PCB布线的一些规则
pcb布线规则及技巧
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
PCB布线的常见规则
PCB布线的常见规则1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述: 众所周知的是在电源、地线之间加上去耦电容。
尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
2、数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB 对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
3、信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。
首先应考虑用电源层,其次才是地层。
PCB布板布线规则
PCB布板布线规则1.宽度与间距要求:根据电流、信号传输等需求,确定导线的宽度和间距。
宽度过小会导致电流过载,宽度过大则会浪费空间。
而间距过小会导致干扰和电容耦合,间距过大则会浪费空间。
2.信号与电源分离:将信号和电源线路分离布线,避免信号间的干扰以及对信号产生的电磁辐射干扰。
3.地线布线:合理布置地线,确保回流电流的畅通,减小接地回路的电阻,提高电路抗干扰性能。
4.电源线协调:合理布置电源线,降低电源线的阻抗,减小电源线对信号的干扰程度。
5.信号线长度匹配:在设计中,对于相同类型的信号,尽量使其长度相等,以减小因信号到达时间不同而引起的传输延迟和干扰。
6.差分信号布线:对于差分信号传输的线路,在布线时要注意使两个信号线的长度相等,并且平行放置,以保证差模信号的均衡和抗干扰性能。
7.组件布局:根据电路的功能需求和信号距离等因素,合理布局电路上的各个元件,减小信号传输路径的长度,降低信号损耗和干扰。
8.信号层协调:在多层PCB布板中,要合理划分信号层和电源层的位置,避免信号与电源之间的串扰和干扰。
9.绕线路径合理布置:绕线时要避免直角弯道,尽量采用45度角或圆弧的方式,以减少信号的反射和串扰。
10.引脚分离:对于输入输出端口,要尽量将其分离布局,减少接口之间的干扰和串扰。
11.保持电网的连续性:在布线过程中要确保电网的连续性,避免因分割而导致电流回流困难,影响电路的性能和稳定性。
12.良好的散热设计:在布线时要充分考虑散热问题,合理布置散热元件和散热通道,确保电路的稳定工作。
总之,PCB布板布线规则是为了保证电路可靠性、抗干扰性和性能的关键要求,在布线过程中要综合考虑信号传输特性、电路功能需求以及制造工艺等因素,合理布局和布线,确保电路的性能和可靠性。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB(Printed Circuit Board)板布局布线是电路设计中的关键步骤之一,正确合理的布局布线可以保证电路的性能与稳定性。
下面将介绍一些PCB板布局布线的基本规则。
1.分离高频与低频信号:将高频与低频信号进行分离布局,以减少干扰。
高频信号线与低频信号线应尽可能平行布线,减少交叉。
2.分离模拟与数字信号:模拟与数字信号互相干扰的可能性较大,应将二者分离布局。
同时,在两者的接口处应预留地线屏蔽来降低非线性失真。
3.分层布局:将电路分布在不同的层次上,以减少干扰。
一般将模拟信号和数字信号分布在不同的层次上,并通过地平面、电源平面等层次进行电磁屏蔽。
4.自上而下布局:从信号源开始,自上而下分布。
这样可以减少信号线的长度,降低信号线的阻抗。
在布局时应尽量控制信号线的长度,避免过长导致信号衰减。
5.电源布局:电源是整个电路的基础,应尽可能靠近电源输入端布局,减少电源线路长度,降低电源线的阻抗。
同时,电源线应与信号线分离布线,避免互相干扰。
6.地线布局:地线在板布局中同样非常重要。
应尽量缩短地线的长度,减低地线的阻抗,并合理布局地线的走向,避免地线回团。
7.路径最佳化:布局时应保证信号路径的最短化,减少信号线的长度,降低信号传输时的延迟和衰减。
8.信号线与分量之间的距离:信号线与分量之间的距离尽可能短,可以减少耦合与串扰。
9.三角规则:同一面板上尽量遵循三角形规则,将相关信号线布局成三角形状,以减少互相干扰。
10.差分线布局:对于高速信号线,采用差分传输可以减少噪声和串扰。
差分信号线应尽可能平行布线,并保持等长。
11.布线层次顺序:布线时应按照信号的重要程度进行布线,先布线主干信号,再布线次要信号。
12.符号规范:在布线过程中应遵循相应的电气规范,使用适当的符号表示不同的信号。
总的来说,PCB板布局布线中的基本规则都是为了减少干扰、降低阻抗、缩短信号路径,保证电路的性能稳定性。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧
敬迎:翼彳1.一般规则
1.1PCB板上预划分数字、模拟、DAA信号布线区域。
1.2数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3高速数字信号走线尽量短。
1.4敏感模拟信号走线尽量短。
1.5合理分配电源和地。
1.6DGND、AGND、实地分开。
1.7电源及临界信号走线使用宽线。
1.8数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2.元器件放置
2.1在系统电路原理图中:
a)划分数字、模拟、DAA电路及其相关电路;
b)在各个电路中划分数字、模拟、混合数字/模拟元器件;
c)注意各IC芯片电源和信号引脚的定位。
2.2初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3初步划分完毕彳爰,从Connector和Jack开始放置元器件:
a)Connector和Jack周围留出插件的位置;
b)元器件周围留出电源和地走线的空间;
c)Socket周围留出相应插件的位置。
2.4首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a)确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;。
PCB布线规则
PCB布线规则
(1)尽可能有使干扰源线路与受感应线路呈直角布线。
(2)按功率分类,不同分类的导线应分别捆扎,分开敷设的线束间距离应为50~75mm。
(3)在要求高的场合要为内导体提供360°的完整包裹,并用同轴接头来保证电场屏蔽的完整性。
(4)多层板:电源层和地层要相邻。
高速信号应临近接地面,非关键信号则布放为靠近电源面。
(5)电源:当电路需要多个电源供给时,用接地分离每个电源。
(6)过孔:高速信号时,过孔产生1-4nH的电感和0.3-0.8pF的电容。
因此,高速通道的过孔要尽可能最小。
确保高速平行线的过孔数一致。
(7)短截线:避免在高频和敏感的信号线路使用短截线。
(8)星形信号排列:避免用于高速和敏感信号线路。
(9)辐射型信号排列:避免用于高速和敏感线路,保持信号路径宽度不变,经过电源面和地面的过孔不要太密集。
(10)地线环路面积:保持信号路径和它的地返回线紧靠在一起将有助于最小化地环。
pcb布线常用规则
布局操作的基本原则1、遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局;2、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件;3、布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分;4、相同结构电路部分,尽可能采用“对称式”标准布局;5、按照均匀分布、重心平衡、版面美观的标准优化布局;器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;6、发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件;7、元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间;8、BGA与相邻元件的距离>5mm。
其它贴片元件相互间的距离>0.7mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;9、IC去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
(电容器通过将高频信号旁路到地而实现去耦作用。
因此,数字芯片电源引脚旁边100nF即0.1uF的小电容,你可以称之为去耦电容,也可以称之为旁路电容。
去耦就是旁路,旁路不一定是去耦。
)10、不同厚度,不同宽度的铜箔的载流量见下表:注:i. 用铜皮作导线通过大电流时,铜箔宽度的载流量应参考表中的数值降额50%去选择考虑。
例如10A工作电流应按20A的载流量进行设计。
ii. 在PCB设计加工中,常用OZ(盎司)作为铜皮厚度的单位, 1 OZ铜厚的定义为1 平方英尺面积内铜箔的重量为一盎,对应的物理厚度为35um; 2OZ 铜厚为70um。
11、布线优先次序关键信号线优先:电源、摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线;密度优先原则:从单板上连接关系最复杂的器件着手布线。
PCB板布局原则布线技巧
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
pcb板布线的基本规则
pcb板布线的基本规则PCB板布线是电子设备设计中非常重要的一环,它的质量直接影响着整个电路的性能和稳定性。
为了确保布线的质量,以下是PCB板布线的一些基本规则。
一、信号线和电源线的分离在PCB板布线时,应将信号线和电源线分开布置。
这样可以避免信号线受到电源线的干扰,保证信号的传输质量。
一般情况下,信号线和电源线应分布在不同的层面,或采用不同的走线方式。
二、信号线和地线的配对布线信号线与地线之间的配对布线可以有效减小信号的串扰和电磁干扰。
在PCB板上,应尽量将信号线与地线紧密相邻,并保持平行走向,以减小信号线的回路面积和电磁辐射。
同时,还应尽量减少信号线与地线之间的交叉,避免形成环路。
三、差分信号线的布线对于差分信号线,应采用平衡布线的方式。
即将正负两个信号线以相同的长度和走线路径布置在板上,以减小信号的传输时间差和共模噪声。
此外,还应尽量减少差分信号线与其他信号线的交叉,以避免干扰。
四、高速信号线的布线对于高速信号线,应采用短、直、宽的布线方式。
短信号线可以减小信号的传输时间,直信号线可以减小信号的传输延迟,宽信号线可以增加信号的传输带宽。
此外,还应尽量减少高速信号线与其他信号线的交叉,避免干扰。
五、规避过孔和过桥在PCB板布线时,应尽量避免过孔和过桥的情况。
过孔会引起信号的串扰和电磁辐射,过桥会增加信号的传输路径和延迟。
因此,应合理规划布线路径,避免过孔和过桥的出现。
六、规避射频干扰射频信号对布线的要求非常高,容易受到干扰。
在PCB板布线时,应尽量避免射频信号线与其他信号线的交叉,减小射频信号的回路面积和电磁辐射。
同时,还应采用屏蔽罩等措施来减小射频信号的干扰。
七、保持布线的对称性在PCB板布线时,应尽量保持布线的对称性。
对称布线可以减小信号的传输差异和串扰,提高信号的稳定性和抗干扰能力。
同时,对称布线还可以减小板上的电磁辐射,提高整个电路的抗干扰能力。
总结起来,PCB板布线的基本规则包括信号线和电源线的分离、信号线和地线的配对布线、差分信号线的布线、高速信号线的布线、规避过孔和过桥、规避射频干扰、保持布线的对称性等。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB(Printed Circuit Board,印刷电路板)布局布线是电子产品设计中非常重要的一步,它决定了电路板的性能和可靠性。
下面将介绍一些PCB板布局布线的基本规则。
1.尽量规划好电路板的整体布局。
合理的整体布局可以降低电磁干扰和噪声,提高信号的可靠性。
布局过程中,需要考虑各个电路模块的电源分布、信号线的走向和电路板边缘的保留空间等因素。
2.尽量减少信号线的长度。
信号线过长会引起信号衰减、时钟偏差和串扰等问题。
因此,应尽量减少长距离信号线的使用,并将不同功能模块的信号线放在靠近彼此的位置,以缩短线路长度。
3.引脚布局要合理。
电路板上的引脚布局应遵循一定的规则,如相同功能的引脚应该靠近彼此,避免交叉连接;高频信号线和低频信号线应分开布局,以防止互相干扰;输入和输出信号一般不要使用同一个引脚。
4.电源和地线的布局要合理。
电源和地线是电路工作的基础,其布局质量直接影响整体性能。
应尽量减少电源和地线的长度,避免共享电源或地线的引脚。
此外,电源和地线的宽度也要足够,以满足电流的要求。
5.差分线路应尽量成对布线。
差分信号线路通常由两根线组成,它们相互平行,保持相同的长度和间距。
这种布线方式可以减小干扰并提高抗干扰能力。
6.避免使用尖锐的角度和过窄的宽度。
锐角和过窄的线路会增加信号的传输损耗,并增加线路的阻抗。
在布局和布线过程中,应尽量避免生成锐角,选择合适的宽度。
7.需要进行地线屏蔽的信号要有相应的地线屏蔽层。
一些对干扰非常敏感的信号线,如高频信号线和时钟信号线,需要有地线屏蔽层进行保护,防止外界干扰。
8.PCB板的散热设计。
在布局布线过程中,需要考虑板上发热器件的散热问题。
可以尽量将发热器件靠近PCB板的边缘,以方便散热或使用附加的散热设计。
9.电路板边缘的保留空间。
为了使电路板在安装时能够与其他组件或设备连接,需要在板的边缘预留一定的空间。
这个空间通常被称为边际空间,用于放置连接器、插座等。
PCB板布局原则布线技巧
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
PCB布局布线基本规则
PCB布局布线基本规则1.尽量减少电路板的层数。
每增加一层电路板的层数会增加制造成本和设计复杂度,同时也会增加信号传输的延迟。
因此,尽量保持电路简单,减少层数。
2.分离高频和低频信号。
高频信号容易受到干扰,因此应当尽量与低频信号分离。
可以采用不同的层或区域来布置高频和低频信号的元件,或者使用地平面分离高频和低频信号。
3.分割地平面和电源平面。
电路板上应该有专门的地平面和电源平面,以提供良好的电源和地引线。
这样可以减少信号线和引线的长度,降低电磁干扰。
4.保持信号线和供电线的最小间隔。
信号线和供电线之间的间隔越小,电磁干扰就越小。
因此,在布局时要尽量将信号线和供电线保持一定的距离,避免相互干扰。
5.将相互影响的元件放在一起。
相互影响的元件包括开关、驱动器、传感器等。
将它们放在相邻的位置可以减少互相作用产生的干扰。
6.避免产生环形信号线。
环形信号线会产生反射和干扰,影响信号传输稳定性。
因此,布线时应尽量避免产生环形信号线。
7.避免交叉布线。
交叉布线会产生互相干扰,影响信号传输质量。
因此,布线时应尽量避免信号线交叉。
如果无法避免,可以采用信号线层间的穿越或使用防干扰技术。
8.尽量使用直线布线。
直线布线可以减小信号的传输延迟和损耗。
此外,直线布线还可以提高电子产品的散热性能,提高整体性能。
9.保持信号线、供电线和地线的长度一致。
信号线、供电线和地线的长度一致可以减少信号的传输延迟和损耗,提高信号质量。
10.避免布线在电源和地线附近。
电源和地线附近会有较高的电磁干扰和噪声。
因此,布线时应尽量避免信号线在电源和地线附近。
以上是PCB布局布线的一些基本规则,通过遵循这些规则可以提高电路的可靠性和稳定性,减少噪声和电磁干扰,提高电子产品的整体品质。
当然,不同的电路和产品可能有更具体的规格和要求,设计者还需要根据具体情况进行布局和布线。
PCB布线规则与技巧
PCB布线规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一项工作,它决定了电路的性能和可靠性。
正确的布线可以确保信号传输的稳定性,降低噪音干扰,提高产品的工作效率和可靠性。
下面将介绍一些常用的PCB布线规则与技巧。
1.保持信号完整性:信号完整性是指信号在传输过程中不受噪音、串扰等干扰影响,保持原有的稳定性。
为了保持信号完整性,应尽量减少信号线的长度和走线面积,减少信号线与功率线、地线等的交叉和平行布线。
同时,在高速信号线上使用传输线理论进行布线,如匹配阻抗、差分信号布线等。
2.分离高频和低频信号:为了避免高频信号的干扰,应将高频信号线与低频信号线分开布线,并保持一定的距离。
例如,在布线时可以采用地隔离层将不同频率的信号线分离或者采用地隔离孔将不同频率的信号线连接到不同的地层。
这样可以减少高频信号的串扰和干扰。
3.合理布局:布线时应合理规划电路板的布局,将功率线和地线尽量靠近,以减少电磁干扰。
同时,尽量避免信号线与功率线、地线等平行布线,减少互穿引起的干扰。
在设计多层板时,还要考虑到信号引线的短暂电容和电感,尽量减小信号线长度,以减少信号传输时的延迟。
4.适当使用扩展板和跳线:在复杂的PCB布线中,有时无法直接连接到目标位置,这时可以使用扩展板或跳线来实现连接。
扩展板是一个小型的PCB板,可以将需要连接的器件布线到扩展板上,再通过导线连接到目标位置。
跳线可以直接用导线连接需要的位置,起到连接的作用。
但是,在使用扩展板和跳线时要注意保持信号完整性,尽量缩短导线长度,避免干扰。
5.优化地线布局:地线是电路中非常重要的部分,它不仅提供回路给电流,还能减少电磁干扰和噪音。
在布线时应保证地线的连续性和稳定性,地线应尽量靠近功率线,对于高频信号,还应采用充足的地平面来隔离。
同时,地线的走线应尽量短且直,减少环状或绕圈的走线。
6.合理规划电源线:电源线的布线要尽量靠近负载,减小电流环形和接地环形。
EDA技术知识pcb板设计中布线规则
EDA技术知识pcb板设计中布线规则EDA(Electronics Design Automation)技术是指利用计算机软件来辅助电子产品设计和制造的技术。
在PCB(Printed Circuit Board)板设计中,布线规则是指根据电路原理图和设计要求,在PCB板上安排电子元件的布局和相应的连线。
下面将详细介绍EDA技术在PCB板设计中的布线规则。
1.尽量短路径:布线时应尽量缩短信号路径,减少传输延迟和信号损耗。
对于高速信号,尤其需要避免长距离走线。
在布线时,可以考虑使用不同层的布线,减少信号层间的走线距离。
2.分层布线:在设计多层PCB板时,可以将不同信号类型分布在不同的层上,减少信号之间的干扰。
例如,将模拟信号和数字信号分布在不同的信号层上。
3. 地线规则:地线(GND)是电路中非常重要的信号,应尽量减小地线的阻抗。
为了实现低阻抗的地线,可以在Ground Plane(即地平面)层上分布大面积的铜排,以提供低阻抗的回流路径。
此外,地线也应尽量靠近相关信号线,以减少回流路径的长度。
4.信号线规则:在布线时,信号线的宽度和间距需要根据电流和信号的特性来选择。
对于高速信号,信号线的宽度和间距需要根据特定规则或计算公式来确定,以保证信号的完整性。
5.保持间距:在布线过程中,应注意两个电路之间的保持间距。
保持间距是指两个电路之间必须保持一定的距离,以防止电路之间的串扰或干扰。
6.避免使用90度转角:在布线时,应尽量避免使用90度的转角,因为锐角转弯会导致信号的反射和散射,影响信号的完整性。
适当采用圆弧转弯来减小信号反射。
7.分布式阻抗匹配:在高速信号的布线中,应注意保持信号线的阻抗匹配。
可以采用电感线、微带线或同轴线等技术来实现阻抗匹配。
8.防止串扰和干扰:在布线过程中,应注意信号之间的串扰和干扰。
可以采用屏蔽层、区域分隔、增加间距等手段来减少信号的串扰和干扰。
9.小信号和大信号分布:在布线时,应将小信号和大信号分开布线,以防止小信号被大信号干扰。
PCB布线基本规则
PCB布线基本规则1.分区布线法:将电路板划分为多个区域,根据电路功能的不同,将相应的器件进行分组布线。
这样做可以减少信号之间的干扰。
2.地线设计:地线是指回路的参考电平,良好的地线设计可以减少电路的噪声和互连的电磁辐射。
应尽量使用大面积的地铜,将其与电源引脚和地引脚连接。
3.信号与电源线分离:信号线和电源线应尽量分开布线,避免干扰和串扰。
一般来说,信号线与电源线之间的距离应保持在最小。
4.信号线和地线平行布线:信号线和地线的平行布线可以减少串扰和电磁辐射。
尽量使得信号线与地线的长度相同,以减小阻抗不匹配引起的问题。
5.信号线与电源线的过孔分离:过孔是将电路板的不同层连接的通道。
为了减少信号线与电源线之间的串扰和干扰,应将它们通过过孔连接的位置分开。
6.差分信号线的布线:差分信号线是指具有相反电压波形的一对信号线。
差分信号线布线要求两根线的长度相同且平行,以减少串扰和噪声。
7.高频信号线的长度控制:对于高频信号线,其长度是一个非常重要的因素。
频率越高,布线长度应控制在更短的范围内,以减小信号的传输损耗和干扰。
8.地面的铺设:在PCB布线中,应尽量铺设大面积的地面,以减小信号线与地线之间的阻抗不匹配和串扰。
9.避免导线的环形布线:布线过程中,尽量避免导线的环形布线,以减少信号传输时的噪声和反射。
10.考虑电磁兼容性(EMC):在PCB布线中,需要考虑电磁兼容性,尽量减小电磁辐射和相互干扰。
总之,良好的PCB布线设计可以提高电路的性能和可靠性,减少干扰和噪声的影响。
尽量遵循上述基本规则,可以制定出符合需求的布线策略。
需要注意的是,每个PCB设计都有其特定的要求和限制,例如电路复杂性、尺寸和功耗等,设计时应根据具体情况进行布线。
PCB设计常用规则
PCB设计常用规则1.布局规则:-尽量把信号线距离外部干扰源保持一定的距离,例如电源线或传感器线。
-确保电源和地线的位置合理,避免产生不必要的电源噪声。
-按模拟和数字信号分类,使其互相之间的交叉干扰最小化。
-有时会需要将辐射敏感部件放在较远的位置,以降低敏感部件的辐射噪声和互相干扰。
-尽量减少思路级距离,以避免布线时的冲突。
正确的放置元件和电源是设计的基础。
2.电源规则:-为模拟和数字设计分别提供独立且稳定的电源线路。
-尽量避免共地,尤其是大电流回流路径和精密模拟电路的共地。
-采用足够大的电流轨迹和电源引脚,以确保电流正常通行。
-确保地线有足够的导电面积,以减小接地的电阻。
3.信号完整性规则:-严格控制信号和层间距离,以减少信号之间的串扰。
-控制信号线的长度,在高速传输中,尽量保持信号长度的匹配性,以降低信号传输的延迟差异。
-使用正确的终端和阻抗匹配技术来降低信号波形失真。
-对于时钟线,尽可能地短并采用分布式布局,以减少时钟偏移和抖动。
4.焊盘和引脚规则:-控制软硬连板的距离,以确保焊盘的可靠性和质量。
-使用足够大的焊盘或足够的焊盘面积,以确保良好的焊接性能。
-确保SMT元件的引脚尺寸、间距和与焊盘的配对,以确保正确的组装。
5.热管理规则:-确保散热器或冷却体与芯片之间有足够的热接触面积。
-调整散热板上的负载分布,以确保散热板的温度均匀分布。
-处理高功率芯片的散热问题时,考虑加入热沉或风扇以提高散热效果。
除了上述规则外,还有其他一些更加具体的规则需要根据具体的设计需求进行调整。
例如,高频线路的规则会更严格,需要更小的封装和更短的线路,以减少信号衰减和串扰。
模拟和数字信号的传输速率不同,需要采取不同的规则来控制布线和层间距离。
各种规则的合理应用,可以提高PCB的可靠性、稳定性和性能。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
Pcb布局规则和技巧
Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。
2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。
3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。
4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。
Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。
2、以每个功能单元的核心元器件为中心,围绕他来进行布局。
元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。
3、在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。
特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。
易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。
2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。
高电压的元器件应尽量放在手触及不到的地方。
3、重量超过15G的元器件,可用支架加以固定,然后焊接。
那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。
热敏元器件应远离发热元器件。
4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pcb布线规则,布板需要注意的点很多,但是基本上注意到了下面的这此规则,LAYOUT PCB应该会比较好,不管是高速还是低频电路,都基本如此。
1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕後,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
2.6 放置数字元器件及去耦电容:a) 数字元器件集中放置以减少走线长度;b) 在IC的电源/地间放置0.1uF的去耦电容,连接走线尽量短以减小EMI;c) 对并行总线模块,元器件紧靠Connector边缘放置,以符合应用总线接口标准,如ISA总线走线长度限定在2.5in;d) 对串行DTE模块,接口电路靠近Connector;e) 晶振电路尽量靠近其驱动器件。
2.7 各区域的地线,通常用0 Ohm电阻或bead在一点或多点相连。
3. 信号走线3.1 Modem信号走线中,易产生噪声的信号线和易受干扰的信号线尽量远离,如无法避免时要用中性信号线隔离。
Modem易产生噪声的信号引脚、中性信号引脚、易受干扰的信号引脚如下表所示:3.2 数字信号走线尽量放置在数字信号布线区域内;模拟信号走线尽量放置在模拟信号布线区域内;(可预先放置隔离走线加以限定,以防走线布出布线区域)数字信号走线和模拟信号走线垂直以减小交叉耦合。
3.3 使用隔离走线(通常为地)将模拟信号走线限定在模拟信号布线区域。
a) 模拟区隔离地走线环绕模拟信号布线区域布在PCB板两面,线宽50-100mil;b) 数字区隔离地走线环绕数字信号布线区域布在PCB板两面,线宽50-100mil,其中一面PCB板边应布200mil宽度。
3.4 并行总线接口信号走线线宽>10mil(一般为12-15mil),如/HCS、/HRD、/HWT、/RESET。
3.5 模拟信号走线线宽>10mil(一般为12-15mil),如MICM、MICV、SPKV、VC、VREF、TXA1、TXA2、RXA、TELIN、TELOUT。
3.6 所有其它信号走线尽量宽,线宽>5mil(一般为10mil),元器件间走线尽量短(放置器件时应预先考虑)。
3.7 旁路电容到相应IC的走线线宽>25mil,并尽量避免使用过孔。
3.8 通过不同区域的信号线(如典型的低速控制/状态信号)应在一点(首选)或两点通过隔离地线。
如果走线只位於一面,隔离地线可走到PCB的另一面以跳过信号走线而保持连续。
3.9 高频信号走线避免使用90度角弯转,应使用平滑圆弧或45度角。
3.10 高频信号走线应减少使用过孔连接。
3.11 所有信号走线远离晶振电路。
3.12 对高频信号走线应采用单一连续走线,避免出现从一点延伸出几段走线的情况。
3.13 DAA电路中,穿孔周围(所有层面)留出至少60mil的空间。
3.14 清除地线环路,以防意外电流回馈影响电源。
4. 电源4.1 确定电源连接关系。
4.2 数字信号布线区域中,用10uF电解电容或钽电容与0.1uF瓷片电容并联後接在电源/地之间.在PCB板电源入口端和最远端各放置一处,以防电源尖峰脉冲引发的噪声干扰。
4.3 对双面板,在用电电路相同层面中,用两边线宽为200mil的电源走线环绕该电路。
(另一面须用数字地做相同处理)4.4 一般地,先布电源走线,再布信号走线。
5. 地5.1双面板中,数字和模拟元器件(除DAA)周围及下方未使用之区域用数字地或模拟地区域填充,各层面同类地区域连接在一起,不同层面同类地区域通过多个过孔相连:Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域;数字地区域和模拟地区域用一条直的空隙隔开。
5.2 四层板中,使用数字和模拟地区域覆盖数字和模拟元器件(除DAA);Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域;数字地区域和模拟地区域用一条直的空隙隔开。
5.3 如设计中须EMI过滤器,应在接口插座端预留一定空间,绝大多数EMI器件(Bead/电容)均可放置在该区域;未使用之区域用地区域填充,如有屏蔽外壳也须与之相连。
5.4 每个功能模块电源应分开。
功能模块可分为:并行总线接口、显示、数字电路(SRAM、EPROM、Modem)和DAA等,每个功能模块的电源/地只能在电源/地的源点相连。
5.5 对串行DTE模块,使用去耦电容减少电源耦合,对电话线也可做相同处理。
5.6 地线通过一点相连,如可能,使用Bead;如抑制EMI需要,允许地线在其它地方相连。
5.7 所有地线走线尽量宽,25-50mil。
5.8 所有IC电源/地间的电容走线尽量短,并不要使用过孔。
6. 晶振电路6.1 所有连到晶振输入/输出端(如XTLI、XTLO)的走线尽量短,以减少噪声干扰及分布电容对Crystal的影响。
XTLO走线尽量短,且弯转角度不小於45度。
(因XTLO连接至上升时间快,大电流之驱动器)6.2 双面板中没有地线层,晶振电容地线应使用尽量宽的短线连接至器件上离晶振最近的DGND引脚,且尽量减少过孔。
6.3 如可能,晶振外壳接地。
6.4 在XTLO引脚与晶振/电容节点处接一个100 Ohm电阻。
6.5 晶振电容的地直接连接至Modem的GND引脚,不要使用地线区域或地线走线来连接电容和Modem的GND引脚。
7. 使用EIA/TIA-232接口的独立Modem设计7.1 使用金属外壳。
如果须用塑料外壳,应在内部贴金属箔片或喷导电物质以减小EMI。
7.2 各电源线上放置相同模式的Choke。
7.3 元器件放置在一起并紧靠EIA/TIA-232接口的Connector。
7.4 所有EIA/TIA-232器件从电源源点单独连接电源/地。
电源/地的源点应为板上电源输入端或调压芯片的输出端。
7.5 EIA/TIA-232电缆信号地接至数字地。
针对模拟信号,再作一些详细说明:模拟电路的设计是工程师们最头疼、但也是最致命的设计部分,尽管目前数字电路、大规模集成电路的发展非常迅猛,但是模拟电路的设计仍是不可避免的,有时也是数字电路无法取代的,例如 RF 射频电路的设计!这里将模拟电路设计中应该注意的问题总结如下,有些纯属经验之谈,还望大家多多补充、多多批评指正!...(1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。
(2)积分反馈电路通常需要一个小电阻(约 560 欧)与每个大于 10pF 的积分电容串联。
(3)在反馈环外不要使用主动电路进行滤波或控制 EMC 的 RF 带宽,而只能使用被动元件(最好为 RC 电路)。
仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。
在更高的频率下,积分电路不能控制频率响应。
(4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。
(5)使用 EMC 滤波器,并且与 IC 相关的滤波器都应该和本地的 0V 参考平面连接。
(6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。
另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。
(7)在模拟 IC 的电源和地参考引脚需要高质量的 RF 去耦,这一点与数字 IC 一样。
但是模拟 IC 通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于 1KHz 后增加很少。
在每个运放、比较器和数据转换器的模拟电源走线上都应该使用 RC 或 LC 滤波。
电源滤波器的拐角频率应该对器件的 PSRR 拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的PSRR 。
(8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。
即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。
(9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。
(10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC 效果,而且可以减少串扰。
平衡电路(差分电路)驱动不会使用 0V 参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少 RF 辐射。
(11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。
不要使用比需要速度更快的比较器(将 dV/dt 保持在满足要求的范围内,尽可能低)。
(12)有些模拟 IC 本身对射频场特别敏感,因此常常需要使用一个安装在 PCB 上,并且与 PCB 的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。
注意,要保证其散热条件。