运筹学2
运筹学第2章
-43-
运 筹 学
线性规划的对偶理论
性质3 最优性定理:如果 X 0 是原问题的可行解, 0 是其对偶 Y 问题的可行解,并且:
CX 0 BY 0
即: z w
则 X 0是原问题的最优解,Y 0是其对偶问题的最优解。
T
分别是原问题和对偶问题的可行解。 且原问题的目标函数值为
min W 20 y1 20 y2 s.t. y1 2 y2 1 2 y1 y2 2 2y1 3 y2 3 3 y1 2 y2 4 y1 , y2 0
Z CX 10
min W 20 y1 20 y2 s.t. y1 2 y2 1 2 y1 y2 2 2y1 3 y2 3 3 y1 2 y2 4 y1 , y2 0
(DP)
-41China University of Mining and Technology
-44China University of Mining and Technology
运 筹 学
线性规划的对偶理论
性质4 强(主)对偶性:若原问题及其对偶问题均具有可行解, 则两者均具有最优解,且它们最优解的目标函数值相等。
还可推出另一结论:若一对对偶问题中的任意一个有最优解, 则另一个也有最优解,且目标函数最优值相等;若一个问题 无最优解,则另一问题也无最优解。 一对对偶问题的关系,有且仅有下列三种: 1. 都有最优解,且目标函数最优值相等; 2. 两个都无可行解; 3. 一个问题无界,则另一问题无可行解。
-1-
运 筹 学
学习要点: 1. 理解对偶理论,掌握描述一个线性规划问题 的对偶问题。 2. 能够运用对偶单纯形法来求解线性规划问题。 3. 会用互补松弛条件来考虑一对对偶问题的界。
运筹学 (2)ppt课件
后来田忌的谋士孙膑献了一计:在每次开赛前要求对方先报马名, 由此区分对方参赛的是上马、中马还是下马;然后以自己的上马 对对方的中马、自己的中马对对方和下马、自己的下马对对方的 上马。这样,两胜一负每天赢得一千金。
6
1.赛马与桂陵之战
不久,即公元前354年,魏国以庞涓为将率军伐赵,兵围邯郸。 次年,邯郸在久困之下已岌岌可危,而魏军因久攻不下,损失也很 大。齐国应赵国的要求,以田忌为将,孙膑为军师,率军击魏救赵。 孙膑令一部轻兵乘虚直趋魏都大梁,而以主力埋伏于庞涓大军归途 必经的桂陵之地。魏国因主力远征,都城十分空虚。魏惠王见齐军 逼进,急令庞涓回师自救。刚刚攻下邯郸的庞涓闻大梁告急,急率 疲惫之师回救。
8
2.晋国公重建皇城
距今约1000年前,开封一场 大火,北宋皇城毁于一旦。宋真 宗命晋国公丁渭,主持重建全部 宫室殿宇。
当时,皇城都是砖木结构的, 建筑材料必须从远地通过汴水运 来。由于时间紧、任务重,按一 般的操作法肯定不能按时完成。 丁渭深思熟虑,规划并实施了一 个至今令人拍案叫绝的施工方案。
运筹学
1
内容提要
绪论 线性规划与单纯形法 线性规划的进一步研究 运输问题 动态规划 存储论 排队论
2
绪论
3
第一节 运筹学的产生和发展
运筹学,英国称Operational Research,美国称Operations Research,直译作“作业研究”或“运用研究”,简称OR。中文 “运筹”二字取自《史记•高祖本记》中,刘邦“夫运筹帷幄之中, 决胜于千里之外,吾不如子房”。由此可见,它是一门决策科学, 优化科学。
运筹学(二)
CB
b
CN
0
CB CB
xB XB
XB
B B
CB CB B1B
1
XN
B 1 N
CN CB B1 N
XS
B 1
CB B 1
B 1b
cz
若XB为最优基变量,则对应的目标函数值为: z CB XB CN XN 0 X S CB B1b
且对于上表中各检验数,有:
min W Y b
可见,当原问题得到最优解时,其松弛变量检验数的相反数 CB B 是该问题的对偶问题的一个可行解。
1
例:
原问题
对偶问题
max z 2 x1 x2
同样,少生产一件I产品,则可以 节省设备A、设备B和调试工序0、 6、1个小时,把这些资源出租, 就可以获得租金0y1+6y2+y3
但少生产一件I产品,则 丧失了2元的利润
所以,只有当 6 y2 y3 2
5 y1 2 y2 y3 1
总的出让费 最低出让费即为:
15 y1 24 y2 5 y3
max z c1 x1 c2 x2 c3 x3 c3 x3
a11 x1 a12 x2 a13 x3 a13 x3 b1 a21 x1 a22 x2 a23 x3 a23 x3 b2 st . a21 x1 a22 x2 a23 x3 a23 x3 b2 a31 x1 a32 x2 a33 x3 a33 x3 b3 x1 , x2 , x3 , x3 0
(1 ) (2) (3)
约束(2)可以用以下两个约束来表示:
a21 x1 a22 x2 a23 x3 a23 x3 b2 (2 -1) a21 x1 a22 x2 a23 x3 a23 x3 b2 (2 - 2)
运筹学第二章
例2.4:将以下线性规划问题转化为 标准形式
Max s.t. Z = 3 x1 - 5 x2 + 8 x3 2x1 + 2x2 - x3 = 15.7
4 x1
+ 3x3 = 8.9
x1 + x2 + x3 = 38 x2 , x3 ≥ 0
4.右端项有负值的问题:
在标准形式中,要求右端项 必须每一个分量非负。当某一个 右端项系数为负时,如 bi<0,则 把该等式约束两端同时乘以-1, 得到:
产品甲 设备A 3 产品乙 2 设备能力 (h) 65
设备B
设备C 利润(元/件)
2
0 1500
1
3 2500
40
75
问:如何安排生产计划,才能使制药厂利润最大?
解:设变量 xi为第i种(甲、乙)产品的生 产件数(i=1,2)。根据前面分析,可 以建立如下的线性规划模型: Max
z = 1500 x1 + 2500 x2
MinZ=∑xi
i=1
X6 +
x1 x1 + x2 x2 + x3 x3 + x4 x4 + x5 x5 + x6
≥ 8 ≥ 12
≥ 10
≥ 8 ≥ 6 ≥ 4
二、线性规划模型的一般形式
目标函数 s.t.
产品对资源的 单位消耗量
利润系数
Max(Min)z=c1x1+c2x2+……+cnxn
a11x1+a12x2+……+a1nxn≥(=、≤)b1 a21x1+a22x2+……+a2nxn≥(=、≤)b2 …… am1x1+am2x2+……+amnxn≥(=、≤)bm
运筹学第2章:线性规划的对偶理论
目
标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1
运筹学2-DEA算法
决策单元和DMU的效率评价
决策单元(DMU)
在DEA中,决策单元是指具有相同类型的输入和输出的决策 实体。每个决策单元都有一组输入和输出,用于衡量其效率 。
DMU的效率评价
DEA的目标是通过比较各决策单元的相对效率,对它们的效 率进行评价。DEA使用数学模型和优化技术,通过比较输入 和输出的比率来计算决策单元的效率得分。
环境等。
DEA算法的重要性在于它能够 处理多投入、多产出的复杂系 统,提供了一种有效的评估决
策单元效率的方法。
DEA算法的应用领域
01
金融领域
评估银行的经营效率,比较不同银 行的盈利能力。
物流领域
评估物流企业的运输和配送效率, 优化资源配置。
03
02
医疗领域
评估医院的运营效率,比较不同医 院的医疗服务质量。
案例二:某医院的医疗服务效率评价
总结词
利用DEA算法Biblioteka 某医院的医疗服务效率 进行评价,发现医院在某些科室的资源 配置和医疗服务质量方面存在不足,提 出改进建议。
VS
详细描述
该医院采用DEA算法对其医疗服务进行效 率评价,发现部分科室在人力资源和设备 资源配置方面存在不足,影响了医疗服务 质量。医院针对这些问题,优化了资源配 置,加强了医护人员的培训和管理,提高 了医疗服务效率。
05 DEA算法的案例分析
案例一:某制造企业的生产效率评估
总结词
通过DEA算法,评估某制造企业的生产效率,发现企业在某些方面存在效率低下的问题,提出改进措 施。
详细描述
该制造企业使用DEA算法对其生产过程进行效率评估,发现其原材料采购、生产流程和仓储管理等方 面存在效率低下的问题。针对这些问题,企业采取了优化采购策略、改进生产流程和加强仓储管理等 措施,提高了整体生产效率。
运筹学2对偶问题
§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 11 of 19
在例2.1中,原问题的最优解X=(24.24,0,46.96) 对偶问题的最优解Y=(10.6,0.91,0,0) 最优值z=w=5712.12
分析:
1. y1=10.6说明在现有的资源限量的条件下,增加 一个单位第一种资源可以给企业带来10.6元的利润; 如果要出售该资源,其价格至少在成本价上加10.6元。
1
1
3
5 x
x
2
2
8 10
x 1 0 , x 2 0
【解】这是一个对称形式的线性规划,它的对偶问题求最
小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5 y1 7 y2 y3 4 y1 2 y2 3y3 3 yi 0, i 1,2,3
§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 16 of 19
若给出的线性规划不是对称形式,可以先化成对称形式再 写对偶问题。也可直接按表2-1中的对应关系写出非对称 形式的对偶问题。
例如,原问题是求最小值,按表2-1有下列关系:
及食物价格如下表,试建立此人在满足健康需要的基础上
花费最少的数学模型。
含量 食物
营养成分
一
二
三 四 五 六 需要量
A
13 25 14 40 8 11 ≥80
B
24
9
30 25 12 15 ≥150
运筹学第2章 单纯形法
所有检验数 j 0 ,则这个基本可行解是最优解。
n
z z0 j x j
j m 1
m
j ciaij c j =CTBa j c j
i 1
m
m
z0 c j x j = cibi =CBT b
j 1
i 1
✓对于求目标函数最小值的情况,只需 σj≤0
0
XB
b
x1
-1 x5 0
0
0 x4 3
1
-3 0
0
00
x2
x3
x4
0
-2 0
2
-2 1
0 10
-1 bi/aik
x5
1
0
0
29 2020/3/4
2、无界解
在求目标函数最大值的问题中,所谓无界解是指在约束条件 下目标函数值可以取任意的大。
•存在着一个小于零的检验数,并且该列的系数向量的每个元素 都小于或等于零,则此线性规划问题是无界的,一般地说此类
2x1 x2 x3 x5 2
s.t. x1 2x2
x4
3
x1,
x2 , x3, x4 , x5 0
✓添加人工变量x5来人为的创造一个单位矩阵作为基 ✓M叫做罚因子,任意大的数。 ✓人工变量只能取零值。必须把x5从基变量中换出去,否 则无解。
cj
3
2
00
CB XB
2020/3/4
14
(2)出基变量和主元的确定——最小比值规则
min
bi aik
aik
0
bl alk
确定出基变量的方法:把已确定的入基变量在各约束方程中的正的系数
运筹学 第2章 线性规划的图解法
朱晓辉 管理科学与工程
管理运筹学
2-1
第二章 线性规划的图解法
教学目标:
• 掌握线性规划的数学模型,能够结合问 题列出模型
• 理解图解法求解 • 了解图解法的灵敏度分析
管理运筹学
2-2
第二章 线性规划的图解法
• §1 问题的提出 • §2 图解法 • §3 图解法的灵敏度分析
管理运筹学
管理运筹学
2-8
§2 图 解 法
对于只有两个决 例1.目标函数:
策变量的线性规划问
Max z = 50 x1 + 100 x2
题,可以在平面直角 约束条件:
坐标系上作图表示线 性规划问题的有关概 念,并求解。
下面通过例1详细讲 解其方法:
s.t.
x1 + 2 x1 +
x2 ≤ 300 (A) x2 ≤ 400 (B) x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E)
2-3
第二章 线性规划的图解法
在管理中一些典型的线性规划应用: • 合理利用线材问题:如何在保证生产的条件下,下料最少 • 配料问题:在原料供应量的限制下如何获取最大利润 • 投资问题:从投资项目中选取方案,使投资回报最大 • 产品生产计划:合理利用人力、物力、财力等,使获利最
大 • 劳动力安排:用最少的劳动力来满足工作的需要 • 运输问题:如何制定调运方案,使总运费最小
• 一般形式:
目标函数:
约束条件:
Max (Min) z = c1 x1 + c2 x2 + … + cn xn
s.t. aa…x2m11a…1,1xx111xx++21a,+a2…m2a…2…1x2x2,x2+2+x…+n……+≥+a+0a2nam1xnnnxxnn≤≤(≤((==, =,≥,≥)≥))bb2bm1
运筹学第2章-线性规划的对偶理论
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
运筹学2
例如
1 0 A= ⋮ 0
0 1 ⋮ 0
⋯ 0 a1m +1 ⋯ a1n ⋯ 0 a2 m + 1 ⋯ a2 n ⋯ 1 anm +1 ⋯ ann
此时,问题的约束条件可以改写成 此时,
x1 = b1 − a1m +1 xm +1 − ⋯ − a1n xn x = b −a 2 2 2 m + 1 xm + 1 − ⋯ − a2 n xn ⋮ xm = bm − amm +1 xm +1 − ⋯ − amn xn
n
zj
于是 那么
z = z0 + z = z0 +
如果某一个 σ j > 0 , 则引入变量 x j 为进基变量 目标函数值会上升, 起了判断作用. 目标函数值会上升,可见 σ j 起了判断作用 检验数. 因此我们称 σ j 为检验数 定理1 最优解判别定理 最优解判别定理) 定理 (最优解判别定理 为对应于基矩阵B的基 若 x(0) = (b1 ,⋯, bm ,0,⋯,0)T为对应于基矩阵 的基 ′ ′ 本可行解, 本可行解,且对于一切 j = m + 1,⋯ , n 有 σ j ≤ 0 (0) 为最优解. 则 x 为最优解
x1
从初始基可行解X 开始迭代, 从初始基可行解 (0)开始迭代,依次得到 X(1),X(2),X(3),这相当于图中的目标函数平移 点开始, 时,从O点开始,首先碰到 ,然后碰到 , 点开始 首先碰到A,然后碰到B, 最后达到C. 最后达到 .
第一章 线性规划及单纯形法
第四节 单纯形法的计算步骤
一 一般线性规划问题的单纯形法 1 初始基本可行解的确定 单纯形法需要从一个初始基本可行解开始运 为了确定初始基本可行解, 算,为了确定初始基本可行解,首先要找出 初始基本可行基. 初始基本可行基 (1) 如果线性规划等式约束中能直接观察到存 在m个线性无关的单位向量,经过重新排序 个线性无关的单位向量,经过重新排序, 就可以得到一个可行基 可行基. 就可以得到一个可行基
运筹学(2)复习重点
运筹学(2)复习重点2021年运筹学(2)期末复习重点提醒:同学们要真正理解并掌握以下内容,不要死记硬背!第一部分对策论1. 对策行为的三个基本要素:局中人、策略集和赢得函数(支付函数)(掌握局中人、策略集、局势和赢得函数(支付函数)的含义;对实际问题能根据某一局中人、策略集及赢得矩阵建模求解。
) 2. 对策的分类3. 矩阵对策的研究对象:二人有限零和对策4. 平衡局势的定义,最优纯策略的定义,及求解方法。
5. 纯策略意义下有解的充要条件 6. 矩阵的鞍点、对策的鞍点7. 当矩阵对策的解不唯一时,解之间的关系所具有的性质:无差别性;可交换性。
(要理解这两个性质)8. 理解矩阵对策的混合策略、混合局势、各局中人的赢得函数、混合扩充以及矩阵对策在混合策略意义下的解的定义。
10. 矩阵对策在混合策略意义下有解的充要条件 11. 矩阵对策的求解(重点掌握矩阵对策的几个基本定理,如定理4、6、7、8、10,理解定理所揭示的内容)(1)灵活运用定理7和8(课后习题15);(2)熟练运用定理4和6,在后续矩阵对策的诸多求解方法中,经常会结合这两个定理,通过对例题的复习掌握这两个定理;(3)理解优超的含义,能运用优超原则(定理10是优超原则求解矩阵对策的依据)求解矩阵对策(例题11及课后习题13);(4)掌握其他求解方法:公式法、图解法(例题13、14)、方程组法(例题16、17)。
第二部分存储论(库存论)1.备货时间、提前时间及存储策略的概念。
2.费用结构:存储费、订货费、生产费及缺货费及相关概念。
3.存储策略概念及常见的存储策略类型 4.确定性存储模型(1)模型1、2、3的最优订货批量(E.O.Q),对应的最佳费用及存储策略。
(2)掌握上述模型的费用结构,能够写出费用函数。
5.两种价格折扣的类型:全单位量折扣和增量折扣理解两种价格折扣的定义。
全单位量价格折扣情况下的最优订购批量的计算。
(结合例题6理解书上的求解步骤) 6.随机性存储模型(1)模型5(报童问题)掌握最佳报纸份数的判断条件(结合例7和8)(2)模型7((s,S)型存储策略)掌握例题9-11第三部分排队论1. 排队系统的组成部分:输入过程、排队规则、服务机构。
运筹学第2章单纯形法
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束
运筹学讲义2
第二讲 运输问题11111,2,, ..1,2,, 0mnij iji j nij i j m ij j i ij MinZ w x x a i m s tx b j n x =====⎧==⎪⎪⎪⎨==⎪⎪≥⎪⎩∑∑∑∑产地约束销量约束定理1 运输问题的数学模型必有最优解。
运输问题基变量的个数为m +n -1 。
对于运输问题的基可行解,m ×n 个变量中至多只能有m +n -1个变量取正值,而其他的变量为零 一、基本概念1)数字格 2)空格 3)闭回路结论1: 运输问题的一个可行解是基可行解的充要条件是: 1)数字格的个数为m+n-1个2) m+n-1个数字格不构成闭回路(从数字格出发) 结论2: 对每一个空格处,有且仅有一条闭回路。
例:判断下表给出的调运方案能否作为表上作业法求解时的初始解二、表上作业法(1)初始方案的确定:最小元素法;伏格尔法 (2)最优性检验:闭回路法;位势法 (3)闭回路内改进方案 (1.1)最小元素法(就近供应)就进供应,即从单位运价表中最小的运价开始确定供销关系,然后次小,一直到求出初始基可行解为止。
销地7410206563b j5810947a i 1391123A 3A 2A 1B 4B 3B 2B 1产地(1.2)伏格尔法销地7410206563b j5810947a i 1391123A 3A 2A 1B 4B 3B 2B 1产地(2.1)闭回路法计算检验数∑∑-=σ偶奇ij ij ijc c注:1)数字格检验数均为0 2)空格检验数销地7410206563b j5810947a i 1391123A 3A 2A 1B 4B 3B 2B 1产地③④①⑥③③(2.2)位势法求检验数j i cv u =+对数字格而言计算)行势、列势的定义与注::13)行势、列势可不唯一,但检验数是一致的。
σ),()2=σ+-=ij j i ij ij v u c 数字格检验数的计算:空格销地7410206563b j5810947a i 1391123A 3A 2A 1B 4B 3B 2B 1产地③④①⑥③③(3)闭回路内改进方案销地741058101391123A 3A 2A 1B 4B 3B 2B 1产地③④①⑥③③121-11012(06年,第三题,20分)下表是一运输问题的表格,其中右上角数字是单位运价,方框内是运量。
运筹学第2章 对偶理论
2 y1 3 y2 y3 2 3 y1 y2 4 y3 3 5 y1 7 y2 6 y3 4 y , y , y 0 1 2 3
原—对偶问题的相互变换形式
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 约束条件右端项 目标函数变量的系数 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 目标函数变量的系数 约束条件右端项 变 量 约 束 条 件
设y1 , y2 , y3分别为三种资源的收费单价,所以 有下式: 5 y1 2 y2 y3 10 2 y1 3 y2 5 y3 18 y1 , y2 , y3 0 就目标而言,用下式可以表达: 170 y1 100 y2 150 y3 W
一般而言,W 越小越好,但因需双方满意,故
变为对称形式
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
min W 2 y1 3 y2 5 y3
B
1 0
M-1
-2
最 终 表
cj cB 3 -1 -1 xB x1 x2 x3 检验数 b 4 1 9
3 x1 1 0 0 0
-1 x2
-1 x3 0 0 1 0
0 x4 1/3 0 2/3 -1/3
I
0 1 0 0
-1/3 1/3-M 2/3- M
所以, X*=(4 , 1 , 9),Z = 2
初 始 表
运筹学2
运筹学是现代管理学的一门重要专业基础课。
它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关.物流(Logistics)是指物品从供应地向接受地的实体流动过程在现代物流中,物流管理(Logistics Management)是指在社会在生产过程中,根据物质资料实体流动的规律,应用管理的基本原理和方法,对物流活动进行计划、组织、指挥、协调、控制和监督,使各项物流活动实现最佳的协调与配合,以降低物流成本,提高物流效率和经济效益随着我国社会经济的快速发展国民经济和贸易呈现迅猛发展的态势。
现代综合物流管理中,对采购、包装、流通加工、储存保管、配送、装卸和运输等物流活动诸要素的管理,对人、财、物、设备、方法和信息等物流系统诸要素的管理对物流经济管理、物流质量管理和物流工程经济管理等物流活动中具体职能的管理都要用到数学知识。
运筹学在现代物流企业的实际应用是一个非常具有意义的课题,借助运筹学的主要研究内容和方法,建立了大致的知识框架体系,它不是枯燥乏味的理论,而是非常实用的学科,生活中几乎处处都有运筹学,特别是对物流工作更是意义深远,能帮助物流企业解决许多实际的问题。
运筹学是运用系统化的方法,经由建立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数量来表达的有关运用、筹划与管理等方面的问题,它根据问题的要求,通过数学的分析与运算,做出综合的合理安排,以达到较经济、有效地使用人力、物力、财力等资源.运筹学与物流学从一开始,两者就密切地联系在一起,相互渗透和交叉发展。
运筹学第2章线性规划的对偶问题
§2.1 线性规划的对偶问题
随着线性规划应用的逐步加深,人们发现每一个线性规 划问题都存在一个与之对应的、具有密切关联的线性规 划问题,其中一个称为原问题,另一个称为对偶问题 (Dual linear programming,DLP)。对偶问题不仅具有 优良的数理性质,而且还有着重要的实际意义,尤其在 生产运营管理中有明显的经济含义。对偶理论充分显示 出线性规划理论逻辑上的严谨性和结构上的对称性,使 线性规划理论更加丰富,应用领域更为广泛。
yi 0 (i 1,2,3)
则得如下的线性规划模型:
min w 48 y1 20 y2 8 y3 8 y1 4 y2 2 y3 600 6 y 2 y2 1.5 y3 300 s.t. 1 y1 1.5 y2 0.5 y3 200 y , y , y 0 1 2 3
max z 2 y1 5 y2 9 y3 y1 3 y2 2 y3 3 2 y y 2 y 1 1 2 3 5 y1 y2 3 y3 1 y1无约束,y2 0, y3 0,
max z 600 x1 300 x2 200 x3 8 x1 6 x2 x3 48 4 x1 2 x2 1.5 x3 20 s.t 2 x1 1.5 x2 0.5 x3 8 x , x , x 0 1 2 3
x1 2, x2 0, x3 8
(2.1.6)
设 yi (i 1,2,, m) 表示第i种资源的定价,则其对偶问 题的形式为:
min w b1 y1 b2 y2 ... bm ym a11 y1 a21 y2 ... am1 ym c1 a y a y ... a y c 12 1 22 2 m2 m 2 s.t. a y a y ... a y c mn m n 1n 1 2 n 2 y1 , y2 , , ym 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从输出的结果可以得到从起点到终点的最大流。
实验项目四:最小费用最大流
点击“ 最小费用最大流” 在出现的对话框中点击“ , 新建” ,根据所要解 决的问题输入节点数、弧数,点击确定。接着在下面输入每条弧的起 点、终点、容量和费用。之后在右边输入起点和终点。
从输出的结果可以得到从起点到终点的最大流,该问题的最小费用。
运筹学2
打开管理运筹学2.0
实验项目一:最短路问题
点击“ 最短路问题” 在出现的对话框中点击“ , 新建” ,根据所要解决的 问题输入节点数、弧数,点击确定。接着在下面输入每条弧的起点、 终点和权数。之后在右边输入问题的起点和终点,选择有向图或无向 图。
从输出的结果可以得到从起点到终点的最短路和总权。
如果是风险型决策,那么与上述不确定型决策不同之处在于,需要知 道每种状态出现的概率,不需要选择决策的方式。输入相关数值后点 击解决即可得到最优策略
实验项目五:关键路径问题
点击“ 关键路径问题” 在出现的对话框中点击“ , 新建” ,根据所要解决 的问题的每道工序的时间是否确定选择“ 已知工序时间” 不确定工序 或“ 时间” ,输入工序数,点击确定。接着在下面输入每个工序的紧前工 序数与工序时间(如果是工序时间不确定,则需输入乐观时间、最可 能时间、悲观时间),点击确定。之后在右边输入各工序的紧前工 序,点击确定。
从输出的结果可以得到问题的关键路径、工程的完成时间。
实验项目六:存储论
点击“ 存储论” ,根据所要解决的问题属于确定性存储模型还是随机性 存储模型来选择相应的栏目,其中确定性存储模型包括“ 经济订货批 量” 经济生产批量” 允许缺货的经济订货批量” 允许缺货的经济 、“ 、“ 、“ 生产批量” 经济订货批量折扣” 和“ ,随机性存储模型包括“ 随即需求的单 一周期存储” 随即需求的订货批量— — 再订货点模型” 和“ ,选择后点击。
例如选择确定性存储模型中的经济生产批量,首先输入每年需求量、 每年生产量和生产准备费,然后按题意选择存储费的表达形式(按存 储物品成本的百分比表达或按每年每单位的存储费表达),最后输入 年总工作日和订货提前期,最后点击解决,输出存储策略。在存储策 略中可以得到:最优每次生产量、每年存储成本、每年生产准备费、总 成本、最大存储水平、平均存储水平、每年生产次数和周期。
模型七:决策分析
点击“ 决策分析” ,根据决策的类型选择“ 不确定型决策” 风险型决 或“ 策” ,如果属于不确定型决策就还需选择决策的方式是悲观准则、乐 观准则还是后悔值准则,决策问题是取极大值还是极小值,选择策略 方案的个数和事件状态个数,之后输入每一种策略在不同状态下的收 益值或损失值,点击解决即可得到最优策略。
实验项目二:最小生成树问题
点击“ 最小生成树” 在出现的对话框中点击“ , 新建” ,根据所要解决的 问题输入节点数、弧数,点击确定。接着在下面输入每条弧的起点、 终点和权数。
从输出的结果可以得到最小生成树和总权。
实验项目三:最大流问题
点击“ 最大流问题” 在出现的对话框中点击“ , 新建” ,根据所要解决的 问题输入节点数、弧数,点击确定。接着在下面输入每条弧的起点、 终点和权数。之后在右边输入起点和终点。