大学物理习题集(下)答案
大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
昆明理工大学物理习题集(下)第十二章元答案

第十二章 振动一.选择题1、劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为: [ C ](A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D )2122k k m T +=π 2. 一弹簧振子作简谐振动,当位移的大小为振幅的一半时,其动能为振动总能量的[ D ](A )1/4 (B )1/2 (C )2/1 (D )3/4 (E )2/33. 一质点作简谐振动,当它由平衡位置向x 轴正方向运动时,对应的振动相位是: [ C ](A )π (B )0 (C )-π/2 (D )π/24. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,角频率为ω,则此简谐振动的振动方程为:[ C ](A ))cm )(32cos(πω+=t x (B ))cm )(32cos(2πω-=t x (C ))cm )(32cos(2πω+=t x (D ))cm )(32cos(2πω+-=t x 5. 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为:[ C ](A )T /4 (B )T /12 (C )T /6 (D )T /86.一质点在x 轴上做简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为:[ B ](A )1s (B )(2/3)s (C )(4/3)s (D )2s7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m /2的物体,则系统振动周期T 2等于:[ D ](A ) 2 T 1 (B ) T 1 (C ) 2/1T (D ) T 1/2 (E ) T 1 /48.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则下图中与之对应的振动曲线是:[ A ]9.一倔强系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示,则振动系统的频率为:[ B ](A ) m k π21(B ) m k 621π (C )m k 321π (D ) m k 321π 10.一质点作简谐振动,振动方程为x =cos(ωt +ϕ),当时间t =T /2时,质点的速为:[ A ](A ) A ωsin ϕ (B )-A ωsin ϕ (C ) -A ωcos ϕ (D ) A ωcos ϕ11.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ C ](A ) θ (B ) π (C ) 0 (D ) π/212.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为x 1=A cos(ωt +α),当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:[ B ](A ) x 2=A cos (ω t +α +π/2) (B ) x 2=A cos (ω t +α -π/2)(C ) x 2=A cos (ω t +α-3π/2) (D ) x 2=A cos (ω t +α + π)13.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为下图中哪一图?[ B ]14. 一质点在x 轴作简谐振动,已知0=t 时,m x 01.00-=,s m /03.00=v ,s /3=ω,则质点的简谐振动方程为:[ B ](A ) ))(3cos(02.032SI t x π+= (B ) ))(3cos(02.034SI t x π+=(C ) ))(3cos(01.032SI t x π+= (D ) ))(3cos(01.034SI t x π+=15. 如图所示为质点作简谐振动时的x -t 曲线,则质点的振动方程为:[ C ](A ) ))(cos(2.03232SI t x ππ+=(B ) ))(cos(2.03232SI t x ππ-=(C ) ))(cos(2.03234SI t x ππ+=(D ) ))(cos(2.03234SI t x ππ-=16. 两个同方向、同频率、等振幅的简谐振动,合成后振幅仍为A ,则这两个分简谐振动的(C) (B) (A) (D)O x ω -A /2 A O x A /2 ω A x O A /2 A ω O x A ω -A /2相位差为:[ C ](A ) 60° (B ) 90° (C ) 120° (D ) 180°17. 两个同周期简谐振动曲线如图所示,1x 的相位比2x 的相位:[ B ](A )落后2/π(B )超前2/π(C )落后π(D )超前π18. 一质点做简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,这质点的初相位应为:[ C ](A )6/π(B ) 6/5π(C ) 6/5π-(D ) 6/π-19. 弹簧振子在光滑水平面上做简谐振动时,弹性力在半个周期内所做的功为:[ D ](A ) 2kA (B ) 221kA (C ) 241kA (D ) 020. 一简谐振动振幅A ,则振动动能为能量最大值一半时振动物体位置x 等于:[ B ](A ) 2A (B ) 22A (C ) 23A (D ) A 二、填空题 1、一质点作简谐振动,速度最大值cm/s 5m =v ,振幅A =2cm 。
昆明理工大学物理习题集(下)第十三章元答案

u
u2
(C) y Acos[(t x )] (D) y Acos[(t x) ]
u
u
5、一平面简谐波以波速 u 沿 x 轴正方向传播, O 为坐标原点。已知 P 点的振动方程为
y Acost ,则:[ CC ]
(A) O 点的振动方程为 y Acos(t l / u)
(B)波的表达式为 y Acos[t (l / u) (x / u)]
(A)λ
(B)λ/2
(C)3λ/4
(D)λ/4
12、若在弦线上的驻波表达式是 y 0.20sin 2x cos20t 。则形成该驻波的两个反向进行
的行波为:[ CC ]
(A)
y1
0.10cos[2
(10t
x)
2
]
y2
0.10cos[2
(10t
x)
2
]
(B)
y1
0.10cos[2
(10t
x)
4
S2
C
N
引起的振动
均干涉相消,则 S 2 的初相应为2
2k
3 2
,k
0,1,2,。
8.如图所示,一平面简谐波沿 x 轴正方向传播,波长为 ,若 P1 点处质点的振动方程
为 y1 Acos(2vt ) , 则 P2 点 处 质 点 的 振 动 方 程 为
y2
A c os [2v
2
(L1
L2 )]
]
y2
0.10cos[2
(10t
x)
3 4
]
(C)
y1
0.10
cos[2
(10t
x)
2
]
y2
0.10cos[2
昆明理工大学物理习题集(下)第十一章元答案

第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
大学物理习题集(下)答案

一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
大学物理(下)答案

⼤学物理(下)答案⼤学物理学答案【下】北京邮电⼤学出版社习题99.1选择题(1) 正⽅形的两对⾓线处各放置电荷Q,另两对⾓线各放置电荷q,若Q所受到合⼒为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2) 下⾯说法正确的是:()(A)若⾼斯⾯上的电场强度处处为零,则该⾯内必定没有电荷;(B)若⾼斯⾯内没有电荷,则该⾯上的电场强度必定处处为零;(C)若⾼斯⾯上的电场强度处处不为零,则该⾯内必定有电荷;(D)若⾼斯⾯内有电荷,则该⾯上的电场强度必定处处不为零。
[答案:D](3) ⼀半径为R的导体球表⾯的⾯点荷密度为σ,则在距球⾯R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4) 在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表⾯电势相等;(D)电势低于表⾯电势。
[答案:C]9.2填空题(1) 在静电场中,电势不变的区域,场强必定为[答案:相同](2) ⼀个点电荷q放在⽴⽅体中⼼,则穿过某⼀表⾯的电通量为若将点电荷由中⼼向外移动⾄⽆限远,则总通量将。
[答案:q/6ε0, 将为零](3) 电介质在电容器中作⽤(a)——(b)——。
[答案:(a)提⾼电容器的容量;(b) 延长电容器的使⽤寿命](4) 电量Q均匀分布在半径为R的球体内,则球内球外的静电能之⽐[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三⾓形的三个顶点.试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解: 如题9.3图⽰(1) 以A处点电荷为研究对象,由⼒平衡知:q'为负电荷1q212cos30?=4πε0a24πε0qq'(2a)3解得q'=-q 3(2)与三⾓形边长⽆关.题9.3图题9.4图9.4 两⼩球的质量都是m,都⽤长为l的细绳挂在同⼀点,它们带有相同电量,静⽌时两线夹⾓为2θ ,如题9.4图所⽰.设⼩球的半径和线的质量都可以忽略不计,求每个⼩球所带的电量.解: 如题9.4图⽰Tcosθ=mg??q2 ?Tsinθ=F=1e?4πε0(2lsinθ)2?解得q=2lsinθ40mgtan9.5 根据点电荷场强公式E=q4πε0r2,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: E=q4πε0r2?r0仅对点电荷成⽴,当r→0时,带电体不能再视为点电荷,再⽤上式求场强是错误的,实际带电体有⼀定形状⼤⼩,考虑电荷在带电体上的分布求出的场强不会是⽆限⼤.9.6 在真空中有A,B两平⾏板,相对距离为d,板⾯积为S,其带电量分别为+q和-q.则这两板之间有相互作⽤⼒f,有⼈说f=q2 4πε0d2,⼜有⼈说,因为f=qE,E=q,所ε0Sq2以f=.试问这两种说法对吗?为什么? f到底应等于多少?ε0S解: 题中的两种说法均不对.第⼀种说法中把两带电板视为点电荷是不对的,第⼆种说法把合场强E=q看成是⼀个带电板在另⼀带电板处的场强也是不对的.正确解答应为⼀个ε0Sqqq2=板的电场为E=,另⼀板受它的作⽤⼒f=q,这是两板间相互作⽤2ε0S2ε0S2ε0S的电场⼒.-19.7 长l=15.0cm的直导线AB上均匀地分布着线密度λ=5.0x10-9C·m的正电荷.试求:(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距d2=5.0cm 处Q点的场强.解:如题9.7图所⽰(1) 在带电直线上取线元dx,其上电量dq在P点产⽣场强为dEP=1λdx 24πε0(a-x)λEP=?dEP=4πε0?l2l-2dx 题9.7图2(a-x)=λ11[-] ll4πε0a-a+22=⽤l=15cm,λ=5.0?10-9λlπε0(4a2-l2) C?m-1, a=12.5cm代⼊得EP=6.74?102N?C-1 ⽅向⽔平向右(2)同理 dEQ=由于对称性dEQxl1λdx ⽅向如题9.7图所⽰4πε0x2+d22?=0,即EQ 只有y分量,1λdx=4πε0x2+d22d2x+d222?∵dEQyEQy=?dEQyldλ=24πε2l2l-2dx(x2+d22)32 =-9λl2πε0l+4d222以λ=5.0?10C?cm-1, l=15cm,d2=5cm代⼊得EQ=EQy=14.96?102N?C-1,⽅向沿y轴正向9.8 ⼀个半径为R的均匀带电半圆环,电荷线密度为λ,求环⼼处O 点的场强.解: 如9.8图在圆上取dl=Rd?题9.8图dq=λdl=Rλd?,它在O点产⽣场强⼤⼩为dE=λRd?⽅向沿半径向外4πε0R2则dEx=dEsin?=λsin?d?4πε0R-λcos?d?4πε0Rπ-?)= dEy=dEcos(积分Ex=?π0λλsin?d?=4πε0R2πε0REy=?π0-λcos?d?=0 4πε0R∴E=Ex=λ,⽅向沿x轴正向.2πε0R9.9 均匀带电的细线弯成正⽅形,边长为l,总电量为q.(1)求这正⽅形轴线上离中⼼为r处的场强E;(2)证明:在r>>l处,它相当于点电荷q产⽣的场强E.解: 如9.9图⽰,正⽅形⼀条边上电荷?q在P点产⽣物强dEP ⽅向如图,⼤⼩为4dEP=λ(cosθ1-cosθ2)4πε0r2+l42∵cosθ1=lr2+l22cosθ2=-cosθ1∴dEP=λ4πε0r2+l42lr2+l22dEP在垂直于平⾯上的分量dE⊥=dEPcosβ∴dE⊥=λl4πε0r2+l42rr2+l22r2+l42题9.9图由于对称性,P点场强沿OP⽅向,⼤⼩为EP=4?dE⊥=4λlr4πε0(r2+ll)r2+4222∵λ=∴EP=q 4l2qr4πε0(r2+ll)r2+422 ⽅向沿9.10 (1)点电荷q位于⼀边长为a的⽴⽅体中⼼,试求在该点电荷电场中穿过⽴⽅体的⼀个⾯的电通量;(2)如果该场源点电荷移动到该⽴⽅体的⼀个顶点上,这时穿过⽴⽅体各⾯的电通量是多少?q 解: (1)由⾼斯定理E?dS= sε0⽴⽅体六个⾯,当q在⽴⽅体中⼼时,每个⾯上电通量相等∴各⾯电通量Φe=q.6ε0(2)电荷在顶点时,将⽴⽅体延伸为边长2a的⽴⽅体,使q处于边长2a的⽴⽅体中⼼,则边长2a的正⽅形上电通量Φe=q 6ε0 对于边长a的正⽅形,如果它不包含q所在的顶点,则Φe=如果它包含q所在顶点则Φe=0.q,24ε0如题9.10图所⽰.题9.10 图9.11 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×108cm ,12cm 各点的场强.解: ⾼斯定理E?dS=s-5C·m求距球⼼5cm,-3??∑q,E4πrε02=∑q ε0 ?当r=5cm时,∑q=0,E=0r=8cm时,∑q=p4π33) (r -r内3ρ∴E=4π32r-r内≈3.48?104N?C-1,⽅向沿半径向外.24πε0r()r=12cm时,∑q=ρ4π33)(r外-r内3ρ∴E=4π33r外-r内3≈4.10?104 N?C-1 沿半径向外. 24πε0r()9.12 半径为R1和R2(R2 >R1)的两⽆限长同轴圆柱⾯,单位长度上分别带有电量λ和-λ,试求:(1)r<R1;(2) R1<r<R2;(3) r >R2处各点的场强.解: ⾼斯定理E?dS=sq ε0取同轴圆柱形⾼斯⾯,侧⾯积S=2πrl则E?dS=E2πrl S对(1) r∑q=lλ (2) R1∴E=λ沿径向向外2πε0r(3) r>R2 ∑q=0∴E=0题9.13图9.13 两个⽆限⼤的平⾏平⾯都均匀带电,电荷的⾯密度分别为σ1和σ2,试求空间各处场强.解: 如题9.13图⽰,两带电平⾯均匀带电,电荷⾯密度分别为σ1与σ2,两⾯间,E=?1?(σ1-σ2)n 2ε01(σ1+σ2)n σ1⾯外,E=-2ε0σ2⾯外,E=?1?(σ1+σ2)n 2ε0n:垂直于两平⾯由σ1⾯指为σ2⾯.9.14 半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去⼀块半径为r<R的⼩球体,如题9.14图所⽰.试求:两球⼼O 与O'点的场强,并证明⼩球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电-ρ的均匀⼩球的组合,见题9.14图(a).(1) +ρ球在O点产⽣电场E10=0,-ρ球在O点产⽣电场E2043πrρ=OO' 4πε0d3r3ρ;∴O点电场E0=3ε0d343πdρ?(2) +ρ在O'产⽣电场E10'=34πε0d-ρ球在O'产⽣电场E20'=0ρOO∴O'点电场E0'=3ε0题9.14图(a) 题9.14图(b) ??(3)设空腔任⼀点P相对O'的位⽮为r',相对O点位⽮为r (如题8-13(b)图)ρr则EPO=,3ε0ρr'EPO'=-, 3ε0ρ??ρρd(r-r')=OO'=∴EP=EPO+EPO'= 3ε03ε03ε0∴腔内场强是均匀的.-69.15 ⼀电偶极⼦由q=1.0×10C的两个异号点电荷组成,两电荷距离d=0.2cm,把这电偶极⼦放在1.0×10N·C的外电场中,求外电场作⽤于电偶极⼦上的最⼤⼒矩. 5-1解: ∵电偶极⼦p在外场E中受⼒矩M=p?E∴Mmax=pE=qlE代⼊数字Mmax=1.0?10-6?2?10-3?1.0?105=2.0?10-4N?m9.16 两点电荷q1=1.5×10C,q2=3.0×10C,相距r1=42cm,要把它们之间的距离变为-8-8r2=25cm,需作多少功?解: A=?r2r1??r2qqdrqq11F?dr=?122=12(-) r24πεr4πε0r1r20=-6.55?10-6J外⼒需作的功A'=-A=-6.55?10 J-6题9.17图9.17 如题9.17图所⽰,在A,B两点处放有电量分别为+q,-q的点电荷,AB间距离为2R,现将另⼀正试验点电荷q0从O点经过半圆弧移到C点,求移动过程中电场⼒作的功.解: 如题9.17图⽰UO=1qq(-)=0 4πε0RRUO=1qqq (-)=-4πε03RR6πε0Rqoq 6πε0R∴A=q0(UO-UC)=9.18 如题9.18图所⽰的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中⼼O点处的场强和电势.。
大学物理练习册下答案

大学物理练习册下答案问题1:描述牛顿第二定律的数学表达式,并给出一个例子说明如何使用它来解决实际问题。
答案:牛顿第二定律的数学表达式是 \( F = ma \),其中 \( F \)是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
例如,如果一个质量为5kg的物体受到10N的力,那么根据牛顿第二定律,物体的加速度 \( a \) 将是 \( 10N / 5kg = 2m/s^2 \)。
问题2:说明什么是能量守恒定律,并给出一个物理系统的例子来展示这一定律。
答案:能量守恒定律表明,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,但总量保持不变。
例如,当一个自由落体的物体从一定高度下落时,它的势能转化为动能。
如果忽略空气阻力,下落过程中总能量是守恒的。
问题3:解释什么是波的干涉,并给出一个实验设置来观察这一现象。
答案:波的干涉是指两个或多个波相遇时,它们的振幅相加形成一个新的波形的现象。
当两个波的相位相同(相长干涉)或相反(相消干涉)时,干涉效果最为明显。
观察干涉的一个简单实验设置是使用两个相干光源,它们发出的波在空间中相遇,形成明暗相间的干涉条纹。
问题4:描述电磁感应的基本原理,并解释法拉第电磁感应定律。
答案:电磁感应是当一个导体在变化的磁场中移动时,导体中产生电动势的现象。
法拉第电磁感应定律表明,导体中产生的电动势与穿过导体回路的磁通量的变化率成正比。
数学表达式为 \( \varepsilon = -d\Phi_B/dt \),其中 \( \varepsilon \) 是感应电动势,\( \Phi_B \) 是磁通量,\( t \) 是时间。
问题5:简述量子力学的基本原理,并解释海森堡不确定性原理。
答案:量子力学是描述微观粒子行为的物理学分支,其基本原理包括波粒二象性、量子态的叠加以及量子态的演化遵循薛定谔方程等。
海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积至少等于普朗克常数的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ B ]4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;332663223(C),or ;A;(D),;A4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ](A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
此弹簧下应挂__2.0__kg 的物体,才能使弹簧振子作简谐振动的周期T = 0.2π s 。
11. 一质点作简谐振动,周期为T ,质点由平衡位置到二分之一最大位移处所需要的时间为T/12;由最大位移到二分之一最大位移处所需要的时间为T /6。
12. 两个弹簧振子的周期都是0.4 s ,设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为 π 。
13. 两个同方向同频率的简谐振动,其振动表达式分别为: )215cos(10621π+⨯=-t x (SI) , )5cos(10222t x -π⨯=- (SI)它们的合振动的初相为 0.60π 。
三、 判断题14. 物体做简谐振动时,其加速度的大小与物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
[ √ ] 15. 简谐运动的动能和势能都随时间作周期性的变化,且变化频率与位移变化频率相同。
[ × ] 16. 同方向同频率的两简谐振动合成后的合振动的振幅不随时间变化。
[ √ ]四、 计算题9.题图17. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。
(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。
解:(1)振动表达式为 cos()x A t ωϕ=+振幅0.02A m =,0.03/m v A m s ω==,得 0.031.5/0.02m v rad s A ω=== 周期 22 4.191.5T s ππω=== (2)加速度的最大值 2221.50.020.045/m a A m s ω==⨯=(3)速度表达式 sin()cos()2v A t A t πωωϕωωϕ=-+=++由旋转矢量图知,02πϕ+=, 得初相 2πϕ=-振动表达式 0.02cos(1.5)2x t π=-(SI )18. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。
求此简谐振动的振动方程。
解:设振动方程为 )cos(φω+=t A x 由曲线可知: A = 10 cm当t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 初相 32π=φ 由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )322cos(100π+=ω 则有 2/33/22π=π+ω, ∴ 125π=ω故所求振动方程为 )32125cos(1.0ππ+=t x (SI)单元二 简谐波 波动方程一、选择题1. 频率为100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距[ C ](A) 2.86 m (B) 2.19 m(C) 0.5 m (D) 0.25 m2 . 一平面简谐波的表达式为:)/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 =λ/4二点处质元速度之比是[ A ](A) -1 (B)31(C) 1 (D) 3 3. 一平面简谐波,其振幅为A ,频率为v ,沿x 轴的正方向传播,设t t =0时刻波形如图所示,则x=0处质点振动方程为: [ B ]0000(A)y Acos[2v(t t )]2(B)y Acos[2v(t t )]2(C)y Acos[2v(t t )]2(D)y Acos[2v(t t )]π=π++π=π-+π=π--=π-+π4. 某平面简谐波在t=0时的波形曲线和原点(x=0处)的振动曲线如图 (a)(b)所示,则该简谐波的波动方程(SI)为: [ C ]3(A)y 2cos(t x );(B)y 2cos(t x )2222(C)y 2cos(t x );(D)y 2cos(t x )2222πππ=π++=π-+πππππ=π-+=π+-5. 在简谐波传播过程中,沿传播方向相距为/2λ,(λ为波长)的两点的振动速度必定: [ A ](A) 大小相同,而方向相反; (B) 大小和方向均相同;(C) 大小不同,方向相同; (D) 大小不同,而方向相反 。
6. 当机械波在媒质中传播时,一媒质质元的最大变形量发生在(A 是振动振幅): [ C ](A) 媒质质元离开其平衡位置最大位移处; (B) 媒质质元离开其平衡位置(2A)处; (C) 媒质质元在其平衡位置处;(4)题(3)题(D) 媒质质元离开其平衡位置2A处。
7. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则 [ B ](A) A 点处质元的弹性势能在减小 (B) 波沿x 轴负方向传播 (C) B 点处质元的振动动能在减小(D) 各点的波的能量密度都不随时间变化8. 一平面简谐波在弹性媒质中传播时,在传播方向上媒质中某质元在负的最大位移处,则它的能量是: [ B ](A) 动能为零,势能最大; (B) 动能为零,势能为零;(C) 动能最大,势能最大; (D) 动能最大,势能为零。
二、填空题9. 如图所示, 一平面简谐波在t=0时的波形图,则O 点的振动方程0y 0.04cos(0.4t 0.5)=-ππ,该波的波动方程y 0.04cos(0.4t 5x 0.5)=--πππ10. 一平面简谐波沿X 轴正方向传播,波速u=100m/s ,t=0时刻的波形曲线如图所示,则简谐波的波长m 8.0=λ,振幅m 2.0A =, 频率Hz 125=ν 。
11. 如图所示, 一平面简谐波沿OX 轴正方向传播,波长为λ,若P 1点处质点的振动方程为1y Acos(2vt )=+πϕ,则P 2点处质点的振动方程为122L L y Acos(2t 2)]+=πν-π+ϕλ;与P 1点处质点振动状态相同的那些点的位置是1L k x -=λ, k 1,2,3,=±±±L 。
12. 一列强度为I (J/sm 2)的平面简谐波通过一面积为S 的平面,波速u ϖ与该平面的法线0n ϖ13. . 余弦波xy Acos (t )c =ω-在介质中传播,介质密度为ρ0 ,波的传播过程也是能量传播过程,不同位相的波阵面所携带的能量也不同,若在某一时刻去观察位相为2π处的波阵面,能量密度 10.题图9.题图11.题图uϖ为220ωρA ;波阵面位相为π处的能量密度为 0 。
三、判断题14. 从动力学的角度看,波是各质元受到相邻质元的作用而产生的。
[ √ ] 15. 一平面简谐波的表达式为 )/(cos u x t A y -=ω)/cos(u x t A ωω-= 其中x / u 表示波从坐标原点传至x 处所需时间。
[ √ ] 16. 当一平面简谐机械波在弹性媒质中传播时,媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒。
[ × ]四、计算题17. 如图所示,一平面简谐波沿OX 轴传播 ,波动方程为xy Acos[2(vt )]=π-+ϕλ,求:(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式。
解:(1)P 处质点的振动方程:])Lvt (2cos[A y ϕλπ++= (L x -=, P 处质点的振动位相超前)(2)P 处质点的速度:])Lvt (2sin[v A 2yv ϕλππ++-==& P 处质点的加速度:])Lvt (2cos[v A 4ya 22ϕλππ++-==&&18. 某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时( t=0 ),质点恰好处在负向最大位移处,求:(1) 该质点的振动方程;(2) 此振动以速度u=2 m/s 沿x 轴正方向传播时,形成的一维筒谐波的波动方程(以该质点的平衡位置为坐标原点);(3) 该波的波长。