第5章 静电场

合集下载

大学物理课件第五章静电场65页PPT

大学物理课件第五章静电场65页PPT
结论: 电场中各处的力 学性质不同。
2、在电场的同一点上放 不同的试验电荷
结论: F 恒矢量
q0
F3
q3
F1
q1
Q
q2
F2
电场强度定义:
E
F
qo
单位:N·C-1
1. 电场强度的大小为F/q0 。
2. 电场强度的方向为正电荷在该处所受电场 力的方向。
FqE
➢ 电场强度的计算
1.点电荷电场中的电场强度
n
Fi
E i1 q0
n Fi q i 1 0
n
Ei i1
q1 r0 1
F02r02q2 F
q0
F01
若干个静止的点电荷q1、q2、……qn,同时存在时的
场强为
n
E Ei
i 1
i
qi
4 π ori2
eˆri
3.连续分布电荷电场中的电场强度
将带电体分成许多无限小电荷元 dq ,先求出它在任意
目录
第五章 第六章 第七章 第八章
静电场 静电场中的导体和电介质 恒定磁场 变化的电磁场
第五章 静电场
5-1 电荷 库仑定律 5-2 电场 电场强度 5-3 高斯定理及应用 5-4 静电场中的环路定理 电势 5-5 等势面 电势梯度
5-1 电荷 库仑定律
➢ 电荷 带电现象:物体经摩擦 后对轻微物体有吸引作 用的现象。 两种电荷: • 硬橡胶棒与毛皮摩擦后 所带的电荷为负电荷。
Qi c
电荷守恒定律适用于一切宏观和微观过程( 例如 核反应和基本粒子过程 ),是物理学中普遍的基本定
律之一。
➢ 库仑定律
库仑定律描述真空中两个静止的 点电荷之间的相互 作用力。

大学物理课件第五章静电场

大学物理课件第五章静电场

[例2] 长为L 的均匀带电直线,电荷线密度为,求其 中垂线上一点的场强。 解:由对称性分析
Ey d Ey 0
y
dq
L 0
y
r
x

E E x d E x d E cos
P dE x x .
d Ey
dE
dq x d y x 2 4 π 0r r 4 π 0r 2 r
2.若 x >>L时,即场点在远离直线的地方,物理上可 以认为该直线是一个点电荷 q E 4 π0 x2
[例3] 求一个半径为 R 的均匀带电 q(设 q >0)的细 圆环轴线上任一点的场强。 解:根据对称性分析 dq
E d E 0
q
R
r
E d E // dq cos 2 4 π 0r q cos qx 2 4 π 0r 4 π 0 R2 x 2
q内
高斯定律的证明 证明:可用库仑定律和叠加原理证明。
1. 通过点电荷q为球心的球面的电通量等于q /0 。 q dS Φe E d S 2 4π 0 r S S
q 4π 0 r q 4π 0 r q
2
dS
S
S
q
r
2 4 π r 2
0
点电荷的电通量与球面的半径无关。





各个细圆环在P点的场强方向都相同
x E dE 2 0
r
0
R
rdr
2
x
2 3/ 2

2 0
1
2 2 R x x
E 2 0
1
2 2 R x x

第五章-电场

第五章-电场

第五章 电 场静电场:相对观察者静止的带电体周围空间存在的物质。

§5.1 电荷、仑定律一、电荷、电荷守恒定律1、电荷、电量电荷:处于带电状态的物体。

电量q (Q ):物体所带电荷的量值。

单位:SI 制中,库仑(C ) 2、电荷的性质: (1) 电荷有两种同种电荷相斥,异种电荷相吸。

(2) 电荷是量子化的任何一个带电体的电都是基本电荷的整倍数。

Q=±ne ,n=1,2,3,…… e =1.602³10-19C3、电荷守恒定律对于一个孤立系统,不管发生什么变化,系统内的所有电荷的代数和保持不变。

若两系统间有电荷交换,但一系统的电荷增加必来源于另一系统电荷的等量减少。

4、电荷的相对论不变性一个电荷的电量与它的运动状态无关,即在相对运动的两个惯性系中测量同一电荷的电量,其值相等。

二、库仑定律 1、点电荷模型忽略带电体的形状和大小视带电体为具有一定电荷的几何点。

2、库仑定律真空中两个静止点电荷间的作用力(斥力或吸力)与这两个电荷所带电量的乘积成正比,与它们之间距离的平方成反比,作用力方向沿着这两个点电荷的连线。

数学表达式为:r r q q F321041πε=其中ε0称为真空的介电常数。

ε0=8.85³10-12 C2/N²m 2 3、电力叠加原理施于任一点电荷的力F等于其它每一个点电荷单独存在时对它所施库仑力i F的矢量和,即∑==n i i F F 1§5.2 电场、电场强度一、电场1、 电场带电体和变化的磁场周围空间存在的一种物质。

2、 静电场的对外表现 (1) 电场力电场中带电体所电场的作用力。

(2) 电场力作功带电体在电场中移动时,电场将对其作功。

二、电场强度矢量EE:描述电场力性质的物理量。

101110033,33q F q F F F q q=→⇒→ 结论:同一场点比值0/q F与0q 无关。

不同场点比值0/q F不同。

大学物理 第05章 静电场

大学物理 第05章 静电场
Q> 0
v E
+ -
P
第五章 静电场
13
物理学
第五版

电场强度叠加原理
点电荷系的电场 点电荷系的电场 v v Qi v 1 E = ∑ Ei = v ∑ r 2 ei 1 q0Qi v 4πε0 i i i Fi = ei 2 4πε0 ri r Q1 v v e1 v F = ∑ Fi F r1 E33 r i P e2 r 2 v v Q2 v v F2 E2 q0 r r3 v F Fi e3 v E= =∑ Q3 F1 E1 q0 q0 i
θ2
θ1
λ λ cosθdθ = (sin θ2 − sin θ1 ) 4πε0d 4πε0d λ λ sin θdθ = (cosθ1 − cosθ2 ) 4πε0d 4πε0d
r r r E = Ex i + Ey j
第五章 静电场
24
物理学
第五版
λ λ Ex = (sinθ 2 − sinθ1 ) Ey = (cosθ1 − cosθ 2 ) 4πε0d 4πε0d
e = 1.602 × 10 −19 C
第五章 静电场
4
物理学
第五版

电荷守恒定律
不管系统中的电荷如何迁移, 不管系统中的电荷如何迁移,系统的 电荷的代数和保持不变. 电荷的代数和保持不变 (自然界的基本守恒定律之一) 自然界的基本守恒定律之一)
第五章 静电场
5
物理学
第五版
5-2 库仑定律 法国物理学家, 法国物理学家,1785 扭秤实验创立 年通过扭秤实验创立库 年通过扭秤实验创立库 仑定律, 仑定律, 使电磁学的研 究从定性进入定量阶段. 究从定性进入定量阶段. 电荷的单位库仑以他的 姓氏命名. 姓氏命名. 库仑 (C.A.Coulomb 1736 −1806) )

第5章 静电场 魏京花 温州大学

第5章 静电场 魏京花 温州大学

q1
er
r
6
q2
F
F12 F21
ε0 8.851012 C2 N1 m2为真空电容率
§5.2 库仑定律
普 通 物 理 教 程
电场强度
电场强度 电荷 电势 物 质
5.2.2 静电场
电荷
受力 电场 做功 场
第 五 章 静 电 场
实物
静电场: 静止电荷周围存在的电场
7
根据对称性
dE
xdy E dEx dE cos 4 0 r 3 cos d sin 4 0 x 2 0 x


dE
y
0
x r cos
y x tan
dy x d 2 cos
sin E 2 0 x
§5.2 库仑定律
普 通 物 理 教 程
电场强度
5.2.3
电场强度 点电荷 电荷量足够小
1 试验电荷
第 五 章 静 电 场
2 电场强度
F E q0
Q
q0
试验电荷
F
场源电荷
8
§5.2 库仑定律
普 通 物 理 教 程
F E q0
电场强度
定义: 单位正试验电荷所受的电场力 单位: N C , V m 与试验电荷无关
1
第 五 章 静 电 场
电荷q受电场力: F qE
9
Q
q0
试验电荷
F
场源电荷
§5.2 库仑定律
普 通 物 理 教 程
电场强度
5.2.4 电场强度的计算
1、点电荷的电场强度
F
1 Qq0 er 2 4 πε0 r

第5章-静电场

第5章-静电场

P
r

r
r
q
l
r 2r2l4 2r lr 2r2l4 2r l
r3 r314lr22 rr2l32
泰勒公式
r 3 r 3 1 2 3r r2 l r 3 r 3 1 2 3r r2 l
q
EE4or2l2 42
EB
B
E-
cos l
2 r2 l2 4
r

-q l q
EB2Eco s4or2qll2432
因为r >> l
所以 EB4qolr3 4por3
例5.真空中有均匀带电直线,长为L,总电量为Q。 线外有一点P,离开直线的垂直距离为a,P点和直线
FG
mM G r2
6.6 710 11 1.6 715.3 0 27 1 9 .0 1 112 110 31
3.641047N
F e F G2.2 71309 倍
§5-2 电场 电场强度
5-2-1 电场
电场:电荷周围存在着的一种特殊物质。
电荷
电场
电荷
静电场: 静止电荷所产生的电场
电荷的基本性质: 电荷与电荷之间存在相互作用力,同
种电荷相斥,异种电荷相吸。 电量:物体带电荷量的多少。
qne n = 1,2,3,…
电量单位: 库仑(C)
基本电荷量: e1.6021 019C
电荷守恒定律:在一个孤立系统中,无论发生了怎 样的物理过程,电荷不会创生,也不会消失,只能 从一个物体转移到另一个物体上。
EdE4xox22rrd2r32
E0RdE2o1(x2xR2)12
无限大带电平板的电场强度 :

5大学物理讲稿第5章真空中的静电场

5大学物理讲稿第5章真空中的静电场

第5章 真空中的静电场§ 物质的电结构实验证明,自然界中存在两种电荷,分别称为正电荷和负电荷.它们之间存在相互作用力,同种电荷相互排斥,异种电荷相互吸引.物体所带电荷的多少称为电量,用q 或Q 表示,电量的单位取库仑(C ).实验还表明,在自然界中,存在着最小的电荷基本单元e,任何带电体所带的电量只能是这个基本单元的整数倍,即),,( 21 n ne Q电荷的这一特性称为电荷的量子性.实验测得这基本单元的电量为).()(.C C e 19191060211049602177331 近似为由于e 的量值非常小,在宏观现象中不易观察到电荷的量子性,常将电量Q 看成是可以连续变化的物理量,它在带电体上的分布也看成是连续的.由物质的电结构可知,原子中一个电子带一个单位负电荷,一个质子带一个单位正电荷,其量值就是C e 19106021 .,原子失去电子带正电,原子得到电子带负电.随着人们对物质结构的认识,1964年盖尔曼(M ·Gell-Mann )等人提出了夸克模型,认为夸克粒子是物质结构的基本单元,强子(质子、中子等)是由夸克组成的,而不同类型的夸克带有不同的电量,分别为e 31 或e 32 .截止1995年,核子的6个夸克已全部被实验发现,可靠的依据也证明了分数电荷的存在.但到目前为止还没有发现自由状态存在的夸克 .我们已经知道,在正常情况下物体不带电,呈电中性,即物体上正、负电荷的代数和为零.当物体呈带电状态时,是由于电子转移或电子重新分配的结果,在电子转移或重新分配的过程中,正、负电荷的代数和并不改变.大量实验表明,把参与相互作用的几个物体或粒子作为一个系统,若整个系统与外界没有电荷交换,则不管在系统中发生什么变化过程,整个系统电荷量的代数和将始终保持不变.这一结论称为电荷守恒定律,它是自然界中一条基本定律.实验还发现,一切宏观的、微观的,物理的、化学的、生物的等过程都遵守电荷守恒定律.§ 库仑定律实验表明,带电体之间的相互作用与带电体之间的距离和所带电量有关,也与带电体的大小、形状、电荷在带电体上的分布情形以及周围介质的性质有关.所以在通常情况下,两个带电体之间的相互作用表现出与多种因素有关的复杂情形.当带电体的线度与带电体之间的距离相比小得多时,带电体的大小、形状对所研究问题的影响可以忽略,这样的带电体称为点电荷.显然,点电荷的概念与质点、刚体等概念一样,是对实际情况的抽象,是一种理想化的物理模型.一个带电体能否看成点电荷,必须根据具体情况来决定.一般的带电体不能看成点电荷,但总可以把它看成是许多点电荷的集合体,从而能由点电荷所遵从的规律出发,得出我们所要寻找的结论.本节我们讨论真空中点电荷间的相互作用.两点电荷之间的相互作用是库仑—1806)通过扭称实验于1785年总结出来的,其内容为:真空中两静止点电荷之间的相互作用力的大小与它们所带电量的乘积成正比 ,与它们之间距离的平方成反比;作用力的方向沿着两电荷的连线,同号电荷相斥(为正),异号电荷相吸(为负),这一结论称为库仑定律.其数学表达式为 r r q q k F ˆ221( ) k 为比例系数,在SI 单位制中,实验测得其数值为2222C m N C m N 991091098755188.k为使由库仑定律导出的其它公式具有较简单的形式,通常将库仑定律中的比例系数写为41 k ( ) 其中ε0为真空的电容率(或真空中的介电常数),于是库仑定律又可写为r r q q F ˆ20214 图(a)表示两个同号电荷的作用力是排斥力;图(b)表示两个异号电荷的作用力是吸引力.值得指出的是,库仑定律只适用于描述两个相对于观察者为静止的点电荷之的相互作用,这种静止电荷的作用力称为静电力(或库仑力).空气对电荷之间的作用影响较小,可看成是真空.例题 三个点电荷21q q 、和 Q 所处的位置如图 所示,它们所带的电量分别为C q q 6211002 . ,C Q 61004 ..求21q q 和对Q 的作用力.解:本问题一般是先利用库仑定律求出21q q 、分别对 Q 的作用力 F 和F ',然后求出它们的合力.由本问题的对称性可知 F 和 F '的 y 分量大小相等,方向相反,因而互相抵消.Q 所受21q q 、之合力方向沿 x轴正向.由库仑定律得1q 对Q 的作用力大小为N 290403010041002109984226692101...... r Q q F N 2305040290....cos F F x 所以Q 所受21q q 、之合力大小为N 46023022..cos ' F F F F f x x x作业(P120):§ 电场和电场强度一、静电场关于电荷之间如何进行相互作用,历史上曾经有过两种不同的观点.一种观点认为这种相互作用不需要媒质,也不需要时间,而是直接从一个带电体作用到另一个带电体上的.即电荷之间的的相互作用是一种“超距作用”.这种作用方式可表示为电荷电荷另一种观点认为,任一电荷都在自己的周围空间产生电场,并通过电场对其它电荷施加作用力,这种作用方式可表示为电荷电场电荷大量事实证明,电场的观点是正确的.电场是一种客观存在的特殊物质,与由分子、原子组成的物质一样,它也具有能量、质量和动量.二、电场强度不同的带电体系具有不同的电场,同一电荷体系的电场在空间具有一定的分布.为了定量的描述电场中各点电场的性质,引入一新的物理量——电场强度. 电场的一个重要性质,就是对置于其中的电荷施加作用力.为此,在电场中引入电量为0q 的试探电荷来研究电场的性质.所谓试探电荷是这样一种电荷,首先它所带的电量要非常小,一致由于它的引入使原电场发生的改变可以忽略;其次它的几何尺寸亦必须非常小,一致可以看作点电荷.实验证明,在给定的场点处,试探电荷0q 所受的电场力F 与0q 之比为一常矢量,与0q 的大小无关;不同的场点,比值不同.可见比值F/0q 揭示了电场的性质,所以我们可将这一比值定义为电场强度,简称电场,用E 表示,即q F E 上式说明,静电场中任意一点的电场强度其大小等于单位试探电荷在该点所受到的电场力,其方向与正电荷在该点的受力方向相同.通常E 是空间坐标的函数.若E 的大小和方向均与空间坐标无关,这种电场称为匀强电场.在SI 单位制中.电场强度的单位为牛顿/库仑(N ·C -1),或伏特/米(V ·m -1)三、叠加原理和电场强度的计算1. 单个点电荷产生的电场考虑真空中的静电场是由电量为 q 的点电荷产生的,试探电荷0q 在其中的P 点所受的电场力可由库仑定律式()得r rq q F ˆ2004 式中r 是点P 相对于点电荷的位置矢量,r 是这位置矢量的大小,由电场强度的定义式()则得P 点处的电场强度为r rq r r q q F E 3020044 ˆ 上式表示,点电荷在空间任一点P 所产生的电场强度E 的大小,决定于这个点电荷的电量和点P 到该点电荷的距离.电场强度E 的方向与这个点电荷的符号有关,q 为正,电场强度E 的方向与位置矢量r 的方向相同;q 为负,电场强度E 的方向与位置矢量r 的方向相反.电场强度在空间呈球对称分布.2. 场强的叠加原理 多个点电荷的电场强度考虑空间存在n 个点电荷.实验证明,在它们的电场中任一点P 处,试探电荷0q 所受的电场力F 等于各点电荷分别单独存在时0q 所受电场力的矢量和,并利用电场强度的定义得:i q F E i E E F F 0/定义上式表明,在点电荷系的电场中,任意一点的电场强度等于每个点电荷单独存在时在该点所产生的电场强度的矢量和,这一结论称为场强的叠加原理.i i ii r r q E 3041进一步可表示为 3. 任意带电体产生的电场任意带电体的电荷可以看成是很多极小的电荷元dq 的集合,每一个电荷元dq 在空间任意一点P 所产生的电场强度,与点电荷在同一点产生的电场强度相同.整个带电体在P 点产生的电场强度就等于带电体上所有电荷元在P 点场强的矢量和.如果点P 相对于电荷元dq 的位置矢量为r ,则电荷元dq 在P 点产生的电场强度,进而整个带电体在P 点产生的电场强度为:r r dq E r r dq E d 30304141求积分 ).().().(135411254111541303030线分布面分布体分布r rdl r r dS r r dV E 应该注意,式— 都为矢量式.实际应用中多用标量式(投影式) ,如E 沿X 轴的投影式为cos 204r dq dE E x x 式中 表示r 与X 轴的夹角.例题 如图所示,有两个电量相等而符号相反的点电荷 + q 和 - q,相距l . 求在两点电荷的中垂面上任一点P 的电场强度.解:以l 的中点为原点建立坐标系,如图设点P 到点O 的距离为r .电荷 + q 和- q在点P 产生的电场强度分别用 E E 和表示 ,它们的大小相等为441220/l r q E E它们的方向如图所示.点P 的电场强度E 为 E E 和的矢量和,即 E E E E 的x 分量为23220x x x x 441cos cos /)/(l r ql E E E E EE 的y 分量为0sin sin y y y E E E E E所以,点P 的电场强度大小为负方向方向沿X l r ql E E x 23220441/)/(当l r 时,这样一对电量相等、符号相反的点电荷所组成的系统,称为电偶极子.从负电荷到正电荷所引的有向线段 l 称为电偶极子的轴 .电量q 与电偶极子的轴 l 的乘积,定义为电偶极子的电矩,用表示,即l q p由于l r ,故有323224r l r /)/(,所以在电偶极子轴的中垂面上任意一点的电场强度可表示为304rp E 电偶极子是一个很重要的物理模型,在研究电介质极化,电磁波的发射和吸收等问题中都要用到该模型.例题 有一均匀带电细直棒,长为L,所带总电量为q .直棒外一点P 到直棒的距离为a ,求点P 的电场强度.解:如图所示,设直棒两端至点P 的连线与x 轴正向间的夹角分别为21 和,考虑棒上x 处的元段dx ,其带电量dx Lq dx dq ,它在P 点产生的电场强度大小为204d ldx E 其中 l 是微元dx 到P 点的距离, d E 的方向如图所示.计算其沿x 轴和y 轴的分量分别积分得:cos 204l dx dE E x x )sin (sin 1204 aLq2104d a cos )cos (cos sin 21004421 aLq d a E y 讨论 1) 对于半无限长均匀带电细棒( 2121220,//,或)则有a E x 04 ;aE y 04 2) 对于无限长均匀带电细棒( 210,)则有aE E y x 020 , 作业(P120):,§ 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线. 为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度EdS dN 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。

鲁东大学大学物理课件第5章 静电场

鲁东大学大学物理课件第5章 静电场

鲁东大学《大学物理》课件-第5章 静电场第一节 静电场的概念静电场指无论时间怎样变化,其在空间中分布的特性总是不变的电场。

电荷是生成电场的基本物理量,其单位为库仑,静电场的单位为牛/库仑。

对于外出现的电荷,其在电场中所受的电场力可由库仑定律求得。

对于一定大小的电荷,其电场在空间中可用电场线表示,电场线的性质可用电场线规则描述。

第二节 静电场的电势电势是定义在空间各点上的一个物理量,其大小表示单位正电荷在电场中处于该点上时所具有的能量。

电势的单位为伏特。

对于静电场,它所具有的电势可由电势公式求得。

对于电势场的分析,我们需要牢记下列要点:1. 电势差(V)是用来描述两点间电势大小的描述量;2. 电势在一定意义下是标量(即不依赖方向);3. 电势类似于位移(s)而电场类似于力(F)。

第三节 静电场的高斯定理高斯定理是分析静电场最有用的方法之一,它为我们提供了计算闭合曲面上总电荷的方法。

这个定理本质上告诉我们电场线与曲面所包含电荷的关系,它的公式为:`∮E·dS=∫ρdV/ε0`其中,E为电场强度,ρ为电荷密度,S为曲面,ε0为真空介质常数。

第四节 静电场的能量能量是静电学的另一个重要的方面。

电荷和电场的相互作用会导致电场的能量变化。

为了度量电场的能量,我们需要引入电场能量的概念。

静电场的能量密度为:`u=1/2ε0E²`在这个公式中,u表示能量密度,E表示电场强度,ε0表示真空介质常数。

这个公式告诉我们电场强度越强,能量密度越大;电场强度越小,能量密度越小。

因此,如果我们希望减小电场的能量,我们可以减小电场强度。

第五节 静电场的辐射与防护静电场也会存在辐射,它的能量通常是非常低的。

如若要防护,我们需要采取一些防护措施。

一种常见的防护方法是通过给电荷带上匀强的反向电场,在许多情况下,这种反向电场是可以抵消原始电场的影响的。

另一种方法是电磁屏蔽技术,它通过把电磁波的传播路线限制在一个封闭空间内,从而减小了电磁波对周围环境的影响。

第五章静电场

第五章静电场


5.2 高斯定理
第五章静电场
高斯定理的导出
库仑定律 电场强度叠加原理
高斯 定理
点电荷位于球面中心
E
q 4π 0r
2
r
+
dS
q Φe E dS dS 2 S S 4 π r 0
Φe
q
0
5.2 高斯定理
第五章静电场
点电荷在任意封闭曲面内
en
E2
E1
5.2 高斯定理
第五章静电场
5.2 高斯定理
第五章静电场

Φe Φe前 Φe后
y
Φe左 Φe右 Φe下
Φe前 Φe后 Φe下
s E dS 0
P
en
N
M
o
en

en
E
R
z
Q
x
Φe左 E dS ES 左 cos π ES 左 s左 Φe右 E dS ES 右 cos ES 左 s右 Φe Φe前 Φe后 Φe左 Φe右 Φe下 0
第五章静电场
讨论

将 q2 从 A 移到
P 电场强度是否变化? 穿过高斯面 的Φ e 有否变化?
B q A P 2 *
q2 B
s
s
q1
在点电荷 q 和 q 的静电场中,做如下的三 个闭合面 S1 , S 2 , S3 , 求通过各闭合面的电通量 .
q Φe1 E dS
q1
q2
E
dS
Φe

S
E dS

i
S
Ei dS

第五章 静电场

第五章   静电场
6.高斯定理中的E是由下述情况下,哪些电荷所激发的:(1)高斯面内的电荷?(2)高斯面外的电荷?(3)高斯面内外的所有电荷?
7.高斯定理中的 是(1)高斯面内的电荷?(2)高斯面外的电荷?(3)高斯面内外的所有电荷?
8.下列几个带电体能否用高斯定理来计算电场强度?作为近似计算,应如何考虑呢?(1)电偶极子;(2)长为L的均匀带电直线;(3)半径为R的均匀带电圆盘。
=0
所以
5.真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-和+.试求:
(1)在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).
:(1)一根无限长均匀带电直线在线外离直线距离r处的场强为:
E=/ (20r)
解:设试验电荷置于x处所受合力为零,即该点场强为零。
得x2-6x+1=0, m
因 点处于q、-2q两点电荷之间,该处场强不可能为零。故舍去。得
m
2.如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度。
解:设杆的左端为坐标原点O,x轴沿直杆方向.带电直杆的电荷线密度为=q/L,在x处取一电荷元dq=dx=qdx/L,它在P点的场强:
答案:C
8.已知某电场的电场线分布情况如图所示.现观察到一负电荷从M点移到N点.有人根据这个图作出下列几点结论,其中哪点是正确的?
(A)电场强度EM<EN.(B)电势UM<UN.
(C)电势能WM<WN.(D)电场力的功A>0.
A
答案:C
三、计算题
1.电荷为+q和-2q的两个点电荷分别置于x=1 m和x=-1 m处.一试验电荷置于x轴上何处,它受到的合力等于零?

大学物理第五版第五章静电场马文蔚详解

大学物理第五版第五章静电场马文蔚详解
第五章 静电场 5-1电荷的量子化
电荷守恒定律
闪电
避雷针
引言
电磁现象是自然界中极为普遍的自然现象。
公元前600年 古希腊哲学家泰利斯就知道一块琥珀用木头摩擦之后
会吸引草屑等轻小物体 春秋战国时期 《韩非子》和《吕氏春秋》都有天然磁石(Fe3O4) 的记载 1785年 库仑定律提出,电磁学进入科学行列
如研究人体生物电——心电时,心肌细胞等也可 看作电偶极子模型。
(1)轴线延长线上一点的电场强度
E
E
1
q
4πε0 (x r0 E E
2)2
4
i
q πε0
E
(x
1 4πε0 (x
2 xr0
2 r02 4)2
q
r0 i
i 2)2
q
q
- O. +
r0 2 r0 2
. A
E E
x
Fe
1
4π 0
e2 r2
8.1106 N
Fg
G
memp r2
3.7 10-47 N
Fe 2.27 10 39 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第五章 静电场 5-3 电场强度
人与人相互作用力:
电荷与电荷之间的作用力怎么实现?
一 静电场
电荷
电场
电荷
场 实物
物质
电场的两条基本性质:
2.静电场能的性质:静电场 作功、电势能、电场能量
麦克斯韦方程组
电磁学和力学的主要区别
研究对象 状态参量 问题特点
数学工具
力学 实物
r,mv
已知某些量 求其他量 微积分应用少 矢量分析少

大学物理第五章静电场

大学物理第五章静电场
电介质
电介质是绝缘体,其内部没有自由电子,因此不能形成电流。在静电场中,电介质内部存在束缚电荷,束缚电荷 产生的电场与外加电场方向相反,起到削弱外加电场的作用。
静电场中的能量与电场力
静电场能量
静电场具有能量,其能量密度与电场 强度的平方成正比。静电场的能量可 以转化为其他形式的能量,如机械能、 热能等。
电场
电荷周围空间存在电场,电场对放入其中的电荷 有力的作用。
3
电场线
为了形象地描述电场而引入的线,电场线上每点 的切线方向表示该点的电场强度方向,电场线的 疏密程度表示电场的强弱。
电场强度与电势
电场强度
描述电场强弱的物理量,用E表示, 单位是牛/库仑(N/C)。电场强 度是矢量,方向与正电荷在该点 所受电场力方向相同。
典型电荷分布实例分析
均匀带电球体
球体内部和外部的电场强度和电势分布可以 通过高斯定理等方法进行计算和分析。
无限长均匀带电直线
通过电势叠加原理可以得到其电势和电场强度的表 达式,并分析其与距离的关系。
无限大均匀带电平面
其电场强度和电势分布可以通过镜像法等方 法进行计算和分析,具有一些特殊的性质和 应用场景。
电容器储能
电容器是一种能够储存电能的元件, 广泛应用于电子电路、电力系统等领 域。电容器通过静电场将电能储存在 两极板间的电场中。其储能密度与电 容器的电容和电压平方成正比。提高 电容器的储能密度对于实现电子设备 的小型化和高效化具有重要意义。
静电喷涂
静电喷涂是一种利用静电场将涂料均 匀地喷涂到工件表面的技术。在喷涂 过程中,涂料颗粒带负电荷,而工件 表面带正电荷。通过调整静电场的强 度和分布,可以实现涂料颗粒在工件 表面的均匀沉积,提高涂层的质量和 效率。静电喷涂广泛应用于汽车、家 电、建筑等领域的表面涂装。

《电学》课件-第5章静电场中的电介质

《电学》课件-第5章静电场中的电介质

ε πQ
=4 0
RB dr
r RA
2
Q
B
ε ++Q +
R+ 1+A
+
0 + ++
R2
=
Q
4π ε0
(
1 RA
1) RB
ε Q
C = UA U B
=

R AR B
R 0 B
RA
讨论: 1. 电容计算之步骤:
E
UA UB
C
2. 电容器之电容和电容器之结构,几何
形状、尺寸有关。
3. 电容器是构成各种电子电路的重要器 件,也是电力工业中的一个重要设备。它的作 用有整流、隔直、延时、滤波、分频及提高
q
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
4pe0
r2 2
2. 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势;
d
ε = ε0 εr
称ε为介电常数,或电容率。
有介质时电容器的电容不仅和电容器的 结构,几何形状、尺寸有关,还和极板间介 质的介电常数有关。
电介质的相对电容率和击穿场强
电介质
相对电容率 击穿场强
真空 空气 纯水 云母
1 1.00059
80 3.7~7.5

大学物理精第五章真空中的静电场ppt课件

大学物理精第五章真空中的静电场ppt课件

三、高斯定理
1.表述:在真空中的任何静电场中,通过任一闭 合曲面的电场强度通量等于该闭合曲面内所包 围电荷的代数和除以ε0。
ppt精选版
39
S
• Q
2.数学表达式:
Φ e E d S E c o sd S
n Q i
i 1 0
其中:E为高斯面内、外场源电荷的电场矢量和。
*高斯面为封闭曲面;
q1
Fi
1
4π 0
qiq0 ri3
ri
q2
q3
由力的叠加原理得 q 所0 受合力
F Fi
i
故 q 处0 E总F电 场强Fi度
q0
q i 0
i
Ei
ppt精选版
r1 r2
r3
q0
F3 F2 F1
17
1.电场强度的叠加原理:
点电荷系在某点产生的场强,等于各点电荷单 独存在时在该点分别产生的场强的矢量和。
过球面的电通量
Φe
Q 0
• Q
由图可知从曲面一侧穿入的
电场线必定从另一侧穿出,所
以通过曲面的电通量为0
ppt精选版
38
*如点电荷为负,则通过闭合曲面的电通量为负。
*点电荷发出的通过闭合球面的电通量与球面半径 无关,任意形状的闭合曲面也如此。
*如果闭合曲面没有包含点电荷则进入曲面和穿 出曲面的电场线相同,总电通量为零。
解:选择如图所示的高斯面(电场球对称)
E Φe E cosdS
r
EdSE4r2
R
由高斯定理
Φe
Q 0
E 4 r2 Q 0
1Q
pEpt精选版40 r2
43
例题10 两同心均匀带电球壳,内球球壳半径R1 、 带电量+Q,外球球壳半径R2 、带电量-Q ,不计 球壳厚度,试求电场强度的空间分布。

大学物理05-静电场-5-6pdf

大学物理05-静电场-5-6pdf
29 30
9
5
站在绝缘的椅子上,用手 按着起电机的球形金属罩。 人的身体可以导电,所以 当起电机启动时,电荷便 传到人体上。 头发上的电荷互相排斥, 头发便竖立起来。
尖端的场强特别强,足以使周围空气分子电离而使 空气被击穿,导致“尖端放电” 应用:避雷针
避免方法:(高压设 备的电极, 高压输电 线)金属元件尽量做 成球形,并使导体表 面尽可能的光滑
31 32
有导体时静电场的处理与真空中的静电场的处理 方法不同:

导体放入静电场中: 导体的电荷 重新分布 导体上的电荷分布 影响电场分布
例5-12 有两个很大的平行平面带电导体板,证明: 两板相向的侧面上的电荷面密度总是大小相等而符 号相反;相背的两侧面上的电荷面密度总是大小相 等但符号相同。
静电平衡状态
电场强度沿 d l 方向的分量: El dU dU cos dn dl
1
El
2
dn
n0
P2
沿该方向电势的变化率的负值
E
dl P 1
U
P 3
场强与电势的微分关系 dU U E n 或 Ex dn x
Ey
U y
Ez



(3)电场线指向电势降落的方向。
实际的等势面是三维曲面
3
4
二、电势梯度 (电势的空间变化率)
取两个邻近的等势面 1 和 2,电势 1 分别为 U 和 U+dU 。设 dU > 0
法线 n ,方向为电势增加的方向 电场 E, 方向为电势降低的方向 单位正电荷从 P1 移动到 P3,电场力做的功 2 n0
13
一、导体的静电平衡条件

大学物理简明教程 第5章 静电场

大学物理简明教程   第5章 静电场

E
q
力矩总是使电矩 p 转向 E 的方向,以达到稳定状态
M p E 可见:p E 力矩最大; p // E 力矩最小。
20
§5.2 电通量 高斯定理 一、电场线
为形象描绘静电场而引入的一组空间曲线。
EA
EB
A
B
S
E
1.图示方法 电场线的切线方向表示场强方向 电场线的密度则表示场强的大小
总场强:
n E
i 1
qi
qi 40 ri r 2 i0
场强在坐标轴上的投影
Ex Eix , E y Eiy , i i E E x i E y j Ez k
Ez Eiz
i
12
3.连续带电体的电场
dE dq 4 0 r 2 r0
EB
结论:
1 p 4 0 r 3 1 E p ; E 3 注意:坐标原点的选择 r
15
例: 真空中有一均匀带电直线长为L,总电量为q,试 计算距直线距离为a的P点的场强.已知P点和直线两端 的连线与直线之间的夹角分别为 1和 2,如图所示. 解: 步骤:
dE
1.建立坐标,选电荷元 dq=dx 2.确定 dE 的大小和方向 1 dx dE 4 0 r 2 3. 将 dE投影到坐标轴上
dEx dE cos(1800 )
dE y
y P
dE x
a
1
0
r x

dx
2
x
dEy dE sin
16
4. 选择适当的积分变量 r、 、x三变量选 一个积分变量 选 作为积分变量, 因此
a2 r2 sin2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N e E S S
△N为通过△S⊥的电力线数
21
E
d e dS
在电场中任一点处,通过垂直于E的单位面积上的 电力线的数目等于该点处E的量值。 2.电力线形状
单个点 电 极
带异号荷
电偶极子
均匀带电的直线段
3. 静电场电力线的性质
(1)起自正电荷(或∞处)、终止于负电荷(或∞处), 不形成闭合回线、也不中断 。 (2)任意两条电力线不相交。(E是唯一的)。
2
§5.1 电场 电场强度 一、电荷及其性质
电荷是物质的一种基本属性 种类:正电荷(玻璃电) 、负电荷(树脂电) 性质:同号相吸、异号相斥 电量:物体电荷多少的量度 单位:库仑 C 1. 电荷守恒定律 一切相互作用下发生的过程都遵守。 这是物理学中一条普遍规律! 2.电荷量子化 电荷量子化是实验结果
2
1
0
讨论: •当直线长度L→∞,或a→0,则 1→0, 2→ Ex 0 E y j 2 0a E j 2 0 r •当异号时,E方向相反
18
r
E
六、带电体在外电场中所受的作用 F qE F Edq
讨论:如图已知q、d、S
23
二、电通量
通过电场中任一给定截面的电力线的总数称为 通过该截面的电通量或E通量,用符号Φe表示
在匀强场中(平面)
S
S
在非匀强场中(曲面) E

S
E
S/
E
de E dS e E dS
S
24
e ES
e ES cos e E S
第5章 静电场
§5.1 §5.2 §5.3 §5.4 §5.5 §5.6 电场 电场强度 电通量 高斯定理 电场力的功 电势 静电场中的导体和电介质 电容 电容器 电场的能量
1
静电场: 相对于观察者静止的电荷产生的电场 一个实验规律:库仑定律; 两个物理量: 电场强度、电势; 两个定理: 高斯定理、环路定理 导体和电介质: 都通过其电荷和外电场的相互作 用而改变电荷分布及运动状态,这种改变又对 电场产生影响。
8
E ( r ) 是矢量,是空间坐标点的函数. 单位:牛/库(N/C)
9
四、场强叠加原理
• 电力的叠加原理 当有多个点电荷存在时,两个点电荷间的力不因 第三个电荷存在而受影响 所以某个点电荷受力:
F Fj
•场强的叠加原理 n F Fi n E Ei q0 i 1 q0 i 1
2 a r2 sin2
dE
dE y
y P
dE x
a
1
0
r x

dx
2
x
d x a tg ( ) actg dx a 2 sin 2 dEx cos d 40a dEy sin d 40a
17
sin 2 sin1 E x dEx cosd 4 a 4 0a 0 2 (cos1 cos 2 ) E y dEy sind 40a L 4 a 1
i 1
j
E Ei E j
ds
e E dS S ( Ei E j ) d S
S
(S内) (S外)
i
i
j
S qi
qj

S
( Ei ) d s ( E j d s )
i S
S
j
4
二、库仑定律
1785年,库仑通过扭称实验得到: 真空中的库仑定律
F12
r0
q1
r
q1q2 F21 F12 k 2 r0 r SI位制中: q — 库仑(C) , F — 牛顿(N) , r —米(m) 实验给出: k = 8.988010 9 N· m2/C2 1 k 40

i
qi Ei d s E j d s 0
j S
j
i
0
29

S
E dS
q
0

任意连续电荷分布
1 E ds
S
0

V
.d v
说明: (1) e只由S内的∑q内值决定,与q内分布无关; (2) 高斯面上各点的场强E是总场强(S内外电荷共同 产生); (3) 库仑定律只适用于静电场,高斯定理不仅适于静 电场,还适用于变化的电场。 (4) 高斯定律说明,静电场是个有源场;
1 q q EA [ ]i l l 40 ( r )2 ( r )2 2 2
14
对B点:
1 q E E 4 0 ( r 2 l 2 22 )
EB
E

y
B
r
B点总场强大小
E
0
EB 2E cos
q
l
r
E E A
E
电场中的任意闭合曲面S、电场强度E的通量
规定:法线的正方向为指向闭合曲面的外侧。 e E dS
S
Φe的单位为:
伏特· 米(V· m)
25
三、高斯定理
高斯定理是反映静电场性质的一个基本定理。 反映 场 和 源 的关系。 1.高斯定理的积分形式 在真空中的任意静电场中,通过任一闭合曲面S的 电通量Φe,等于该曲面所包围电荷的代数和除以0, 而与闭合曲面外的电荷无关. 其数学表达式为
A
x
l2 1 p EB 2 2 2 3 1 l l 2 2 4 r 2 0 4 0 ( r 2 ) ( r 2 ) 2 2
EB
结论:
1 p 4 0 r 3 1 E p ; E 3 注意:坐标原点的选择 r
15
例: 真空中有一均匀带电直线长为L,总电量为q,试 计算距直线距离为a的P点的场强.已知P点和直线两端 的连线与直线之间的夹角分别为 1和 2,如图所示. 解: 步骤:
求两板间的所用力 d
q
q2 f q 2 0 2 0 S
f q
2 2
q
4 0 d
19
电偶极子在外电场中受的力和力矩 合 力
F F F 0
q
o
F qE
F qE
合力矩
l l M F sin F sin qlE sin 2 2
S
0
(3) q不在闭合曲面S//内 只有与 S//相切的锥体 内的电场线才通过 S// e // E dS 0
S
+
因为有几条电场线进面内必然有同 样数目的电力线从面内出来。
28
场源电荷为点电荷系(或电荷连续分布的带电体 ) E (4) 任意点电荷系统 n E Ei E i E
p ql
+q
(1)电偶极子场强 解:对A点: +q和-q 的场强 分别为
E q l 4 0 ( r )2 2 i E
q l 2 4 0 ( r ) 2 i
p
E A E E
l
-q
y
0
l
r
A
x
r l
1 2ql EA i 3 4 0 r 1 2p EA 4 0 r 3
30
q
i
0 e 0
表明电力线从正电荷发出,穿出闭合曲面,所以 正电荷是静电场的源头。
S
r0 dS
•点电荷的电通量与球面的半径无关。
• 取相邻球面,则e 连续
S
2
S1
点电荷的 E 线连续。
e1=e2
27
(2) q位于任意闭合曲面S/内 若S和S/之间没有其他电荷 , 点电荷q 的电场线是连续地延 伸到无限远。
dSn
E
S/
+

S
q E dS /
3
1906—1917年,密立根最早从实验上证明 电荷量子:e, q=Ne N=1.2.3…… 1986年推荐值: e = 1.60217733 10-19 C 3. 相对论不变性 实验还表明:一个电荷的电量与其运动状态无关. 例如:H2 分子和 He原子 —— 其中两个质子运动状况相差很大, 但氢气、氦气均不带电!
真空中介电常数: 0 =8.85×10-12 C-2· N-1· m-2
5
施力
q2 受力
F21
F
1 q1q2 r0 2 40 r
r0 受力电荷对施力电荷的单位位矢
库仑定律适用的条件: ① 只适用于点电荷模型 ② 施力电荷对观测者静止(受力电荷可运动)
6
三、电场强度
电相互作用如何实现? 历史上经历超距作用理论→ 法拉第近距作用 电荷 电场 电荷 1.电场 电荷周围存在电场。 场是物质存在的形式 静止的点电荷周围存在着一种特殊的物质,称 为静电场。 电场的基本性质 ① 对放在其内的任何电荷都有作用力 ② 电场力对移动的电荷作功
E
q
力矩总是使电矩 p 转向 E 的方向,以达到稳定状态
M p E 可见:p E 力矩最大; p // E 力矩最小。
20
§5.2 电通量 高斯定理 一、电力线
为形象描绘静电场而引入的一组空间曲线。
EA
EB
A
B
S
E
1.图示方法 电力线的切线方向表示场强方向 电力线的密度则表示场强的大小
dE
1.建立坐标,选电荷元 dq=dx 2.确定 dE 的大小和方向 1 dx dE 4 0 r 2 3. 将 dE投影到坐标轴上
相关文档
最新文档