB于C则在Rt△OAC中,OA=6mm,OC=9﹣6=3mmAC2+OC2=OA2,即AC2+32=62,∴mm∴mm.【点评】有关圆的半径,弧长,弦长之间的计算一般是转化为解直角三角形.27.如图,AB是⊙O的直径,⊙O交BC于D,过D作⊙O的切线DE交AC于E,且DE⊥AC,由上述条件,你能推出的正确结论有:∠ADB=∠AED=∠CED=90°,△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD,(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,至少写出4个结论,结论不能类同).【分析】由弦切角定理可证∠EDA=∠B,又已知DE⊥AC,则有∠EAD=∠B,即可证△ADE∽△ABD;又因为AB是直径,可证∠ADB=∠ADC=∠DEA=90°.【解答】解:由弦切角定理知,∠EDA=∠B,∵DE⊥AC,AB是⊙O的直径,∴∠DEA=∠ADB=90°,∵∠EDA=∠B,∴△ADE∽△ABD;∵AB是直径,∴∠ADB=∠ADC=∠DEA=90°,∠ADB=∠AED=∠CED=90°,∴△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD.【点评】本题利用了弦切角定理,直径对的圆周角是直角,直角三角形的性质,相似三角形的判定求解.四、解答题(共4小题,满分39分)28.(9分)阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8支做试验,结果如下(单位:小时).甲:457,438,460,443,464,459,444,451;乙:466,455,467,439,459,452,464,438.试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?【分析】先根据平均数的计算公式求出甲、乙两种灯的平均寿命,再根据方差和标准差公式进行计算即可得出答案.【解答】解:∵甲种灯的平均寿命是:×(457+438+460+443+464+459+444+451)=452(小时),乙种灯的平均寿命是:×(466+455+467+439+459+452+464+438)=455(小时),∴乙种灯的使用寿命长;甲种灯的方差S2=×[42+(﹣14)2+…+(﹣1)2]=78,标准差为S甲=8.83,同理乙种灯的标准差为S乙=10.70.故甲种灯的质量比较稳定.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.29.(10分)如图,⊙O是Rt△ABC中以直角边AB为直径的圆,⊙O与斜边AC交于D,过D作DH⊥AB于H,又过D作直线DE交BC于点E,使∠HDE=2∠A.求证:(1)DE是⊙O的切线;(2)OE是Rt△ABC的中位线.【分析】(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.(2)利用(1)的结论有∠ODE=90°,又已知∠OBE=90°,证明△BOE≌△DOE,得到∠BOE=∠A,所以OE∥AD,得到点E是BC的中点,可以证明OE是△ABC的中位线.【解答】解:(1)连接OD,则∠HOD=2∠A,已知∠HDE=2∠A,则∠HOD=∠HDE,∵HD⊥AB,∴∠HOD+∠HDO=90°,∴∠HDE+∠HDO=90°,即OD⊥DE,又OD是半径,∴DE是⊙O的切线;(2)∵DE是⊙O的切线,∠ABC=90°,∴∠OBE=∠ODE=90°,又OB=OD,OE=OE,∴Rt△BOE≌Rt△DOE,∴∠BOE=∠DOE,∴∠HOD=∠BOE+∠DOE=2∠BOE,又∠HOD=2∠A,∴∠BOE=∠A,∴OE∥AD,而O是AB的中点,故OE是Rt△ABC的中位线.【点评】本题考查的是切线的判定,(1)利用同弧所对的圆周角和圆心角的关系,以及等量代换求出∠ODE的度数,证明DE是⊙O的切线.(2)利用(1)的结论证明两三角形全等,得到相等的角度,再用同位角相等两直线平行和三角形中位线的性质证明OE是△ABC 的中位线.30.(10分)阅读材料,回答问题在边长为1的正方形ABCD中,E是AB的中点,CF⊥DE,F为垂足.(1)△C DF与△DEA是否相似?说明理由;(2)求CF的长.【分析】(1)利用正方形是性质和平行线的性质,由“两角法”证明△ADE∽△FCD;(2)根据相似三角形的对应边的比相等求解.【解答】解:(1)△ADE∽△FCD,理由如下:∵四边形ABCD是正方形,∴∠A=90°,AB∥CD,∴∠CDF=∠DEA.又CF⊥DE,∴∠CFD=90°,即∠CFD=∠A,因而,△ADE∽△FCD;(2)由题意知,AD=CD=1,AE=.在直角△DEA中,有DE===.由(1)可得:=,则CF==.【点评】本题考查了相似三角形的判定与性质,以及勾股定理的应用,正确证明△ADE∽△FCD是关键.31.(10分)阅读材料,回答问题一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数,≈3.6)?【分析】(1)首先表示出AC=20t,AE=AB﹣BE=100﹣40t,再利用勾股定理得出t的值,进而得出答案;(2)直接表示出FM=FA+AB﹣BM=130﹣40t,MD=20,进而利用勾股定理得出答案.【解答】解:(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C处,台风中心移到E处,则有,AC=20t,AE=AB﹣BE=100﹣40t,EC=20,在Rt△AEC中,AC2+AE2=EC2,则(20t)2+(100﹣40t)2=(20)2,整理得:t2﹣4t+3=0,解得:t1=1,t2=3,所以,途中将遇到台风,最初遇到台风的时间为1小时;(2)设台风抵达D港为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连接DM,在Rt△ADF中,AD=60,∠FAD=60°,则DF=30,FA=30,∵FM=FA+AB﹣BM=130﹣40t,MD=20,∴(30)2+(130﹣40t)2=(20)2,整理得:4t2﹣26t+39=0,解得:t1=,t2=,∴台风抵达D港时间为:小时,因轮船从A处用小时到达D港,其速度为:60÷≈25.5,故为使台风抵达D港之前轮船到达D港,轮船至少应提速6海里/时.【点评】此题主要考查了解直角三角形的应用和勾股定理的应用,正确应用勾股定理是解题关键.1.下列各式中,正确的是()A.a5+a3=a8B.a2•a3=a6C.(﹣3a2)3=﹣9a6D.【分析】分别根据合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则分别计算出各选项即可.【解答】解:A、由于a5和a3不是同类项,故不能合并,故本选项错误;B、根据同底数幂的乘法法则可知a2•a3=a5,故本选项错误;。
四川省广元市2019-2020学年中考数学仿真第一次备考试题含解析
四川省广元市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,无理数是( )A .3.14B .1.01001C .39D .2272.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .3.下列计算正确的是( )A .2223x x x +=B .623x x x ÷=C .235(2)2x x x =gD .222(3)6x x =4.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A .最低温度是32℃B .众数是35℃C .中位数是34℃D .平均数是33℃5.在下列四个标志中,既是中心对称又是轴对称图形的是( )A .B .C .D .6.已知3a ﹣2b=1,则代数式5﹣6a+4b 的值是( )A .4B .3C .﹣1D .﹣37.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1258.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x --=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<9.下列长度的三条线段能组成三角形的是A .2,3,5B .7,4,2C .3,4,8D .3,3,410.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .8815 2.5x x +=B .8184 2.5x x +=C .88152.5x x =+D .8812.54x x =+ 11.关于8的叙述正确的是( )A .8=35+B .在数轴上不存在表示8的点C .8=±22D .与8最接近的整数是312.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.15.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.16.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=13CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.17.一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.18.正五边形的内角和等于______度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)20.(6分)计算:2cos30°2733-(1 2 )-221.(6分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?22.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.23.(8分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?24.(10分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.25.(10分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数26.(12分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D 作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.(1)求证:DC=DE;(2)若AE=1,23EFFD,求⊙O的半径.27.(12分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.A、3.14是有理数;B、1.01001是有理数;CD、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.2.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.3.C【解析】【分析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.A 、2x 与2x 不是同类项,不能合并,此选项错误;B 、66422x x x x -÷==,此选项错误;C 、235(2)2x x x =g ,此选项正确;D 、224(3)9x x =,此选项错误.故选:C .【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.4.D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357++⨯++=33℃. 故选D .点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据. 5.C【解析】【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、既不是中心对称图形,也不是轴对称图形,故本选项错误;C 、既是中心对称图形又是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.B【解析】【分析】先变形,再整体代入,即可求出答案.【详解】∵3a ﹣2b=1,∴5﹣6a+4b=5﹣2(3a ﹣2b )=5﹣2×1=3,故选:B .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.7.B【解析】【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, ∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=1.故选:B .【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.8.B【解析】【分析】【详解】解:根据题意可得:210a --p∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x <0时y >0,当x >0时,y <0,∴2y <3y <1y .9.D【解析】试题解析:A .∵3+2=5,∴2,3,5不能组成三角形,故A 错误;B .∵4+2<7,∴7,4,2不能组成三角形,故B 错误;C .∵4+3<8,∴3,4,8不能组成三角形,故C 错误;D .∵3+3>4,∴3,3,4能组成三角形,故D 正确;故选D .10.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+. 故选D .点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.11.D【解析】【分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A B C =选项D .故选D .【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.12.C【解析】【分析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB3=代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴CD BC BC AC=,=∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.11【解析】【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【详解】∵a<b,a、b为两个连续的整数,∴a=5,b=6,∴a+b=11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.14.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.15.6【解析】【分析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,∴=故答案为6.【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键. 16.1.【解析】【分析】根据三角形的性质求解即可。
四川省广元市2019-2020学年中考数学考前模拟卷(3)含解析
四川省广元市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各式中,正确的是( ) A .﹣(x ﹣y )=﹣x ﹣yB .﹣(﹣2)﹣1=12C .﹣x x y y -=-D .3882÷= 2.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长x 尺,木条长y 尺,根据题意所列方程组正确的是( )A . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ B . 4.5112x y y x +=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩3.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④4.下列图形中,是轴对称图形的是( )A .B .C .D .5.化简221121211x x x x ÷+--++的结果是( ) A .1B .12C .11x x -+D .222(1)x x -+6.一元二次方程(x+2017)2=1的解为( ) A .﹣2016,﹣2018 B .﹣2016C .﹣2018D .﹣20177.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下. 成绩 人数(频数) 百分比(频率) 05 0.210 515 0.420 5 0.1根据表中已有的信息,下列结论正确的是()A.共有40名同学参加知识竞赛B.抽到的同学参加知识竞赛的平均成绩为10分C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D.抽到同学参加知识竞赛成绩的中位数为15分8.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π9.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.10.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元11.14-的绝对值是()A.﹣4 B.14C.4 D.0.412.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC 上.若四边形EGFH是菱形,则AE的长是()A .25B .35C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的不等式组><2x a x ⎧⎨⎩恰有3个整数解,则字母a 的取值范围是_____.14.将直尺和直角三角尺按如图方式摆放.若145∠=︒,235∠=︒,则3∠=________.15.不等式2x -5<7-(x -5)的解集是______________.16.如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm ,则可列方程为_____.17.如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为______米(结果保留根号).18.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?20.(6分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y 轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM 相似?若存在,求出点P的坐标;若不存在,请说明理由.21.(6分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P 从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.22.(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由23.(8分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=12,求⊙O的直径.24.(10分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.25.(10分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩26.(12分)如图,在平面直角坐标系中,反比例函数(0)ky xx=>的图像与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.若点M是AB边的中点,求反比例函数kyx=的解析式和点N的坐标;若2AM=,求直线MN的解析式及OMN△的面积27.(12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;若AD=DC=2,求AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=12,故B正确;C选项,﹣x xy y-=,故C错误;D388=2÷222=,故D错误.【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.2.A【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有4.5112x y y x -=⎧⎪⎨-=⎪⎩. 故选A . 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 3.B 【解析】 【详解】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断: 根据作图过程可知:PB=CP ,∵D 为BC 的中点,∴PD 垂直平分BC ,∴①ED ⊥BC 正确. ∵∠ABC=90°,∴PD ∥AB.∴E 为AC 的中点,∴EC=EA ,∵EB=EC.∴②∠A=∠EBA 正确;③EB 平分∠AED 错误;④ED=12AB 正确. ∴正确的有①②④. 故选B .考点:线段垂直平分线的性质. 4.B 【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项符合题意; C 、不是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项不合题意; 故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形. 5.A 【解析】 原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 6.A【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.B【解析】【分析】根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同学参加知识竞赛的平均成绩为:0505030010050++++=10,故选项B正确;∵0分同学10人,其频率为0.2,∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;∵第25、26名同学的成绩为10分、15分,∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.故选:B.【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.8.B【解析】【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.9.D【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C【解析】【分析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1.所以该商品的原价为1元;故选:C.【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.11.B分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-14的相反数为14所以-14的绝对值为14.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.12.C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=45,且tan∠BAC=12BCAB=;在Rt△AME中,AM=12AC=25,tan∠BAC=12EMAM=可得EM=5;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣2≤a<﹣1.【解析】【分析】先确定不等式组的整数解,再求出a的范围即可.【详解】∵关于x的不等式组><2x ax⎧⎨⎩恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.14.80°.【解析】【分析】由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果. 【详解】解:如图所示,依题意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案为80°.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.15.x<17 3【解析】解:去括号得:2x-5<7-x+5,移项、合并得:3x<17,解得:x<173.故答案为:x<173.16.4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x﹣4).17.1002【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴2AN=1002,故答案为1002点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°. 18.22(1)2y x =-+. 【解析】 【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式. 【详解】∵原抛物线解析式为y=1x 1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x ﹣1)1+1. 故答案为:y=1(x ﹣1)1+1. 【点睛】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.30元 【解析】试题分析:设第一批盒装花的进价是x 元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程. 解:设第一批盒装花的进价是x 元/盒,则 2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元. 考点:分式方程的应用.20.【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D (0,3)代入,得…………………………………………2分即所求抛物线的解析式为:……………………………3分【小题2】如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得∴点E坐标为(-2,3)………………………………………………………………4分又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)∴抛物线的对称轴直线PQ为:直线x=-1,[中国教#&~@育出%版网]∴点D与点E关于PQ对称,GD=GE……………………………………………②分别将点A(1,0)、点E(-2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=-x+1∴当x=0时,y=1∴点F坐标为(0,1)……………………5分∴=2………………………………………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴……………………………………④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可……………………………………6分由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:,分别将点E(-2,3)、点I(0,-1)代入,得:解得:过I、E两点的一次函数解析式为:y=-2x-1∴当x=-1时,y=1;当y=0时,x=-;∴点G坐标为(-1,1),点H坐标为(-,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=∴四边形DFHG的周长最小为. …………………………………………7分【小题3】如图⑤,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:解得:,过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,………………8分要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;……………………………………………………………………………9分①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分【解析】(1)直接利用三点式求出二次函数的解析式;(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,由图形的对称性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小,即,DF+EI=即边形DFHG的周长最小为.(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)21.(1)5;(2)()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)167t =时,半径PF =127;t =16,半径PF =12.【解析】 【分析】(1)由矩形性质知BC=AD=5,根据BE :CE=3:2知BE=3,利用勾股定理可得AE=5; (2)由PF ∥BE 知AP AF AB AE=,据此求得AF=54t ,再分0≤t≤4和t >4两种情况分别求出EF 即可得;(3)由以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时PF=PG ,再分t=0或t=4、0<t <4、t >4这三种情况分别求解可得 【详解】(1)∵四边形ABCD 为矩形, ∴BC =AD =5, ∵BE ∶CE =3∶2, 则BE =3,CE =2, ∴AE ===5.(2)如图1,当点P 在线段AB 上运动时,即0≤t≤4, ∵PF ∥BE , ∴=,即=, ∴AF =t ,则EF =AE -AF =5-t ,即y =5-t(0≤t≤4); 如图2,当点P 在射线AB 上运动时,即t >4,此时,EF =AF -AE =t -5,即y =t -5(t >4);综上,()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时,PF =FG ,分以下三种情况: ①当t =0或t =4时,显然符合条件的⊙F 不存在; ②当0<t <4时,如解图1,作FG ⊥BC 于点G , 则FG =BP =4-t , ∵PF ∥BC , ∴△APF ∽△ABE , ∴=,即=, ∴PF =t ,由4-t =t 可得t =, 则此时⊙F 的半径PF =;③当t >4时,如解图2,同理可得FG =t -4,PF =t , 由t -4=t 可得t =16, 则此时⊙F 的半径PF =12. 【点睛】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.22.(1)见解析;(2)直线EG 经过一个定点,这个定点为正方形的中心(AC 、BD 的交点);理由见解析. 【解析】分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA ,由AE=BF=CG=DH 证出AH=CF ,由SAS 证明△AEH ≌△CGF 即可求解;(2)连接AC 、EG ,交点为O ;先证明△AOE ≌△COG ,得出OA=OC ,证出O 为对角线AC 、BD 的交点,即O 为正方形的中心.详解:(1)证明:∵四边形ABCD 是正方形, ∴∠A=∠C=90°,AB=BC=CD=DA , ∵AE=BF=CG=DH ,在△AEH与△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心.点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.23.(1)证明见解析;(2)证明见解析;(3)1;【解析】【分析】(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=12x,求出MN=2x+12x=2.1x,OM=12MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=12AD=3,求出x即可.【详解】(1)∵BD是直径,∴∠DAB=90°,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.24.见解析【解析】试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD,邻边相等的平行四边形是菱形;(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC 是直角三角形.试题解析:梯形ABCD中,AD∥BC,∴四边形ABED是平行四边形,又AB=AD,∴四边形ABED是菱形;(2)∵四边形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定25.10.5 xy=⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.26.(1)18yx=,N(3,6);(2)y=-x+2,S△OMN=3.【解析】【分析】(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN 即可得到答案.【详解】解:(1)∵点M 是AB 边的中点,∴M(6,3).∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩ , 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k 的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M 、N 点的坐标是解题的关键.27.(1)证明见解析;(2)AB=3【解析】【详解】(1)证明:∵90ABC ∠=o ,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG ,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴1122 AF AC AE ==∴∠E=30°∴∠FAD=∠E=30°∴。
四川省广元市2019-2020学年中考数学考前模拟卷(2)含解析
四川省广元市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分2.4的平方根是( )A .4B .±4C .±2D .23.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .417174.如图,直线,AB CD 被直线EF 所截,155∠=o ,下列条件中能判定//AB CD 的是( )A .235∠=oB .245∠=oC .255∠=oD .2125∠=o5.如图:已知AB ⊥BC ,垂足为B ,AB=3.5,点P 是射线BC 上的动点,则线段AP 的长不可能是( )A .3B .3.5C .4D .56.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点P ,若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤7.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( )A .k≠2B .k >2C .0<k <2D .0≤k <28.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b9.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣210.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1 x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根11.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.312.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则∠AEC 度数为()A.75°B.60°C.45°D.30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.142xx的取值范围是__________.15.若一个棱柱有7个面,则它是______棱柱.16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.17.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.18.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的倾斜角∠BAH =30°,AB =20米,AB =30米.(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.20.(6分)已知:如图,△MNQ 中,MQ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .21.(6分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B 在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.22.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?23.(8分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.24.(10分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.25.(10分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.Y的对角线AC的垂直平分线EF交AD于26.(12分)老师布置了一个作业,如下:已知:如图1ABCD点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.27.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC 于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.C【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±1)1=4,∴4的平方根是±1.故选D.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC=2241=15,则cosB=BCAB=15,故选A4.C【解析】试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选C.5.A【解析】【分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.6.D【分析】①首先利用已知条件根据边角边可以证明△APD ≌△AEB ;②由①可得∠BEP=90°,故BE 不垂直于AE 过点B 作BF ⊥AE 延长线于F ,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD 由此即可判定.【详解】由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得,在△BEP 中,,,由勾股定理得:∵∠PAE=∠PEB=∠EFB=90°,AE=AP ,∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°,∴∠EBF=45°,∴EF=BF ,在△EFB 中,由勾股定理得: 故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的;由△APD ≌△AEB ,∴可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =12+2连接BD ,则S △BPD =12PD×BE=32,所以S△ABD=S△APD+S△APB+S△BPD=2+62,所以S正方形ABCD=2S△ABD=4+6.综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.7.D【解析】【详解】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,20kk-<⎧⎨≥⎩,解得0<k<2,综上所述,0≤k<2。
四川省广元市2019-2020学年中考数学最后模拟卷含解析
四川省广元市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家月用电量(度) 25 30 40 50 60 户数 12421A .极差是3B .众数是4C .中位数40D .平均数是20.52.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o3.如图,正方形ABCD 的边长为4,点M 是CD 的中点,动点E 从点B 出发,沿BC 运动,到点C 时停止运动,速度为每秒1个长度单位;动点F 从点M 出发,沿M→D→A 远动,速度也为每秒1个长度单位:动点G 从点D 出发,沿DA 运动,速度为每秒2个长度单位,到点A 后沿AD 返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E 的运动时间为x ,△EFG 的面积为y ,下列能表示y 与x 的函数关系的图象是( )A .B .C .D .4.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212- D .()201112+125.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( ) A .120°B .135°C .150°D .165°6.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( ) A .2:3B .3:2C .4:9D .9:47.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案 8.若分式14a -有意义,则a 的取值范围为( ) A .a≠4B .a >4C .a <4D .a =49.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE =∠1.A .1 个B .2 个C .1 个D .4 个10.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球11.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知抛物线223y x x =--+与坐标轴分别交于A ,B ,C 三点,在抛物线上找到一点D ,使得∠DCB=∠ACO ,则D 点坐标为____________________.14.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是_____.15.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.16.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m .17.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b)在直线11+22 y x=图象上的概率为__.18.若关于x的方程220x x a+-=有两个不相等的实数根,则实数a的取值范围是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对x,y定义一种新运算T,规定T(x,y)=22ax byx y++(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=22319314a b a b⨯+⨯+=+,T(m,﹣2)=242am bm+-.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.20.(6分)已知2410x x--=,求代数式22(23)()()x x y x y y--+--的值.21.(6分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.22.(8分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求ADEFGHSS△△的值.23.(8分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:PD ADPB AO=.(问题解决)(3)如图2,若AO=BO,AO⊥BO,14ADAO=,求tan∠BPC的值.24.(10分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.25.(10分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.26.(12分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?27.(12分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1) 求证:DE⊥AC;(2) 连结OC交DE于点F,若3sin4ABC∠=,求OFFC的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案. 【详解】解:A 、这组数据的极差是:60-25=35,故本选项错误;B 、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C 、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D 、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误; 故选:C . 【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念. 2.B 【解析】 【分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可. 【详解】解:由圆周角定理得,BOC 2A 80∠∠==o ,OB OC =Q ,BCO CBO 50∠∠∴==o ,故选:B . 【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键. 3.A 【解析】 【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 4.A 【解析】 【分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案. 【详解】设S=1+2+22+23+…+22010① 则2S=2+22+23+…+22010+22011② ②-①得S=22011-1. 故选A. 【点睛】本题考查了因式分解的应用;设出和为S ,并求出2S 进行做差求解是解题关键. 5.C 【解析】 【分析】这个扇形的圆心角的度数为n°,根据弧长公式得到20π=24180n π⨯,然后解方程即可. 【详解】解:设这个扇形的圆心角的度数为n°, 根据题意得20π=24180n π⨯,解得n=150,即这个扇形的圆心角为150°. 故选C . 【点睛】本题考查了弧长公式:L=180n R(n 为扇形的圆心角的度数,R 为扇形所在圆的半径). 6.C 【解析】 【分析】由△ABC 与△DEF 相似,相似比为2:3,根据相似三角形的性质,即可求得答案. 【详解】∵△ABC 与△DEF 相似,相似比为2:3, ∴这两个三角形的面积比为4:1. 故选C . 【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方. 7.C 【解析】解:∵点A 为数轴上的表示-1的动点,①当点A 沿数轴向左移动4个单位长度时,点B 所表示的有理数为-1-4=-6;②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为-1+4=1. 故选C .点睛:注意数的大小变化和平移之间的规律:左减右加.与点A 的距离为4个单位长度的点B 有两个,一个向左,一个向右. 8.A 【解析】 【分析】分式有意义时,分母a-4≠0 【详解】依题意得:a−4≠0, 解得a≠4. 故选:A 【点睛】此题考查分式有意义的条件,难度不大9.C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.10.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.11.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC=45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC∠=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.12.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(52-,74),(-4,-5)【解析】【分析】求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.【详解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,当点D在x轴下方时,∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:,设EG=x,∴-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=13 OAOC=,∴13 EGCG=,∴x=4,∴x=32,∴OE=OB-BE=32,∴E(-32,0),设CE的解析式为y=mx+n,交抛物线于点D2,把C(0,3)和E(-32,0)代入y=mx+n,∴332nm n==⎧⎪⎨-+⎪⎩,解得:23mn⎧⎨⎩==.∴直线CE的解析式为:y=2x+3,联立22323y x y x x +⎧⎨--+⎩== 解得:x=-4或x=0,∴D 2的坐标为(-4,-5)设点E 关于BC 的对称点为F ,连接FB ,∴∠FBC=45°,∴FB ⊥OB ,∴FB=BE=32, ∴F (-3,32) 设CF 的解析式为y=ax+b ,把C (0,3)和(-3,32)代入y=ax+b 3332b a b ⎧⎪⎨-+⎪⎩== 解得:123a b ⎧⎪⎨⎪⎩==,∴直线CF 的解析式为:y=12x+3, 联立213223y x y x x ⎧+⎪⎨⎪--+⎩== 解得:x=0或x=-52∴D 1的坐标为(-52,74)故答案为(-52,74)或(-4,-5)【点睛】本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.14.3【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=3,故答案为3.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE 是等腰三角形是解题的关键.15.85或245【解析】【分析】作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD−DH−CQ=|16−5t|,由勾股定理,得222(165)610t -+=,解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm. 故答案为85或245. 【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键. 16.24【解析】【分析】先利用二次函数的性质求出飞机滑行20s 停止,此时滑行距离为600m ,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s 滑行的距离.【详解】y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m , 当t=20-4=16时,y=576,600-576=24,即最后4s 滑行的距离是24m ,故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.17.16【解析】【分析】根据题意列出图表,即可表示(a ,b )所有可能出现的结果,根据一次函数的性质求出在11+22y x =图象上的点,即可得出答案.【详解】画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x=图象上的只有(3,2),∴点(a,b)在11+22y x=图象上的概率为16.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.18.a>﹣.【解析】试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考点:根的判别式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)163a b+;(2)①a=1,b=-1,②m=2.【解析】【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b的值;②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论. 【详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T (m ,3m ﹣3)=m ﹣3m+3=﹣2m+3.∵T (3m ﹣3,m )=T (m ,3m ﹣3),∴2m ﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T (x ,y )=x ﹣y ,当T (x ,y )=T (y ,x )时,x ﹣y=y ﹣x ,∴x=y .∵T (3m ﹣3,m )=T (m ,3m ﹣3),∴3m ﹣3=m ,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.. 20.12【解析】解:∵2410x x --=,∴241x x -=.∴()22222222(23)()()4129312934931912x x y x y y x x x y y x x x x --+--=-+-+-=-+=-+=⨯+=.将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.21.(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE ∥CO ,推出∠OCB=∠CBE ,由OC=OB ,推出∠OCB=∠OBC ,可得∠CBE=∠CBO ;(2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB=∠CBE ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠CBE=∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC=1,OC=0A=6,∴OD==10,∵OC ∥BE ,∴,∴,∴EC=4.1. 考点:切线的性质.22.2516【解析】【分析】先根据平行线的性质证明△ADE ∽△FGH ,再由线段DF=BG 、FE=HC 及BG ︰GH ︰HC=2︰4︰1,可求得ADE FGHS S ∆∆的值. 【详解】解:∵DE ∥BC ,∴∠ADE=∠B,∵FG ∥AB ,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG ,∴△ADE ∽△FGH, ∴2ADE FGH S DE S GH ∆∆⎛⎫= ⎪⎝⎭, ∵DE ∥BC ,FG ∥AB ,∴DF=BG ,同理:FE=HC,∵BG ︰GH ︰HC=2︰4︰1,∴设BG=2k ,GH=4k ,HC=1k,∴DF=2k ,FE=1k ,∴DE=5k, ∴2525416ADE FGH S k S k ∆∆⎛⎫== ⎪⎝⎭. 【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.23.(1)12;(2) 见解析;(3) 12【解析】【分析】 (1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC =,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.24.(1) y=﹣(x﹣1)2+9 ,D(1,9);(2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)∵抛物线y=ax2+2x+1经过点B(4,0),∴16a+1+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵当x=0时,y=1,∴C(0,1).设直线CD的解析式为y=kx+b.将点C、D的坐标代入得:89bk b=⎧⎨+=⎩,解得:k=1,b=1,∴直线CD的解析式为y=x+1.当y=0时,x+1=0,解得:x=﹣1,∴直线CD与x轴的交点坐标为(﹣1,0).∵当P在直线CD上时,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如图,由(2)知,C(0,1),∴直线BC 的解析式为y=﹣2x+1,过点Q 作QE ∥y 轴交BC 于E ,设Q (m ,﹣m 2+2m+1)(0<m <4),则点E 的坐标为:(m ,﹣2m+1),∴EQ=﹣m 2+2m+1﹣(﹣2m+1)=﹣m 2+4m ,∴S △QBC =12(﹣m 2+4m )×4=﹣2(m ﹣2)2+1, ∴m=2时,S △QBC 最大,此时点Q 的坐标为:(2,1).点睛:(1)解第2小题时,知道当点P 在直线CD 上时,|PC ﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q 的坐标(m ,﹣m 2+2m+1)(0<m <4),并结合点B 、C 的坐标把△BCQ 的面积用含m 的代数式表达出来.25.(1)254y x x =-+-;(2)(0174)或(0,4).【解析】试题分析:(1)将A 点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:①PB=AB ,先根据抛物线的解析式求出B 点的坐标,即可得出OB 的长,进而可求出AB 的长,也就知道了PB 的长,由此可求出P 点的坐标;②PA=AB ,此时P 与B 关于x 轴对称,由此可求出P 点的坐标.试题解析:(1)∵抛物线25y x x n =-++经过点A (1,0),∴4n =-,∴254y x x =-+-;(2)∵抛物线的解析式为254y x x =-+-,∴令0x =,则4y =-,∴B 点坐标(0,﹣4),17, ①当PB=AB 时,17,∴OP=PB ﹣174.∴P (0174),②当PA=AB 时,P 、B 关于x 轴对称,∴P (0,4),因此P 点的坐标为(0174)或(0,4). 考点:二次函数综合题.26.15千米.【解析】【分析】首先设小张用骑公共自行车方式上班平均每小时行驶x 千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x 千米,根据题意列方程得:10x =4×1045x + 解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.27.(1)证明见解析(2)87 【解析】【分析】(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)连接AD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE 是⊙O 的切线,∴DE ⊥OD ,即∠ODE=90° .∵AB 是⊙O 的直径,∴O 是AB 的中点.又∵D 是BC 的中点, .∴OD ∥AC .∴∠DEC=∠ODE= 90° .∴DE ⊥AC .(2)连接AD . ∵OD ∥AC , ∴OF OD FC EC=. ∵AB 为⊙O 的直径, ∴∠ADB= ∠ADC =90° .又∵D 为BC 的中点,∴AB=AC.∵sin ∠ABC=AD AB =34, 设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE ⊥AC , ∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD , ∴△ADC ∽△AED. ∴AD AC AE AD=. ∴2AD AE AC =⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.。
2019年四川省广元市中考数学模拟试卷及答案
2019年四川省广元市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分)1.−5的绝对值是()A. 15B. −5 C. 5 D. −152.下列运算正确的是()A. (−2xy3)2=4x2y5B. (−2x+1)(−1−2x)=4x2−1C. (x−2y)2=x2−2xy+4y2D. (a−b)(a+c)=a2−bc3.已知x=m是关于x的方程2x+m=6的解,则m的值是()A. −3B. 3C. −2D. 24.一组数据:a−1,a,a,a+1,若添加一个数据a,下列说法错误的是A. 平均数不变B. 中位数不变C. 众数不变D. 方差不变5.由几个大小相同的小正方体积木搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()A. B. C. D.6.使不等式x<−43成立的值中的最大整数是( )A. 2B. −1C. −2D. 07.如图,在⊙O中,∠BAC=25∘,则∠BOC的度数为()A. 25∘B. 50∘C. 60∘D. 80∘8.郝萌同学早上从家跑步去超市,在超市买了一支笔后马上去早餐店吃早餐,吃完早餐后就散步回家了.郝萌离家的距离y(千米)与离家时间x(分钟)之间的函数关系如图所示,则下列说法不正确的是()A. 郝萌吃早餐花了20分钟B. 郝萌买笔花了15分钟C. 超市距离早餐店1.5千米D. 超市距离郝萌家2.5千米9.若mn>0,则一次函数y=mx+n与反比例函数y=mnx在同一坐标系中的大致图象是()A. B.C. D.10.关于x的方程3x+m=2x+3的解为正数,则m的取值范围是()A. m>3B. m<3C. m≥3D. m≤3二、填空题(本大题共5小题,共15.0分)11.地球绕太阳公转的速度约为110000km/ℎ,则110000用科学记数法可表示为________.12.已知一个正多边形的每一个外角为24∘,则这个多边形的边数为______ .13.已知,如图1,AD//BE,∠1=20∘,∠DCE=45∘,则∠2的度数为______ .图1 图2 图314.如图2,两个同心圆的半径分别为5和3,大圆的弦AB切小圆于点C,则AB=_________.15.如图3,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADAE=n.当点F落在AC上时,若ADAB=√n,则当AD=4AB,且以点F,C,G为顶点的三角形是直角三角形时,n=______.三、计算题(本大题共3小题,共21分)16.计算:.17.先化简.再求值:(1−aa+1+1)÷2a2−1,其中a=√3.18.某公司存入银行甲乙两种不同性质的存款共20万元.甲种存款的年利率为1.4%,乙种存款的年利率为3.7%,该公司一年共得利息6250元.求甲、乙两种存款各多少万元?四、解答题(本大题共6小题,共54分)19.如图,在菱形ABCD中,过点B作BM⊥AD于点M,BN⊥CD于点N,BM,BN分别交AC于点E、F.求证:AE=CF.20.为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓项目篮球足球排球乒乓球羽毛球报名人数1284a10占总人数的百分比24%b(2)由表中的数据可知:a=______,b=______;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.21.如图,BC是路边坡角为30∘,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37∘和60∘(图中的点A、B、C、D、M、N均在同一平面内,CM//AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:√3=1.73.sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75)22.如图,一次函数y=kx+b与反比例函数y=mx (x>0)的图象交于点A(a,6),B(4,32),与y轴,x轴分别交于点C,D.(1)求反比例函数y=mx(x>0)和一次函数y=kx+b的解析式;(2)直接写出不等式kx+b−mx<0(x>0)的解集.23.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若OCAC =23,且OC=4,求PA的长和tanD的值.24.如图,抛物线y=ax2+bx+c与坐标轴分别交于A(−3,0),B(1,0),C(0,3),D是抛物线顶点,E是对称轴与x轴的交点(1)求抛物线解析式;(2)F是抛物线对称轴上一点,且tan∠AFE=12,求点O到直线AF的距离;(3)点P是x轴上的一个动点,过P作PQ//OF交抛物线于点Q,是否存在以点O,F,P,Q为顶点的平行四边形?若存在,求出点P坐标;若不存在,请说明理由.2019年四川省广元市中考数学模拟试卷参考答案1. C2. B3. D4. D5. D6. C7. B8. C9. A 10. B11. 1.1×10512. 1513. 25∘14. 815. 16或8+4√216. 解:原式=3+2−1+1=5.17. 解:原式=1−a+a+1a+1⋅(a+1)(a−1)2=2a+1⋅(a+1)(a−1)2=a −1,当a =√3时,原式=√3−1.18. 解:设甲种存款为x 万元,乙种存款为y 万元.根据题意得{x +y =201.4%x +3.7%y =0.625, 解得{x =5y =15. 答:甲种存款为5万元,乙种存款为15万元.19. 证明:∵四边形ABCD 为菱形,∴AB =BC ,∠BAM =∠BCN ,∠BAE =∠DAE =∠DCA =∠BCF ,又∵∠AMB =∠CNB =90∘,∴∠ABE =∠CBF ,在△ABE 和△CBF 中,{∠BAE =∠BCF AB =BC ∠ABE =∠CBF,∴△ABE≌△CBF(ASA),∴AE =CF .20. 50 16 24%21. 解:(1)延长DC 交AN 于H .∵∠DBH =60∘,∠DHB =90∘,∴∠BDH =30∘,∵∠CBH =30∘,∴∠CBD =∠BDC =30∘,∴BC =CD =10(米).(2)在Rt △BCH 中,CH =12BC =5,BH =5√3≈8.65,∴DH =15,在Rt △ADH 中,AH =DH tan37∘=150.75=20,∴AB =AH −BH =20−8.65≈11.4(米).22. 解:(1)∵反比例函数 y =m x (x >0) 经过点B ,∴将x =4,y =32代入y =m x ,得m =6,∴反比例函数解析式为 y =6x ,把x =a ,y =6代入y =6x ,得a =1,点A 坐标为(1,6),∴一次函数解析式 y =kx +b 也经过A(1,6),B(4,32).{k +b =64k +b =32解得:{k =−32b =152, 故一次函数解析式为:y =−32x +152;(2)不等式kx +b −m x (x >0)的解集为:0<x <1或 x >4.23. 解:(1)证明:连接OB ,则OA =OB ,∵OP ⊥AB ,∴AC =BC ,∴OP 是AB 的垂直平分线,∴PA =PB ,在△PAO 和△PBO 中,∵{PA =PB PO =PO OA =OB,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90∘,∴∠PAO=90∘,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵OCAC =23,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=√AC2+OC2=2√13,∴AE=2OA=4√13,OB=OA=2√13,在Rt△APO中,∵AC⊥OP,∴AC2=OC⋅PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP=√OP2−OA2=3√13,∴PB=PA=3√13,∵AC=BC,OA=OE,∴OC=12BE,OC//BE,∴BE=2OC=8,BE//OP,∴△DBE∽△DPO,∴BDPD =BEOP,即3√13+BD =813,解得:BD=24√135,在Rt△OBD中,tan∠D=OBBD =√1324√135=512.24. 解:(1)∵点A(−3,0),B(1,0),C(0,3)是抛物线y=ax2+bx+c上点,∴{9a−3b+c=0a+b+c=0c=3,解得:{a=−1b=−2c=3,∴抛物线解析式为y=−x2−2x+3;(2)如图,当x=−b2a=−1时,y=4,∴顶点D坐标为(−1,4),∴AE=−1−(−3)=2,又∵tan∠AFE=12,∴2EF =12,∴EF=4,∴F点坐标为(−1,−4)或(−1,4),∵OH⊥AF于点H,根据勾股定理得:AF2=AE2+EF2=22+42,∴AF=2√5,∵12×2√5⋅HO=12×3×4,∴OH=6√55;即点O到直线AF的距离6√55;(3)若存在以点O,F,P,Q为顶点的平行四边形,则点Q(x,y)满足|y|=|EF|=4,F为(−1,−4)时:①当y=−4时,−x2−2x+3=−4,解得:x=−1±2√2,∴点Q坐标为(−1−2√2,−4)(−1+2√2,−4)∴P1(−2√2,0),P2(2√2,0);②当y=4时,−x2−2x+3=4,解得:x=−1,∴Q坐标为(−1,4),∴P3坐标为(−2,0),F为(−1,4)时:同理可求得P4(2√2−2,0),P5(−2√2−2,0);综上所述,符合条件的点有三个即:P1(−2√2,0),P2(2√2,0);P3(−2,0);P4(2√2−2,0);P5(−2√2−2,0).。
四川省广元市2019-2020学年中考第四次模拟数学试题含解析
四川省广元市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( ) A .B .C .D .2.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定3.如图,在正八边形ABCDEFGH 中,连接AC ,AE ,则AEAC的值是( )A .1B .2C .2D .34.已知二次函数y=-x 2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x 的图象上,则平移后的抛物线解析式为( ) A .y=-x 2-4x-1B .y=-x 2-4x-2C .y=-x 2+2x-1D .y=-x 2+2x-25.如图,在△ABC 中,AB=AC ,AD 和CE 是高,∠ACE=45°,点F 是AC 的中点,AD 与FE ,CE 分别交于点G 、H ,∠BCE=∠CAD ,有下列结论:①图中存在两个等腰直角三角形;②△AHE ≌△CBE ;③BC•AD=2AE 2;④S △ABC =4S △ADF .其中正确的个数有( )A .1B .2C .3D .46.到三角形三个顶点的距离相等的点是三角形( )的交点. A .三个内角平分线 B .三边垂直平分线 C .三条中线D .三条高7.直线y=3x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.69.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.510.下列等式正确的是()A.(a+b)2=a2+b2B.3n+3n+3n=3n+1C.a3+a3=a6D.(a b)2=a11.计算1211x xx x+---的结果是()A.1 B.﹣1 C.1﹣x D.311 xx+ -12.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.14.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.15.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.16.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.18.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于12AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).20.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?21.(6分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种: A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.22.(8分)如图,在矩形ABCD 中,AD =4,点E 在边AD 上,连接CE ,以CE 为边向右上方作正方形CEFG ,作FH ⊥AD ,垂足为H ,连接AF. (1)求证:FH =ED ;(2)当AE 为何值时,△AEF 的面积最大?23.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t 分钟),将调查统计的结果分为四个等级:Ⅰ级(020)t ≤≤、Ⅱ级(2040)t ≤≤、Ⅲ级(4060)t ≤≤、Ⅳ级(60)y >.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在__________级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?24.(10分)先化简,再求值:2441x xx+++÷(31x+﹣x+1),其中x=sin30°+2﹣1+4.25.(10分)计算:26.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.2.A【解析】【分析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a=-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.3.B【解析】【分析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故AEAC2故选:B.【点睛】本题考查了正多边形的性质,正确作出辅助线是关键.4.D【解析】【分析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.【详解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.5.C【解析】【分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA 证明即可,结论正确; ③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 6.B 【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答. 解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点. 故选B .点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键. 7.D利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-13,令x=0可得y=1,∴直线与x轴交于点(-13,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.8.B【解析】∵32-=﹣8,﹣8的相反数是8,∴32-的相反数是8,故选B.9.C【解析】【分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.10.B(1)根据完全平方公式进行解答;(2)根据合并同类项进行解答;(3)根据合并同类项进行解答;(4)根据幂的乘方进行解答.【详解】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、3n+3n+3n=3n+1,正确;C、a3+a3=2a3,故此选项错误;D、(a b)2=a2b,故此选项错误;故选B.【点睛】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质. 11.B【解析】【分析】根据同分母分式的加减运算法则计算可得.【详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.12.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3.05×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】故答案为:.【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.14.117°【解析】【分析】连接AD,BD,利用圆周角定理解答即可.【详解】连接AD,BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案为117°【点睛】此题考查圆周角定理,关键是根据圆周角定理解答.15.5.5×1.【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.详解:5.5亿=5 5000 0000=5.5×1, 故答案为5.5×1. 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.3105【解析】【分析】根据题意作图,可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理对称62=x 2+(3x )2,解方程即可求得.【详解】解:如图示,根据题意可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+,解得3105x =3105 【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键.17.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.18.3【解析】【分析】连接CD 在根据垂直平分线的性质可得到△ADC 为等腰直角三角形,结合已知的即可得到∠BCD 的大小,然后就可以解答出此题【详解】解:连接CD ,∵DE 垂直平分AC ,∴AD =CD ,∴∠DCA =∠BAC =45°,∴△ADC 是等腰直角三角形,∴2CD AC ==ADC =90°, ∴∠BDC =90°,∵∠ACB =75°,∴∠BCD =30°,∴BC =3,故答案为3.【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)8 3【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=12∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵1302OAD BAC∠=∠=o,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积= S扇形ODE = 601683603ππ⨯⨯=.20.(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a (万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.【解析】【分析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.【详解】解:(1)由题意得:y1=(120﹣a)x(1≤x≤125,x为正整数),y2=100x﹣0.5x2(1≤x≤120,x为正整数);(2)①∵40<a<100,∴120﹣a>0,即y1随x的增大而增大,∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y2最大值=10(万元);(3)∵由110﹣125a>10,∴a<80,∴当40<a<80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a<10,得a>80,∴当80<a<100时,选择方案二.考点:二次函数的应用.21.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴(恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.23.1)补全的条形图见解析(2)Ⅱ级.(3)408.【解析】试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;(3)由样本估计总体,由于时间不低于40min的人数占34%,故该类学生约有408人.试题解析:(1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.(3)由样本估计总体,由于时间不低于40min的人数占34%,所以该类学生约有120034%408⨯=.24.-5【解析】【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣14时,∴x=12+12+2=3,原式=2(x2)x1++÷24xx1-+=x2x2+--=﹣5.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.25.-1【解析】【分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【详解】原式=1﹣4﹣+1﹣=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.26. (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解析】【分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元, 22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 27.(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE 考点:三角形全等的证明。
四川省广元市朝天中学2019年中考数学模拟试卷(含解析)
2019年四川省广元市朝天中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣3a﹣2)(3a﹣2)=9a2﹣4C.(a+b)2=a2+b2D.(x﹣8y)(x﹣y)=x2﹣9xy+8y23.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7 B.﹣7 C.﹣1 D.14.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游5.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A .B .C .D .6.关于x 的不等式组恰好只有四个整数解,则a 的取值范围是( )A .a <3B .2<a ≤3C .2≤a <3D .2<a <37.如图,⊙O 与正八边形OABCDEFG 的边OA ,OG 分别相交于点M 、N ,则弧MN 所对的圆周角∠MPN 的大小为( )A .30°B .45°C .67.5°D .75°8.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s (m )和放学后的时间t (min )之间的关系如图所示,给出下列结论: ①小刚边走边聊阶段的行走速度是125m /min ;②小刚家离学校的距离是1000m ;③小刚回到家时已放学10min ;④小刚从学校回到家的平均速度是100m /min 其中正确的个数为是( )A .4个B .3个C .2个D .1个9.已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A.B.C.D.10.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)二.填空题(共5小题,满分15分,每小题3分)11.将473000用科学记数法表示为.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.如图,把一张长方形纸片沿AB折叠后,若∠1=48°,则∠2的大小为度.14.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.15.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有.三.解答题(共9小题,满分75分)16.(6分)计算:||+2﹣1﹣cos60°﹣(1﹣)0.17.(7分)先化简,再求值:(2﹣)÷,其中x=2.18.(7分)已知:如图,在菱形ABCD中,E、F分别是AB、BC边上的一点,且AE=CF.求证:DE =DF.19.(8分)某校教师开展了“练一手好字”的活动,校委会对部分教师练习字帖的情况进行了问卷调查,问卷设置了“柳体”、“颜体”、”欧体“和”其他“类型,每位教师仅能选一项,根据调查的结果绘制了如下统计表:根据图表提供的信息解答下列问题:(1)这次问卷调查了多少名教师?(2)请你补全表格.(3)在调查问卷中,甲、乙、丙、丁四位教师选择了“柳体”,现从以上四位教师中任意选出2名教师参加学校的柳体兴趣小组,请你用画树状图或列表的方法,求选出的2人恰好是乙和丙两位教师的概率.20.(8分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)小明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?21.(8分)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P 处再测得点C的仰角为45°,已知OA=120m,山坡坡度i=1:2,且O、A、B在同一条直线上,求电视塔OC的高度以及所在位置点P的铅直高度.(测角仪高度忽略不计,结果保留根号形式)22.(9分)如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m <0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.23.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.24.(12分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.2019年四川省广元市朝天中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据完全平方公式、平方差公式和多项式乘多项式的法则逐一计算即可得.【解答】解:A.(x+2)(x﹣2)=x2﹣4,此选项错误;B.(﹣3a﹣2)(3a﹣2)=﹣9a2+4,此选项错误;C.(a+b)2=a2+2ab+b2,此选项错误;D.(x﹣8y)(x﹣y)=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2,此选项计算正确;故选:D.【点评】本题主要考查整式的混合运算,解题的关键是掌握完全平方公式、平方差公式和多项式乘多项式的法则.3.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B、八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C、两个班的最高分无法判断出现在哪个班,错误;D、八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选:C.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.5.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图为故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由不等式,可得:x≤4,由不等式a﹣x<2,可得:x>a﹣2,由以上可得不等式组的解集为:a﹣2<x≤4,因为不等式组恰好只有四个整数解,所以可得:0<a﹣2≤1,解得:2<a≤3,故选:B.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【分析】首先求得正八边形OABCDEFG的内角的度数,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【解答】解:∵八边形OABCDEFG是正六边形,∴∠AOG=,即∠MON=135°,∴∠MPN=∠MON=67.5°.故选:C.【点评】此题考查了圆周角定理与正六边形的性质.此题比较简单,注意掌握正六边形内角的求法与在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意数形结合思想的应用.8.【分析】由0≤t≤8所对应的图象表示小刚边走边聊阶段,根据速度=路程÷时间可判断①;由t=0时s=1000的实际意义可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【解答】解:①小刚边走边聊阶段的行走速度是=50(m/min),此①错误;②当t=0时,s=1000,即小刚家离学校的距离是1000m,此②正确;③当s=0时,t=10,即小刚回到家时已放学10min,此③正确;④小刚从学校回到家的平均速度是=100(m/min),此④正确;故选:B.【点评】本题考查利用一次函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.9.【分析】先根据k的符号,得到反比例函数y=与一次函数y=kx﹣1都经过第一、三象限或第二、四象限,再根据一次函数y=kx﹣1与y轴交于负半轴,即可得出结果.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项正确,故选:D.【点评】本题主要考查了反比例函数与一次函数的图象,解题时注意:系数k的符号决定直线的方向以及双曲线的位置.10.【分析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【解答】解:由二次函数y=x2﹣6x+m得到对称轴是直线x=3,则抛物线与x轴的两个交点坐标关于直线x=3对称,∵其中一个交点的坐标为(1,0),则另一个交点的坐标为(5,0),故选:C.【点评】考查了抛物线与x轴的交点坐标,解题的关键是掌握抛物线的对称性质.二.填空题(共5小题,满分15分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.【分析】依据折叠即可得到∠DAB的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:如图,∵∠1=48°,∴∠DAE=132°,由折叠可得,∠DAB=∠DAE=66°,∵AD∥BC,∴∠2=∠DAB=66°,故答案为:66.【点评】本题主要考查了平行线的性质,解题时注意运用:两直线平行,内错角相等.14.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.【分析】①根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE和△AME全等;②根据全等三角形对应边相等可得PE=EM=PM,同理,FP=FN=NP,证出四边形PEOF是矩形,得出PF=OE,证得△APE为等腰直角三角形,得出AE=PE,PE+PF=OA,即可得到PM+PN=AC;③根据矩形的性质可得PF=OE,再利用勾股定理即可得到PE2+PF2=PO2;④判断出△POF不一定等腰直角三角形,△BNF是等腰直角三角形,从而确定出两三角形不一定相似;⑤证出△APM和△BPN以及△APE、△BPF都是等腰直角三角形,从而得出结论.【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵PM⊥AC,∴∠AEP=∠AEM=90°,在△APE和△AME中,,∴△APE≌△AME(ASA),故①正确;②∵△APE≌△AME,∴PE=EM=PM,同理,FP=FN=NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,∵在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;③∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确;④∵△APE≌△AME,∴AP=AM△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故④错误;⑤∵△APE≌△AME,∴AP=AM,∴△AMP是等腰直角三角形,同理,△BPN是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点,故⑤正确;故答案为:①②③⑤.【点评】此题主要考查了正方形的性质、矩形的判定、勾股定理的综合应用、等腰直角三角形的判定与性质、相似三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.三.解答题(共9小题,满分75分)16.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣+﹣﹣1=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(2﹣)÷====,当x=2时,原式=.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.18.【分析】欲证明DE=DF,只要证明△DAE≌△DCF即可;【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF,∴DE=DF.【点评】本题考查菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【分析】(1)用欧体的频数除以其频率即可求得样本总数;(2)根据百分比=人数÷总人数分别求解可得;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)这次调查问卷中被调查的总人数为10÷0.25=40人;(2)柳体的人数为40×0.5=20人,颜体所占的百分比为4÷40=0.1,其他所占百分比为6÷40=0.15,补全表格如下:(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)设小明同学测试成绩为x分,平时成绩为y分,根据题意列出方程组,求出方程组的解即可得到结果;(2)根据题意计算出他的综合评价成绩,判断即可;(3)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设小明同学测试成绩为x分,平时成绩为y分,依题意得:,解得:x=90,y=95答:小明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能;(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为m分,根据题意可得:20+80%m≥80,解得:m≥75,答:他的测试成绩应该至少为75分.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题意是解本题的关键.21.【分析】在直角△AOC中,利用三角函数即可求得OC的长度;在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,OA=120m,∠CAO=60°,∴CO=AO•tan60°=120(米).设PE=x米,∵tan∠PAB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=120﹣x,PF=OA+AE=120+2x,∵PF=CF,∴120+2x=120﹣x,解得x=40﹣40(米).答:电视塔OC高为120米,点P的铅直高度为(40﹣40)米.【点评】考查了解直角三角形的应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【分析】(1)把点B的坐标代入y=即可求出m的值,把点A的坐标代入反比例函数的解析式就可求出a,然后把A、B的坐标代入一次函数的解析式就可解决问题;(2)运用数形结合的思想,结合图象即可解决问题;(3)设点P的横坐标为x P,根据点A的坐标可得到AC的长,然后根据条件即可求出x P,然后将x P代入一次函数的解析式就可求出点P的坐标.【解答】解:(1)把B(﹣1,2)代入y=得m=﹣1×2=﹣2,把A(﹣4,a)代入y=﹣得a=﹣=,把A(﹣4,),B(﹣1,2)代入y=kx+b,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y1>y2时,x的取值范围是﹣4<x<﹣1,故答案为﹣4<x<﹣1;(3)设点P的横坐标为x P,∵AC⊥x轴,点A(﹣4,),∴AC=.∵△PCA的面积等于,∴××[x P﹣(﹣4)]=,解得x P=﹣2,∵P是线段AB上的一点,∴y P=×(﹣2)+=,∴点P的坐标为(﹣2,).【点评】本题考查的是有关反比例函数与一次函数交点问题,在解决问题的过程中,用到待定系数法、数形结合的思想,突出了对数学思想方法的考查.23.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.【分析】(1)把点A坐标代入直线表达式y=x+a,求出a=﹣3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m, m﹣3),N(m, m2﹣m﹣3)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【解答】解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH⊥AB交直线AB于点H,则h=NH=NP sinα=,作N′P′⊥x轴,交x轴于点P′,则:∠ON′P′=α,ON′==(2+2),S四边形OBPN=BP•h=×=6,则:S四边形OBP′N′=S△OP′N′+S△OBP′=6+6,同理:S四边形OBN″P″=6﹣6,故:点O,B,N,P构成的四边形的面积为:6或6+6或6﹣6.【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.。
广元市2019中考数学 模拟试卷(2)
图1图2图3中考模拟试卷(2)姓名 学号1 A 、3x 3+4x 3=7x 3 B 、x 2·x 3=x 6 C 、(-4x 3)2=-16x 6 D 、(x+y )2=x 2+y 22. 2. 如图是一个长方体与棱垂直的平面有A 、1个B 、2个C 、3个D 、4个3. 3. 抛物线y=x 2-2x -1的顶点坐标为A 、(1,-2)B 、(-1,0)C 、(-1,-2)D 、(-1,2)4. 4. 反比例函数y=x k2的图象位于第二、四象限,则K 的取值范围是A 、k=2B 、k <2C 、k >2D 、0<k <25. 5. 两个相似三角形的相似比是2:3,较小的三角形的面积为4,则较大的三角形的面积为 A 、8/3 B 、26 C 、6 D 、96. 6. 甲、乙、丙三人任意排成一列照相,甲恰好在中间的概率是A 、1/4B 、29C 、1/9D 、1/37. 7. 圆锥底面的半径为2cm ,母线长为3cm ,则它的侧面积为A 、2πcm 2B 、3πcm 2C 、6πcm 2D 、12πcm 28. 8. 在Rt ΔABC 中,∠B=Rt ∠,sinA=2/3,BC=3,则AC 的长是A 、9/2B 、2C 、2/9D 、以上答案都不对9. 9. 2002年5月15日,我国发射的海洋I 号气象卫星,进入预定轨道后,若绕地球运行的速度为7.9×103秒,则运行2×102秒走过的路程是(用科学计数法表示)A 、15.8×105米粉B 、1.58×105米C 、0.158×107米D 、15.8×106米10.已知:如图,圆O 的割线PAB 交圆O 于点A ,B ,PA=7cm ,AB=5cm ,,PO=10cm ,则圆O 的半径是 A 、4 cm B 、5 cm C 、6 cm D 、7 cm11.两圆直径是方程x 2-10x+24=0的两根,圆心距为1,则这两圆的位置关系为 A 、外切 B 、内切 C 、外离 D 、相交12.二次函数y=ax 2+bx+c 的图象如图所示,那么a ,b ,c ,b 2-4ac ,a+b+c ,a -b+c 中值小于零的有A 、5个B 、4个C 、3个D 、2个二、二、填空题(本题有6个小题,每小题5分,共30分)13.一个数的相反数是5,那么这个数的倒数是 ;14.如果x 1,x 2是方程x 2+4x -3=0的两根,那么代数式(x 1-1)(x 2-1)的值为 ;15.以给定的图形"OO,△△,="(两个圆,两个三角形,两条平线段)为构件,构思独特且有意义的图形,如图是符合要求的一个图形,你还能构思出其他图形吗?并写出一句贴切、诙谐的解说词。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年四川省广元市朝天中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列计算正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣3a﹣2)(3a﹣2)=9a2﹣4C.(a+b)2=a2+b2D.(x﹣8y)(x﹣y)=x2﹣9xy+8y23.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7 B.﹣7 C.﹣1 D.14.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游5.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a<3 B.2<a≤3 C.2≤a<3 D.2<a<37.如图,⊙O与正八边形OABCDEFG的边OA,OG分别相交于点M、N,则弧MN所对的圆周角∠MPN 的大小为()A.30°B.45°C.67.5°D.75°8.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个9.已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A.B.C.D.10.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)二.填空题(共5小题,满分15分,每小题3分)11.将473000用科学记数法表示为.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.如图,把一张长方形纸片沿AB折叠后,若∠1=48°,则∠2的大小为度.14.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.15.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有.三.解答题(共9小题,满分75分)16.(6分)计算:||+2﹣1﹣cos60°﹣(1﹣)0.17.(7分)先化简,再求值:(2﹣)÷,其中x=2.18.(7分)已知:如图,在菱形ABCD中,E、F分别是AB、BC边上的一点,且AE=CF.求证:DE =DF.19.(8分)某校教师开展了“练一手好字”的活动,校委会对部分教师练习字帖的情况进行了问卷调查,问卷设置了“柳体”、“颜体”、”欧体“和”其他“类型,每位教师仅能选一项,根据调查的结果绘制了如下统计表:根据图表提供的信息解答下列问题:(1)这次问卷调查了多少名教师?(2)请你补全表格.(3)在调查问卷中,甲、乙、丙、丁四位教师选择了“柳体”,现从以上四位教师中任意选出2名教师参加学校的柳体兴趣小组,请你用画树状图或列表的方法,求选出的2人恰好是乙和丙两位教师的概率.20.(8分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)小明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?21.(8分)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P 处再测得点C的仰角为45°,已知OA=120m,山坡坡度i=1:2,且O、A、B在同一条直线上,求电视塔OC的高度以及所在位置点P的铅直高度.(测角仪高度忽略不计,结果保留根号形式)22.(9分)如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m <0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.23.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.24.(12分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.2019年四川省广元市朝天中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据完全平方公式、平方差公式和多项式乘多项式的法则逐一计算即可得.【解答】解:A.(x+2)(x﹣2)=x2﹣4,此选项错误;B.(﹣3a﹣2)(3a﹣2)=﹣9a2+4,此选项错误;C.(a+b)2=a2+2ab+b2,此选项错误;D.(x﹣8y)(x﹣y)=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2,此选项计算正确;故选:D.【点评】本题主要考查整式的混合运算,解题的关键是掌握完全平方公式、平方差公式和多项式乘多项式的法则.3.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B、八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C、两个班的最高分无法判断出现在哪个班,错误;D、八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选:C.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.5.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图为故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由不等式,可得:x≤4,由不等式a﹣x<2,可得:x>a﹣2,由以上可得不等式组的解集为:a﹣2<x≤4,因为不等式组恰好只有四个整数解,所以可得:0<a﹣2≤1,解得:2<a≤3,故选:B.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【分析】首先求得正八边形OABCDEFG的内角的度数,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【解答】解:∵八边形OABCDEFG是正六边形,∴∠AOG=,即∠MON=135°,∴∠MPN=∠MON=67.5°.故选:C.【点评】此题考查了圆周角定理与正六边形的性质.此题比较简单,注意掌握正六边形内角的求法与在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意数形结合思想的应用.8.【分析】由0≤t≤8所对应的图象表示小刚边走边聊阶段,根据速度=路程÷时间可判断①;由t=0时s=1000的实际意义可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【解答】解:①小刚边走边聊阶段的行走速度是=50(m/min),此①错误;②当t=0时,s=1000,即小刚家离学校的距离是1000m,此②正确;③当s=0时,t=10,即小刚回到家时已放学10min,此③正确;④小刚从学校回到家的平均速度是=100(m/min),此④正确;故选:B.【点评】本题考查利用一次函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.9.【分析】先根据k的符号,得到反比例函数y=与一次函数y=kx﹣1都经过第一、三象限或第二、四象限,再根据一次函数y=kx﹣1与y轴交于负半轴,即可得出结果.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项正确,故选:D.【点评】本题主要考查了反比例函数与一次函数的图象,解题时注意:系数k的符号决定直线的方向以及双曲线的位置.10.【分析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【解答】解:由二次函数y=x2﹣6x+m得到对称轴是直线x=3,则抛物线与x轴的两个交点坐标关于直线x=3对称,∵其中一个交点的坐标为(1,0),则另一个交点的坐标为(5,0),故选:C.【点评】考查了抛物线与x轴的交点坐标,解题的关键是掌握抛物线的对称性质.二.填空题(共5小题,满分15分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.【分析】依据折叠即可得到∠DAB的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:如图,∵∠1=48°,∴∠DAE=132°,由折叠可得,∠DAB=∠DAE=66°,∵AD∥BC,∴∠2=∠DAB=66°,故答案为:66.【点评】本题主要考查了平行线的性质,解题时注意运用:两直线平行,内错角相等.14.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.【分析】①根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE和△AME全等;②根据全等三角形对应边相等可得PE=EM=PM,同理,FP=FN=NP,证出四边形PEOF是矩形,得出PF=OE,证得△APE为等腰直角三角形,得出AE=PE,PE+PF=OA,即可得到PM+PN=AC;③根据矩形的性质可得PF=OE,再利用勾股定理即可得到PE2+PF2=PO2;④判断出△POF不一定等腰直角三角形,△BNF是等腰直角三角形,从而确定出两三角形不一定相似;⑤证出△APM和△BPN以及△APE、△BPF都是等腰直角三角形,从而得出结论.【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵PM⊥AC,∴∠AEP=∠AEM=90°,在△APE和△AME中,,∴△APE≌△AME(ASA),故①正确;②∵△APE≌△AME,∴PE=EM=PM,同理,FP=FN=NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,∵在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;③∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确;④∵△APE≌△AME,∴AP=AM△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故④错误;⑤∵△APE≌△AME,∴AP=AM,∴△AMP是等腰直角三角形,同理,△BPN是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点,故⑤正确;故答案为:①②③⑤.【点评】此题主要考查了正方形的性质、矩形的判定、勾股定理的综合应用、等腰直角三角形的判定与性质、相似三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.三.解答题(共9小题,满分75分)16.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣+﹣﹣1=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(2﹣)÷====,当x=2时,原式=.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.18.【分析】欲证明DE=DF,只要证明△DAE≌△DCF即可;【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF,∴DE=DF.【点评】本题考查菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【分析】(1)用欧体的频数除以其频率即可求得样本总数;(2)根据百分比=人数÷总人数分别求解可得;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)这次调查问卷中被调查的总人数为10÷0.25=40人;(2)柳体的人数为40×0.5=20人,颜体所占的百分比为4÷40=0.1,其他所占百分比为6÷40=0.15,补全表格如下:(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)设小明同学测试成绩为x分,平时成绩为y分,根据题意列出方程组,求出方程组的解即可得到结果;(2)根据题意计算出他的综合评价成绩,判断即可;(3)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设小明同学测试成绩为x分,平时成绩为y分,依题意得:,解得:x=90,y=95答:小明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能;(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为m分,根据题意可得:20+80%m≥80,解得:m≥75,答:他的测试成绩应该至少为75分.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题意是解本题的关键.21.【分析】在直角△AOC中,利用三角函数即可求得OC的长度;在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,OA=120m,∠CAO=60°,∴CO=AO•tan60°=120(米).设PE=x米,∵tan∠PAB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=120﹣x,PF=OA+AE=120+2x,∵PF=CF,∴120+2x=120﹣x,解得x=40﹣40(米).答:电视塔OC高为120米,点P的铅直高度为(40﹣40)米.【点评】考查了解直角三角形的应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【分析】(1)把点B的坐标代入y=即可求出m的值,把点A的坐标代入反比例函数的解析式就可求出a,然后把A、B的坐标代入一次函数的解析式就可解决问题;(2)运用数形结合的思想,结合图象即可解决问题;(3)设点P的横坐标为x P,根据点A的坐标可得到AC的长,然后根据条件即可求出x P,然后将x P代入一次函数的解析式就可求出点P的坐标.【解答】解:(1)把B(﹣1,2)代入y=得m=﹣1×2=﹣2,把A(﹣4,a)代入y=﹣得a=﹣=,把A(﹣4,),B(﹣1,2)代入y=kx+b,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y1>y2时,x的取值范围是﹣4<x<﹣1,故答案为﹣4<x<﹣1;(3)设点P的横坐标为x P,∵AC⊥x轴,点A(﹣4,),∴AC=.∵△PCA的面积等于,∴××[x P﹣(﹣4)]=,解得x P=﹣2,∵P是线段AB上的一点,∴y P=×(﹣2)+=,∴点P的坐标为(﹣2,).【点评】本题考查的是有关反比例函数与一次函数交点问题,在解决问题的过程中,用到待定系数法、数形结合的思想,突出了对数学思想方法的考查.23.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.【分析】(1)把点A坐标代入直线表达式y=x+a,求出a=﹣3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m, m﹣3),N(m, m2﹣m﹣3)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【解答】解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH⊥AB交直线AB于点H,则h=NH=NP sinα=,作N′P′⊥x轴,交x轴于点P′,则:∠ON′P′=α,ON′==(2+2),S四边形OBPN=BP•h=×=6,则:S四边形OBP′N′=S△OP′N′+S△OBP′=6+6,同理:S四边形OBN″P″=6﹣6,故:点O,B,N,P构成的四边形的面积为:6或6+6或6﹣6.【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.。