图形的旋转 数学优秀教学设计(教案)

合集下载

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

图形的旋转教案

图形的旋转教案

图形的旋转教案这是图形的旋转教案,是优秀的数学教案文章,供老师家长们参考学习。

图形的旋转教案第1篇一、教材的地位与作用图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。

同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习对称图形、中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。

二.学情分析认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

情感与学习风格分析:他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。

三、教学目标在新课程改革背景下的数学教学应以学生的发展为本,学生的能力培养为主,同时从知识教学、技能训练等方面,根据《新课程》对本节课内容的要求及本节课的学习结果类型,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识目标(1)了解生活中旋转现象的广泛存在;(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;能力目标通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。

《图形的旋转》教案

《图形的旋转》教案

《图形的旋转》教案第一篇:《图形的旋转》教案《图形的旋转》教案教学目标知识与技能1.了解图形的旋转变换的意义.2.理解旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转角度决定.过程与方法1.对旋转现象进行分析研究,旋转后的现象进行探索.2.经历对生活中的旋转现象有关图形进行观察、分析、欣赏以及动手操作、画图等过程.情感、态度与价值观掌握有关画图操作的技能、发展初步的审美能力,增强对图形的欣赏意识.重点难点重点:旋转的定义、旋转中心和旋转角度.难点:观察图形,判断两个图形是否能通过旋转后重合,以及旋转中心和旋转角度的识别.教学设计创设问题情境1.课件演示,旋转而动产生的奇妙画面.学生对每一种画面谈谈自己的看法.2.你能自己举出日常生活中的一些事例吗?让学生扩展思维,列举生活中还有哪些旋转图形.探究新知1.观察图形找出这些图形的共同特征:观察、分析、讨论出共同特征.它们绕上面的悬挂点转动. 2.概念:旋转、旋转中心.理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心、旋转的角度和旋转方向所决定.探究新知2 做一做用一张半透明的薄纸,覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的—个三角形.然后用一枚图钉在点0处固定,将薄纸绕着图钉(即点0)逆时针转动一个角度45°,薄纸上的三角形就旋转到了新的位置,标上A′、O′、B′、我们可以认为△AOB旋转45°后得到了△A′O′B′.在这样的旋转过程中,你发现了什么?做一做后,讨论回答:图中,可以看到点A旋转到点A′,OA旋转到旋转到OA′,∠AOB 旋转到∠A′OB′,这些都是互相对应的点、线段与角.那么点B的对应点是_______;线段0B的对应线段是线段_________;线段AB的对应线段是线段_________;∠A的对应角是_________;∠B的对应角是_________;旋转中心是点_________;旋转的角度是_________.探究新知3 做一做如图,如果旋转中心在△ABC的外面点O处,转动60°,将整个△ABC旋转到△A′B′C′的位置.那么这两个三角形的顶点、边与角是如何对应的呢?探究新知41.D是BC上一点,如图,△ABC是等边三角形,△ABD经过旋转后到达△ACE的位置.旋转中心是哪一点?旋转了多少度?如果M 是的中点,那么经过上述旋转后,点M转到了什么位置?2.如图(1),点M是线段AB上一点,将线段绕着点M顺时针方向旋转90°,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转90°呢?小结提高说说“旋转”的概念,旋转的等量关系.说说描述“旋转”的过程要注意哪几方面?布置作业教材第121页练习第2、3题.第二篇:图形旋转教案说明《§3.1 图形的旋转(苏科版八年级上册)》说课稿江苏省常熟市孝友中学施晓丹【教材分析】《图形的旋转》选自义务教育课程标准实验教科书《数学》(苏科版)八年级上册第三章第一节内容,它是继平移、轴对称之后的另外一种图形的基本变换。

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(精选7篇)《图形的旋转》教学设计篇一教学目标:1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。

2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。

3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。

教学准备:图案制作过程的课件、方格纸。

教学方案:一、欣赏图案教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。

然后进行激励性对话。

通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。

师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。

其实,在许多图案中,经常同时有2种或3种图形变换方式。

请看两个图案。

课件呈现教材上的两个图案。

师:观察一下这两个图案,你发现它们各有什么特点?学生可能回答。

第一幅都是用梯形组成的。

第一幅图是轴对称图形。

第一幅图也可以通过旋转得到了。

第二幅图是三角形旋转得到的。

……师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

二、设计图案1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。

先完成第①、②两步。

2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。

通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。

通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。

师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。

让我们一起来设计第一个图案。

教师用课件呈现了方格图。

师:在方格纸上先画一个梯形。

课件展示画的过程和结果。

师:然后画出这个梯形的对称图形。

课件展示画的过程和结果。

《图形的旋转一》教学设计

《图形的旋转一》教学设计

《图形的旋转一》教学设计《图形的旋转一》教学设计(精选5篇)作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么问题来了,教学设计应该怎么写?以下是店铺整理的《图形的旋转一》教学设计(精选5篇),希望对大家有所帮助。

《图形的旋转一》教学设计1教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、通过操作、观察,进一步培养学生的空间思维观念。

教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。

教学准备:学生准备基本图形卡片、带有小方格的纸教师准备多媒体演示文稿、纸做小风车。

教学时间:20分钟教学过程:一、在游戏中导入新知1、教师手拿风车走向讲台。

问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。

问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。

1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。

你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。

大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。

这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。

板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。

图形的旋转教学设计(5篇范例)

图形的旋转教学设计(5篇范例)

图形的旋转教学设计(5篇范例)第一篇:图形的旋转教学设计《图形的旋转》教学设计教学目标:(1)知识与技能:进一步认识图形的旋转,明确含义,感悟特征及性质。

能够运用数学语言清楚描述旋转运动的过程。

会在方格纸上画出线段旋转90度后的图形。

(2)过程与方法:经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

(3)情感态度价值观:欣赏图形旋转变换所创造的美,学会用数学的眼光观察、思考生活,体会数学的价值。

教学重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

教学难点:用数学语言描述物体的旋转过程及会在方格纸上画出线段旋转90度后的图形。

教学过程设计一、认识旋转要素 1.温故引新①学生举例。

问题:在二年级的时候我们初步学习了生活中的旋转现象,能举几个例子吗?说说主题图中是什么在旋转?课件展示主题图的旋转现象。

(动态)出示课题:看来同学们已经初步认识了生活中的旋转现象,今天我们进一步学习图形的旋转,从数学的角度研究图形旋转到底有哪些特征。

【设计意图:通过课前调研,教师从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,特别是教师注意选取旋转角度不是360°的实例作为教材补充实例,如道闸等,丰富学生的认知,引发探究的欲望。

】2.借助游戏,明确旋转三要素(1)认识旋转要素——旋转方向。

游戏:我说你猜猜出我喜欢的水果圆盘中的水果你喜欢哪一种?用一句话描述出指针应该怎样走就能转到你喜欢的水果。

①向顺时针方向旋转②旋转90度③指针绕O点顺时针方向旋转90度哪一种描述最容易猜出来,为什么另外两种描述猜不出来?引出旋转三要素小结:一定要说清“指针是绕哪个点旋转”“是向什么方向旋转”“转动了多少度”这几点。

【设计意图:顺时针和逆时针方向是学生第一次正式了解,教师以风车为例,通过让学生观察对比两层风车叶片旋转的区别与联系,使学生感受到现实生活中物体旋转是有方向的,认识顺时针和逆时针方向。

《图形的旋转》教学教案

《图形的旋转》教学教案

《图形的旋转》教学教案《图形的旋转》教学教案(8篇)《图形的旋转》教学教案1教学目标:1.进一步认识图形的旋转,探索图形旋转的特征和性质。

2.通过观察、想象、分析和推理等过程,独立探究、增强空间观念。

3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。

教学重点:理解、掌握旋转现象的特征和性质。

教学难点:理解、掌握旋转现象的特征和性质。

教学过程:一、情景导入教师用课件演示:(1)钟表的转动;(2)风车的转动。

提问:观察课件的演示,你看到了什么?学生在交流汇报时可能会说出(1)钟表上的指针和风车都在转动;(2)钟表上的指针和风车都是绕着一点转动;(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。

教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。

(板书课题:图形的旋转变换)2.提问:旋转现象有几种情况?生回答后板书。

3.师:在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。

二、新课讲授出示课本第83页例题1的钟面。

(1)观察,描述旋转现象。

观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。

提问:谁能用一句话完整地描述一下刚才的这个旋转过程?(教师引导学生叙述完整)观察:出示动画(指针从1指向3)。

提问:这次指针又是如何旋转的?观察:出示动画(指针从3指向6)。

同桌互相说一说指针又是如何旋转的?提问:如果指针从“6”继续绕点O顺时针旋转180°会指向几呢?(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

三、课堂练习完成课本第85页练习二十一的.第1~3题。

四、课堂小结同学们,通过今天这节课的学习活动,我们知道要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

《图形的旋转》教学设计(通用16篇)

《图形的旋转》教学设计(通用16篇)

《图形的旋转》教学设计(通用16篇)《图形的旋转》教学设计篇1教学内容:北师大版数学试验教材四班级上册第四单元"图形的变换"第一课时。

教学目标:1、通过实例观看,了解一个简洁的图形经过旋转制作简单图形的过程。

2、能在方格纸上将简洁图形旋转90°。

教学重难点:能在方格纸上将简洁图形旋转90°一、创设情境用数学书按老师的指令做平移或旋转运动。

师:大家做得这么好,老师请你们观赏几幅图案。

(课件出示)想知道它们是怎么设计出来的吗?(老师演示)请你们认真观看,你发觉了什么?(它们都是由简洁的图形通过旋转得到的。

今日我们就来讨论图形的旋转。

(出示课题:图形的旋转)二、探究学习1、活动一:课件出示转换前后的两幅图。

先让同学观看图a是如何变换成图b的,再让同学摆一摆,说一说。

结合课件和实物展台演示。

2、活动二:小组同学合作,利用两个三角形设计一个图形,然后利用旋转的学问进行变换,并说说它的变换过程。

强调绕哪一个点旋转的。

(板书:旋转点不动大小不变顺时针或逆时针)3、选择:教材55页说一说第1题。

操作并利用课件加以演示。

4、活动三:(教材54页风车)课件出示。

用手中的学具你能变换出这个图形吗?小组共同探究。

边打操作边说说你们是怎样做的?强调哪个图形绕哪一个点旋转,如何旋转,旋转多少度。

观看感悟,发觉规律。

师:从图形a旋转到图形b,图形b旋转到图形c,图形c旋转到图形d的过程中,你发觉了什么?(老师依据同学的回答板书:大小不变、点o是固定的,顺时针方向、旋转90度)5、活动四:教材55页说一说第2题。

把手中的三角形与方格纸上的三角形重合起来,接着以这个三角形的一个顶点o为中心进行旋转(旋转的角度是90度),最终在小组里面说一说从图形1到图形2,从图形2到图形4等旋转的角度。

师:在我们的生活中,有很多图案都是这样旋转得来的,你们能依据这个方法或用自己喜爱的方法来设6、活动五:请同学们自己剪一个任意的三角形,接着一边旋转,一边把旋转后所得的图形描绘下来,让孩子们自己去制造,老师作适当的指导。

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)《图形的旋转》教案篇1平移、旋转和轴对称是最基本的三种变换,一个图形不转变它的外形和大小,从一个位置变换到另一个位置,不外乎经过这三种变换。

这三种变换只要教会同学每一种变换的要素即可。

平移的要素要有三个:1、基本图形——是什么图形发生了平移?2、方向:向什么方向发生了平移;3、距离:平移了多远?旋转的要素要有四个:1、基本图形——是什么图形发生了旋转?2、旋转中心——是绕哪个点旋转的;3、方向:向什么方向发生了旋转,是顺时针还是逆时针?4、角度:旋转了多大的角度?(一般旋转90度和180度)如下图中的图形是绕点O,顺时针依次旋转了90度。

轴对称的要素要有二个:1、基本图形——是以什么图形为基本图形进行变换?2、对称轴——以哪条线为对称轴作变换?无论平移还是旋转运动,我们关注的是其运动过程,也就是说要看这个图形是经过一个什么样的过程变换到另一个位置的。

因此,在教学中要让同学充分体会到变换中的要素,一是要借助于操作将思索与操作结合起来,如:多让同学思索,操作并记录学习过程,然后汇报沟通总结阅历。

在操作时给同学充分的时间,让同学根据“想一想、做一做、折一折、画一画、剪一剪,在想一想”的过程进行讨论,在进行小组沟通活动,老师进行随堂观看指导有困难的同学,最终听同学自己小结的时候,留意同学用语言来表达时的完整性,准时订正错误的说法。

从而使同学的空间想象力和思维力量得到充分的熬炼。

二要借助于方格纸进行操作和学习。

方格纸呈现了平行和垂直的网络线,即可以看出变换的方向,又可以看出变换的角度和距离,直观便利,便于同学理解图中的各种关系。

《图形的旋转》教案篇2各位领导、老师:大家午安,今日我所说课的内容是《图形的旋转》。

这一课我将从三个方面说起,首先是教材,其次是教法与学法,最终是重要的教学过程。

首先我来说教材,教材我分了两个环节,第一个环节是:教材分析与教学目标。

图形的旋转:选自北师大版学校数学四班级上册,第四单元《图形的变换》。

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。

2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。

3、培养同学对电脑绘图的兴趣。

[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。

二、复制功能的学习。

师:要完成那么多的小花的绘制,我们得先画出一朵花。

活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。

1、教师先示范,同学动手一起画一朵花。

(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。

3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。

4、选“编辑”菜单的“复制”,再点“粘贴”。

5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。

6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。

让同学动手,教师指导,让好的同学进行演示。

三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。

2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。

完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。

人教版小学四年级数学《图形的旋转》优秀教学教案

人教版小学四年级数学《图形的旋转》优秀教学教案

人教版小学四年级数学《图形的旋转》优秀教学教案一、教学目标1.知识目标:了解图像的旋转是将图形绕某一点旋转一定角度后得到新图形。

2.能力目标:通过训练,使学生能够掌握简单图形的旋转方法,并能应用于实际问题中。

3.情感目标:培养学生的观察力和逻辑思维,培养学生对数学的兴趣和自信心。

二、教学重点和难点•教学重点:掌握图形旋转的概念和方法。

•教学难点:能够正确理解旋转图形的基本原理。

三、教学准备1.教学素材:图形的旋转教学PPT、画板、彩色粘土、学生教材。

2.教学环境:教室布置整齐,保持安静和充满学习氛围。

3.教师准备:熟悉本节课教学内容,准备教学活动并确保课堂秩序。

四、教学过程1.导入新知识•向学生展示一个旋转的图形,引出本节课要学习的知识点,并提出问题引导学生思考。

2.讲解基本概念•通过画板和教学PPT介绍图形的旋转概念,并讲解旋转的基本原理。

3.示范操作•以简单的图形为例,让学生通过将图形绕某一点旋转一定角度来体会旋转的过程。

4.练习和巩固•让学生在彩色粘土上尝试绘制图形并进行旋转操作,加深对旋转概念的理解。

•给学生一些练习题目,让他们通过实际操作巩固所学知识。

5.拓展应用•引导学生思考,图形的旋转在生活中有何实际应用,并让他们尝试举例说明。

五、课堂总结•对本节课所学内容进行总结,强调重点和难点,提醒学生今后的学习重点。

六、作业布置•布置相关练习题作业,巩固学习内容。

七、教学反思•结合本节课的教学实际,分析学生掌握程度,反思教学过程,为下节课的教学进行调整。

通过本节课的学习,相信学生对图形的旋转有了更深入的理解,能够灵活运用于实际生活中,提升数学思维和解决问题的能力。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)第一章:图形的旋转概念1.1 图形旋转的定义引导学生理解图形旋转的概念,即图形绕着某一点转动一定角度的图形变换。

举例说明生活中的旋转现象,如旋转门、风车等。

1.2 旋转中心、旋转方向和旋转角度介绍旋转中心的概念,即图形旋转的轴心。

讲解旋转方向的概念,如顺时针旋转和逆时针旋转。

引导学生理解旋转角度的意义,即图形旋转的大小。

第二章:图形旋转的性质2.1 旋转不改变图形的大小和形状通过实例演示,让学生理解旋转不会改变图形的大小和形状。

引导学生观察旋转前后的图形,发现它们的边长和角度保持不变。

2.2 旋转后图形对应点的关系讲解旋转后图形对应点的关系,即旋转前后对应点与旋转中心连线的夹角相等,且长度不变。

引导学生通过实际操作,验证对应点的关系。

第三章:图形旋转的计算3.1 旋转角度的计算介绍如何计算图形旋转的角度,如通过旋转前后对应点的位置关系来确定旋转角度。

举例讲解旋转角度的计算方法。

3.2 旋转变换矩阵引入旋转变换矩阵的概念,讲解旋转变换矩阵的构成和作用。

通过实例,让学生理解如何利用旋转变换矩阵进行图形的旋转。

第四章:图形旋转的应用4.1 二维图形的旋转讲解如何在二维平面上进行图形的旋转,如旋转直线、矩形、三角形等。

引导学生通过实际操作,掌握二维图形旋转的方法。

4.2 三维图形的旋转介绍如何在三维空间中进行图形的旋转,如旋转立方体、球体等。

讲解三维图形旋转的原理和方法。

第五章:旋转在实际应用中的举例5.1 旋转在几何绘制中的应用举例说明旋转在几何绘制中的应用,如通过旋转来绘制特定角度的三角形、平行四边形等。

引导学生掌握旋转在几何绘制中的技巧。

5.2 旋转在艺术设计中的应用讲解旋转在艺术设计中的应用,如旋转对称、旋转排列等。

引导学生欣赏和分析具有旋转对称性的艺术作品。

第六章:旋转与坐标系6.1 坐标系中的旋转讲解在直角坐标系中进行图形旋转的方法,包括绕x轴、y轴和原点的旋转。

引导学生理解坐标系中旋转对点的影响,如坐标点的变化规律。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)第一章:图形的旋转概念介绍1.1 图形旋转的定义解释图形旋转的概念,即图形在平面上绕着一个固定点进行旋转。

强调旋转中心的重要性,即图形绕其旋转的点。

1.2 旋转方向和角度介绍旋转的方向,如顺时针和逆时针。

解释旋转角度的概念,即图形旋转的大小。

1.3 旋转对图形的影响说明旋转对图形的大小、形状和位置的影响。

强调旋转不改变图形的大小和形状,只改变位置。

第二章:图形的旋转规律2.1 旋转角度的计算介绍如何计算图形旋转的角度,如360度、90度等。

强调旋转角度与图形大小和形状的关系。

2.2 旋转的倍数规律解释图形旋转的倍数规律,即图形每旋转一定的角度,其形状和位置会发生重复。

强调旋转倍数与图形大小和形状的关系。

2.3 旋转对称性介绍旋转对称性的概念,即图形在旋转一定角度后,能够与原图形重合。

强调旋转对称性与图形大小和形状的关系。

第三章:图形的旋转实践3.1 旋转图形的绘制指导学生如何绘制旋转后的图形,如将一个正方形绕其中心旋转90度。

强调绘制旋转图形时注意旋转中心和旋转角度。

3.2 旋转图形的变换介绍如何将一个图形通过旋转进行变换,如将一个矩形绕其顶点旋转45度。

强调变换过程中图形的大小和形状保持不变。

3.3 旋转图形的组合指导学生如何将多个图形通过旋转进行组合,如将两个圆形和一个小正方形组合成一个旋转后的图形。

强调组合过程中图形的大小和形状保持不变。

第四章:图形的旋转应用4.1 旋转在设计中的应用介绍图形旋转在设计中的应用,如旋转文字、图案等。

强调旋转在设计中创造动态感和视觉效果的作用。

4.2 旋转在建筑中的应用介绍图形旋转在建筑中的应用,如旋转楼梯、门等。

强调旋转在建筑中创造独特形态和空间感的作用。

4.3 旋转在其他领域的应用介绍图形旋转在其他领域的应用,如旋转机械部件、艺术作品等。

强调旋转在不同领域中的多样性和创造性。

第五章:图形的旋转拓展5.1 旋转与反射的比较比较旋转和反射的概念和效果,如旋转是将图形绕一个点旋转,而反射是将图形沿一条线反射。

图形的旋转(优质课教案)

图形的旋转(优质课教案)

图形的旋转(优质课教案)一、教学目标1.了解图形的旋转操作及其基本概念;2.能够应用所学知识,解决与图形旋转相关的问题;3.提高学生观察、思考和推理能力。

二、教学准备1.教师准备:–讲义和教学材料;–计算器、白板和彩色粉笔。

2.学生准备:–学习材料;–计算器。

三、教学过程1. 输入引导•引入:通过展示一个图形的变换前后的图片,引出本节课要学的内容,即图形的旋转操作。

2. 知识讲解•讲解:通过示意图和实际操作,向学生讲解关于图形旋转的基本概念及其相关知识:–旋转中心:确定旋转中心的作用;–旋转角度:解释旋转角度的含义;–旋转方向:说明旋转方向的规律。

3. 案例分析•分组讨论:将学生分为小组,给予学生一些具体的案例,要求学生在小组内进行讨论并提出解决方案。

•展示结果:每个小组选择代表性的解决方案进行展示,让学生互相学习和交流。

4. 练习探究•个人练习:让学生进行一些基本的练习题,巩固所学的知识点。

•探究任务:设置一些探究任务,要求学生在实际问题中应用图形的旋转操作,解决问题。

5. 总结归纳•总结概念:让学生回顾所学的内容,总结图形的旋转操作的基本概念及其应用。

•归纳方法:帮助学生归纳不同旋转中心、角度和方向对图形的影响。

6. 拓展应用•拓展任务:设置一些拓展任务,要求学生在实际问题中运用图形的旋转操作,拓宽应用范围。

四、教学反思本节课以图形的旋转操作为主题,通过引导学生分析图形的变换前后的关系,让学生理解图形的旋转概念。

通过案例分析和练习探究,提高学生解决问题的能力和思维灵活性。

通过总结归纳和拓展应用,帮助学生深化对图形旋转操作的理解,并推动学生应用所学知识解决实际问题。

同时,教师应注意引导学生形成良好的解题思路和方法,帮助学生培养观察和推理能力。

《图形的旋转》教案

《图形的旋转》教案

《图形的旋转》教案1教学目标:1、了解旋转及其旋转中心和旋转角等相关概念.2、理解旋转的基本性质并利用性质解决相关问题.教学重难点:重点:旋转及对应点的有关概念及其应用.难点:从活生生的数学中抽象出概念.教学过程:(一)学生预习教师导学观察下列图片:(1)由平面图形转动而产生的奇妙图案;(2)汽车上的雨刮器.●这些情景中的转动现象,有什么共同特征?(二)学生探究教师引领1、建立旋转的概念:试一试,请同学们尝试用自己的语言来描述以下旋转.问题:单摆上小球的转动由位置A 转到B ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出点的旋转B (图1)图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点B ;图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段CD ;图3:在同一平面内,△ABC 绕着定点O 旋转某一角度得到△DEF .旋转定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,图形的这种变化称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.对应点到旋转中心的距离相等.旋转的三个要素:旋转中心、旋转角、旋转方向. 思考:①同学们观察图3,点A ,线段AB ,∠ABC 分别转到了什么位置?②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度. (三)学生展示教师激励:例1如图4-20,如果把钟表的指针看做四边形AOBC ,它绕O 点按顺时针方向旋转得到四边形DOEF .在这个旋转过程中:(1)写出它的旋转中心和旋转角;(2)经过旋转,点A 、C ,B 分别到达什么位置?抽象出三角形的旋转 ·O AB C O F DE(图3) · O AB CD(图2)抽象出线的旋转(3)AO与DO的长有什么关系?你还能在图4-20中找出相等的线段吗?说明理由;(4)∠AOD与∠BOE有什么大小关系?你还能在图4-20中找出相等的角吗?说明理由.解:(1)旋转中心是点O,旋转角是∠AOD.(2)点A,C,B分别旋转到点D,F,E.(3)AO=DO,BO=EO,AC=DF,CB=FE.(4)∠AOD=∠BOE,∠A=∠D,∠C=∠F,∠B=∠E,∠AOB=∠DOE.(四)学生归纳教师提炼:1、从我们看到的旋转现象,你认为旋转的主要决定因素是什么?2、在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?3、在图形的旋转过程中,图形上各个点旋转的角度有什么关系吗?旋转的基本性质:一般地,我们可以得到:一个图形和它经过旋转所得到的图形中,(1)旋转不改变图形的大小,对应边相等,对应角相等.(2)图形上的每一点都绕旋转中心沿相同方向转动了旋转角;(3)任意一对对应点与旋转中心的连线所成的角度都等于旋转角.《图形的旋转》教案2教学目标:知识与技能:1.简单平面图形旋转后的图形的作法.2.确定一个三角形旋转后的位置的条件.过程与方法:1.经历对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.2.能够按要求作出简单平面图形旋转后的图形.情感、态度与价值观:1.通过画图,进一步培养学生的动手操作能力.2.在对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.教学重、难点:教学重点:简单平面图形旋转后的图形的作法.教学难点:简单平面图形旋转后的图形的作法.教学过程:Ⅰ.巧设情景问题,引入课题[师]上节课我们探讨了生活中的旋转,那什么样的运动是旋转呢?[生]在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.旋转不改变图形的大小和形状.[师]很好,旋转有什么性质呢?[生]旋转前后两个图形对应点到旋转中心的距离相等;任意一对对应点与旋转中心的连线所组成的角都是旋转角,旋转角彼此相等.[师]很好,大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?如下图,在方格纸上作出“小旗子”绕O点按顺时针方向旋转90°后的图案,并简述理由.然后在教师发的纸上画图(教师给每位同学发一张如上图所示的方格纸)(学生观察、分析、动手画图).[师]同学们画好了吗?哪位同学给大家说说你如何画出来的?[生]我在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点可以是能表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90°.我在方格中找到点A、B、C的对应点A′、B′、C′,然后连接,就得到了所求作的图形.[师]这位同学描述得很好,作出的图案也很漂亮.同学们在作图过程中,基本掌握了作图的一个要点:找图形的关键点,这很让老师为大家高兴.这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.Ⅱ.讲授新课[师]我们通过一例题来说明简单图形旋转后的图形的作法如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B、C的对应点分别为点E、点F,则∠BOE、∠COF、∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.[师]通过分析知道如何作出△DEF,现在大家拿出直尺和圆规,我们共同来把这一旋转后的图形作出来,要注意把痕迹保留下来.(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.△DEF,就是△ABC绕O点旋转后的图形.[师]同学们画得很好,大家想一想,分组讨论:本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?(同学们讨论、归纳).[生甲]可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC 为半径画弧,两弧交于点F,连结DF、EF,则△DEF就是△ABC绕点O旋转后的图形.[生乙]也可以先作出点C的对应点F,然后连结DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.[师]同学们讨论得非常精彩.方法多种多样,很好.接下来,大家来想一想在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?[生丙]还需要知道绕哪个点旋转,旋转的角度是多少?[生丁]就是要知道旋转中心和旋转角.[师]很好,由此我们可以知道,要确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置.(2)旋转中心.(3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.下面我们来进行更多例题进一步熟悉简单平面图形旋转后的图形的作法.例2 如图4-21,已知线段AB和线段AB所在直线外的一点O,画出线段AB绕点O按逆时针方向旋转45°后的线段.解:(1)连接OA,OB;(2)以OA为一边在OA边的下方画∠AOC=45°,并在OC上截取OM=OA;(3)以OB为一边在OB边的左侧画∠BOD=45°,并在OD上截取ON=OB;(4)连接MN.(如图4-22)线段MN就是线段AB绕点O按逆时针方向旋转45°后的线段.例3 如图4-23△ABC绕C点旋转后,顶点A的对应点为点D.试画出顶点B的对应位置,以及旋转后的三角形.分析:因为点C为旋转中心,点A与点D是对应点,所以∠ACD是旋转角;.假设顶点B的对应点为E,则∠BCE=∠ACD,且CE=CB.解:(1)连接CD;(2)以CB为一边作∠BCF,使得∠BCF=∠ACD;(3)在射线CF上截取CE=CB;(4)连接DE.(如图4-24)△DEC就是△ABC绕O点旋转后的图形.你还能用其它方法作出例3中的△DEC吗?Ⅲ.课堂练习在下图中,将大写字母N绕它右下侧的顶点按顺时针方向旋转90°,作出旋转后的图案.解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90°后的位置,然后连线.Ⅳ.课时小结本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置.②旋转中心.③旋转角等三个条件.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.《图形的旋转》教案3教学目标:1、能够按照要求做出简单的图形旋转后的图形.2、继续利用旋转的性质解决相关问题.教学重难点:1、旋转及对应点的有关概念及其应用.2、利用旋转的性质解决相关问题.教学过程:一.新课引入1.如图,把一块砖ABCD直立于地面上,然后将其轻轻推倒,在这个过程中A点保持不动,四边形ABCD旋转到AD′C′B′位置.(1)指出在这个过程中的旋转中心,并说出旋转角度是多大?(2)指出图中的对应线段.C’’分析:因为四边形AD′C′B′是由四边形ABCD旋转得到的,A保持不动,因此A是旋转中心,又因为AB、AD′在同一平面上,且AD垂直于地面,对应线段AB与AB′成90°,因此旋转角度是90°;(2)中由于点A、B、C、D的对应点分别是A、B′、C′、D′,找出了对应点,对应线段也就不难找了.答案:(1)旋转中心是A,旋转角度是90°.(2)对应线段分别是:CD与C′D′,AB与AB′,AD与AB′,BC与B′C′.方法提炼:解答这类题目,应该看哪个点不动,在旋转过程中,图形中的点都动,哪个点不动,哪个点就是旋转中心,只要找出了对应点,对应线段自然可得,抓住“动”与“不动”.难点:运用旋转的特征解决一些实际问题,培养分析问题和解决问题的能力,突破难点的途径应多动手操作,充分认识“图形在旋转过程中每一点与该对应点到旋转中心的距离都相等”这一性质去理解和运用旋转的其它性质.2.如图,正方形ABCD中,E是正方形内一点,把△ADE绕点A按逆时针方向旋转90°,得到旋转后的三角形并回答:(1)图中有哪些相等的线段和相等的角;(2)哪两个三角形的形状、大小都一样.在这个运动'BE =.相等的角有:'''BAE DAE BA E EDA E E ∠=∠∠=∠∠=∠,,(除直角外).(2) △ADE 与△ABE ′的形状和大小都一样.方法提炼:解答这类题目,应考虑旋转的特征,是绕什么点旋转的,图形中的每个点都旋转相同的角度,对应线段相等,对应角相等,关键是是否旋转.二.例题解析例4 画一个腰长等于3的等腰直角三角形ABC ,取一个锐角为45°的三角尺,把三角尺的直角顶点放在Rt △ABC 的斜边BC 的中点O 处,并使三角尺的一条直角边经过点A ,另一条直角边经过点B (图4-27(1)).将三角尺绕点O 按顺时针方向旋转一个角度,记三角尺的两腰A B ,AC 的交点分别为E ,F (图4-27(2)).在三角尺按图4-27所示的方式绕点O旋转的过程中,线段AE 与CF 的长度有什么关系?OE 与OF 的长度有什么关系?证明你的结论.解:AE =CF ,OE =OF .证明如下:连接AO ,在△AEO 和△CFO 中,∵△ABC 是等腰直角三角形,AO ⊥BC ,垂足为点O ,∴∠EAO =∠C =45°,AO =OC ,∠EOA =∠COF =90°-∠AOF ,∴△AEO ≌△CFO (ASA )∴AE =CF ,OE =OF .在例4中,△COF 能否由△AOE 旋转得到?其旋转中心是哪个点?旋转角是多少度? 解:△COF 能由△AOE 旋转得到,其旋转中心是点O ,旋转角是90°.三.课堂小结本节课旨在解决有关旋转的问题,学会应用旋转知识解决问题.。

九年级数学旋转教案5篇

九年级数学旋转教案5篇

九年级数学旋转教案5篇让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值,是每个教师的责任。

今天在这里整理了一些九年级数学旋转教案5篇最新,我们一起来看看吧!九年级数学旋转教案1第二课时旋转教学内容:教材第5~6页例3和例题4。

教学目标:1、通过生活事例,使学生初步了解图形的旋转变换。

结合生活实际,能初步感知旋转现象,探索它的特征和性质。

、通过动手操作,使学生会在方格纸上将一个简单图形旋转90。

3.初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4.欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:1.理解图形旋转变换的含义。

2.探索图形旋转的特征和性质。

教学难点:能在方格纸上将一个简单图形旋转90度。

教学准备:课件教学过程:一、创设游戏情境,引入新课师:同学们,大家玩过“俄罗斯方块”的游戏吗?出示课件:师:如果现在让你来玩,你准备怎么操作?(把黄色的图形顺时针旋转90。

,放在右边的角落。

) 师:用手示范一下怎样就是顺时针旋转呢?师:(用手做出示范)那与之相反的是什么旋转呢?(逆时针旋转。

) (出示动画:黄色图形顺时针旋转90。

后下落) 出示:“俄罗斯方块”游戏画面二师:这次又怎么操作呢?(把紫色的图形逆时针旋转90。

,放在左边角落里。

)(出示动画:紫色图形逆时针旋转90。

后下落) 出示:“俄罗斯方块”游戏画面三:师:这次谁来玩?(把蓝色的图形顺时针或逆时针旋转90。

) (出示动画:蓝色图形逆时针旋转90。

后下落)1.揭示课题师:刚才,我们在玩游戏的过程中,大家反复地提到一个词“旋转”这节课,我们就来研究“旋转”。

板书课题。

2.联系生活师:生活中,你还见过哪些旋转现象?(风扇、陀螺、旋转木马、钟表、车轮……)同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。

图形的旋转教学设计一等奖3篇

图形的旋转教学设计一等奖3篇

1、图形的旋转教学设计一等奖教学目标:1. 通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2. 能在方格纸上将简单图形旋转90°。

教学重难点:能在方格纸上将简单图形旋转90°。

活动过程:活动一:创设情景,解决问题(1)在生活中,有各种美丽的图案,然而其中有非常多图案是由简单的图形经过平移或旋转获得。

本活动所介绍的是简单图形经过旋转形成复杂图案的过程。

(2)活动的导入阶段,可以出示一组图案让学生欣赏。

然后将这些图案按一定的形状进行分解,并取出其中的一小部分放在方格子上进行旋转,逐步展示简单图形经过旋转后形成复杂图案的`过程。

当然,每一次的旋转,全要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?学生也可以用学具自己操作,以便学生体验旋转的过程。

活动二:实践练习在学生独立完成的基础上,进行全班的交流,老师进行指导。

第1题本题的练习主要认识图形的旋转是围绕哪个点旋转的问题,所以,这个活动可以先让学生独立尝试,然后再讨论旋转的中心点的问题。

活动时,每个学生全可以准备一些白纸和三角形。

为让学生体会到旋转前后图形的变化,先可以请学生沿着三角形的边把手上的三角形描绘下来,接着以这个三角形的一个顶点为中心进行旋转(旋转的角度可以是任意的),最后说一说这个三角形是围绕哪一点旋转的。

第2题同样,本题也可以先请学生根据要求进行旋转操作,并把每次旋转过程中所得图形描绘下来。

接着讨论从图形1到图形2,从图形2到图形4等旋转的角度。

在练习时,可以先让学生用三角形在方格子上按要求进行操作,学生比较熟练后,再请他们按要求画出旋转的图形。

第3题同样,本题的练习也最好请学生自己摆一摆,在摆的过程中,让学生积累一些经验,然后再涂颜色。

2、图形的旋转教学设计一等奖教学目标:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、能在方格纸上将简单图形旋转90度。

3、培养学生的观察能力,在动手操作中提高动手能力,发挥每个学生的积极性。

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)《图形的旋转》及篇1【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。

【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。

【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。

轴对称是图形变换的一种方法。

2、学生对于旋转的度数的把握。

【】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。

师:同学们的'交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。

(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。

下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。

如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。

(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)章节一:引言教学目标:1. 让学生了解图形的旋转概念。

2. 培养学生对图形旋转的兴趣。

教学内容:1. 介绍图形旋转的定义。

2. 通过实际操作,让学生感受图形旋转的过程。

教学方法:1. 讲授法:讲解图形旋转的定义和特点。

2. 演示法:通过实物演示,让学生直观地了解图形旋转的过程。

教学步骤:1. 引入新课:提问学生对图形的认识,引导学生思考图形可以发生哪些变化。

2. 讲解图形旋转的定义:讲解图形旋转的概念,让学生理解图形旋转的意义。

3. 演示图形旋转:通过实物演示,让学生直观地感受图形旋转的过程。

4. 学生实践:让学生自己动手操作,尝试旋转图形。

5. 总结:回顾本节课的内容,强调图形旋转的特点。

章节二:图形旋转的规律教学目标:1. 让学生了解图形旋转的规律。

2. 培养学生运用规律解决问题的能力。

教学内容:1. 介绍图形旋转的规律。

2. 通过实际操作,让学生感受图形旋转规律的应用。

教学方法:1. 讲授法:讲解图形旋转的规律。

2. 演示法:通过实物演示,让学生直观地了解图形旋转规律的应用。

教学步骤:1. 复习导入:回顾上一节课的内容,引导学生思考图形旋转的规律。

2. 讲解图形旋转的规律:讲解图形旋转的规律,让学生理解并掌握。

3. 演示图形旋转规律的应用:通过实物演示,让学生直观地感受图形旋转规律的应用。

4. 学生实践:让学生自己动手操作,尝试运用图形旋转规律解决问题。

5. 总结:回顾本节课的内容,强调图形旋转规律的重要性。

章节三:图形旋转的计算教学目标:1. 让学生了解图形旋转的计算方法。

2. 培养学生运用计算方法解决问题的能力。

教学内容:1. 介绍图形旋转的计算方法。

2. 通过实际操作,让学生感受图形旋转计算的过程。

教学方法:1. 讲授法:讲解图形旋转的计算方法。

2. 演示法:通过实物演示,让学生直观地了解图形旋转计算的过程。

教学步骤:1. 复习导入:回顾前两节课的内容,引导学生思考图形旋转的计算方法。

2023年《图形的旋转》教案(15篇)

2023年《图形的旋转》教案(15篇)

2023年《图形的旋转》教案(15篇)《图形的旋转》教案1一、教学目标1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。

2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。

3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。

二、教学重点掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。

三、教学难点对图形旋转过程中旋转角相等的理解,会准确找出旋转角。

旋转中心不在三角形顶点时旋转角的确定。

四、教学准备: 课件?五、课时安排:一课时六、教学过程一、出示学习目标1、板书课题同学们,本节课我们一同来学习“图形的旋转”。

本节课的学习目标是(投影)2、出示学习目标(1)、通过实例观察,认识并描述图形的旋转。

(2)、了解一个简单的图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(点、方向、度数)。

(3)、欣赏图形的旋转变换所创造出的美,感受旋转在生活中的应用,体会数学的价值。

二、出示生活图片(一)图形的旋转,旋转中心,旋转角,方向1、[演示]:演示生活中常见的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。

图形转动的角度叫做旋转角。

区分顺时针旋转和逆时针旋转,以及旋转的三要素。

2、由钟表的旋转,得到线段转动的旋转角,学生描述钟表的旋转,加深旋转三要素的.记忆,同时培养学生的语言表达能力。

再由线段的旋转引申到几何图形的旋转,进一步得到:旋转前后的两个图形形状和大小不变,只是位置发生变化。

(二)感受生活中的旋转在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。

你能举出这样的例子吗?(三)、全课,巩固方法今天我们学习了图形的一种运动----旋转。

通过学习你有什么收获?(四)、布置作业:1、课本习题2、32、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P ′C D B A《图形的旋转》导学案设计23.1图形的旋转(一)一、简介:《图形的旋转》是人教版九年级上册第二十三章的内容。

在教学设计的过程中,是以省级课题《构建初中数学高效课堂模式》的《五步教学》为蓝本来设计的。

“五步教学法”以“导学——自学——助学——强化——评价”五步组成,就是将“先讲后练”的传统教学模式转换成"先学后讲"的教学模式。

二、教学过程《一》导学1、引入新课:运用课件欣赏日常生活中一些物体的旋转现象,如旋转的风车、旋转的钟面、飞驰的车轮等,然后让学生根据上述现象用一个动词进行概括引入新课。

(设计说明:借助课件,用生活中常见的事例引入新课,既可以激发学生的学习兴趣,把学生迅速的的引入课堂中,又能引导学生用数学的眼光看待生活中的事物,认识到生活中处处都有数学)2、学习目标:(1)、了解生活中广泛存在的旋转现象;(2)、掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)、知道旋转的性质,会运用旋转的性质解决实际问题。

(设计说明:学习目标的展示,是为了让学生对这节课所学的知识有个整体认识,知道这节课即将学习哪些内容,要掌握哪些知识,让学生做到心中有数,不至于无的放矢。

学习目标是属于课前预设性目标,是学生对这堂课的一个浅性认识阶段。

)3、重点:旋转的有关概念难点:理解并运用旋转的性质(设计说明:这节内容是在学生学了平移、轴对称这两种图形的基本变换之后学习的,学生已经有一定的认知基础,所以确定旋转的概念是本节课的重点,难点是性质的运用。

在“五步教学”中,明确学习的重难点,是为了让学生进一步明确学习目标,知道这些是我们学习的最终目标。

在教学中,重难点的突破是随着教学活动的展开而逐步实现的,就这要求教师必须具备高度的应变能力。

)《二》分层学习第一层次学习1、自学指导:(1)、自学内容:预习p56——57页归纳之前的内容(2)、自学时间:约4分钟(3)、自学方法:观察生活中物体的旋转现象,体会旋转过程,形成旋转概念的感性认识。

(4)、自学参考提纲:①、旋转的概念____________________________。

②、从课文中的思考实例可以看出:图形的旋转三要素是________,_________,______。

③、如图,点P 是正方形ABCD 内一点,将△ABP 旋转到△CBP ′的位置时,其旋转中心是______,旋转角为________,旋转方向为_______。

A与_____是对应点,P与_____是对应点。

2、自学:学生可参考自学指导进行学习。

(设计说明:自学参考提纲中除了涉及到与旋转有关的概念之外,还设计了一个读图题,目的是为了让学生熟悉旋转的三要素。

)3、助学:(1)明了学情(设计说明:自学过程中,学生容易把旋转角找错,说明学生对概念只是机械的记忆,理解不清。

)(2)差异指导(设计说明:借助多媒体展示旋转的过程,由简单的点的旋转过渡到线段的旋转,由简单到复杂,由浅入深,逐步树立学生几何直观感,然后在小组的帮助下,形成旋转的定义。

)4、强化(1)、指出你手中风车的旋转中心、旋转角、旋转方向,并说说每一片扇叶绕着它的旋转中心转多少度就能与自身重合?是唯一答案吗?(2)、课本P56页小练习(设计说明:设计小练习(1),除了对所学内容进一步强化外,还让学生认识到生活中的一些事物,它的旋转角度并不是唯一的。

小练习(2)涵盖了第一层次所学的内容,既有旋转概念的熟悉,又有旋转三要素巩固,再现了本层次的重点和难点。

)第二层次学习1、自学指导(1)、自学内容:P57页探究到例题1以前的内容。

(2)、自学时间:约8分钟(3)、自学方法:按照课本上的分析和解答内容进行阅读和思考(4)、参考提纲将△ABC绕着点O旋转到△A′B′C′的位置,根据下图回答问题(一组推荐一人上台说明)①、A、B、C、A′、B′、C′到O点的距离是否相等?②、旋转角为____________(答案不唯一)③、旋转前、后的图形中有全等的图形吗?说一说。

④、线段OA与OA′,OB与OB′,OC与OC′有什么关系?2、自学:学生可根据自学参考提纲进行自学。

(设计说明:旋转性质是本节课的难点,因此借助一个探究活动,先让学生动手操作、小组交流,进而发现图形在旋转性质。

通过学生的动手-猜想-交流-归纳,让学生主动参与数学知识的“再发现”并结合自学参考提纲,完成对旋转性质的学习。

)3、助学:(1)明了学情(设计说明:学生自学之后,能得出结论,但不能用数学语言把它准确的描述出来。

)(2)差异指导(设计说明:教师在硬纸板上按探究的要求制作一个教具,教师演示旋转过程,先让学生用自己的语言归纳,然后所有学生参与整理,最终得出旋转的的性质。

初三学生已经具有一定的观察、抽象和分析能力,他们能从探究活动中抽象出几何图形的性质,但思维的严谨性、抽象性相对薄弱,语言交流和表达上存在一定的障碍,所以仍需要教师引导。

)4、强化旋转的性质:对应点到旋转中心的距离相等对应点与旋转中连线段的夹角等于旋转角旋转前后的图形全等(设计说明:第二层次的内容是本节课的难点,首先要对旋转的性质进行强化,让学生形成定义性认识,为后面性质的运用打下坚实基础。

)第三层次学习1、自学指导(1)、自学内容:自学P57页例题1(2)、自学时间:约6分钟(3)、自学方法:画出旋转后的图形,关键是确定△ADE三个顶点的对应点,及他们旋转后的位置。

(4)、自学参考提纲①旋转中心是哪一点?②旋转了多少度?③、先不看例题的作法,你先按照你的想法试试,然后与小组交流一下你的作法,看谁的做法更好。

2、自学:小组合作,掌握作图的方法。

(设计说明:自学参考提纲的设计是学生在明了旋转角是90°的情况下,再现旋转的三要素,让学生明白找准旋转的三要素,也是作图的关键。

其次,在作图的过程中,先让学生不看例题,而是自己根据已有经验完成,目的是为了进一步发散学生的思维,培养学生的创新能力。

在这一层次的自学过程中,对应点的寻找以及画法是难点,虽然学生喜欢学习生动活拨的内容,并乐于用自己的方法去学习,但个人的思维难免存在缺陷,因此需要小组合作来完善。

)3、助学:(1)明了学情(设计说明:根据第二层次的学习,学生已经知道旋转的性质,但学生在实际画图中仍然会不知所措,对应点的寻找仍然存在问题。

)(2)差异指导(设计说明:学生在作图过程中,寻找点E的对应点是难点,教师引导学生利用全等的性质,可以推导出作图的方法。

)4、强化(1)、如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为()A. 30°B. 40°C. 50°D. 80°(2)、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A. 甲B. 乙C. 丙D. 丁(设计说明:通过小练习,进一步巩固旋转性质,加强理解,最终将新知识内化入学生已有的认知结构中。

)《三》评价1、、学生学习的自我评价评价参考提纲:(1)、这节课的学习积极吗?有哪些收获?(2)、还有哪些疑惑?(设计说明:课堂小结是课堂教学的重要一环,不仅可以帮助学生掌握具体的知识和技能,还可以促进知识结构的形成、新知识模块的建立、解题技能的优化和思想方法提高等。

在这个环节中,学生都能潜意识的对整堂课有一个整体回顾,这节课到底学了什么?我掌握了没有?还有哪些需要我继续巩固?)2、教师对学生的表现评价(设计说明:教师评价学生在这节课中的表现,以鼓励为主,目的是调动学生学习的兴趣,使学生的心理认知慢慢的达到一个新的水品。

)3、课堂纸笔评价(设计说明:首先教师对学生在这堂课中的表现、积极性给予肯定,同时指出不足。

当学生看到自己的努力得到了老师的肯定、同学的承认,能增加的学生的自信心;其次学生自我评价是为了进一步让学生找到适合自己的学习方式,使他们更加热爱学习。

课堂纸笔评价是通过评价检测题,进一步巩固当天所学的知识,在熟中生巧。

课堂评价对巩固所学知识、发展思维能力、培养独立意识和良好的学习习惯、减轻过重的课外负担都是极为有利的。

表现性评价侧重过程评价,定性评价,纸笔评价侧重结果评价,定量评价,两者结合一起才是对学生学习的完整的评价。

)评价检测题(一)、选择题(每题8分)1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°, 则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()(二)、填空题(每空8分)1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______, 其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F, ∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+ DF 与EF的关系是________.(三)、综合提高题1.(16分)如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线, 将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.(16分)如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?三、反思数学特级教师李庚南老师认为,在数学课堂中一般有三种水平的自学活动,一是“接受性”的自学活动,即自学演绎性材料如教材、教辅资料等,习得知识;二是“生成性”的自学活动,即在新知识的背景中,或凸显知识本质特点的情境中,自主建构新知识;三是“创新性”的自学活动,即由思维的拓展延伸、知识的迁移形成新知识。

李庚南老师所指的“接受性”的自学活动即是自学数学,“生成性”与“创新性”的自学活动即是自主学习数学。

本节课设计中,以问题为主线形成“接受性”目标,以合作学习贯穿始终形成“生成性”目标,以动态显现,化难为易形成“创新性”目标。

相关文档
最新文档