实验四液体粘滞系数的测定南京农业大学物理

合集下载

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定一、实验目的:1.用落球法测量不同温度下蓖麻油的粘滞系数;2.了解PID温度控制的原理;3.练习用秒表测量时间,用螺旋测微器测量直径。

二、实验器材:变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。

三、实验原理:当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。

粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。

对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。

测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。

粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。

例如对于蓖麻油,在室温附近温度每改变1˚C,粘滞系数值改变约10%。

因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。

1.落球法测定液体的粘滞系数一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式:(1)(1)式中d为小球直径。

由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有:(2)(2)式中ρ为小球密度,ρ0为液体密度。

由(2)式可解出粘滞系数η的表达式:(3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:(4)已知或测量得到ρ、ρ0、D、d、v等参数后,由(4)式计算粘滞系数η。

液体粘滞系数的测定5页

液体粘滞系数的测定5页

液体粘滞系数的测定5页第一节实验目的1. 了解粘度的概念及粘度测定的原理、方法;2. 掌握用粘度计测定液体的粘滞系数,及其测定过程;3. 熟悉不同粘度计的适用范围及精度,并掌握选取合适粘度计测定不同液体粘度的技巧。

1. 液体粘度的概念液体粘度是流体力学中的一个物理量,它表示了液体内部阻力的大小,是一种材料的特性。

2. 粘度测定原理在粘度测定中,液体在成动态流动和流体力学稳定约束流动两种情况下的粘滞系数都需要被测量。

其中,动态粘度是指流动的液体对比例于速度梯度的切应力的抵抗力,它是在动态流动条件下测量的。

粘度计的基本原理是利用切应力与切应变的比例关系(牛顿定律),通过对于液体在不同的剪切速度下的流动状态进行测定,来计算出液体的动态粘滞系数。

液体粘度的测定可以采用比较直接测量的方法,以此来获得准确的液体粘度数据。

这些方法可以被划分为动态粘度法和静态粘度法。

动态粘度法适用于液体在动态流动条件下测量其粘度,包括旋转粘度计、滑动平板粘度计等等;而静态粘度法适用于在静态条件下测量液体粘度,例如绕线粘度计、排空式粘度计等等。

4. 粘度计的选择选择适当的粘度计可以是保证准确测试结果的关键。

不同类型的液体适用于不同类型的粘度计,比如粘度极高的半固体液体,大多数情况下需要采用旋转粘度计进行测定。

此外,不同粘度计的精度和敏感度也不同,要根据实验需要选择合适的粘度计,以保证实验的精度和可靠性。

1. 实验设备准备a. 旋转粘度计;b. 滑动平板粘度计。

2. 备选液体材料准备选取不同类型的液体进行测试,例如:水、甘油、汽油、酒精等多种液体。

这些液体应涵盖不同的粘度范围,以便测试不同类型的粘度计并探究其适用范围。

(1)旋转粘度计的测定a. 用清洁的粘度计内胆,取约5ml的试样液体,精确称量并注入粘度计内胆;b. 用辅助设备将粘度计安装在粘度计底座上,注意调整好瞄准线,保证水平仪指针正中间;c. 安装好粘度计后,打开装置电源,启动电机,液体将开始旋转,粘度计刻度开始计算。

液体粘滞系数实验报告

液体粘滞系数实验报告

液体粘滞系数实验报告
液体粘滞系数实验报告
液体粘滞系数是液体与一个表面相接触时所产生的一种特殊的反作用力。

它提供有关
液体的粘度和表面能的信息,以及液体与表面接触时吸引力有多强的重要指标。

本文介绍
了实验中所使用的各种装置及相关材料,以及实验过程中所采用的方法,从而测定了液体
粘滞系数。

一、实验装置及材料
1.实验装备:实验中使用的设备包括拉力计、电动搅拌机、500ml烧瓶和水浴。

2.实验材料:实验中使用的材料包括缓冲溶液、去离子水、油脂、稀释液和胶粘剂等。

二、实验方法
1.先将水浴加热到25℃,在500ml烧瓶中加入200ml的缓冲溶液,并用电动搅拌机搅拌均匀。

2.将拉力计安装在搅拌机上,并将搅拌机设置为每秒转数250转/min。

4.将搅拌机设置为每秒转数200转/min,搅拌一段时间,然后再加入50ml的稀释液
搅拌,拉力值相应减少,产生的两个拉力值之差为油脂的粘滞系数。

三、实验结果
根据上述实验步骤,获得以下实验结果:油脂的粘滞系数为0.3654,胶粘剂的粘滞系数为0.2641。

四、结论
根据实验结果,油脂的粘滞系数比胶粘剂的粘滞系数高,可知油脂更具有较强的粘滞性。

(完整版)粘滞系数测定实验

(完整版)粘滞系数测定实验

实验 液体粘滞系数的测定当液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍液体的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。

粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度(或粘滞系数)。

对液体粘滞性的研究在流体力学,化学化工,医疗,水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘度,设计输送管道的口径。

测量液体粘度可采用落球法,毛细管法(奥氏粘滞计),转筒法等方法。

本实验根据所用方法的不同,分成两个部分,第一部分采用落球法测定变温情况下的液体(蓖麻油)粘滞系数,第二部分则是采用毛细管法测定室温下的液体粘滞系数(该方法比较适合用于生物医学应用,比如测量血液的粘度)。

实验一 落球法测变温液体的粘滞系数落球法(又称斯托克斯法)适用于测量粘度较高的液体。

一般而言,粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。

例如对于蓖麻油,在室温附近温度改变C 1︒,粘度值改变约10%。

因此,测定液体在不同温度的粘度有很大的实际意义,欲准确测量液体的粘度,必须精确控制液体温度。

实验中,小球在液体中下落的时间可用秒表来测量。

一、实验目的1.用落球法测量不同温度下蓖麻油的粘度。

2.了解PID 温度控制的原理。

3.练习用秒表计时,用螺旋测微计测量小球直径。

二、实验原理在稳定流动的液体中,由于各层的液体流速不同,互相接触的两层液体之间存在相互作用,流动较慢的液层阻滞着流动较快的液层运动,所以产生流动阻力。

实验证明:若以液层垂直的方向作为x 轴方向,则相邻两个流层之间的内磨擦力f 与所取流层的面积S 及流层间速度的空间变化率xv d d 的乘积成正比: S d d f x v ••η= (1) 其中η称为液体的粘滞系数,它决定液体的性质和温度。

粘滞性随着温度升高而减小。

如果液体是无限广延的,液体的粘滞性较大,小球的半径很小,且在运动时不产生旋涡,那么,根据斯托克斯定律,小球受到的粘滞力f 为:v r f •••=ηπ6 (2) 式中η称为液体的滞粘系数,r 为小球半径,v 为小球运动的速度。

液体的黏滞系数的测定

液体的黏滞系数的测定
• 2.玻璃仪器、用具易碎,用时应小心。 • 3.注意爱惜停表,防止撞击或摔落地面。 • 4.水流过程中,毛细管内不得夹有气泡;若记时前,毛细管内有气泡
而不下流,可将水约注满柱状容器,然后用K轻轻挤压,即可畅流。 • 5.实验过程中,应善于发现是否有杂质微粒将毛细管部分堵塞,以防
影响应有流量;如有发现,应及时找指导教师予以排除。
• 2.以袖珍读数显微镜分别在不同位置的互垂方向测 量毛细管两端样品的直径各四次,然后求其平均值。
• 3.将测得数据代入(26.5)式,分别求出不同温度下的 黏滞系数。
• 4.将与经验公式(26.2) 式计算的结果进行比较,求定 值误差。
注意事项
• 1.由于与液体纯度有很大关系,因此实验用黏滞计及所用容器预先均 用重铬酸钾在浓硫酸中的饱和溶液(即洗液)浸洗过,并反复冲洗,故实 验中应注意防止仪器用具的污染,保持其洁净,用后随时注意盖上橡胶 塞及将烧杯倒置。
袖珍读数显微镜
1.将被测物置于物镜(3)的两倍焦距上,使 其在物镜像侧两倍焦距上成尺寸与待测量 相等的物像,然后再由目镜(1)放大倍进行 观测; 2.首先调节目镜,使刻在镜片上的标尺及 可移动的准线成像清晰; 3.上下移动待测物至清晰地成像; 调节螺旋测微装置(4),使准线与待测长度 的一端重合,并记录此时的读数 d1 ; 4.单方向调节测微器手轮(4),直至准线移 至与待测物的另一端重合,设读数为 d 2 , 则待测长度 D d2 d1 。
液体的黏滞系数的测定
内容
1
实验目的
2
实验仪器Leabharlann 3实验原理4
实验内容
5
注意事项
6
数据处理
实验目的
• 了解黏滞现象的基本规律及黏滞系数的 测定方法;

实验液体粘滞系数的测定

实验液体粘滞系数的测定

实验液体粘滞系数的测定一、实验介绍气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

而粘性液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。

现代医学发现,许多心脑血管疾病与血液粘滞系数有关,血液粘滞会使流入人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病。

所以,血液粘滞系数的大小成了人体血液健康的重要标志之一,对于粘滞系数的测定和分析就具有非常重要的现实意义。

通常测定液体粘滞系数的方法有很多,如落球法、落针法、比较法等等。

本实验采用奥氏粘度计测量酒精的粘滞系数。

奥氏粘度计是利用比较法制成的,适用于测定液体的比较粘滞系数,即两种不同液体都采用此仪器测量,如果其中一种液体的粘滞系数已知,则通过就可获得另一种液体的粘滞系数。

此仪器是测量液体粘滞系数的常用仪器。

二、实验目的1.掌握用奥氏粘度计测定粘性流体的粘滞系数.2.了解泊肃叶公式的应用。

3.了解比较法的好处.三、实验器材奥氏粘度计、温度计、秒表、洗耳球、量筒、量杯、刻度移液管(滴定管)、蒸馏水、酒精等。

四、实验原理气体和液体统称为流体。

若流体各层之间作相互运动时,相邻两层间有内摩擦力存在,则将具有此性质的流体称为粘性流体。

现实中,酒精、甘油、糖浆之类的流体都是粘性流体。

粘性流体的运动状态有层流(laminar flow)、湍流(turbulent flow)。

所谓层流,即流体的分层流动状态。

当流体流动的速度超过一定数值时,流体不再保持分层流动状态,而有可能向各个方向运动,即在垂直于流层的方向有分速度,因而各流体层将混淆起来,并有可能形成湍流,湍流显得杂乱而不稳定,这样的流动状态称为湍流。

对于粘性流体在流动时相邻流层之间的内摩擦力又称为粘性力。

并且根据牛顿粘滞定律,粘性力f的大小与两流层的接触面积S以及接触处流层间的速度梯度dsdx成正比,具体有如下关系式:ds f S dxη= (1) 式中,比例系数η称为流体的粘度。

粘滞系数实验报告

粘滞系数实验报告
在桌上,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。
(2)用量筒量取10ml水并注入粘度计粗管中。用洗耳球将水吸入细管刻度C上。
(3)松开洗耳球,液面下降,同时启动秒表,在液面经过刻度D时停止秒表,记下时间t。
、(4)重复步骤(2)、(3)测量6次,取 平均值。
为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计,采用比较法进行测量。
用一种以质量度系数的液体和一种粘滞系数待测的液体,设它们的粘滞系数分别为 和 ,令同体积的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管,分别测出他们所需的时间 和 ,两种液体的密度分别为 、 。则
(3)
(4)
ρ水=0.99802×103kg/m3ρ酒=0.78806×103kg/m3
η水=0.984×10-3pa/sη标=1.179×10-3pa/s
用公式(5)计算得出η实=1.171×10-3pa/s
相对误差E=(η实-η标)/η标×100%=0.07%
六、误差分析:
1.量取的水和酒精的体积不完全相同。
式中 为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同
样的过程,所以由(3)式和(4)式可得:
(5)
如测出等量液体流经毛细管的时间 和 ,根据已知数 、 、 ,即可求出待测液体的粘滞系数。
三、实验仪器:1.奥氏粘度计2.铁架及试管夹3.秒表4.温度计
5.量筒6.小烧杯1个7.洗耳球
2.奥氏粘度计中可能残留少量的水。
3.奥氏粘度计不能完全垂直水平面。
4.酒精的密度与理论值有相差。
七、思考题:
1、控制变量,使压强相同。
2、控制温度相同。
3、毛细管里的水由于重力原因下滑,实验测的是水在两条刻度之间流过的时间。如果倾斜那重力会有分力产生,影响所测的结果。

液体粘滞系数的测定

液体粘滞系数的测定

实验四 液体粘滞系数的测定液体的粘滞系数是表征液体黏滞性强弱的重要参数,在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数,准确测量这个量在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。

例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。

测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法(也称斯托克斯法)是最基本的一种,它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。

【预习思考题】1. 什么是液体的粘滞性?2. 金属小球在粘滞性流体中下落时,将受到哪些力的作用?3. 液体的粘滞系数与那些因素有关?【实验目的】1. 观察液体中的内摩擦现象。

2. 掌握用落球法测液体粘滞系数的原理和方法。

3. 学习和掌握一些基本测量仪器(如游标卡尺、螺旋测微计、比重计、秒表)的使用。

【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力Array即为粘滞阻力。

它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作用力。

不同的液体这种不同液层之间的相互作用力大小是不相同的。

所以粘滞阻力除与液体的分子性质有关外,还与液体的温度、压强等有关。

液体的内摩擦力可用粘滞系数 η来表征。

对于一个在无限深广的液体中以速度 v 运动的半径为 r 的球形物体,若运动速度较小,即运动过程中不产生涡旋,则根据斯托克斯(G.G. Stokes)推导出该球形物体受到的摩擦力即粘滞力为f = 6πηvr (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力 f、向上的液体浮力 F和向下的重力 G,如图 1 所示。

球体受到液体的浮力可表示为F = σg4πr3/3 (2)上式中 σ 为液体的密度,g为本地的重力加速度。

大学物理实验必备的优秀实验报告5液体粘滞系数的测定

大学物理实验必备的优秀实验报告5液体粘滞系数的测定

液体粘滞系数的测定 实验目的(1) 观察液体的内摩擦现象,了解小球在液体中下落的运动规律。

(2) 用多管落球法测定液体粘滞系数。

(3) 掌握读数显微镜及停表的使用方法。

(4) 学习用外延扩展法获得理想条件的思想方法。

(5) 用作图法及最小二乘法处理数据。

实验方法原理液体流动时,各层之间有相对运动,任意两层间产生等值反向的作用力, 称其为内摩擦力或粘滞力f , f 的方向沿液层接触面,其大小与接触面积S 及速度梯度成正比,即dx dv S f η=当密度为ρ的小球缓慢下落时,根据斯托克斯定律可知,小球受到的摩擦阻力为vd f πη3=小球匀速下落时, 小球所受的重力ρvg,浮力ρo vg,及摩擦阻力f 平衡,有d v g )(V o o πηρρ3=− ()d v g d o o πηρρπ3613=− oo v gd )(182ρρη−= 大量的实验数据分析表明t 与d/D 成线性关系。

以t 为纵轴,d/D 为横轴的实验图线为一直线,直线在t 轴上的截距为t o ,此时为无限广延的液体小球下所需要的时间,故 t L v o= 实验图线为直线,因此有 ax t to += 可用最小二乘法确定a 和t 0的值。

实验步骤(1) 用读数显微镜测钢珠的直径。

(2) 用卡尺量量筒的内径。

(3) 向量筒内投入钢球,并测出钢球通过上下两划痕之间距离所需要的时间。

(4) 记录室温。

数据处理5 1.3101.305 18.96 26.28 6.88 1.3041.30161.3081.304 14.26 26.34 9.141.3061.298用最小二乘法计算t o01.26=t0527.0=x37.1=xt000328.02=x29.2000328.00527.037.101.260527.02−=−−×=asto01.260527.0)29.2(89.25=×−−=smmtLvoo61.4==smkgvgdo⋅×=−=−/1037.118)(32ρρη1. 用误差理论分析本实验产生误差(测量不确定度)的主要原因。

液体粘滞系数的测定

液体粘滞系数的测定

液体粘滞系数的测定在稳定流动的液体中,由于各层液体的流速不同,在相邻两层流体之间存在相对运动而产生切向力,流速快的一层给流速慢的一层以拉力,流速慢的一层给流速快的层以阻力,液层间的这一作用称为内摩擦力或粘滞力,流体这一性质称为粘滞性。

液体的粘滞性在液体(例如石油)管道输送以及医药等方面都有重要的应用。

现代医学发现,许多心脑血管疾病与血液粘度有关,血液粘滞会使流人人体器官和组织的血流量减少、血流流速减缓,使人体处于供血和供氧不足的状态中,可能引发多种心脑血管疾病,所以,血粘度大小成了人体血液健康的重要标志之一。

实验证明,粘滞力f 的大小与两液层间的接触而积△s 和该处的速度空间变化率dyd υ(常称为速度的梯度)的乘积成正比,即 s dyd f ∆=υη (5—1) 式(5-1)就是决定流体内摩擦力大小的粘滞定律,式中的比例系数η称为液体的内摩擦系数或粘滞系数。

它决定于液体的性质和温度,在润滑油选择、液压传动以及液体质研究等很多方面是一项主要技术指标,其国际制单位是:“帕斯卡·秒”(Pa·s )。

[实验目的](1)用落针法测定液体的粘度。

(2)熟悉各仪器的使用方法。

[实验仪器]本仪器采用落针法测量液体粘度(粘滞系数),既适于牛顿液体,又适于非牛顿液体,还可测量液体的密度。

实验中使中空细长圆柱体(针)在待测液体中垂直下落,通过测量针的收尾速度,确定粘度。

本仪器采用霍尔传感器和多功能毫秒计(单片机计时器)测量落针的速度,并可自动计算后将粘度显示出来。

巧妙的取针装置和投针装置,使测量过程极为简便。

仪器由本体、落针、霍尔传感器、单片机计时器和恒温控制等部分组成。

见下图: 如图5-1,待测液体(例如蓖麻油)装在被玻璃恒温水套包围的玻璃圆筒容器中,圆筒竖直固定在机座上,机座底部有调水平的螺丝,机座上竖立一个铝合金支架。

其上装有霍尔传感器、提针装置(未画出)。

装在液体容器顶部的盖子上有投针装置发射器,它包括喇叭形的导杯和带永久磁钢的拉杆。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的1、了解用落球法测定液体粘滞系数的原理和方法。

2、掌握游标卡尺、千分尺、秒表等仪器的使用方法。

3、学会数据处理和误差分析。

二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和粘滞阻力的作用。

在小球下落速度较小的情况下,粘滞阻力可以表示为:\(F = 6\pi\eta r v\)其中,\(\eta\)是液体的粘滞系数,\(r\)是小球的半径,\(v\)是小球下落的速度。

当小球下落时,重力减去浮力等于粘滞阻力,即:\(mg \rho Vg = 6\pi\eta r v\)其中,\(m\)是小球的质量,\(\rho\)是液体的密度,\(V\)是小球的体积。

当小球下落达到匀速时,加速度为零,速度不再变化,此时有:\(mg \rho Vg = 6\pi\eta r v_{0}\)其中,\(v_{0}\)是小球匀速下落的速度。

设小球的密度为\(\rho_{0}\),半径为\(r\),质量\(m =\frac{4}{3}\pi r^{3}\rho_{0}\),体积\(V =\frac{4}{3}\pi r^{3}\),则可得:\(\eta =\frac{\left( \rho_{0} \rho \right) g r^{2}}{18 v_{0}}\)通过测量小球匀速下落的速度\(v_{0}\)、小球的半径\(r\)、液体的密度\(\rho\)和小球的密度\(\rho_{0}\),就可以计算出液体的粘滞系数\(\eta\)。

三、实验仪器1、粘滞系数测定仪:包括玻璃圆筒、调平螺丝、激光光电门等。

2、小钢球:若干个。

3、游标卡尺:用于测量小球的直径。

4、千分尺:用于更精确地测量小球的直径。

5、电子秒表:用于测量小球下落的时间。

6、温度计:用于测量液体的温度。

7、镊子:用于夹取小球。

8、纯净水、酒精等不同液体。

四、实验步骤1、调节粘滞系数测定仪水平:通过调节底座的调平螺丝,使玻璃圆筒处于竖直状态,确保小球能够沿直线下落。

液体粘滞系数的原理和测量

液体粘滞系数的原理和测量

液体粘滞系数的原理和测量液体粘滞系数是一个描述液体内部流动阻力的物理量。

它是指单位面积上液体层与相邻层之间的粘滞应力与液体层流动速度梯度之比。

粘滞是指在流动过程中,液体分子之间相互作用引起的内部摩擦阻力。

当液体流动时,由于近层液体粒子与远层液体粒子之间的相互作用力,近层粒子受到远层粒子的牵引,使其速度增加。

在相邻层之间,液体内部存在速度梯度,即速度随距离的变化。

液体粘滞系数的测量方法有多种,下面将介绍几种常用的方法。

一、平板式法测量液体粘滞系数平板式法是通过在液体中夹入平板,通过测量平板下落过程中的速度来求解液体粘滞系数。

实验装置主要包括液体槽、平板和测量设备。

首先将液体倒入槽中,然后将平板缓慢地插入液体中,开始计时,当平板进入液体后,即停止计时,记录下这个时间。

根据牛顿黏滞定律,我们可以获得平板下落过程中的速度。

通过实验测量得到的数据,可以计算出液体的粘滞系数。

二、毛细管法测量液体粘滞系数毛细管法是在液体中将毛细管插入一定深度,并测量液柱高度和时间关系来求解液体粘滞系数。

首先通过调节进口控制阀进入合适的液体流量,使毛细管中液面维持稳定,然后记录下毛细管中液面的高度和时间。

通过实验测量得到的数据,可以计算出液体的粘滞系数。

三、旋转杯法测量液体粘滞系数旋转杯法是利用液体在旋转杯中产生的离心力和摩擦力来测量液体的粘滞系数。

实验装置主要包括旋转杯、电机和测力装置。

首先,将被测液体注入旋转杯中,然后通过电机驱动旋转杯旋转,测力装置测量旋转杯的转矩。

通过测力装置测得的数据,可以计算出液体的粘滞系数。

通过以上三种常用的方法,我们可以测量液体粘滞系数,进而了解液体的粘滞特性。

液体粘滞系数的测量对于工业生产和科学研究都具有重要意义。

在工业领域中,液体粘滞系数的测量可以用于衡量液体的黏稠度,从而确定液体在输送、泵送和混合等过程中的流动性能。

在科学研究中,液体粘滞系数的测量可以用于研究液体的流变学特性,从而推断液体分子结构和力学性质的变化。

液体粘滞系数的测量

液体粘滞系数的测量

电子秒表手动测量时 U L 1mm 激光计时器自动测量时 U L 0.5mm
粘滞系数 的不确定度为:
U1 1 (
U


) 2 4(
Ud d
)2 (
Ut t1
1
)2 (
UL L
)2
1.045 (
0.02 2 0.002 103 2 0.01 2 1.0 103 2 2 ) ( ) ( ) ( ) 6.906 103 2.492 103 8.52 17.45 102
F
6 rv
(1)
上式称为斯托克斯公式,其中 r 是小球的半径; 称为液体的粘度,其单位是 Pa s 。 小球开始下落时,由于速度尚小,所以阻力也不大;但随着下落速度的增大,阻力也随之增大。 最后,三个力达到平衡,即
m g

gV 6 vr
于是,小球作匀速直线运动,由上式可得:
项目
次数
1 2.498 2.496 2.497
2 2.497 2.498 2.498 8.46 9.78
5 2.496 2.497 2.498 8.37 9.83
平均
钢球直径 d(mm) 秒表计时 t1 (s) 计数器计时 t 2 (s)
2.497
8.53 9.93
8.52 9.85
六、数据处理与实验结果 1、秒表计时的数据处理
1.036 0.032 0.033 0.04( Pa s)
所以: 2 2 U 1.04 0.04( Pa s )
2
【实验注意事项】 1. 读温度时不要将温度计提出瓶外 2. 小钢球沾上蓖麻油后,未用小毛巾擦干净前,禁止丢入导管内。 3. 实验结束后,用磁铁一次性将钢球全部吸出,而后擦干净放回,中途不得吸取小球。 4. 实验中不要碰玻璃桶,否则要重新调整。

液体粘滞系数的测量

液体粘滞系数的测量

液体粘滞系数的测试液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘滞系数,它是表征液体粘滞性强弱的重要参数。

液体的粘滞系数和人们的生产,生活等方面有着密切的关系,比如医学上常把血粘滞系数的大小做为人体血液健康的重要标志之一。

又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘滞系数。

测量液体粘滞系数可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘滞系数较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。

本实验用落球法测量蓖麻油的粘滞系数。

【预习思考题】1.为何要对公式(4)进行修正?2.如何判断小球在液体中已处于匀速运动状态? 3.影响测量准确度的因素有哪些?【实验原理】以下阐述落球法测量液体粘滞系数的基本原理。

处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg (m 为小球质量)、液体作用于小球的浮力gV ρ(V 是小球体积,ρ是液体密度)和粘滞阻力F (其方向与小球运动方向相反)。

如果液体无限深广,在小球下落速度v 较小情况下,有rv F πη6= (1)上式称为斯托克斯公式,其中r 是小球的半径;η称为液体的粘滞系数,其单位是Pa·s 。

小球在起初下落时,由于速度较小,受到的阻力也就比较小,随着下落速度的增大,阻力也随之增大。

最后,三个力达到平衡,即r v gV mg 06πηρ+= (2)此时,小球将以0v 作匀速直线运动,由(2)式可得:rv g V m 06)(πρη-=(3)令小球的直径为d ,并用'36ρπd m =,t lv =0,2d r =代入(3)式得ltgd 18)(2'ρρη-= (4)其中'ρ为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。

大学物理液体粘滞系数的测定

大学物理液体粘滞系数的测定

大学物理液体粘滞系数的测定1、试分析选用不同密度和半径的小球作此试验,对实验结果η的误差影响在特定液体中,因为粘度一定,则当小球半径减小时,收尾速度也减小,反之增大。

当小球密度增大时,收尾速度也会增大。

2、实验中引起测量误差的主要因素有哪些?(系统误差:操作过程中存在仪器误差偶然误差:在测量过程中,由人的感官灵敏及仪器精密限制产生的误差过失误差:由于明显地歪曲了测量结果产生的误差)或(人为因素(误读、误算、视差)量具因素(实验前未对螺旋测微计零点校正)力量因素(测量小球直径时的拧紧程度不同,度数偏差))3、在特定溶液中,当小球半径减小时,其下降的收尾速度如何变化?当小球密度增大时,又将如何变化?在特定溶液中,当小球半径减小时,其下降的收尾速度减小;小球密度增大,其下降的收尾速度增大4、在温度不同的同种液体中,同一小球下降的收尾速度是否相同?为什么?不相同,温度不同的同种液体中,粘滞系数不同,故小球所受的阻力也不同,所以下降的收尾速度也不同【实验原理公式】20()1= 2.4 3.318112gd t d d L D h ρρη-⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭【实验内容及步骤】12.测钢珠匀速下落的距离(钢板尺=0.5mm ∆仪) L = ± mm (单次测量值±∆仪) 3.测量筒内径(游标卡尺=0.02mm ∆仪)D =± mm (单次测量值±∆仪) 4.测量筒内液体高度(钢板尺=0.5mm ∆仪)h = ±mm (单次测量值±∆仪)5.实验室给出:33=7.77510kg /m ρ⨯ 330=1.26410kg /m ρ⨯ 2g 9.804m/s = 【数据处理】1.钢珠直径:d = mmd σ== mm=0.0005mm ∆仪d u = mm d d d u =±= ± mm 2.钢珠匀速下落时间:t = st σ== t=0.01s ∆仪 t u = s()s=t t t u =± ± s3.20()1=18 2.4 3.3112gd t d d L D h ρρη-⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭= Pa s ⋅(代入D 、L 、h 、d 时要化成国际单位m )4.E η== (求导不考虑系数 2.4 3.3112d d D h ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭)5.U E ηηη== Pa s ⋅6.=U ηηη±= ± Pa s ⋅。

液体粘滞系数实验报告

液体粘滞系数实验报告

一、实验目的1. 理解液体粘滞系数的概念及其在流体力学中的重要性。

2. 掌握落球法测定液体粘滞系数的原理和实验步骤。

3. 通过实验,加深对斯托克斯定律的理解,并验证其在实际应用中的准确性。

二、实验原理液体粘滞系数是表征液体粘滞性的一个物理量,其大小反映了液体流动时内部分子间摩擦力的大小。

本实验采用落球法测定液体粘滞系数,其原理基于斯托克斯定律。

斯托克斯定律指出,当一球形物体在无限宽广的液体中以速度v运动,且不产生涡流时,所受到的粘滞阻力F与速度v成正比,与球体半径r的平方成正比,与液体粘滞系数η成反比。

具体公式如下:F = 6πηrv其中,F为粘滞阻力,η为液体粘滞系数,r为球体半径,v为球体运动速度。

当球体在液体中下落时,受到三个力的作用:重力mg、浮力f和粘滞阻力F。

当球体达到终端速度v0时,这三个力达到平衡,即:mg = f + F将斯托克斯定律中的粘滞阻力代入上式,得到:mg = f + 6πηrv0由于浮力f = ρgV,其中ρ为液体密度,V为球体体积,将浮力表达式代入上式,得到:mg = ρgV + 6πηrv0化简得:v0 = (2ρgV / 9πηr)由此,通过测量球体的半径、液体密度和终端速度,可以计算出液体的粘滞系数。

三、实验仪器与材料1. 球形钢球(直径约5mm)2. 玻璃圆筒(内径约20mm,高度约30cm)3. 温度计4. 秒表5. 液体(水、甘油等)6. 精密天平四、实验步骤1. 准备实验装置,将玻璃圆筒放置在水平桌面上,确保圆筒竖直。

2. 在圆筒内加入待测液体,液面高度约为圆筒高度的一半。

3. 用天平测量球形钢球的质量,记录数据。

4. 用游标卡尺测量球形钢球的直径,记录数据。

5. 用温度计测量液体温度,记录数据。

6. 将球形钢球轻轻放入圆筒内,开始计时,记录球体达到终端速度时所用时间t。

7. 重复步骤6,至少测量3次,取平均值作为实验结果。

五、数据处理与结果分析1. 根据实验数据,计算球体体积V = (4/3)πr³。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

一、实验目的1. 理解液体粘滞系数的概念及其物理意义;2. 掌握使用落球法测定液体粘滞系数的原理和方法;3. 学会运用斯托克斯公式进行计算;4. 提高实验操作技能和数据处理的准确性。

二、实验原理液体粘滞系数是指液体在流动过程中,分子之间相互作用的内摩擦系数。

根据斯托克斯公式,当一个小球在无限广阔的液体中以恒定速度下落时,所受到的粘滞阻力F与液体的粘滞系数η、小球的半径r和小球下落速度v有关,公式如下:F = 6πηrv当小球达到收尾速度v0时,重力、浮力和粘滞阻力达到平衡,即:mg = 4/3πρrbg + 6πηrv0其中,m为小球的质量,ρ为液体的密度,g为重力加速度,r为小球的半径,ρr 为小球体积,bg为液体浮力系数。

通过测量小球在液体中下落的时间t和距离L,可计算出小球的收尾速度v0,进而求得液体的粘滞系数η。

三、实验仪器1. 落球法液体粘滞系数测定仪:包括油筒、计时器、电磁铁等;2. 游标卡尺:用于测量小球直径;3. 温度计:用于测量液体温度;4. 秒表:用于测量小球下落时间;5. 量筒:用于盛放待测液体。

四、实验步骤1. 将待测液体倒入油筒中,确保油筒内液体高度适中;2. 用游标卡尺测量小球的直径,重复测量3次,取平均值;3. 将小球置于电磁铁上,确保小球位于油筒中心;4. 启动计时器,释放小球,记录小球通过特定距离L所需时间t;5. 重复步骤4,至少测量3次,取平均值;6. 用温度计测量液体温度;7. 计算小球的收尾速度v0和液体的粘滞系数η。

五、实验数据及结果实验数据:小球直径d = 2.00 cm(平均值)下落时间t = 3.00 s(平均值)液体温度T = 25.0℃实验结果:小球的收尾速度v0 = 0.25 m/s液体的粘滞系数η = 0.85 Pa·s六、实验分析1. 通过本次实验,我们成功测定了液体的粘滞系数,验证了斯托克斯公式的正确性;2. 在实验过程中,注意了油筒内液体高度、小球直径和温度的测量精度,确保了实验结果的准确性;3. 通过多次测量和计算,提高了实验数据的可靠性。

液体粘滞系数测定实验

液体粘滞系数测定实验

液体粘滞系数的测量与研究一 实验目的1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。

2.学习用落球法测定液体的粘滞系数。

3.熟练运用基本仪器测量时间、长度和温度。

4.掌握用外推法处理实验数据。

二 实验仪器液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。

三 实验原理当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。

粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。

粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。

根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为vd f πη3= (1)式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。

η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。

本实验应用落球法来测量液体的粘滞系数。

小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力r gV 、浮力r 0gV 、粘滞阻力f 。

开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。

由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。

经计算可得液体的粘滞系数为2018)(v gd ρρη-=(2) 式中0ρ是液体的密度,ρ是小球的密度,g 是当地的重力加速度。

可见,只要测得v 0,即可由(2)式得到液体的粘滞系数。

但是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方法的设计,这些条件大多数都可以满足或近似满足(结合本实验所用仪器和实验步骤,思考一下哪些条件被满足,是如何做到的),唯独“无限广延”在实验中是无法实现的。

液体粘滞系数的测量

液体粘滞系数的测量
在生物学领域,粘滞系数对于研究血液流动、细胞运动等方面具有重要意义,对于 医学诊断和治疗提供参考依据。
02 粘滞系数的基本概念
牛顿流体和非牛顿流体
牛顿流体
遵循牛顿粘性定律的流体,剪切应力 与剪切速率成正比,不受时间影响。
非牛顿流体
不遵循牛顿粘性定律的流体,其粘滞 特性与剪切速率、时间等因素有关。
实验记录纸和笔
用于记录实验数据和结果。
05 实验步骤和操作
实验步骤
测量管清洗
确保测量管内无残留物,保持 清洁。
记录数据
在液体开始流动时,启动计时 器,并记录液体流经测量管的 时间。
准备实验器材
包括测量管、测量尺、计时器、 待测液体等。
液体注入测量管
将待测液体缓慢注入测量管, 确保无气泡产生。
重复实验
07 结论和建议
结论
液体粘滞系数是描述液体流动特性的重 要参数,其测量对于了解流体的物理性 质、优化工业流程和解决工程问题具有
重要意义。
液体粘滞系数的大小受温度、压力和液 体种类等因素的影响,因此测量时应控
制这些变量以确保结果的准确性。
测量液体粘滞系数的方法有多种,如落 球法、旋转法和振动法等,每种方法都 有其适用范围和局限性,应根据具体情
03 测量粘滞系数的方法
落球法
总结词
简单易行,但精度较低
详细描述
落球法是通过测量小球在液体中下落的速度来计算粘滞系数。这种方法简单易 行,但精度较低,因为小球下落过程中受到的阻力不仅包括粘滞阻力,还包括 表面张力和惯性力等。
旋转法
总结词
精度较高,但设备复杂
详细描述
旋转法是通过测量液体在旋转轴周围产生的切向力来计算粘滞系数。这种方法精 度较高,但需要使用较为复杂的设备,如转矩计和旋转台。

液体粘滞系数的测定

液体粘滞系数的测定

液体粘滞系数的测定在流动的液体中,各流体层的流速不同,则在相互接触的两个流体层之间的接触面上,形成一对阻碍两流体层相对运动的等值而反向的摩擦力,流速较慢的流体层给相邻流速较快的流体层一个使之减速的力,而该力的反作用力又给流速较慢的流体层一个使之加速的离,这一对摩擦力称内摩擦力或粘滞阻力,流体的这种性质称为粘滞性。

不同流体具有不同的粘度,同种流体在不同的温度下其粘度的变化也很大。

测定粘度在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。

从实验中得到的粘滞定律:粘滞力f 的大小与所取流体层的面积S ∆和流体层之间的速度空间变化率dr du 的乘积成正比,即drdu s f ∆=η。

其中η为粘滞系数(也称内摩擦系数),它决定于液体的性质和温度,对液体而言,它随温度的升高而迅速减少。

η的国际单位:s Pa ⋅但是根据粘滞定律直接测量难度很大,一般都采用间接测量的方法。

测量液体粘滞系数的方法有很多种,如常用的落球法、落针法、转叶法。

本实验是用变温落针计测量液体在不同温度下的粘度系数。

中空长圆落针在待测液体中垂直下落,通过测量针的收尾速度确定粘度。

采用霍尔传感器和多功能秒表计测量落针的速度,并将粘度显示出来。

对待测液体进行水浴加热,通过温控装置,达到预定的温度。

巧妙的取针和提针装置,使测量过程极为简单。

本实验既适用于牛顿液体,又适于非牛顿液体,还可测定液体密度。

【实验目的】1. 用落针法测液体的粘度系数。

2. 研究液体粘度系数在不同温度下的变化规律。

【实验仪器】PH--IV 型变温粘度器、落针图1 实验仪器实图【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力即为粘滞阻力。

它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作用力。

不同的液体这种不同液层之间的相互作用力大小是不相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四液体粘滞系数的测定一、实验目的:1.用落球法测量不同温度下蓖麻油的粘滞系数;2.了解PID温度控制的原理;3.练习用秒表测量时间,用螺旋测微器测量直径。

二、实验器材:变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。

三、实验原理:当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。

粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。

对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。

测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。

粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。

例如对于蓖麻油,在室温附近温度每改变1˚C,粘滞系数值改变约10%。

因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。

1.落球法测定液体的粘滞系数一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式:(1)(1)式中d为小球直径。

由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有:(2)(2)式中ρ为小球密度,ρ0为液体密度。

由(2)式可解出粘滞系数η的表达式:(3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:(4)已知或测量得到ρ、ρ0、D、d、v等参数后,由(4)式计算粘滞系数η。

在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米·克·秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:1Pa·s = 10P =1000cP(9)2.PID调节原理PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图4-1说明。

假如被控量与设定值之间有偏差e(t)=设定值-被控量,调节器依据e(t)及一定的调节规律输出调节信号u(t),执行单元按u(t)输出操作量至被控对象,使被控量逼近直至最后等于设定值。

调节器是自动控制系统的指挥机构。

在我们的温控系统中,调节器采用PID调节,执行单元是由可控硅控制加热电流的加热器,操作量是加热功率,被控对象是水箱中的水,被控量是水的温度。

PID调节器是按偏差的比例(proportional),积分(integral),微分(differential),进行调节,其调节规律可表示为:(10)式中第一项为比例调节,K P为比例系数。

第二项为积分调节,T I为积分时间常数。

第三项为微分调节,T D为微分时间常数。

PID温度控制系统在调节过程中温度随时间的一般变化关系可用图4-2表示,控制效果可用稳定性,准确性和快速性评价。

系统重新设定(或受到扰动)后经过一定的过渡过程能够达到新的平衡状态,则为稳定的调节过程;若被控量反复振荡,甚至振幅越来越大,则为不稳定调节过程,不稳定调节过程是有害而不能采用的。

准确性可用被调量的动态偏差和静态偏差来衡量,二者越小,准确性越高。

快速性可用过渡时间表示,过渡时间越短越好。

实际控制系统中,上述三方面指标常常是互相制约,互相矛盾的,应结合具体要求综合考虑。

由图4-2可见,系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定,产生超调的原因可从系统惯性,传感器滞后和调节器特性等方面予以说明。

系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。

传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。

对于实际的控制系统,必须依据系统特性合理整定PID参数,才能取得好的控制效果。

由(10)式可见,比例调节项输出与偏差成正比,它能迅速对偏差作出反应,并减小偏差,但它不能消除静态偏差。

这是因为任何高于室温的稳态都需要一定的输入功率维持,而比例调节项只有偏差存在时才输出调节量。

增加比例调节系数K P可减小静态偏差,但在系统有热惯性和传感器滞后时,会使超调加大。

积分调节项输出与偏差对时间的积分成正比,只要系统存在偏差,积分调节作用就不断积累,输出调节量以消除偏差。

积分调节作用缓慢,在时间上总是滞后于偏差信号的变化。

增加积分作用(减小T I)可加快消除静态偏差,但会使系统超调加大,增加动态偏差,积分作用太强甚至会使系统出现不稳定状态。

微分调节项输出与偏差对时间的变化率成正比,它阻碍温度的变化,能减小超调量,克服振荡。

在系统受到扰动时,它能迅速作出反应,减小调整时间,提高系统的稳定性。

PID调节器的应用已有一百多年的历史,理论分析和实践都表明,应用这种调节规律对许多具体过程进行控制时,都能取得满意的结果。

四、仪器介绍1. 落球法变温粘度测量仪变温粘度仪的外型如图4-3所示。

待测液体装在细长的样品管中,能使液体温度较快的与加热水温达到平衡,样品管壁上有刻度线,便于测量小球下落的距离。

样品管外的加热水套连接到温控仪,通过热循环水加热样品。

底座下有调节螺钉,用于调节样品管的铅直。

2.开放式PID温控实验仪温控实验仪包含水箱,水泵,加热器,控制及显示电路等部分。

本温控试验仪内置微处理器,带有液晶显示屏,具有操作菜单化,能根据实验对象选择PID参数以达到最佳控制,能显示温控过程的温度变化曲线和功率变化曲线及温度和功率的实时值,能存储温度及功率变化曲线,控制精度高等特点,仪器面板如图4-4所示。

开机后,水泵开始运转,显示屏显示操作菜单,可选择工作方式,输入序号及室温,设定温度及PID参数。

使用键选择项目,键设置参数,按确认键进入下一屏,按返回键返回上一屏。

进入测量界面后,屏幕上方的数据栏从左至右依次显示序号,设定温度,初始温度,当前温度,当前功率,调节时间等参数。

图形区以横坐标代表时间,纵坐标代表温度(以及功率),并可用键改变温度坐标值。

仪器每隔15秒采集1次温度及加热功率值,并将采得的数据标示在图上。

温度达到设定值并保持两分钟温度波动小于0.1度,仪器自动判定达到平衡,并在图形区右边显示过渡时间ts,动态偏差σ,静态偏差e。

一次实验完成退出时,仪器自动将屏幕按设定的序号存储(共可存储10幅),以供必要时查看,分析,比较。

3.秒表PC396电子秒表具有多种功能。

按功能转换键,待显示屏上方出现符号且第1和第6、7短横线闪烁时,即进入秒表功能。

此时按开始/停止键可开始或停止记时,多次按开始/停止键可以累计记时。

一次测量完成后,按暂停/回零键使数字回零,准备进行下一次测量。

五、实验内容与步骤1.检查仪器后面的水位管,将水箱水加到适当值平常加水从仪器顶部的注水孔注入。

若水箱排空后第1次加水,应该用软管从出水孔将水经水泵加入水箱,以便排出水泵内的空气,避免水泵空转(无循环水流出)或发出嗡鸣声。

2.设定PID参数若对PID调节原理及方法感兴趣,可在不同的升温区段有意改变PID参数组合,观察参数改变对调节过程的影响,探索最佳控制参数。

若只是把温控仪作为实验工具使用,则保持仪器设定的初始值,也能达到较好的控制效果。

3.测定小球直径用螺旋测微器测定小球的直径d,将数据记入表1中。

表1 小球的直径4. 测定样品管的内径D用游标卡尺测量样品管的内径D,将数据记入表2中,测三次取平均值。

表2 样品管的内径D5.测定小球在液体中下落速度并计算粘滞系数温控仪温度达到设定值后再等约10分钟,使样品管中的待测液体温度与加热水温完全一致,才能测液体粘滞系数。

用镊子夹住小球沿样品管中心轻轻放入液体,观察小球是否一直沿中心下落,若样品管倾斜,应调节其铅直。

测量过程中,尽量避免对液体的扰动。

用秒表测量小球落经一段距离的时间t,并计算小球速度v0,用(4)式计算粘滞系数η,记入表3中。

表3中,列出了部分温度下粘滞系数的标准值,可将这些温度下粘滞系数的测量值与标准值比较,并计算相对误差。

将表3 中η的测量值在坐标纸上作图,表明粘滞系数随温度的变化关系。

实验全部完成后,用磁铁将小球吸引至样品管口,用镊子夹入蓖麻油中保存,以备下次实验使用。

表3 粘滞系数的测定ρ = 7.8×103kg/m3ρ0= 0.95×103kg/m3附录小球在达到平衡速度之前所经路程L的推导由牛顿运动定律及粘滞阻力的表达式,可列出小球在达到平衡速度之前的运动方程:(1)经整理后得:(2)这是1个一阶线性微分方程,其通解为:(3)设小球以零初速放入液体中,代入初始条件(t=0, v=0),定出常数C并整理后得:(4)随着时间增大,(4)式中的负指数项迅速趋近于0,由此得平衡速度:(5)(5)式与正文中的(3)式是等价的,平衡速度与粘滞系数成反比。

设从速度为0到速度达到平衡速度的99.9%这段时间为平衡时间t0,即令:(6)由(6)式可计算平衡时间。

若钢球直径为10-3m,代入钢球的密度ρ,蓖麻油的密度ρ0及40 ºC时蓖麻油的粘滞系数η= 0.231 Pa·s,可得此时的平衡速度约为v0 = 0.016 m/s,平衡时间约为t0 = 0.013 s。

平衡距离L小于平衡速度与平衡时间的乘积,在我们的实验条件下,小于1mm,基本可认为小球进入液体后就达到了平衡速度。

相关文档
最新文档