大学物理下册答案 西北大学出版社 范中和 王晋国

合集下载

大学物理2课后习题答案.docx

大学物理2课后习题答案.docx

解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。

为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。

大学物理学(第4版)下册答案

大学物理学(第4版)下册答案

0, E
4π 3 r内
2
r
(r
r内 )
3

E
3 2 4π 0 r
r
3 .48 10 N C , 方向沿半径向外.
4
1
r
12 cm时 , 4π
3
q
3
4π 3 r内
( r外
3
r内)
3

E
3 2 4π 0 r
r外
4 .10 10
4
N C
1
沿半径向外 .
9.12 -
半径为
R1 和 R2 ( R2 > R1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 r < R1 ; (2) R1 < r < R2 ; (3) q
s
E dS
q
0
立方体六个面,当 ∴ 各面电通量
q 在立方体中心时,每个面上电通量相等 q
e
6

0
(2) 电荷在顶点时,将立方体延伸为边长
2a 的立方体,使 q 处于边长 2 a 的立方体中心,则
边长 2a 的正方形上电通量
q
e
6
0
对于边长
a 的正方形,如果它不包含
q 所在的顶点,则
q
e
24

0
如果它包含 q 所在顶点则
r
2
,当被考察的场点距源点电荷很近 ?
(r → 0) 时,则场强→
∞,这是没有物理意义的,对此应如何理解
解:
E
q 4 π 0r
2
r0 仅对点电荷成立,当
r
0 时,带电体不能再视为点电荷,再用上式求
考虑电荷在带电体上的分布求出的场强不会是

《大学物理学》习题解答

《大学物理学》习题解答

大学物理学习题解答陕西师范大学物理学与信息技术学院基础物理教学组2006-5-8说明:该习题解答与范中和主编的《大学物理学》各章习题完全对应。

每题基本上只给出了一种解答,可作为教师备课时的参考。

题解完成后尚未核对,难免有错误和疏漏之处。

望使用者谅解。

编者2006-5-8第2章 运动学2-1 一质点作直线运动,其运动方程为222t t x -+= , x 以m 计,t 以s 计。

试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ∆ (2)本题需注意在题设时间内运动方向发生了变化。

对x 求极值,并令022d d =-=t tx可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。

分段计算m 1011=-===t t x x x ∆, m 4)1()3(2-==-==t x t x x ∆路程为 m 521=+=x x s ∆∆2-2 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=。

试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=∆x x x(2)由0612d d 2=-=t t tx可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=∆x x x ,m 40242-=-=∆x x x所以,质点在最初4 s 时间间隔内的路程为 m 4821=∆+∆=x x s2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -⎪⎭⎫⎝⎛-+=,其中m/s 100.33⨯=u 是喷出气流相对于火箭体的喷射速度, s /105.73-⨯=b 是与燃烧速率成正比的一个常量。

大学物理学教程(第二版)下册标准答案

大学物理学教程(第二版)下册标准答案

物理学教程下册答案9-16第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8若电荷Q均匀地分布在长为L的细棒上.求证:(1) 在棒的延长线,且离棒中心为r处的电场强度为224π1LrQεE-=(2) 在棒的垂直平分线上,离棒为r处的电场强度为2204π21LrrQεE+=若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x,其电荷为d q=Q d x/L,它在点P 的电场强度为rrqεeE2dπ41d'=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则 ()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x eE θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 r ελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27 图第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A)N上的负电荷入地(B)N上的正电荷入地(C)N上的所有电荷入地(D)N上所有的感应电荷入地题10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关。

大学物理2课后习题答案.docx

大学物理2课后习题答案.docx

解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。

为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。

《大学物理学》第二版下册习题解答

《大学物理学》第二版下册习题解答

第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。

西北大学出版社 大学物理(范中和版) 第十三章

西北大学出版社 大学物理(范中和版) 第十三章

13-1答:物体由于具有温度而辐射电磁波的现象。

13-2 答: 能够全部吸收各种波长辐射而完全不发生反射的和透射的物体称为绝对黑体,简称黑体。

13-3 答: 不透明的红色物体在太阳光下,且在室温状态下,物体在单位时间内辐射的能量很少,而且辐射波谱大多分布在波长较长的区域,红光的波长较长,所以红色物体在太阳光下呈红色;如升高它的温度并放于黑暗处,它将辐射橙光。

13-4 答: 为了推导普朗克公式M (v, T )dv=23/81hv eT v hvdv c e π-,普朗克作了如下两条假设:(1)黑体是由带电谐振子组成(即把组成空腔壁的分子,原子的振动看作线性振子)这些振子辐射电磁波,并和周围的磁场交换能量。

(2)这些谐振子的能量不能连续变化,只能取一些分立值,这些分立值是最小能量的整数倍,即,2,3,...,...n εεεεn 为正整数,而且假设频率为υ的谐振子的最小能量为ε=h υ称为能量子。

意义:普朗克的能量子假设,突破了经典物理学的观念,第一次提出了微观粒子具有分立的能量值,打开了人们认识世界的大门,在物理学发展史上起了划时代的作用。

13-5 答:低于6000K ,应为黑体是理想模型,它不发生反射和透射,而红巨星不是黑体,不可避免的要发生反射和透射,所以温度要低于6000K.13-6 答:三者温度均为T ,所以三者的能量相同,哪个物体的表面积越大,它的辐射功率就越小,对于球:s=4πr 2 对半球s=2πr 2+ πr 2=3πr 2对立方体s=6r 2∴球的辐射功率最小,立方体的辐射功率最大。

13-7 答:(1)光谱是线状的,谱线有一定位置(2)谱线间有一定的关系(3)每一谱线的波数都可以表达为二光谱项之差v =T(m)-T(n)13-8 答: 氢原子从高能态向低能态跃迁辐射能量,从低能级向高能级跃迁吸收能量。

对于氢原子n E =-2422202(4)me n hππε 2424322222220022(4)3(4)2me me E E E h h πππεπε'∆=-=-+ 即2422052.36(4)c meE hh πλπε'∆=='22024(4)3652h hc me πελπ'∴=⋅⋅2424312222220022(4)3(4)1me me E E E h h πππεπε''∆=-=-+2422032236(4)c me E h hπλπε''∴∆==⋅'' 22024(4)36322h hc meπελπ''∴=⋅⋅ ∴它辐射到第二激发态时,辐射光具有波长最长,激发到第一激发态,波长最短。

《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案文库

《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案文库

经典电视剧搞笑对白默认分类 2008-04-12 17:48:16 阅读558 评论0 字号:大中小订阅我们浪费掉了太多的青春,那是一段如此自以为是、又如此狼狈不堪的青春岁月,有欢笑,也有泪水;有朝气,也有颓废;有甜蜜,也有荒唐;有自信,也有迷茫。

我们敏感,我们偏执,我们顽固到底地故作坚强;我们轻易的伤害别人,也轻易的被别人所伤,我们追逐于颓废的快乐,陶醉于寂寞的美丽;我们坚信自己与众不同,坚信世界会因我而改变;我们觉醒其实我们已经不再年轻,我们前途或许也不再是无限的,其实它又何曾是无限的?曾经在某一瞬间,我们都以为自己长大了。

但是有一天,我们终于发现,长大的含义除了欲望,还有勇气、责任、坚强以及某种必须的牺牲。

在生活面前我们还都是孩子,其实我们从未长大,还不懂爱和被爱。

巴拉万先生已经很不高兴了,那么大笔款子跟人欧洲调来调去,下不了崽儿净听故事,我都不好意思跟人家见面了。

你们唬弄别的洋鬼子我不管,巴拉万先生不合适,人那么热爱中国,要拨了奶子汽车人家给了,咱都是有身份的人,你们要是有难处,我给赵办李办打电话!(大妈:见天一通电话呀,不带重样的,这瘸子到底是干什么的?答:2国务院瘸办的负责人)这馆子忒小啊!不错!看什么菜谱啊,你们这都有什么呀?我们这有海参有大虾。

没劲最不爱吃这个了!那还有肉丸子蹄筋黄花鱼,忒俗气了老吃这个都吃腻了。

那你们想吃什么吧?炒豆角闷扁豆烧茄子。

时令菜一概没有想吃家吃去。

小馆子是不灵,什么都不全。

想好了叫我。

等会儿,还是我来吧,咱凑合点得了。

来个京酱肉丝,熘肉片,青椒肉丝,黄闷鸡块儿,再来个火爆腰花。

得嘞全是下饭的菜,给我来二斤米饭再来三瓶啤酒。

一共78!还8干吗呀?70得了!那不行!不是,这干吗呀?我来!别别别,我来吧!我来我来我来。

(摸口袋,翻包)咱们还来这套啊?不是,我来我来我来。

方言付钱!不是,不合适这是兄弟的地盘。

爱谁谁谁;孙子蒙你;你怎么还这德行啊;没这么踩乎人啊,这是社会主义国家,人民当家作主,我们说了算;滚蛋,没你这样的啊;小心看眼里拔不出来啊;这可是解放区的天一年土二年洋,三年不认爹和娘;十亿人民九亿侃,还有一亿在发展;狗咬尿泡空欢喜;雄纠纠气昂昂跨过咸菜缸;苍天无眼,小人当道,时运不济,怀才不遇;我日他个姐,俺没嫖娼是娼嫖俺;这都是哥们玩剩下的;哥哥祖上搁明朝就是锦衣卫的干活;属桃的皮烂肉不烂算白活;掏掏灰扑落扑落脏刷遍漆,扣上美地因拆那,全当新的卖咯——许逊,学董存瑞,摔他——你就是学黄继光也没戏——许逊,快学小兵张嘎里的胖墩儿,咱急了咬他——哟呵,土豆烧熟了,再加牛肉,不须放屁,试看天地翻覆你是我手里的风筝没有我你怎么能独自翱翔你是要文斗还是武斗我他妈要文攻武卫别毁人家了你就是将来我们祖国和民族的希望我们就是注定那个所谓垮掉的一带千村薜荔人遗矢,万户萧疏鬼唱歌。

北邮大版大学物理(下册)课后习题答案解析

北邮大版大学物理(下册)课后习题答案解析

大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解? 解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos rp E r εθ= 垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 2220)(d π4d x a xE E ll P P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021lr E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220lr ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220lr rl r l r l E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan =α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r rq q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R q R q 0π41ε=O U )3(R q R q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR qU +=ε ∴ ()i xR qxi x U E 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--= ∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 S q261==σσS qd U 2032-=-=εσσSqd U 2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+== )2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E ==∴ r D Dεσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(Srd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2= (1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε= 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C += 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4rrQ E ε = 3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则 02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理第五版下 课后答案 ~

大学物理第五版下 课后答案 ~
x = Acos(ωt ) + ϕ 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、
加速度的表达式,代入 t 值后,即可求得结果.
解 (1) 将 x = 0.10 cos(20πt + 0.25π)(m) 与 x = Acos(ωt + ϕ ) 比较后可得:振幅 A =
0.10m,角频率 ω = 20π s−1 ,初相ϕ =0.25 π ,则周期 T = 2π / ω = 0.1 s ,频率 v = 1/T Hz .
时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.
题 9-10 图
分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看
是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b)所示的坐标.设
系统平衡时物体所在位置为坐标原点 O,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴,
x − t 、 v − t 及 a − t 图如图所示.
9-7 若简谐运动方程为 x = 0.10 cos(20πt + 0.25π)(m) ,求:(1) 振幅、频率、角频率、
周期和初相;(2) t = 2s 时的位移、速度和加速度.
分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式
动的初相位为(
3 (A) π
2

1 (B) π
2
(C) π
(D) 0
分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差
是 π(即反相位).运动方程分别为 x1
=
Acosωt 和 x2 =
A cos(ωt + π).它们的振幅不同.对

大学物理学习指南答案-下册

大学物理学习指南答案-下册

第11章 静电场【例题精选】例11-1 (见书上) 例11-2()22300(428qd qdR R d R πεππε-或),从O 点指向缺口中心点例11-3 D 例11-4 D 例11-5 B例11-6 0/2σε, 向右; 03/2σε, 向右; 0/2σε, 向左 例11-7 (见书上)【练习题】11-1 B 11-2 0/d λε,220(4)d R d λπε-,沿矢径OP11-3 0/Q ε,0205180Q Rπε和r11-4 B11-5 【解】(1)作与球体同心,半径r <R 的高斯球面S 1。

球体内电荷密度ρ随r 变化,因此,球面S 1内包含的电荷214()d ro Q r r r πρ=⎰。

已知的电荷体密度ρ(r ) =kr ,根据高斯定理:11d s o Q Φε=⋅=⎰E S , 230144d rr o E r k r r ππε⋅=⎰,可求得球体内任意点的场强:24r o r E k ε=,r <R 。

(2)作与球体同心、半径r >R 的球面S 2,因R 外电荷为零,故S 2内的电荷Q 2=Q 总,根据高斯定理:1231d 44d Rrs oEr k r r Φππε=⋅=⋅=⎰⎰E S ,得球体外任意一点的场强:4204r R E k r ε=,r >R 。

11-6 0/(2)σε-,03/(2)σε11-7 【解】两同轴圆柱面带有等量异号电荷,则内外电荷线密度分别为λ和-λ。

电场分布具有轴对称性。

(1)建立半径1r R <的同轴高斯柱面,设高为h 。

高斯柱面内无电荷分布。

1d 20SE rh π⋅=⋅=⎰E S ,则,10E=(1r R <)(2)建立12R r R <<的同轴高斯柱面,设高为h 。

高斯柱面内包含电荷。

柱面的上下底面无电场分布,电场均匀分布在侧面。

20d 2Sh E rh λπε⋅=⋅=⎰E S ,则,202E rλπε=(12R r R <<) (3)建立半径2r R >的同轴高斯柱面,设高为h 。

大学物理第二版下册答案

大学物理第二版下册答案

0. 65
可知 A 与 B 振动系统的振动表达式为: x 0. 0447 cos( 10 t 0 .65 ) m
大学物理第二版下册答案
(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:
Mm
x OO A
g A 0 .1447 m
k
则最大拉力
F max k x 72 .4 N
8-6 解: (1) 已知 A=0.24m,
(1)
k
(1) A 物体共受三力;重 mg, 支持力 N, 张力 T.不计滑轮质量时,有
T=kx 列出 A 在任一位置 x 处的牛顿方程式
mg sin
T mg sin
2
dx k (l 0 x) m 2
dt
将( 1)式代入上式,整理后得
d2x k
2
x0
dt m
故物体 A 的运动是简谐振动,且
k 7 ( rad/s )
定理可知:
m u
Mm
不计摩擦,弹簧压缩过程中系统机械能守恒,即:
2.0 ( m/s)
1 (M
2
2
m )u
12 kx 0
2
( x0 为弹簧最大形变量)
Mm
2
x0
u 5 .0 10 m
k
由此简谐振动的振幅
2
A x 0 5 .0 10
系统圆频率
k Mm
40 ( rad/s)
大学物理第二版下册答案
若取物体静止时的位置 O(平衡位置)为坐标原点, Ox 轴水平向右为正,则初始条件为: t=0 时, x=0, 0 u 2 .0 m/s 0
2
2
a A cos
2
0 .60 5

物理学(第五版)下册答案

物理学(第五版)下册答案

物理学(第五版)下册答案量E=1/2kA^2,动能K=E-2p=1/2kA^2-kA^2=-1/2kA^2,因为动能为负数,所以振动不可能通过平衡位置。

___:1.判断一个振动是否为简谐振动的方法是,观察质点离开平衡位置的位移x随时间t变化的规律,如果遵从余弦函数或正弦函数,则该质点的运动为简谐振动。

简谐振动的运动学方程为x=Acos(ωt+φ)。

2.从动力学的角度来看,简谐振动是指物体在线性回复力作用下在平衡位置做周期性往复运动。

其动力学方程为d^2x/dt^2=-ω^2x。

3.简谐运动的三要素是振幅、周期和初相位。

其中振幅和初相位由初始条件决定,周期由振动系统本身的性质决定。

选择题:1.C。

2.A。

3.B填空题:1.平衡,最大位置,±π/2;2.6,2;-π/2;3.π,1.5s,3s。

计算题:1.解答:(m1+m2)u=m2v,kA=(m1+m2)u^2,A=sqrt(2(m1+m2)k/u),ω=sqrt(k/(m1+m2)),φ=π/2.2.解答:(1) 振动方向如图所示,(2) 相位差Δφ=φd-φa=3π/2-π/4=5π/4,Δt=1s,ω=Δφ/Δt=5π/4,所以振动方程为x=Acos(5π/4t-π/6)。

3.解答:(1) ω=sqrt(k/m),T=2π/ω=2πsqrt(m/k),(2) 动量守恒m1v1+m2v2=(m1+m2)v,解得v=(m1v1+m2v2)/(m1+m2),由能量守恒E=1/2kA^2=1/2(m1+m2)v^2,解得A=sqrt(2E/k),代入式子得x=sqrt(2E/k)cos(sqrt(k/(m1+m2))t)。

4.答案:(1) A=0.02m,ω=π/2,所以ν=ω/2π=1/4 Hz,T=1/ν=4s,φ=-π/3;(2) 势能Ep=kx^2/2,总能量E=Ep+Ek=1/2kA^2,动能Ek=E-Ep=-1/2kA^2,因为Ek为负数,所以振动不可能通过平衡位置。

西北大学出版社 大学物理(范中和版) 第三章

西北大学出版社 大学物理(范中和版) 第三章

3-1 答:是。

3-2 答:速度矢量指向北;如图所示。

3-3 答:ωβ与同号时是加速转动;ωβ与异号时是减速转动。

3-4 答:因为刚体平动时,刚体上各点的运动规律均相同。

3-5 答:否;否。

3-6 答:不可以;可以。

3-7 答:○1质量主要集中在 的轮子的动能较大; ○2同○1 ○3质量主要集中在转轴附近的轮子转得快。

3-8 答:作用结束后,转得较快的是熟的,转得较慢的是生的;因为生的鸡蛋的转动惯量较大。

(依据:角动量定理)3-9 答:因为摩擦力的作用点在力的方向上不发生位移,故摩擦力的功为零,故据机械能守恒可得:小球到达斜面下端的速率是相同的。

(即:()221122m r J mgh ωω+=) 3-10 答:角动量守恒;它们的角速度不改变。

题3-2一、选择题:3-1 解:据转动惯量的定义有: 220mJ r dm mr ==⎰显然与质量分布是否均匀无关。

故选(C )3-2 解:分别选12,m m M 和为研究对象,则受力分析、运动状态分析分别如图所示。

2121m m T T >∴>故应选(C )3-3 解:据卫星对地心的角动量守恒及质点动能定理可知,选(E ) 3-4 解:因β=常量,,t v r rt ωβωβ===,据2,n v dva a r d ττ==可知:选(C )3-5 解:因沿水平方向棒与子弹组成的系统不受外力矩作用。

故系统的角动量守恒,所以选(C )3-6 解:两种情况分别如图所示。

G T ma mr β-== ○1 Tr J β= ○2 Gr J β'= ○3 联解○1、○2并与○3的解相比较,可知:选(C ) 二、填空题:3-7 解:选择质量为m 、2m 和质量为零的直杆组成的系统为研究对象,则该系统的受力分析,运动状态分析如图所示,则该系统只能视为刚体。

据刚体定轴转动定理及力矩的定义有:12222l l M mg mg mgl =-= ○1 22[2]22l l M J m m ββ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭○2 联解○1、○2可得:23glβ= 3-8 解:选择转台与人组成的系统为研究对象,则在人由转台中心跑到距转台中心2m 时的过程中,系统对轴的角动量守恒,即:0J J mr r ωωω''=+其中,根据题意:()201200,,2,5J kg m rad s r m πω===80m kg =(or 60kg )02JJ mr ωω'∴=+3-9 解:据定轴转动定理有: d M Jdtω-= ○1 2M k ω= ○2 即:2d k JJ dt ωωβ-== → ()2019k rad s J βω-=- 0221t d k dt J d k dt Jk t Jωωωωωωωωω-=-==⎰⎰11kt Jωω-=→ ()00112J J t s k k ωωω⎛⎫=-= ⎪⎝⎭3-10 解:据角动量定义L r mv =⨯有:10L r mv =⨯=2L r mv mvd =⨯=3-11 解:选择杆与子弹组成的系统为研究对象,则据受力分析可知,在子弹射入并嵌在杆中的过程中,系统对过杆端O 的水平轴的角动量守恒,即:2022[]33mv L J m L ω⎛⎫=+ ⎪⎝⎭解之可得:()634mv M m L ω=+三、计算题:3-12 解:分别以圆盘和两质量均为m 的物体为研究对象。

大学物理第四版下册课后题答案

大学物理第四版下册课后题答案

大学物理第四版下册课后题答案大学物理第四版下册课后题答案习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-?=q ,B 点上有电荷C 108.492-?-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:11204ACq E irπε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=?+?;C 点的合场强:22412 3.2410VE E E m =+=?,方向如图: 1.8arctan33.73342'2.7α===。

11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-?的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12l r d m π=-=,∴电荷线密度:911.010q C m l λ--==??可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。

解法1:利用微元积分:21cos 4O x Rd dE Rλθθπε=,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==≈?=?10.72V m -=?;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==?,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'==??=?。

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。

大学物理下册课后答案 超全超详细

大学物理下册课后答案 超全超详细

第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。

A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。

然后使该球壳与地接触一下,再将点电荷+q 取走。

此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。

充电后,两极板间相互作用力为F 。

则两极板间的电势差为 ;极板上的电荷为 。

C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 .选择题 9—1(D )9—2 ( B ) 注:易知由半球面进入的磁感线必与底面出去的磁感线相等,故只需计算通过底面的磁通量。

9—3(B )注:单匝线圈中心的磁感强度公式为:现R IB 20μ=在半径变为2倍,电流变为21磁矩公式为:NISM =匝数成为原来的2倍,面积为原来的41。

9---4(A )9---5(C )注:大平板产生的磁感强度为平板面向里,则用右手定则易判断。

二.填空题9---6 22m B RπΦ=-;注:通过曲面S 的磁通量与通过圆面的磁通量大小相等,差一负号。

9---7 0;注;大弧 A A 与 A A 小弧所产生的磁感强度抵消。

9---9 安培环路; 磁感应强度叠加。

三.计算题9---11(a )解:由:毕奥—萨伐尔定理得:204r r l Id B d ⨯=πμ任一处l Id 方向与0r 垂直故有:RI R Idl B R 84021020μπμ==⎰方向垂直纸面向外9—11 (b) 解:长直导线在O 点产生的磁感应强度为:RIB πμ201-= 方向垂直纸面向外· 圆弧电流在O 点产生的磁感应强度为:RIB 202μ= 方向垂直纸面向里O 点产生总的磁感应强度为:21B B B += 即:RIRIB πμμ2200-=方向垂直纸面向里9—11(c ) 解:由对称性可知,电流流过两个半无限长导线时,在O 点产生磁感应强度大 小相等,方向相反圆弧电流在O 点产生的磁感应强度为:⎰==πμθπμ230001834R Id I B 方向垂直纸面向里 两半长直导线在O 点产生的磁感应强度为:()2102c o s c o s 4θθπμ-=xIB R x 22;45;00201===θθ得:()RIB πμ41202-= 方向垂直纸面向里 O点产生总的磁感应强度为:()RI RIB B B πμμ2128320021-+=+= 方向垂直纸面向里 9—12 解:D 点的磁感应强度由AB,BC 两段指导线和圆弧电路产生的圆弧电路产生的磁感应强度:⎰⎰=⨯=πθπμπμ2300200144d a I r r l Id B aI830μ=方向垂直纸面向里 AB 段在D 点产生的磁感应强度:⎰=402cos 42πθπμd b B b I πμ820= 方向垂直纸面向里同理可得BC 段在D 点产生的磁感应强度 :bI B πμ8203=D 点产生总的磁感应强度为:321B B B B ++= aIb I B 834200μπμ+=方向垂直纸面向里 9—13 解:将柱面分成无数条细导线,则电流线密度为:I dI R π=由对称性知: 0y B =在任意一点产生的磁感应强度:R dI dB πμ20=所以:整个柱面在任意一点产生的磁感应强度:R I Rd R I R B 2000sin 2πμθθππμπ==⎰ 9—14 解:将圆盘看成许多同心圆,圆的表面密度:2R qπδ=圆盘以ω转动时,相应元电流为:2222R qrdr R q rdr dI πωπωππ=⋅=磁矩为:220241qR R q rdr r m Rωπωπ=⋅=⎰9---15 解:由右手螺旋定则知两通电指导线在边长为a 的正方形回路产生的磁场方向相同 由:xIB πμ20=得: 左边:bab I a adx x I ab b+==Φ⎰+ln2200πμπμ 右边:b a c bc I a x dx I a bc ba c ---==Φ⎰---ln 2200πμπμ 穿过回路的磁通量为:ba c bc I a b a b I a ---++=Φln 2ln 200πμπμ 9---16 解:由电流分布具有轴对称性,其产生的磁场分布也具有轴对称性取以轴线为圆心半径为r 的圆环为积分环路 由 安培环路定理:I U l d B 0=⎰取以轴线为圆心半径为r 的圆环为积分环路 ()Rr <时22012r RIr B ππμπ= r RIB 2012πμ=()R r >时 I r B 022μπ= rIB πμ202= 所以:通过该矩形面磁通量为:2ln 24220020020πμπμπμπμI I dr r I rdr R I RRR+=+=Φ⎰⎰ 9---17 解:由安培环路定理,取以轴线为圆心半径为r的圆环为积分环路不挖空P 处的磁感应强度为: I r B 15163201μπ=⋅ Ir B 1516601πμ=挖空P 处的磁感应强度为 :I r r B 151413202μπ=⎪⎭⎫ ⎝⎛-⋅ r I B πμ165202= P 点的磁感应强度为1B ,2B 相减:rIB B B πμ49582021=-=则所受的磁场力为:ev rIBqv F πμ495820== 方向向左9---18 解:由于v 与B 成夹角α进入磁场,可将速度v 分解为平行与磁场和垂直磁场两个分量1v ,2v 其大小为:αcos 1v v = ,αsin 2v v = 又:在垂直于磁场方向上电子作匀速圆周运动 ,由洛仑兹力提供向心力有:()Rv mBqv 2sin sin αα=斜进入与垂直进入磁场有一样周期为:BqmT π2=所以:Bqmv T v h απαcos 2cos ==9---19 解:设电子运动速度为v ,由αcos Tv h = (1) 又:BqmT π2=(2) 螺旋半径为:qBmv R αsin = (3) 由(1)(2)(3)式得:⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=22222R h B m e v π=17106.7-⋅⨯s m磁场的方向:由T v h αcos = 得:Tvh =αcos =0.36所以磁场的方向为:与水平方向上夹角为arccos0.36 9---20 解:由几何关系 ()222R l R -=得:()l R 12-=又:Bqm v R =得:()l mBqm RBq v 12-==所以:电子速度不应超过:()l mBq12-9---21 解:线圈磁矩m 的大小2IR IS m π==方向垂直纸面向外m 和B 的夹角为2πθ= 根据磁场对称性线圈的力矩为:B m M⨯=即:B IR mB M 2sin πθ== 竖直向上9---22 解:当电流I 在以电源,轨道,炮弹构成的回路中流动时,轨道可近似看成两根无限 长的载流直导线,它们在轨 道之间激发的磁场方向相同,其大小为: x I B πμ20=方向垂直纸面向里炮弹受到的安培力为:IdxB dF ⋅= 得:R D R I Idx B F DR R+=⋅=⎰+ln220πμ 9---23 解:(1)由:m A nI rNIH 40002===πT H B 20==μ(2)束缚面电流产生的附加磁感应强度为'B 又In B 00μ==0.005T 而0'B B B -=因为0B 很小 所以T B 20'=9---24 解:(1)把导线看成无限长直导线T xIB 60100.52-⨯==πμ (2)9---25 解:(1)沿环的中间作安培环路l ,由对称性和安培环路定理NI r B l d B l002μπ==⎰T lNIB 600108-⨯==πμ 000H B μ= m A B H 2000==μ(2)T rNIB r 105.020==πμμ m A BH R200==μμ(3)磁介质内由导体中电流产生的0B 为:T B 60108-⨯=π而: 0'B B B -=因为0B 很小 所以T B 105.0'= 9---26 解:(1)当线圈的导线中通有电流I 时,两臂达到平衡则线圈受向下的安培力nIlB F =当电流反向时nIlB mg 2=即:nlI mgB 2= (2) nlI mg B 2=T 44.8601.01.0528.978.8=⨯⨯⨯⨯= 一选择题10---1(D 注:由 d dtεΦ=,因为通过铜环和木环的环面得磁通量随时间变化率相等,则不自感时,两环中的感应电动势相等10---2(B 注:由 I Rε=,设线圈单位长度的电阻为ρ,原线圈边长为a2sin sin nBS t nBa t εωωω=-=-2sin sin 44nBa t Ba I t n a ωωωωρρ-== 根据选项判断当ω增大原来的2倍时感应电流的幅值增加为原来的2倍10---3(D )注:()v B dl ω=⨯⎰边缘处速度较大故铜盘边缘处电势高10---4 (C) 注:由0H dL I =∑⎰ 知当充电时,沿环路2L 包围的导线中有点荷通过,形成电流,1L 环流中无传导电流通过10---5(A )注:当垂直放置时,两线圈的轴线互相垂直由1221M M M ==122112M I I ψψ== 12ψ , 21ψ近似为零 M也近似为零12ψ为线圈1中电流1I 在线圈2中产生的磁通匝链数; 21ψ为线圈2中电流2I 在线圈1中产生的磁通匝链数二,填空题10---6 等于 小于10---7 一个电源 BLV 洛伦兹力注:金属杆垂直切割磁力线,产生感应电动势相当于一个电源,由()v B dl ε=⨯⎰得:BLv ε= 动生电动势非静电力而是洛伦兹力10---8 (1),2 ;(2),3;(3),1 注:(1)对 :LsBE dl dS t∂=-∂⎰⎰⎰两边同时积分 BE t∂=-∂可见变化的磁场产生电场(2)由0sB ds =⎰⎰ 沿闭合面S 的磁通量积分为零,说明磁场是无源场(3)由svD ds dv ρ=⎰⎰ D 沿曲面S 的积分等于它围的体积内的电荷量,当0vdv ρ=⎰时 0sD ds =⎰即E=0所以电荷总伴随有电荷10---9 22.6()3J m -注:取1 厘米该绕环 则 20n =, 0.01h m = 设此绕环的截面积为S 则V Sh =由 212m W L I =, 20L n V μ= 得:2230122.62m m W n I J m V ωμ-===10---10 200cos 2I r tRμωπωε=注:因半径为R 的大导线中心磁感应强度02IB Rμ=又r R 小导线中心磁感应强度02IB Rμ=所以 22000sin 22II r BS r t RRμμππωΦ===200cos 2I r d t dt RμπωεωΦ==三 计算题10---11 解:(1)当0I I =时,产生的电动势为动生电动势则:()bab av B dr ε=⨯⎰磁场方向应垂直纸面向里,由右收订则可知a b U U >, 又 002I B rμπ=所以:010000010ln 22l l ab l I I v l lv dr r l μμεππ++=-=-⎰(2)当0cos I I t ω=时,总的电动势为动生电动势与感生电动势之和动生电动势为:0100000110cos cos ln 22l l l I t I t l l dr r l μωμωεππ++-=-⎰感生电动势为:2d dtεΦ=-,00cos 2I tB rμωπ=, ds dr v =0100010cos ln cos 22l l l I t Iv l lv dr t r l μωμωππ++Φ==⎰()000120l n s i n 2I v l l d t d t l μεωωπ+Φ=-=()0001120ln sin cos 2I v l lt t l μεεεωωωπ+=+=-10---12 解:由法拉第电磁感应定律,如图所示建立坐标,左边载流无限长直导线在线圈内产生的磁通量为:()3001123ln 222ddIdId B dS dx x d μμππΦ===+⎰⎰右边载流无限长直导线在线圈内产生的磁通量为:20022ln 222ddId IdB dS dx x μμππΦ==-=-⎰⎰ 线圈总的磁通量为:00123ln ln 2222Id IdμμππΦ=Φ+Φ=- 线圈总的电动势为:04ln 23d d dIdt dtμεπΦ⎛⎫=-= ⎪⎝⎭ 10---13 解:载流导线在周围产生的磁场场强为 :02IB rμπ=当导线的中点距载流导线为a 时,对导线L 上的某一小段距载流导线为r sin 60r a x =+所以:()()02222cos 602sin 60l l l l I v B dx v dx a x μεπ--=⨯=+⎰⎰a +=方向由12→ 10---14 解:将金属棒OA 分别投影在垂直于磁场方向,和平行于磁场方向,在OA 垂直于磁场方向的分量上每个线元的角速度相同而线速度不同 ,在平行于磁场方向上取线元dl,其线速度的大小为v l τω=又:v τ的方向与dl 垂直则:()11sin302200012v v B dl v Bdl l Bdl Blτεωω=⨯===⎰⎰⎰由O 指向A10---15 解:由于导体最终匀速下滑所以 ()sin cos cos mg F Il B θθθ==⨯流过导体的电流为:I Rε=动生电动势为: d dtεΦ=垂直于磁场方向磁通量变化率为:cos d vdt l B θΦ=由以上式得下滑时所达到的稳定速度为:222sin cos mgR v B l θθ=10—16 解:螺线管的磁感应强度:0B nI μ= ,Nn l=单匝线圈的磁通量: 20NBS I r lμπΦ== N匝线圈的磁通量:220N N I r LI lμπΦ=Φ==得:N =31.210N -=⨯匝10---17 解:设所加电压为正弦电压(1)当正串时,总电压由四部分构成,两个电感都有自感电压和互感电压。

相关文档
最新文档