运筹学试卷2及答案
天津大学22年春学期《运筹学》在线作业二【参考答案】
《运筹学》在线作业二-标准答案
试卷总分:100 得分:100
一、单选题 (共 40 道试题,共 100 分)
1.无后效性是指动态规划各阶段状态变量之间无任何联系.
A.对
B.错
正确答案:B
2.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
A.对
B.错
正确答案:B
3.对于风险型决策问题,可以用“最大可能法”求解问题,下列说法错误的是()
A.一个事件,其概率越大,发生的可能性就越大
B.对于风险型决策,若自然因素出现的概率为1,而其他自然因素出现的概率为0,则就是确定型决策问题
C.当所有自然因素出现的概率都很小,并且很接近时,可以用“最大可能法”求解
D.当在其所有的自然因素中,有一个自然因素出现的概率比其他自然因素出现的概率大很多,并且他们相应的损益值差别不很大,我们可以用“最大可能法”来处理这个问题
正确答案:C
4.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已作出的决策.
A.对
B.错
正确答案:A
5.若线性规划问题的,i,j值同时发生改变,反映到最终单纯形表中,不会出现原问题与对偶问题均为非可行基的情况。
A.对
B.错
正确答案:B
6.在网络图中,关键线路是指各条线路中作业总时间()的一条线路
A.最短
B.中间
C.成本最小
D.最长
正确答案:D。
运筹学试题及答案(两套)
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0,0, 4, 3) B.(3, 4, 0, 0)C.(2,0, 1,0) D.(3,0,4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划,对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(min22211+-+++=ddpdpZB.)(min22211+-+-+=ddpdpZC.)(min22211+---+=ddpdpZD.)(min22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”.每小题1分,共15分)11。
全国自考(运筹学基础)模拟试卷2(题后含答案及解析)
全国自考(运筹学基础)模拟试卷2(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 名词解释 4. 计算题Ⅰ 5. 计算题Ⅱ6. 计算题Ⅲ7. 计算题Ⅳ单项选择题1.关于线性规划模型,下面叙述正确的是( )A.约束条件的个数多于1个B.求极大值问题时,约束条件都是小于或等于C.求极小值问题时,目标函数中变量的导数均为正D.变量的个数一般多于约束方程的个数正确答案:D解析:变量的多少,决定于所要决策问题需控制的粗细程度。
2.运输问题可以用_______法求解。
( )A.定量预测B.单纯形C.求解线性规划的图解D.关键路线正确答案:B解析:运输问题可以用单纯形法求解。
3.在求maxg的线性规划问题时,肯定成立的是( )A.非基变量检验数小于等于0B.单纯形表中只要有一个检验数大于0,就没得到最优解C.由基B得到最终表,则最优解为XB=B-1bD.基变量X2>0正确答案:B解析:单纯形表中只要有一个检验数大于0,就没得到最优解。
4.在求极小值的线性规划问题中,引入人工变量的根本目的是( ) A.将不等式约束化为等式B.建立单纯形初表C.求初始可行解D.方便地生成一个可行基底正确答案:D解析:求极小值的线性规划问题时,引入人工变量的根本目的是方便地生成一个可行基底。
5.图的基本要素是( )A.点B.线C.点和线D.点和点与点之间的连线正确答案:D解析:图的最基本的要素是:点以及点与点之间的一些连线(简称线或者边)。
6.求最初运输方案,可采用( )A.修正分配法B.位势法C.西北角法D.闭合回路法正确答案:C解析:求最初运输方案,可采用西北角法。
7.对于线性规划问题S=CX,AX=b和X≥0为其约束条件,B为A的一个m×n的基,则B的可行基解B-1b成为极大值问题最优解的条件( ) A.CBB-1A≥C且其余非基变量为0B.CBB-1A≥C且其余非基变量大于0C.CBB-1A≤C且其余非基变量为0D.CBB-1A≤C且其余非基变量小于0正确答案:A解析:B的可行基解B-1b成为极大值问题最优解的条件是CBB-1A≥c且其余非基变量为0。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
历年运筹学考研试题及答案
历年运筹学考研试题及答案试题:一、单项选择题(每题2分,共10分)1. 线性规划问题的标准形式是:A. 所有变量非负B. 目标函数为最小化C. 约束条件为等式D. 所有变量非负,约束条件为等式和不等式2. 在单纯形法中,如果某个非基变量的检验数为负,则:A. 该变量不能进入基B. 该变量可以进入基C. 该变量必须进入基D. 以上都不对3. 对于运输问题,当供应量等于需求量时,我们称其为:A. 平衡运输问题B. 不平衡运输问题C. 线性运输问题D. 非线性运输问题4. 在动态规划中,最优子结构性质意味着:A. 问题的最优解包含子问题的最优解B. 问题的所有解都包含子问题的最优解C. 问题的一个解包含子问题的最优解D. 以上都不对5. 网络最大流问题中,Ford-Fulkerson算法的核心思想是:A. 寻找增广路径B. 寻找最短路径C. 寻找最长路径D. 寻找最小割二、简答题(每题10分,共20分)1. 简述线性规划的几何意义及其在实际问题中的应用。
2. 解释什么是灵敏度分析,并说明其在解决线性规划问题中的作用。
三、计算题(每题15分,共30分)1. 假设有以下线性规划问题:Max Z = 3x + 4ySubject to:2x + y ≤ 6x + 2y ≤ 7x, y ≥ 0请用图解法找到该问题的最优解。
2. 给定一个网络流问题,网络中有三个节点A, B, C,以及三条边(A,B), (B, C), (A, C),每条边的容量分别为10, 5, 8。
要求从节点A到节点C的最大流量。
使用Ford-Fulkerson算法求解。
四、论述题(每题20分,共20分)1. 论述动态规划与分治法在解决组合优化问题时的异同,并给出一个适合使用动态规划法解决的实际问题例子。
答案:一、单项选择题1. D2. C3. A4. A5. A二、简答题1. 线性规划的几何意义是在n维空间中寻找一个多边形的顶点,这个多边形由约束条件定义,而目标函数则定义了一个目标方向。
大工22秋《运筹学》在线作业2-[答案]
大工22秋《运筹学》在线作业2-辅导资料-答案
试卷总分:100 得分:100
一、单选题 (共 5 道试题,共 40 分)
1.网络图中,每项活动的最晚完成时间等于其所有紧后活动最晚开始时间的( )。
A.最大值
B.最小值
C.平均值
D.总和
【本题-参考-答案】:B
2.截集中一切弧的容量之和称为( )。
A.最大流
B.截量
C.最小截量
D.最大截量
【本题-参考-答案】:B
3.下列有关网络图的说法中,错误的为( )。
A.网络图中所谓路径,就是从始点到终点之间相连节点的序列
B.为了完成整个项目的进度计划,需要找出其中最长的路径,即关键路径
C.关键路径上的活动称为项目的关键活动,是整个项目中的关键环节
D.网络中仅存在一条路径
【本题-参考-答案】:D
4.以下说法中不正确的为( )。
A.完成各个作业需要的时间最长的路线为关键路线
B.关键路线上的作业称为关键作业
C.所有关键作业的总时差为0
D.以上说法均不正确
【本题-参考-答案】:D
5.下列有关图的说法中,错误的为( )。
A.点表示所研究的事物对象
B.边表示事物之间的联系
C.无向图是由点及边所构成的图
D.无环的图称为简单图
【本题-参考-答案】:D
二、判断题 (共 15 道试题,共 60 分)
6.最大流问题是一个特殊的线性规划问题。
【本题-参考-答案】:正确
7.如果一个图由点及边所构成,则称之为有向图。
【本题-参考-答案】:错误。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》在线作业二满分答案
《运筹学》在线作业二试卷总分:100 得分:100一、单选题1.前一阶段的状态和决策决定了下一阶段的状态,他们之间的关系称为()A. 状态B. 决策C. 状态转移D. 指标函数正确答案:C2.检验运输方案的闭合回路法中,该回路含有()个空格为顶点。
A. 4个B. 2个C. 1个D. 3个正确答案:C3.对于第一类存储模型——进货能力无限,不允许缺货,下列哪项不属于起假设前提条件()A. 假设每种物品的短缺费忽略不计B. 假设需求是连续,均匀的C. 假设当存储降至0时,可以立即得到补充D. 假设全部定货量一次供应正确答案:A4.决策问题都必须具备下面四个条件,下列哪项不是()A. 只有一个明确的决策目标,至少存在一个自然因素B. 至少存在两个可供选择的方案C. 至少一个明确的决策目标,只有存在一个自然因素D. 不同的方案在各种自然因素影响下的损益值可以计算出来正确答案:C5.对于动态规划问题,应用顺推或逆推解法可能会得出不同的最优解。
A. 对B. 错满分:2.5 分正确答案:B6. 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解。
A. 对B. 错满分:2.5 分正确答案:A7. 线性规划问题若有最优解,则一定可以在可行域的()上达到。
A. 内点B. 外点C. 极点D. 几何点正确答案:C8. 对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件()A. 需求是连续,均匀的B. 进货是连续,均匀的C. 当存储降至零时,可以立即得到补充D. 每个周期的定货量需要一次性进入存储,一次性满足满分:2.5 分正确答案:D9.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
A. 对B. 错正确答案:A10.动态规划的最优决策具有如下的性质:无论初始状态与初始决策如何,对于先前决策所形成的状态而言,其以后的所有决策应构成最优策略.A. 对B. 错满分:2.5 分正确答案:A11. 对于风险型决策问题,可以用“最大可能法”求解问题,下列说法错误的是()A. 一个事件,其概率越大,发生的可能性就越大B. 对于风险型决策,若自然因素出现的概率为1,而其他自然因素出现的概率为0,则就是确定型决策问题C. 当所有自然因素出现的概率都很小,并且很接近时,可以用“最大可能法”求解D. 当在其所有的自然因素中,有一个自然因素出现的概率比其他自然因素出现的概率大很多,并且他们相应的损益值差别不很大,我们可以用“最大可能法”来处理这个问题正确答案:C12.分枝定界求解整数规划时 , 分枝问题的最优解不会优于原 ( 上一级 ) 问题的最优解.A. 对B. 错正确答案:A13. 线性规划具有唯一最优解是指A. 最优表中存在常数项为零B. 最优表中非基变量检验数全部非零C. 最优表中存在非基变量的检验数为零D. 可行解集合有界满分:2.5 分正确答案:B14. ABC分类法是对库存的物品采用按()分类的A. 物品质量B. 物品价格C. 物品数量D. 物品产地满分:2.5 分正确答案:B15.线性规划可行域的顶点一定是( )A. 基本可行解B. 非基本解C. 非可行解D. 最优解满分:2.5 分正确答案:A16.求般获得最好经济效益问题是求如何合理安排决策变量(即如何安排生产)使目标函数最大的问题,求最大的目标函数问题,则记为max Z;若是如何安排生产使成本是最小的问题,则记为min Z .A. 对B. 错正确答案:A17.一个无圈的连通图就是()A. 树B. 最小支撑树C. 支撑子图D. 有向图正确答案:A18.m个产地,n个销地的初始调运表中,调运数字应该为()A. m+n个B. m+n --1个C. m×nD. m+n+1个正确答案:B19. 关于运输问题的说法中错误的是()A. 最优运输方案未必唯一B. 必有最优运输方案C. 运输方案的任何调整必会引起总运费的下降D. 修正分配法是一种比较简单的计算改进指数的方法满分:2.5 分正确答案:C20. 下列叙述不属于解决风险决策问题的基本原则的是 ( )A. 最大可能原则B. 渴望水平原则C. 最大最小原则D. 最大原则满分:2.5 分正确答案:C21. 对于同一个目标,决策者“选优”原则不同,导致所选的最优方案的不同,而影响“选优”原则确定的是决策者对各种自然因素出现的可能性的了解程度。
《运筹学》课程考试试卷及答案
《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。
2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。
4、连通图的是指: 。
5、树图指 ,最小树是 。
6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。
二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。
(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。
(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。
在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。
若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。
请用匈牙利法求总费用最小的分配方案。
(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
《运筹学》试卷及答案002
《运筹学》试卷一、单项选择题(1⨯5分)1.线性规划(以下简称LP)模型中自由变量可以用两个非负变量之()代换。
A.和 B.差 C.积 D.商2.LP原问题的第i个约束条件是“=”型,则对偶问题的变量y i是()。
A.剩余变量 B.自由变量 C.松弛变量 D.非负变量3.基可行解中的非零变量的个数小于约束条件数时,该LP问题可求得( )。
A.基本解 B.多重解 C.退化解 D.无解4.运筹学中著名的“TSP问题”是指 ( ) 。
A.背包问题B.中国邮递员问题C.哥尼斯堡七桥问题D.货郎担问题5.用大M法求解极大化的LP问题时,人工变量在目标函数中的系数是()。
A. -MB. MC. 1D. -1二、判断正误(对者打“√”,错者打“×”。
1⨯5分)1.线性规划问题的最优解不一定只在可行域的顶点上取得。
()2.对偶单纯形法是求解线性规划对偶问题的一种算法。
()3.容量网络中从发点到收点的最大流流量等于分离发点和收点的任一割集的容量。
()4.若整数规划问题存在可行解,则其可行解集合是凸集。
()5.目标规划模型中可以没有绝对约束,但不能没有目标约束。
()三、(25分) 某企业生产3种产品,这些产品均需使用A、B两种原料,每种产品的原料单耗(kg/件)、单位利润以及这两种原料在计划期内的可供应量(kg)如下表。
该企业应如何安排3种产品生产,可使企业所获利润最大?要求:1.建立该问题的线性规划模型;(3分)2.用单纯形法求该问题的最优解及最优值;(15分)3.产品Ⅲ的单位利润在什么范围内变动时,最优解不变?(3分)4.直接写出该LP的对偶问题及其最优解。
(4分)四、(10分) 某家电厂商生产A、B、C三种规格的某种家电产品,装配工作在同一生产线上完成,三种产品装配时的工时消耗分别为2小时、2.5小时和3小时,生产线每月正常工作时间为480小时;三种产品销售后,每台获利分别为150、180和200元;每月销售量预计分别为90、70和50台。
运筹学试卷及答案(2)
运筹学试题(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。
2.线性规划模型有三种参数,其名称分别为价值系数、___和___。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。
4.求最小生成树问题,常用的方法有:避圈法和 ___。
5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。
6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。
7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。
8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。
二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解 B.有无穷多最优解C.为无界解 D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零 B.检验数都大于零C.检验数都不小于零 D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3 B.2C.1 D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足【】13.在运输方案中出现退化现象,是指数字格的数目【】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-114.关于矩阵对策,下列说法错误的是【】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【】A.2 8.—l C.—3 D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【】A.最大可能原则 B.渴望水平原则C.最大最小原则 D.期望值最大原则18.下列说法正确的是【】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
运筹学自测试卷2
运筹学自测试卷2一、单项选择题1使用人工变量法求解极大化的线性规划问题时,当所有的检验数0j ,但在基变量中仍含有非零的人工变量,表明该线性规划问题 ( D )A .有唯一的最优解B .有无穷多最优解C .为无界解D .无可行解2当线性规划的可行解集合非空时一定( D ) A.包含原点 B.有界 C .无界 D.是凸集3线性规划具有多重最优解是指( B ) A.目标函数系数与某约束系数对应成比例。
B .最优表中存在非基变量的检验数为零。
C .可行解集合无界。
D .存在基变量等于零。
4使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在基变量中仍含有非零的人工变量,表明该线性规划问题( C )A. 有唯一的最优解;B. 有无穷多个最优解;C . 无可行解;D. 为无界解5在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非零变量的个数( A )A . 不能大于(m+n -1); B. 不能小于(m+n -1); C. 等于(m+n -1); D. 不确定。
6如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足(B )A. 0d +> B . 0d += C. 0d -= D. 0,0d d -+>> 7下列说法正确的为( D )A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 4.用最小元素法求初始调运方案是,运输表中数字格的个数为(D )个。
m*n B 、m+n C 、m*n -1 D 、m+n -18对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件( D )A 需求是连续,均匀的B 进货是连续,均匀的C 当存储降至零时,可以立即得到补充D 每个周期的定货量需要一次性进入存储,一次性满足 9对于风险型决策问题,下列说法错误的是( D )A 风险型决策问题是指决策者根据以往的经验及历史统计资料,可以判明各种自然 因素出现的可能性大小B 风险型决策除了满足一般决策问题的四个条件外,还需要加一个条件:存在两个或两个以上的自然因素,并可估算所有自然因素出现的概率C 期望值法就是决策者根据各个方案的期望值大小,来选择最优方案D 确定型决策其实是风险型决策的一个特例,即自然因素出现的概率为0,而其他自然因素出现的概率为1的风险型决策问题10下面哪些不是线性规划问题的标准形式所具备的( C )A所有的变量必须是非负的 B 所有的约束条件(变量的非负约束除外)必须是等式C 添加新变量时,可以不考虑变量的正负性D 求目标函数的最小值11下面哪项不是求解“不确定型决策问题”的方法(B )A 悲观法B 期望值法C 折衷法D 最小遗憾法12用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为(A)A.0 B.1 C.-1 D.213如果要使目标规划实际实现值不超过目标值。
运筹学(本)_201906_模拟卷2_答案
华东理工大学网络教育学院(全部答在答题纸上,请写清题号,反面可用。
试卷与答题纸分开交)运筹学(本)_201906_模拟卷2_答案一、判断题(共5题,每题2分,共10分)1. 目标规划中正偏差变量应取正值,负偏差变量应取负值。
()(2分)( ) .★标准答案:错误2. 动态规划的维数是由决策变量的个数决定的(2分)( ).★标准答案:错误3. 在其他费用不变的条件下,随着单位存储费的增加,最优订货批量也相应增加(2分)( ).★标准答案:错误4. 用分支定界法求解一个整数规划问题,若已求得一个不违反任何整数约束的解,则停止分支(2分)( ).★标准答案:错误5. 指派问题效率矩阵的每个元素都乘上同一个不为0的常数k,将不影响最忧解。
()(2分) ( ).★标准答案:错误二、单选题(共5题,每题3分,共15分)1. Kruskal算法属于哪种思路的方法()。
(3分)A.破圈B.避圈C.智能搜索D.枚举.★标准答案:A2. 最优性原理是1951哪位数学家提出的()。
(3分)nd DoigB.BellmanC.CooperD.Dantzig.★标准答案:B3. 1931谁设计出了第一张投入产出表()。
(3分)A.ErlangB.HarrisC.ShewhartD.Leontief .★标准答案:D4. 1924年谁给出了第一张质量控制图()。
(3分)A.ErlangB.NeumannC.ShewhartD.Dantzig.★标准答案:C5. 1947年谁得到了线性规划的单纯形法()。
(3分)A.ErlangB.HarrisC.ShewhartD.Dantzig.★标准答案:D三、问答题(共5题,每题15分,共75分)1.(15分)★标准答案:2. (15分)★标准答案:3. 某农场有100公顷土地及25万元资金可用于发展生产。
农场劳动力情况为秋冬季4500人日,春夏季6000人日,如劳动力本身过剩可外出打工,春夏季收入为20元/人日,秋冬季12元/人日。
运筹学试题及答案4套
运筹学试题及答案4套《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611-2002-111/21/21407三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A41241116B2103910C8511622需求量814121448《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1503 2 7 6A275 2 360A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
运筹学试习题及答案
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
运筹学
考试安排在1月18~20日连续三天,上、下午各考一门。
每名研究生都要提出希望自己每天最多只参加一门课程考试。已知要求C课程安排在19日上午,D课程必须安排在下午考,F课的考试必须安排在B、E考试之后。要求排出一张满足上述所有要求的考试日程表。
六、(8分)
A、B、C、D、E、F分别代表陆地和岛屿,1、2、3……14表示桥梁及其编号。若河两岸分别敌对的双方部队占领,问至少应切几座桥梁(具体指出编号)才能达到阻止对方部队过河的目的,试用图论方法进行分析。(提示:以陆地为点,桥梁为弧,两点之间的桥梁数为弧的容量。)
七、(12分)
设有三个化肥厂供应四个地区的农用化肥。各化肥的年产量,各地区的需求量,化肥的运价如下表所示,请写出产销平衡运输表。
0
x3
12
2 2 1 0 0
0
x4
9
3 0 0 1 1
0
x5
8
0 2 0 0 1
σj
1 2 0 0 0
最优解表
Cj
1 2 0 0 0
CB
XB
B
x1x2x3x4x5
1
x1
2
1 0 1/2 0 -1/2
0
x4
3
0 0 -3/2 1 3/2
2
x2
4
0 1 0 0 1/2
σj
0 0 -1/2 0 -1/2
(1)求出对偶问题的最优解;
二、二、单项选择题(3×5分)
1、含有两个变量的线性规划问题若有可行解,则可行域是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,当
时,
与实际矛盾,故舍去。
解得 去。
取式(*2)进行计算
。但此时,
,
,故舍
解得在 因为
外进取得最优。此时,
。
,所以在
时, 取得最小为0。此时,
与255
/eduku/testpapershow.asp
2011-1-9
运筹学试卷 矛盾,故舍去。
[6分](7)完全图的边数为 [8分](8)(a) (b)设提前时间为
页码,5/13
从上图中可知,最优解为
。
(4)
由于可行域无界,从图中可知,目标函数无界。
[12分](2)用 表珠江牌汽车产量, 表松花江牌汽车产量, 表黄河牌汽车产量。按题意 应有
(1)
(2)
(3)
/eduku/testpapershow.asp
2011-1-9
/eduku/testpapershow.asp
2011-1-9
要求:
(a)分别列出各生产方案的多目标决策模型;
(b)对目标 和 分别求解,并在以 和 为坐标轴的直角平面坐标上标出各个方案解的相 应点;
(c)比较确定劣解、非劣解,以及是否存在最优解。
123 4
工时
A
436
5
45
B
254
330ຫໍສະໝຸດ 销售好时预期利润/(元·件-1) 8
6
10 12
556
4
/eduku/testpapershow.asp
/eduku/testpapershow.asp
2011-1-9
运筹学试卷
页码,8/13
决策变量: 表示第 季度末需新雇佣的人数( 为负数是表示解雇 人)。
状态转移方程:
指标函数: 最优指标函数:
(冬季)
所以
在
处取得极小值。
所以 当取 式时:
所以
在
处取得极小值。
1000 1460* 1020
最优进货策略为 ,每天进货2000个,利润期望值1460元。
[9分](10)(a)共有6种组织生产方案,见表
方案 选择生产的 产品
I 1,2
II 1,3
III 1,4
例如方案I的模型为
IV 2,3
V 2,4
VI 3,4
(b) 各方案的解分别为如下表所示:
方案 解
I
II
III
/eduku/testpapershow.asp
2011-1-9
运筹学试卷
经分析得到当 所以
时, 可以取得
所以 (夏季)
总比
大,而由题意可知
页码,9/13 。
所以
在
处取得极小值。
经分析得到当
时,
总比
大,而由题意可知
。
所以 (取式(*3)进行一下运算,取式(*4)进行运算见后面补充)
[8分](5)某工厂购进100台机器,准备生产 两种产品。若生产产品 ,每台机器每年可
收入45万元,损坏率为65%;若生产产品 ,每台机器每年收入为35万元,但损坏率只有 35%;估计三年后将有新的机器出现,旧的机器将全部淘汰。试问每年应如何安排生产,使在 三年内收入最多?
[15分](6)某个地方加工厂生产任务因季节性变化而颇不稳定,为了降低生产成本,合适的办 法是聘用季度合同工。但是,熟练的工人难以聘到,而新手培训费用又高,因此,厂长不想 在淡季辞退工人,不过他又不想在生产没有需要时保持高额的工资支出,同时还反对在生产 供货旺季时,让正常班的工人加班加点。由于所有业务是按客户订货单来组织生产的,也不 允许在淡季积累存货,所以关于应该采用多高的聘用工人水准问题使得厂长左右为难。
(冬季) 取式 进行计算
(秋季)
解得: (夏季)
(当
时)
/eduku/testpapershow.asp
2011-1-9
运筹学试卷 解得: 取
页码,11/13
解得: 此式,对于 小。但此时 对于 取
是单调递增函数。所以,当
与前面的假设
矛盾,故舍去。
时, 取得最
表
/eduku/testpapershow.asp
2011-1-9
运筹学试卷
页码,2/13
项目 钢材/t 劳动力/h 预期利润/元
珠江 1.5 300 2000
松花江 3.0 250 3000
黄河 5.0 400 4000
每月可供量 6000 600000
2011-1-9
运筹学试卷
页码,7/13
(d) [8分](4)(a)K-T条件可写为
求解得 (b)其等价的线性规划问题为
求解得 [8分](5)最优决策为:第一年将100台机器全部生产产品 ,第二年把余下的机器继续生产产 品 ,第三年把余下的所有机器全部生产产品 ,三年的总收入为7676.25万元。 [15分](6)阶段: 表示四个季度。 状态变量: 表示第 个季度初的人数。
已知这三种汽车生产的经济批量为月产量1000台以上,即各牌号汽车月产量或大整于1000 台,或不生产。试为该厂找出一个使总利润为最大的牛产计划安排。
[8分](3)试计算以下各函数的梯度和Hesse矩阵:
(a)
(b)
(c)
(d) [8分](4)给出二次规划:
(a)写出Kuhn-Tucker条件并求最优解; (b)写出等价的线性规划问题并求解。
[6分](7)完全图 有多少条边?
[8分](8)某场篮球比赛前来到体育馆某售票口买票的观众按普阿松分布到达,平均1人/ min,设该口售票速度服从负指数分布,平均售每张票时间为20s,试回答:
(a)如有一个球迷于比赛前2 min到达售票口,并设买到票后需1.5 min才能找到座位坐下,求 该球迷在比赛开始前找到座位坐下的概率;
[1分](2)错
二、05(10小题,共98分) [16分](1)(1)
可行域为空集,无可行解,所以问题无最优解。 (2)
由上图可知,最优解为C、E两直线的交点,即
。
(3)
/eduku/testpapershow.asp
2011-1-9
运筹学试卷
(C) 0
IV
90
90
108
75
/eduku/testpapershow.asp
V
VI
108
108
2011-1-9
运筹学试卷
页码,13/13
58.93
56.25
56.25
45
38.44
45
(c)其中方案I,III的解为非劣解,方案II,IV,V,VI的解为劣解,无最优解。
(春季)
所以
在
处取得极小值。
/eduku/testpapershow.asp
2011-1-9
运筹学试卷 经分析知,当 所以 所以
时, 可以得到
总比
大,而由题意可知
页码,10/13 。
所以 在
处取得极小值
又因为
,所以
最优解为:
可以取到,
(最优值)
故最后的最优值及最优解为上述所求。 当取式 时:
2011-1-9
运筹学试卷
销售不好时预期利润/(元·件1)
页码,4/13
============================================================================= ===============================答案========================================== 一、01(2小题,共2分) [1分](1)对
条。 为买票时间
页码,12/13
分,即球迷至少提前3.8min到达。
[8分](9)先求益损矩阵如下表:
s
p(s) A11000 A22000 A33000
s1 1000 0.3 1000
200
-600
s2 2000 0.5 1000
2000
1200
s3 3000 0.2 1000
2000
3000
期望值
[1分](2)无孤立点的图一定是连通图。
二、计算解答(10小题,共98分) [16分](1)用图解法求解以下线性规则问题
(1)
(2)
(3)
(4)
[12分](2)汉光汽车制造厂生产珠江、松花江、黄河三种牌号的汽车,已知各生产一台时的钢 材、劳动力的消耗和利润值,每月可供使用的钢材及劳动小时数如表所示。
运筹学试卷
页码,1/13
2011-2012学年第一学期运筹学期末考试试卷
班级:_______________学号:_______________姓名:_______________得分:_______________
(卷面共有12题,总分100分,各大题标有题量和总分,每小题标号后有小分) 一、判断(对错表示的)判断下列说法是否正确(2小题,共2分) [1分](1)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个 基变量的值为负;( )
经过若干年对于生产所需的劳动力情况的统计,发现在一年四季中,劳动力的需要量不得低 于下表所示的水平。
季节
春
夏
秋
冬
春
……
需求量
225
220
240
200
225
……
/eduku/testpapershow.asp
2011-1-9
运筹学试卷
页码,3/13
超过这些水平的任何聘用则造成浪费,其代价大约每季度每人为2000元。又根据估计,聘用 费与解聘费使得一个季度到下一个季度改变聘用水准的总费用是200乘上两个聘用水准之差的 平方。由于有少数人为全时聘用人员,因而聘用水准可能取分数值,并且,上述费用数据也 在分数的基础上适用。该厂厂长应该确定:每个季度应该有怎样的聘用水平,可以使总费用 达到极小?