23.1 图形的旋转(4)教案

合集下载

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

23.1图形的旋转 教案

23.1图形的旋转 教案
23.1图形的旋转教案
一、【学习目标】
1、知识与技能
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2、过程与方法
感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
3、情感态形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情。
2、由三角形的旋转判断旋转中心。
3、三角形的整体旋转,找旋转角,旋转中心,旋转的对应边对应角
4、把旋转运用到正方形中
四、课堂小结
1、旋转的概念
2、旋转的三要素
3、旋转的性质
五、作业布置
六、板书
23.1图形的旋转
旋转定义:旋转的性质例1:
例2:
七、课后反思
1、教学过程中的反思:
2、教学效果的反思:
3、学生状态的反思:
二、重难点、关键
1、重点:旋转及对应点的有关概念及其应用。
2、难点与关键:从现实生活中抽象出数学概念。
三、【学习过程】
(一)、创设情景
结合教材59页“思考”,现实生活中的旋转现象和俄罗斯方块游戏等,探究这些现象有什么共同特点?
(二)、探究新知
1总结归纳旋转的定义:像这样,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的 ,点O叫做 ,转动的角叫做 。如果图形上的点P经过旋转变为点P′,那么这两个点P和P′叫做这个旋转的
2完成教材60页探究归纳旋转的性质:
1、对应点到旋转中心的距离 ;

初中数学人教版九年级上册《图形的旋转》教案

初中数学人教版九年级上册《图形的旋转》教案

人教版数学九年级上23.1图形的旋转教学设计12一、探究新知活动1:小组讨论现实生活中,旋转现象随处可见,都有哪些物体的运动属于旋转呢?你能举出见到的实例吗?教师请学生看屏幕,演示生活中常见的旋转。

并提出问题:如果把钟表时针、电扇的叶片看成一个平面图形,那么这些图形的运动有什么特点?你能描述一下什么是旋转吗?教师根据旋转的定义旋转三角形,通过具体问题介绍旋转的有关概念,同时指出旋转的三要素:旋转中心,旋转方向,旋转角。

活动2:自主练习在认识了图形的旋转之后,做几道练习巩固深化一下“旋转”的有关概念。

1.请你举出一些现实生活、生产中旋转的实例,并指出旋转中心和旋转角。

2.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?3. 如图,将三角板△ACB绕点C逆时针方向旋转到△DCE 的位置.(1)旋转中心是________.(2)点A和点B的对应点是______和______.(3)线段AC和线段BC旋转后到达_________和_________的位置.若AC=5cm,则DC=___cm.连接AD,则△ACD是______三角形.(4)∠A和∠B旋转后到_____和_____的位置.若∠A=45°,则∠D=____°.旋转角为______和_______.连接AD,若∠ACD=60°,则△ACD为______三角形。

三、学以致用例1 如图,E是正方形ABCD边CD上任意一点,以A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.巩固练习:如图是一个直角三角形的苗圃,由正方形花坛和两块直角三角形草皮组成,如果直角三角形的两条斜边长分别为3米和6米,你能求出草皮的总面积吗?2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.从以上的画图中,我们可以得到:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果。

23.1 图形的旋转教案

23.1 图形的旋转教案

活动四:巩固练习 教师提出问题 1、教科书 P64 练习 1、2、 3 2、课本 57 页例题 学生独立思考、分 析、解答问题。
学生巩固和提高 通过解决蕴含所学 知识的实际总是和 数学问题将新知识 内化入学生已有的 认知结构中。
活动五 课堂回顾 教师提出问题,学生回 学生通过反思已学 1、这节课,主要学习了 顾总结;分析对比归纳 过的有关图形变换 什么? 平移与旋转的异同。 2、你还有什么困惑? 旋转变换的本质特 3、平移和旋转有什么异 征,调动学生的学 同? 习兴趣。 得知识,深入理解
D.5 2、 如图: E 是正方形 ABCD 内一点,将△ABE 绕点 B 顺 时针方向旋转到△CBF, 其中 EB=3cm,则 BF=_cm , ∠EBF=___ A E B F 3、课外作业 教科书习题 23.1 第 1、4 题 C D
(2)经过旋转,点 A、B 分别移动到什么位置? (3)旋转角是什么? (4)猜一猜:AO 与 DO 的 长有什么关系?BO 与 EO 呢?∠AOD 与∠BOE 有什 么大小关系? 2、请大家在硬纸板上, 挖一个三角形洞,再挖一 验: 用课件操作图形的 现”,培养学生观 个小洞 O 作为旋转中心, 旋转变换后,指出进一 察、分析、比较、 硬纸板下面放一张白 步探究的方向。 抽象、概括的思维 纸.先在纸上描出这个挖 组织学生交流,得出 能力。 掉的三角形图案(△ 正确结论。 ABC),然后围绕 O 转动 硬纸板,再描出这个挖掉 的三角形(△A′B′ C′ ),移开硬纸板. 究方向度量、分析,小 线段 OA 与 OA′有什么关 组交流归纳抽象概括出 系?∠A OA′与∠BO 图形旋转的特征。 B′有什么关系?⊿A BC与 ⊿A′B′ C′有什么关系? 学生独立进行数学实 验,按照老师提出的探 通过设置数学实验 让学生主动参与数 教 师 设 计 数 学 探 究 实 学知识的“再发

图形的旋转教案

图形的旋转教案

图形的旋转教案这是图形的旋转教案,是优秀的数学教案文章,供老师家长们参考学习。

图形的旋转教案第1篇一、教材的地位与作用图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。

同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习对称图形、中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。

二.学情分析认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

情感与学习风格分析:他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。

三、教学目标在新课程改革背景下的数学教学应以学生的发展为本,学生的能力培养为主,同时从知识教学、技能训练等方面,根据《新课程》对本节课内容的要求及本节课的学习结果类型,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识目标(1)了解生活中旋转现象的广泛存在;(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;能力目标通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。

但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。

因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。

三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。

2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。

四. 教学重难点1.重点:图形旋转的概念和性质。

2.难点:图形旋转的性质运用。

五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。

2.学具:准备一些图形卡片和模型,供学生操作和观察。

3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。

同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。

《图形的旋转》数学教案

《图形的旋转》数学教案

《图形的旋转》数学教案标题:《图形的旋转》数学教案一、教学目标1. 知识与技能目标:理解并掌握图形旋转的基本概念,能够准确地描述图形旋转的过程。

2. 过程与方法目标:通过观察、思考、操作等过程,培养学生对图形旋转的理解能力,提高学生的空间观念。

3. 情感态度价值观目标:激发学生对数学学习的兴趣,培养他们的创新意识和合作精神。

二、教学重难点重点:理解和掌握图形旋转的基本概念和方法。

难点:理解旋转中心、旋转角度和旋转方向在图形旋转中的作用。

三、教学准备教具:多媒体设备、各种可旋转的实物模型、几何画板等。

学具:纸、笔、直尺、量角器等。

四、教学过程1. 导入新课通过展示生活中常见的旋转现象,引导学生发现这些现象的共同特点,从而引出“图形的旋转”这一课题。

2. 新课讲授(1)讲解图形旋转的基本概念,包括旋转中心、旋转角度和旋转方向。

(2)通过实物模型或几何画板,演示图形旋转的过程,并让学生尝试描述这个过程。

(3)给出一些具体的例子,让学生自己动手操作,感受图形旋转的过程。

3. 练习巩固设计一系列练习题,让学生通过做题来巩固所学知识。

题目可以分为基础题和提高题,以满足不同层次学生的学习需求。

4. 小结反思让学生回顾本节课的主要内容,总结他们在学习过程中遇到的问题和解决的方法,以及他们对图形旋转有了哪些新的认识。

5. 布置作业设计一些课后作业,让学生在课后进一步巩固和应用所学知识。

五、教学评价通过课堂观察、作业检查、测验等方式,了解学生对图形旋转的理解程度和应用能力,以此评估教学效果。

六、教学反思对本次教学进行反思,分析教学过程中的优点和不足,以便于改进以后的教学。

23.1 图形旋转的性质教案

23.1 图形旋转的性质教案

§23.1图形旋转的性质教案教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着对生活中的案例进行动手操作、实验探究图形的旋转过程,从而总结出旋转的基本性质.重难点、关键1.重点:图形旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?二、探索新知知识点一图形旋转的性质请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作,得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三、巩固练习练习1.如图,小明坐在秋千上,秋千旋转了80°.请你在图中小明身上任意选一点P,利用旋转性质,标出点P的对应点.(1)这两个点到旋转中心的距离有怎样的关系?(2)这两个点与旋转中心所连线段的夹角是几度?解:(1)答:OP=OP'(2)答:80°练习2.找出图中扳手拧螺母时的旋转中心和旋转角.答:旋转中心是点O,旋转角是∠P0P'.四、探索新知知识点二图形旋转的作图例1 下图为 4×4 的正方形网格,每个小正方形的边长均为 1,将△OAB 绕点O 逆时针旋转 90°,你能画出△OAB 旋转后的图形△OA'B'吗?图中 △OA'B'为所求图形. 归纳总结旋转作图的步骤:(1)明确旋转三要素:旋转中心、旋转角 、旋转方向.(2)找出关键点(3)作出关键点的对应点(4)作出新图形(5)写出结论五、巩固练习如图, E 是正方形 ABCD 中 CD 边上任意一点,以点 A 为中心,把 △ADE 顺时针旋转 90°,你能画出旋转后的图形吗?试一试你有几种方法?六、归纳小结(学生总结,老师点评) 1.旋转的性质:(1)对应点到旋转中心的距离相等 .(2)对应点与旋转中心所连线段的夹角等于旋转角 .(3)旋转前、后的图形全等 .2. 旋转作图的步骤:(1)明确旋转三要素:旋转中心 、旋转角、旋转方向.(2)找出关键点(3)作出关键点的对应点(4)作出新图形(5)写出结论 AB O A B A BC ED。

《23.1图形的旋转》 教学设计

《23.1图形的旋转》 教学设计

《23.1图形的旋转》教学设计一、教学目标⒈知识与技能1、掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换.2、经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质.⒉过程与方法通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力、以及与他人合作交流的能力.⒊情感目标:经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.二、学习重点、难点学习重点: 旋转的有关概念和旋转的基本性质学习难点: 探索旋转的基本性质三、教学对象分析:⒈八年级学生是抽象思维逐渐形成的时期,教学过程要强调问题情境创设的直观性,借助于活动引发学生的积极思考。

⒉八年级学生已经具备了一定的学习能力,教学中要多提供机会,让他们在主动参与、勤于动手中自主创新、相互学习,从而乐于探究。

四、教学策略课堂组织策略:创设生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,探索旋转的基本性质,并能解决一些实际问题.学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。

辅助策略:借助实物投影仪及课件,使学生直观形象地观察、动手操作。

教法:演示法:把实物模型、教具或多媒体课件演示给学生看,使学生直观、具体、形象地感知图形的旋转变换。

讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。

练习法:精心设计随堂练习,巩固和提高学生的认知水平。

五、教学过程设计:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。

我在教学过程中设计了五个活动,分别为:活动1:创设情境,导入新课活动2:演示导学,形成概念活动3:举例应用,加深认识活动4:课堂练习,巩固提高活动5:归纳小结,布置作业活动一、创设情境导入新课(个体活动)(教师利用多媒体出示)创设问题情境,激发学生的学习兴趣和求知欲,为发现新知创造一个最佳的心理和认识环境,是学生主动学习的前提,本活动通过折纸游戏,导入本课1、手工制作:制作一个小风车.2、欣赏日常生活中部分物体的旋转现象.思考:在这些运动中有哪些共同特征?(投影1)本次活动中,教师应重点关注:(1)学生参与的全面性;(2)学生观察实例的角度;(3)学生活动后,试着描述出旋转的定义.【设计意图】:通过小制作,图形欣赏,导入主题,调动学生的主观能动性,激发好奇心和求知欲.活动二、演示导学形成概念1、观察:时钟上分针的运动.(动画演示)问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度.(投影2)学生在观察后,回答问题,然后教师讲解:把一个图形绕着某一个点O转动一个角度的图形变换叫做旋转,点O叫旋转中心,转动的角叫旋转角.2、动手做一做:在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.问题:(1)根据所画的图形,用直尺量出OA与OA´、OB与OB´、OC´的大小;用量角器量出∠AOA´、∠BOB´、∠COC´的度数,观察这三个角的大小,并指出旋转中心,旋转角. (2)说出其中的对应点,对应角和对应线段.(3)旋转后图形的形状和大小是否发生变化.(投影3)学生在老师的指导下,动手操作,并动手完成老师交给的任务.3、交流、归纳(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连结的线段的夹角等于旋转角.(3)旋转前、后的图形全等.(投影4)课件演示及学生的动手操作,培养了学生观察能力和探究问题的能力、动手能力,以及与他人合作交流的能力,充分体现了教师为主导,学生为主体的教学思想,同时也突出了重点,突破难点.本次活动中,教师应重点关注:(1)旋转的基本性质的探究过程应循序渐进,即演示→观察→猜想→讨论→归纳.(2)要给学生充足的时间和空间.【设计意图】通过观察,使学生形象、直观地理解旋转的有关概念,是学生探究、发现,实现“再创造”的过程.学生动手练习,教师及时展示学生练习结果,并及时给予点评.活动三、举例应用加深认识(投影5)1、如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把ΔADE顺时针旋转90°,画出旋转后的图形2、分析香港特别行政区的区徽图中的图形的旋转现象.学生思考后,展示结果.本次活动中,教师应重点关注:(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.(2)学生中作图的不同方法.通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.【设计意图】通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.活动四、课堂练习巩固提高1、P64页练习2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个3、P65页练习(全体活动.)学生单独完成后及时反馈,教师及时点评. 本次活动中,教师应重点关注:(1)点评的针对性、典型性;(2)给学生相对充足的时间与空间.【设计意图】通过练习,让学生再次明确旋转的主要因素,从而让学生在知识不断重视的基础上加深理解,形成能力,实现本课的知识目标.活动五、归纳小结,布置作业根据认知心理学的学习理论:学习的过程,就是学习者认知结构不断改组和完善的过程.在学完本节内容后,我提出如下三个问题:(投影11)1. 通过本节课的学习,你体会最深的是什么?2. 在学习这节课时要注意的问题是什么?3. 在下节课中的什么地方,你会比这节课做的更好?学生交流获得的知识和感受,教师聆听,并与学生交流.本次活动中,教师应重点关注:(1)学生概括的是否全面,教师应及时补充;(2)不同层次对知识的掌握的程度. 通过小结,概括出本节课的知识与方法.体验探究过程中的感受.【设计意图】通过小结让学生谈体会及注意的问题,体验成功的喜悦,增强自信心,同时也培养了学生的口头表达能力和概括总结能力,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.通过问题3培养学生的自我反思、监控能力.(2)布置作业P66页T3、T7。

23.1图形的旋转教案

23.1图形的旋转教案

23.1 图形的旋转教案设计一、教学目标分析知识目标1、经历对生活中与旋转现象有关的图形进行观察、思考、分析、概括、抽象等过程,进一步发展学生的空间观念。

2、结合生活中的具体实例认识旋转。

3、探索、理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质.技能目标让学生经历观察、思考、分析、交流、归纳、抽象等活动,进一步培养学生的概括和抽象思维能力.使学生体会观察、分析、归纳、抽象的研究问题方法,进一步体会和感受实际事物数学化的过程。

并发展初步的审美能力,增强对图形欣赏的意识.情感目标让学生体验从身边得到数学规律的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

通过研究解决问题的方法,培养学生合作交流意识与探究精神。

通过学生欣赏、观察、归纳、比较、抽象图形等数学活动,让学生感受数学的严谨性,图形中蕴含的规律性,提高学生学习数学的热情及大担探究新知识的创新能力。

二、教学重、难点教学重点1、旋转现象认识过程的体验.2、旋转内涵的理解掌握.3、旋转性质的掌握与运用.教学难点1、旋转定义和性质的深刻认识.2、旋转性质的灵活运用.突破难点的关键(1)设置恰当情景,激发学生的探索欲望。

(2)通过演示操作,归纳出旋转变换的性质,加深旋转变换的三要素的理三、教具准备我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直效果,提高课堂效率。

学生自制二个全等的三角形纸片。

四、教学过程1、创设情境,引入新课日常生活中,我们经常见到以下情景(电脑展示钟表指针的转动、汽车方向盘的转动、电风扇的叶片的转动等的情景)活动1:问题:(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?学生思考、讨论之后进行交流1.在这些转动的现象中,它们都是绕着一个点转动的.2.每个物体的转动都是向同一个方向转动.3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.4.汽车的方向盘和电风扇的叶片在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrot a te),这节课我们就来探讨生活中的旋转2、合作交流,探索新知活动2:旋转及相关定义的认识问题:同学们,请根据上面你们所得的结果,想一想我们该如何给旋转下定义?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrot a te).这个定点称为旋转中心,转动的角称为旋转角活动3:旋转的性质探究实验操作:把你准备的两个相同的三角形纸片完全叠放在一起,并在相应的位置标好字母,固定好下面的三角形,然后用笔尖按住其中的一个角的顶点(让其不动),使上面的三角形绕此顶点转动。

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

第1课时旋转的概念及性质课时目标1.通过引入具体实例,让学生在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.2.通过对图形旋转的基本性质的探究,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过让学生经历实验探究、知识应用等数学活动,进一步体会旋转的内涵,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点旋转的概念及图形旋转的性质.学习难点旋转概念的形成过程及性质的探究过程.课时活动设计情境引入同学们都见过风车吧,小小的风车在风的吹动下不停的转动,生活中能够转动的物体还有很多,如风力发电机、飞机的螺旋桨、时钟的指针等,同学们知道它们所做的这种运动叫什么吗?设计意图:通过多媒体播放视频和图片,感受旋转现象,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并应用于生活的辨证思想,初步感受旋转的概念.我们在前面的章节中已经学习了平移和轴对称两种图形的变化方式,分别研究了它们的定义、性质以及坐标表示等,类比它们的研究方式,你能获得旋转的有关知识吗?设计意图:通过设问使学生明确旋转和平移、轴对称一样都属于图形的变化,因此可以类比平移和轴对称去研究旋转,向学生渗透类比是发现解决问题方法的重要途径.另外一方面渗透获得定义的一种思想方法——从具体实例中归纳概括本质特征.探究新知如图1,钟表的指针在不停的转动,从3时到5时,时针转动了多少度?如图2,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?设计意图:让学生从具体实例中发现旋转现象,抽象出旋转的本质属性,类比图形平移的概念,给出旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.在此过程中培养学生的表达能力和总结能力,学会用数学语言表达现实世界,同时发展学生的抽象概括能力.新知讲解如图所示,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A'B'C'),移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA'有什么关系?△AOA'与△BOB'有什么关系?△ABC与△A'B'C'的形状和大小有什么关系?设计意图:通过教师引导或者学生独立思考后小组交流,共同探究并归纳出旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.通过问题的形式展示知识的形成过程,让学生亲身经历性质的发现、猜想、验证、归纳概括的过程,发展学生的合情推理能力,归纳概括能力,培养学生的数学应用意识.典例精讲例1如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,△DAB=90°,所以旋转后点D与点B重合.设点E的对应点E'.因为旋转后的图形与旋转前的图形全等,所以△ABE'=△ADE=90°,BE'=DE.因此,在CB的延长线上取点E',使BE'=DE,则△ABE'为旋转后的图形.设计意图:通过在较为复杂的背景下,运用旋转的性质画出旋转后的图形,提高学生运用旋转性质的灵活性,进一步加深学生对旋转性质的理解.在解本题时,通过师生共同探讨,确定△ADE三个顶点的对应点,画出旋转后的图形,在活动中培养学生合作、交流、归纳的能力.课堂8分钟.1.教材第61页练习第2题,第62页习题23.1第2,10题.2.七彩作业.第1课时旋转的概念与性质一、旋转的概念.二、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三、例题讲解.教学反思第2课时旋转作图课时目标1.通过使学生亲身经历旋转的作图,感受旋转性质的内涵,促使学生由感性认识到理性思考的升华,提升学生学习数学的兴趣,发展学生的抽象思维能力.2.通过让学生从事自主学习、合作交流等数学活动,进一步体会旋转作图的依据,在动手实践中培养学生的空间观念,发展学生的数学思维.3.通过使学生经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光观察实际生活,感受数学与现实生活的密切联系,培养学生的应用意识.学习重点利用旋转的性质设计简单的图案.学习难点利用旋转性质进行旋转作图.课时活动设计回顾引入问题:如图,△AOB绕点O旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.设计意图:通过学生回顾前面所学过知识,并完成画图,既巩固了对旋转的性质的理解,又为新知学习作铺垫.教学时,教师应引导学生正确解读旋转性质,即按同一方向作出△AOA'=△BOG,且OA'=OA,这样达到由感性认识到理性思考,为利用旋转设计图案埋下伏笔.探究新知如图1,这是一片月牙形图案,把图1绕点O旋转,就会慢慢出现两片(图2、图3)、三片,……,最终形成图4中的图案,请同学们仔细观察,感受图案的形成过程,回答如下问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识,与同伴交流.设计意图:通过观察这些美丽的图案,可激发学生的学习兴趣,增强动手画出类似美丽图案的欲望,发展学生的想象力、创造力,提高审美能力.同时通过思考,感受由旋转而得到美丽图案的形成过程,加深对旋转性质的理解,掌握利用旋转来设计美丽图案的方法.教学时,应让学生进行充分交流,并让学生自主画图感受新知,最终形成共识:选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.新知讲解下图中的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图中图形绕点P顺时针依次旋转90°,180°,270°,依次画出旋转后得到的图形,你会得到一个美丽的图案,涂阴影时不要涂错位置,否则不能出现理想的效果,你来试一试吧!(注:方格纸中小正方形的边长为1个单位长度)设计意图:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.设置这道问题的目的是进一步加深学生对旋转性质的内涵的准确把握,同时又为解决新问题寻求解题思路,既锻炼学生分析问题、解决问题的能力,又培养学生的应用意识.新知应用把一个三角形旋转.(1)选择某一固定点为旋转中心,旋转角分别为45°,90°和135°,请画出旋转后的图形,并观察旋转效果;(2)选取两个不同点为旋转中心,旋转角均为30°,请画出旋转后的图形,观察旋转效果;(3)改变三角形的形状,看看旋转的效果.设计意图:让学生动手操作,进一步理解旋转中心不变,改变旋转角,与旋转角不变,改变旋转中心产生不同效果的合理性,进而可激发学生利用旋转进行图案设计的欲望,锻炼学生的艺术创作力.典例精讲利用所学,请同学们思考如何将甲图案变成乙图案:设计意图:设置此题的目的在于让学生认识到已知两个全等图形,其中一个图形可由另一个图形经过一定的全等变换而得到,拓宽了学生的视野,加深了对旋转作图的理解及应用.拓展应用请以下列图形为基本图形,利用旋转进行图案设计,并与同伴交流效果.学生自主交流.设计意图:设置这道题目,一方面让学生通过画图感受数学的应用价值,另一方面由于学生各自审美观点不同,创造力不同,学生所画出的图案也各不相同.教学中,引导学生在动手操作,设计图案过程中深化对旋转性质的认知,培养学生的数学应用意识.课堂8分钟.1.教材第62页习题23.1第3,4,7,8题.2.七彩作业.第2课时旋转作图一、旋转的性质.二、旋转作图.选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.三、例题讲解.教学反思。

图形的旋转(优质课教案)

图形的旋转(优质课教案)

图形的旋转(优质课教案)一、教学目标1.了解图形的旋转操作及其基本概念;2.能够应用所学知识,解决与图形旋转相关的问题;3.提高学生观察、思考和推理能力。

二、教学准备1.教师准备:–讲义和教学材料;–计算器、白板和彩色粉笔。

2.学生准备:–学习材料;–计算器。

三、教学过程1. 输入引导•引入:通过展示一个图形的变换前后的图片,引出本节课要学的内容,即图形的旋转操作。

2. 知识讲解•讲解:通过示意图和实际操作,向学生讲解关于图形旋转的基本概念及其相关知识:–旋转中心:确定旋转中心的作用;–旋转角度:解释旋转角度的含义;–旋转方向:说明旋转方向的规律。

3. 案例分析•分组讨论:将学生分为小组,给予学生一些具体的案例,要求学生在小组内进行讨论并提出解决方案。

•展示结果:每个小组选择代表性的解决方案进行展示,让学生互相学习和交流。

4. 练习探究•个人练习:让学生进行一些基本的练习题,巩固所学的知识点。

•探究任务:设置一些探究任务,要求学生在实际问题中应用图形的旋转操作,解决问题。

5. 总结归纳•总结概念:让学生回顾所学的内容,总结图形的旋转操作的基本概念及其应用。

•归纳方法:帮助学生归纳不同旋转中心、角度和方向对图形的影响。

6. 拓展应用•拓展任务:设置一些拓展任务,要求学生在实际问题中运用图形的旋转操作,拓宽应用范围。

四、教学反思本节课以图形的旋转操作为主题,通过引导学生分析图形的变换前后的关系,让学生理解图形的旋转概念。

通过案例分析和练习探究,提高学生解决问题的能力和思维灵活性。

通过总结归纳和拓展应用,帮助学生深化对图形旋转操作的理解,并推动学生应用所学知识解决实际问题。

同时,教师应注意引导学生形成良好的解题思路和方法,帮助学生培养观察和推理能力。

信息化教学设计模板(案例)教案资料

信息化教学设计模板(案例)教案资料
信息化教学设计模板
作者信息
姓名
电话
学科
年级
邮件
单位
教学设计
教学主题
23.1图形的旋转
一、教学目标
1.掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;
2.经历对的旋转的性质的探究过程,通过观察、讨论、实践操作,培养动手能力和合情推理能力;
3.通过对生活中的旋转现象有关图形进行观察分析、欣赏以及利用几何画板软件进行图形设计,培养初步的审美能力和探索学习的意识。
教育技术是一种手段,服从服务于教学;同时,教育技术的发展也会引起教学方式的变革。在本节课中,笔者力图充分发挥教育技术的辅助作用,促进学生的自主学习,具体的说,本节课具备以下四个特点:
一是创设情景,引发探究。首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。二是过程凸现,紧扣重点。旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,利用几何画板帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。三是动态显现,化难为易。教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。四是利用技术,大胆设计。利用信息技术,学生在掌握旋转定义和性质的基础上,进行大胆创作,培养学生用数学的意识。
2.利用几何画板的旋转变换,对学生猜测的结果进行验证,使学生从生活中有关旋转的感性经验上升为数学上理性的认识。
3.利用几何画板的旋转变换,通过对基本图形的连续旋转,设计出美丽的旋转图案,培养学生用数学的意识。

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:引导学生回顾本节课的学习内容,进行自我评价,总结学习收获和不足。
2.同伴互评:组织学生相互评价,提出改进建议,促进相互学习。
3.教师评价:教师针对学生的课堂表现、作业完成情况进行评价,给予有效的反馈和建议。
(五)作业布置
课后作业布置如下:
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)了解旋转在实际生活中的应用,体会数学与现实生活的联系,增强数学应用意识。
(三)教学重难点
1.教学重点:
(1)旋转的定义及三要素。
(2)旋转的性质及其应用。
(3)旋转作图的基本方法。
2.教学难点:
(1)理解旋转的性质,尤其是旋转前后图形的全等关系。
九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第23章第1节,主题为“图形的旋转”。该章节在整个课程体系中具有承上启下的作用,既是对以往所学平面几何知识的巩固与拓展,也为后续学习立体几何打下基础。本节课的主要知识点包括:旋转的定义、旋转的性质、旋转作图以及旋转在实际中的应用。
(2)灵活运用旋转作图,正确绘制旋转后的图形。
二、学情分析导
(一)学生特点
本节课面向的是九年级学生,这个年龄段的学生具有较强的逻辑思维能力,好奇心旺盛,喜欢探索新知识。在认知水平上,他们已经具备了一定的几何知识基础,能够理解抽象的几何概念。学习兴趣方面,学生对具有趣味性和挑战性的内容更感兴趣,喜欢通过动手操作来解决问题。然而,部分学生的学习习惯仍需改进,如自主学习能力较弱,对教师的依赖性较强。

《图形的旋转》数学教案设计

《图形的旋转》数学教案设计

《图形的旋转》數學教案設計标题:《图形的旋转》数学教案设计一、教学目标:1. 知识与技能:- 了解并掌握图形旋转的概念。

- 学会根据指定的角度和中心点进行图形的旋转。

2. 过程与方法:- 通过观察、比较和操作,体验图形旋转的过程。

- 培养学生的空间想象能力和逻辑思维能力。

3. 情感态度价值观:- 提高学生对几何知识的兴趣,增强学习的积极性和主动性。

二、教学重难点:重点:理解图形旋转的基本概念,掌握图形旋转的方法。

难点:理解和掌握旋转中心、旋转方向和旋转角度这三个要素在图形旋转中的作用。

三、教学过程:1. 导入新课教师可以利用多媒体展示一些动态的旋转动画,如风车转动、摩天轮旋转等,引导学生观察这些现象的特点,从而引出本节课的主题——图形的旋转。

2. 新课讲解(1) 定义:教师解释图形旋转的概念,即一个图形绕着某个点旋转一定的角度,这个点就叫做旋转中心。

(2) 公式:图形旋转后的坐标可以通过原坐标乘以对应的旋转矩阵来得到。

(3) 实例:教师选取一些简单的图形(如正方形、三角形等),让学生尝试按照指定的旋转中心和旋转角度进行旋转,并验证其正确性。

3. 练习与应用设计一些练习题,包括基础题和提高题,让学生独立完成。

基础题主要是让同学们熟练掌握图形旋转的基本操作,提高题则需要他们运用所学的知识解决一些实际问题。

4. 小结与反馈教师和学生一起回顾本节课的内容,强调图形旋转的关键要点,并解答学生在课堂上提出的问题。

四、作业布置:布置一些相关的家庭作业,例如设计一个简单的图案,然后让它围绕一个固定的点进行旋转,观察并记录旋转前后的变化。

五、教学反思:在教学过程中,教师要关注学生的反应,及时调整教学策略,确保每一个学生都能理解和掌握图形旋转的知识。

同时,也要注重培养学生的自主学习能力和团队协作能力,让他们在解决问题的过程中不断提升自己的综合素质。

23.1图形的旋转教案,说课,课后反思

23.1图形的旋转教案,说课,课后反思

23.1 图形的旋转教案23.1 图形的旋转说课各位领导、各位老师:大家好!我说课的内容是新人教版教科书九年级上学期第二十三章《旋转》的第一课时。

下面我从以下七个方面来汇报我是如何分析教材和设计教学过程的。

一、教材分析教材的地位和作用本节课要研究旋转的定义,旋转的性质及其应用。

它是在学生学习了平移的基础上学习的,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变化的基础,是空间与图形领域的基础知识,在教材中,起着承上启下的作用,同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题. 因此它既是数学上的一个重要基础知识又是重要的数学思想方法,是培养学生思维能力,树立变化观点的良好素材。

教学重点1、旋转现象认识过程的体验.2、旋转内涵的理解掌握.3、旋转性质的掌握与运用.教学难点1、旋转定义和性质的深刻认识.2、旋转性质的灵活运用.突破难点的关键(1)设置恰当情景,激发学生的探索欲望。

(2)通过演示操作,归纳出旋转变换的性质,加深旋转变换的三要素的理解。

教学目标分析知识目标1、经历对生活中与旋转现象有关的图形进行观察、思考、分析、概括、抽象等过程,进一步发展学生的空间观念。

2、结合生活中的具体实例认识旋转。

3、探索、理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质.技能目标让学生经历观察、思考、分析、交流、归纳、抽象等活动,进一步培养学生的概括和抽象思维能力.使学生体会观察、分析、归纳、抽象的研究问题方法,进一步体会和感受实际事物数学化的过程。

并发展初步的审美能力,增强对图形欣赏的意识.情感目标让学生体验从身边得到数学规律的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

通过研究解决问题的方法,培养学生合作交流意识与探究精神。

通过学生欣赏、观察、归纳、比较、抽象图形等数学活动,让学生感受数学的严谨性,图形中蕴含的规律性,提高学生学习数学的热情及大胆探究新知识的创新能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1 图形的旋转
第2课时 旋转作图及变换
教学内容
选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.
教学目标
理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.
复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.
重难点、关键
1.重点:用旋转的有关知识画图.
2.难点与关键:根据需要设计美丽图案.
教具、学具准备
小黑板
教学过程
一、复习引入
1.(学生活动)老师口问,学生口答.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.请同学独立完成下面的作图题.
如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出
△AOB 旋转后的三角形.
(老师点评)分析:要作出△AOB 旋转后的三角形,应找
出三方面:第一,旋转中心:O ;第二,旋转角:∠BOG ;
第三,A 点旋转后的对应点:A ′.
二、探索新知
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD 以O 点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD 分别为O 、O 为中心,旋转角都为30•°的旋转图形.
因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.
分析:只要以O 为旋转中心、旋转角以上面为变化,•旋转长度为菊花
的最长OA ,按菊花叶的形状画出即可.
解:(1)连结OA
(2)以O 点为圆心,OA 长为半径旋转45°,得A .
(3)依此类推画出旋转角分别为90°、135°、180°、225°、270
°、315°的
A 、A 、A
、A 、A 、A .
(4)按菊花一叶图案画出各菊花一叶. 那么所画的图案就是绕O 点旋转后的图形.
例2.(学生活动)如图,如果上面的菊花一叶,绕下面
的点O ′为旋转中心,•请同学画出图案,它还是原来的菊花
吗?
老师点评:显然,画出后的图案不是菊花,而是另外的一
种花了.
三、巩固练习 教材P65 练习.
四、应用拓展
例3.如图,如何作出该图案绕O 点按逆时针旋转90°的图形.
分析:该备案是一个比较复杂的图案,是作出几个复合图形
组成的图案,因此,要先画出图中的关键点,这些关键点往往是
图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特
征,作出这些关键点的对应点,最后再按原图案作出旋转后的图
案.
解:(1)连结OA ,过O 点沿OA 逆时针作∠AOA ′=90°,在射线OA ′上截取OA ′=OA ;
(2)用同样的方法分别求出B 、C 、D 、E 、F 、G 、H 的对应点
B ′、
C ′、
D ′、
E ′、
F ′、
G ′、
H ′;
(3)作出对应线段A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′F ′、F ′A ′、A•′G ′、G ′D ′、D ′H ′、H ′A ′;
(4)所作出的图案就是所求的图案.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;
2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、
角的顶点、圆的圆心等.
六、布置作业
1.教材P67 综合运用7、8、9.
1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.
2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.
3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.。

相关文档
最新文档