二次函数概念的理解

合集下载

二次函数概念和图像

二次函数概念和图像

二次函数概念与性质【知识概要】1.二次函数的概念一般地,解析式形如(其中a、b、c是常数,且)的函数叫做二次函数.二次函数的定义域为一切实数.2.二次函数图像特征二次函数的图像是一条曲线,类似于抛出物体在空中所经过的路线,所以称为抛物线.二次函数的图像,叫做抛物线.开口方向:抛物线的开口向上或者向下.对称轴:二次函数的图像是轴对称图形.抛物线左侧部分沿着对称轴翻转能得到右侧部分的图像.顶点:抛物线与对称轴的交点,为抛物线的最低点或最高点.3.特殊二次函数的性质与图像◆一般地,二次函数(其中是常数,且)的图像是抛物线,称为抛物线.这时,是这条抛物线的表达式.抛物线(其中a是常数,且)的图像性质如下:(1)开口方向:由a所取值的符号决定,当时,它的开口向上,顶点是抛物线的最低点;当时,它的开口向下,顶点是抛物线的最高点.(2)对称轴:轴,即直线.(3)顶点:原点.◆一般地,二次函数的图像是抛物线,称为抛物线,它可以通过将抛物线向上(时)或向下(时)平移个单位得到.由此可知抛物线(其中是常数,且)的图像性质如下:(1)开口方向:当时,它的开口向上,顶点是抛物线的最低点;当时,它的开口向下,顶点是抛物线的最高点.(2)对称轴:轴,即直线.(3)顶点:.一般地,抛物线(其中a、m是常数,且)可以通过将抛物线向左(时)或向右(时)平移个单位得到.由此可知:抛物线(其中a、m是常数,且)的图像性质如下:(1)开口方向:当时,抛物线开口向上,顶点是抛物线的最低点;当时,抛物线开口向下,顶点是抛物线的最高点.(2)对称轴:过点且平行(或重合)于轴的直线,即直线.(3)顶点:.4.一般二次函数的性质与图像抛物线(其中a、m、k是常数,且)的图像性质如下:(1)开口方向:当时,它的开口向上,顶点是抛物线的最低点;当时,它的开口向下,顶点是抛物线的最高点.(2)对称轴:是过点且平行(或重合)于轴的直线,即直线.(3)顶点:.对二次整式配方,得所以.将上式与作比较,得由此可知,抛物线(其中是常数,且)的图像性质如下:(1)开口方向:当时,抛物线的开口向上,顶点是抛物线的最低点;当时,抛物线的开口向下,顶点是抛物线的最高点.(2)对称轴:直线.(3)顶点:.一般地,对于抛物线,沿着轴正方向看,可见它的变化情况如下:当时,抛物线在对称轴(即直线)左侧的部分是下降的,在对称轴右侧的部分是上升的;当时,抛物线在对称轴(即直线)左侧的部分是上升的,在对称轴右侧的部分是下降的.5.二次函数解析式二次函数的解析式有三种常见形式:(1)一般式:(a、b、c是常数,);(2)顶点式:(a、m、k是常数,),其中为顶点坐标;(3)交点式:(a、、是常数,),其中、为抛物线与x轴的两个交点的横坐标.6.求解析式的题型(1)根据实际问题列函数关系式根据实际问题列函数关系式要弄清各个变量、常量之间的内在联系,将实际问题抽象成数学问题,弄清楚哪些是自变量,哪些是函数,它们之间的关系可采用列表、画图等方式来寻找.(2)根据几何图形中的数量关系列函数关系式在几何图形中,要认真分析图形,先找出哪些是函数,哪些是自变量,其关键是正确找出图形之间的关系或等量关系(3)用待定系数法求二次函数的解析式.确定二次函数解析式常用的方法是待定系数法.【典例精讲】1. 已知A、B两点在二次函数的图像上.(1)如果两点的坐标分别是,,求的值;(2)如果不重合的两点的坐标分别是、,求的值.【分析】根据函数图像的性质,用代入法将A、B两点的纵、横坐标分别代替函数中的y、x,再计算求值.【解】(1)由题意,得,.∴,.当时,;当时,.所以,的值为或.(2)因为A、B两点的纵坐标相等且不重合,所以由图像的对称性,可知A、B关于y轴对称.∴.2.一个函数的图像是一条以y轴为对称轴、以原点为顶点的抛物线,且经过.(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴对称的点B的坐标,并计算△OAB的面积.(3)【解】(1)设所求函数的解析式为.因为抛物线过点,所以,解得.所以,这个函数的解析式为.(2)由抛物线的对称性,可知关于y轴的对称点B的坐标为.∴.设△OAB中AB边上的高为OC,易知.∴.3.已知:两个二次函数的图像经过点、、.(1)求这个函数的解析式;(2)求这个函数图像的对称轴和顶点坐标,并指出其开口方向;(3)这个函数的值能否为负数?为什么?【解】(1)设所求二次函数的解析式为.因为函数图像过、、三点,所以,解这个方程组,得.因此,所求二次函数的解析式.(2).所以,这个二次函数图像的对称轴为直线,顶点坐标为.(3)由,知这个函数图像的开口方向向上,顶点是最低点,所以,这个函数的图像在x轴的上方.因此,,由此得出这个函数的值不可能为负数.【课堂练习】二次函数概念1. 下列函数是二次函数的是_____________.A 、B 、C 、D 、解:A 、分母中含自变量,不是二次函数,错误;B 、表达式中含有两个自变量,不是二次函数,错误;C 、式子变形为,是二次函数,正确;D 、式子变形为,不是二次函数,错误.故选C .【说明】判断函数是否是二次函数,首先要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后根据二次函数的定义作出判断.2. 若265(1)mm y m x --=+是二次函数,则_____________由题意得:;且;解得或;,∴.3. (1)形如的函数只有在______________的条件下才是二次函数.(2)取哪些值时,函数是以为自变量的二次函数?(3)若函数是以为自变量的一次函数,则取哪些值?解:(1),,a b c 都是常数,且.(2)由,得且.当m 取不等于0,也不等于1的任意实数时,函数是以为自变量的二次函数.(3)若函数是以为自变量的一次函数,则,得.4.下列各式中,一定是二次函数的有①;②;③;④;⑤(a,b,c为常数);⑥(m为常数);⑦(m为常数).解:①,含有两个自变量,不是二次函数;②,是二次函数;③,是一次函数;④,分母中含有自变量,不是二次函数;⑤(a,b,c为常数),不一定是二次函数;⑥(m为常数),一定是二次函数;⑦(m为常数)不一定是二次函数.∴只有②⑥一定是二次函数.5.已知函数,当_____________时,图象是一条直线;当m_____________时,图象是抛物线;当m_____________时,抛物线过坐标原点.解:根据一次函数的定义可知:,;根据二次函数的定义可知:,时,图象是抛物线;当,且时,抛物线过坐标原点.故答案为:1,,.二次函数图像6. 分别通过怎样的平移可由抛物线的图像得到抛物线和的图像?解:抛物线由抛物线向左平移1个单位得到;抛物线由抛物线向右平移1个单位得到.7. 在同一直角坐标系中与()的图像的大致位置是( )答案:D .8. 函数)0(2≠++=a c bx ax y 的图象如图所示,则a 、b 、c ,∆,c b a ++,c b a +-的符号为 ,第8题图 第9题图9.已知:函数c bx ax y ++=2的图象如上图:那么函数解析式为( ) (A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y10. 已知一次函数y ax c =+二次函数2(0)y ax bx c a =++≠,它们在同一坐标系中的大-1 O X=1Y X3o-13 y x致图象是( ).11. 通过配方,确定抛物线的开口方向、对称轴和顶点坐标,并作出该抛物线的大致图像.解:,所以该抛物线开口向下,对称轴是直线,顶点坐标为. 在对称轴两侧找出四点、、、以及顶点,描点,连线,如图所示.【说明】描点画图时,要根据抛物线的特点,一般先找到顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次联结各点,注意顶点处不要画成“尖角”.【说明】(1)对的顶点坐标可直角用顶点坐标公式,这里是直接配方得.(2)作二次函数的图像主要抓住抛物线开口方向,顶点坐标,对称轴及两轴的交点等主要环节.12.二次函数2y ax bx c =++的图象过点(1,0)(0,3),对称轴1x =-。

二次函数 知识点总结

二次函数 知识点总结

初三数学二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。

二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。

2. 的性质:上加下减。

3. 的性质:左加右减。

4. 的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:十一、函数的应用二次函数应用二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题如:已知以为自变量的二次函数的图像经过原点,则的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()y yy y110 x o-1 x 0 x 0 -1 xA BC D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

二次函数知识点

二次函数知识点

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型2y=3(x+4)22y=3x2y=-2(x-3)22-321. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.2y ax c=+的性质: 上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项cc>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑴当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑵当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.⑶当0总结起来,c决定了抛物线与y轴交点的位置.,,都确定,那么这条抛物线就是唯一确定的.总之,只要a b c二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx cy ax bx c=++关于x轴对称后,得到的解析式是2()2y a x h ky a x h k=---;=-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2=-+;y ax bx cy ax bx c=++关于y轴对称后,得到的解析式是2()2y a x h k=++;=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx cy ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h ky a x h k=-+关于原点对称后,得到的解析式是()24. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

二次函数知识点和解题方法总结

二次函数知识点和解题方法总结

二次函数知识点及解题方法总结、二次函数概念:1.二次函数的概一般地,形如y ax2 bx c(a,b,c 是常数,a 0 )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a 0,而b,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y ax2 bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵ a ,b ,c是常数,a是二次项系数,b是一次项系数, c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a 的绝对值越大,抛物线的开口越小。

2. y ax2 c 的性质:上加下减3. y a x h 2的性质:左加右减24. y a x h k 的性质:a 的符号开口方向 顶点坐标 对称轴 性质 a0向上 h ,kX=h x h 时,y 随x 的增大而增大;x h 时,y 随x 的增大而减小; x h 时,y 有最小值k .a0向下h ,kX=hx h 时,y 随x 的增大而减小;x h 时,y 随x 的增大而增大; x h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:①将抛物线解析式转化成顶点式 y a x h 2 k ,确定其顶点坐标 h ,k ;②保持抛物线 yax 2 的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:方法二:① y ax 2 bx c 沿 y 轴平移: 向上(下)平移m 个单位,y ax 2 bx c 变成 y ax 2 bx c m (或 y ax 2 bx cm ):② y ax 2 bx c 沿轴平移:向左(右)平移 m 个单位,y ax 2 bx c 变成 y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )2. 平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左 加右减,上加下减”.四、二次函数 y a x h k 与 y ax 2 bx c 的比较从解析式上看, y a x h k 与 y ax 2 bx c 是两种不同的表达形式,后者通过配方可以得到前b 4ac b 2b 4ac b 2 者,即 y a x,其中 h ,k .2a 4a 2a 4ay=ax 2y=ax 2+k平移 |k|个单位y=a (x-h) 2向右 (h>0)【或左(h<0)】平移 |k|个单位y=a( x-h)2 +k向上 (k>0)【或向下 (k<0)】平移 |k|个单位向右( h>0) 【或左 (h<0)】 向上 (k>0)【或下 (k<0)】平移 |k|个单位向上 (k>0)【或下 (k <0) 】 平移 |k|个单位向右 (h>0)【或左(h<0)】 平移 |k| 个单位五、二次函数 y ax 2 bx c 图象的画法 五点绘图法:利用配方法将二次函数y ax 2 bx c 化为顶点式 ya(x h)2 k ,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与 y轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、与x 轴的交点 x 1,0 , x 2,0 (若与x 轴 没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与 y 轴的交点.六、二次函数 y ax 2 bx c 的性质21. 当a 0时,抛物线开口向上,对称轴为x b ,顶点坐标为 b ,4ac b .当 x b 时,y2a 2a 4a 2a2随 x 的增大而减小;当x b 时, y 随 x 的增大而增大;当 x b 时,y 有最小值 4ac b .2a 2a 4a2随 x 的增大而增大;当x b 时, y 随 x 的增大而减小;当 xb时,y 有最大值 4ac b .2a 2a 4a七、二次函数解析式的表示方法1. 一般式:y ax 2 bx c (a ,b ,c 为常数,a 0);2. 顶点式:y a(x h)2 k (a ,h ,k 为常数,a 0);3. 两根式:y a(x x 1)(x x 2)(a 0,x 1, x 2是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点 式,只有抛物线与 x 轴有交点,即 b 2 4ac 0时,抛物线的解析式才可以用交点式表示.二次函数解 析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 y ax 2 bx c 中, a 作为二次项系数,显然a 0 .⑴ 当a 0 时,抛物线开口向上, a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当a 0 时,抛物线开口向下, a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来, a 决定了抛物线开口的大小和方向,a 的正负决定开口方向, a 的大小决定开口的大小.2. 当a 0 时,抛物线开口向下,对称轴为xb, 2a ,顶点坐标为b 2a4ac b 2 4a当x 2b a 时,y2. 一次项系数b 在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴ 在a 0 的前提下,当b 0时,b 0 ,即抛物线的对称轴在y轴左侧;2a当b 0时,b 0 ,即抛物线的对称轴就是y 轴;2a当b 0时,b 0 ,即抛物线对称轴在y轴的右侧.2a⑵ 在a 0 的前提下,结论刚好与上述相反,即当 b 0时,b 0 ,即抛物线的对称轴在y 轴右侧;2a当 b 0时,b 0 ,即抛物线的对称轴就是y 轴;2a当 b 0时,b 0 ,即抛物线对称轴在y 轴的左侧.总结起来,在a确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴x b在2ay 轴左边则ab 0,在y 轴的右侧则ab 0 ,概括的说就是“左同右异”3. 常数项c⑴ 当c 0 时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵ 当c 0时,抛物线与y轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶ 当c 0时,抛物线与y轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称y ax2 bx c关于x轴对称后,得到的解析式是y ax2 bx c ;y a x h k 关于x 轴对称后,得到的解析式是y a x h k ;2. 关于y 轴对称y ax2 bx c关于y 轴对称后,得到的解析式是y ax2 bx c;22y a x h k 关于y轴对称后,得到的解析式是y a x h k ;3. 关于原点对称y ax2 bx c关于原点对称后,得到的解析式是y ax2 bx c ;y a x h k 关于原点对称后,得到的解析式是y a x h k ;4. 关于顶点对称(即:抛物线绕顶点旋转180°)b2y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c b;2a22y a x h k 关于顶点对称后,得到的解析式是y a x h k .5. 关于点m ,n 对称22y a x h k 关于点m,n 对称后,得到的解析式是y a x h 2m 2n k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax2 bx c 0是二次函数y ax2 bx c 当函数值y 0 时的特殊情况.图象与x轴的交点个数:① 当b2 4ac 0 时,图象与x轴交于两点 A x1,0 ,B x2 ,0 (x1 x2),其中的x1 ,x2是一元二次方程ax2 bx c 0 a 0 的两根.这两点间的距离AB x2 x1b 4ac.a② 当0时,图象与x 轴只有一个交点;③ 当0时,图象与x 轴没有交点.1' 当a 0时,图象落在x轴的上方,无论x为任何实数,都有y 0 ;2' 当 a 0时,图象落在x轴的下方,无论x为任何实数,都有y 0.2. 抛物线y ax2 bx c 的图象与y轴一定相交,交点坐标为(0 ,c);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y ax2 bx c 中a ,b ,c的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx c a( 0)本身就是所含字母x的二次函数;下面以a 0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:一、二次函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数y (m 2)x2 m2 m 2 的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题。

二次函数的基本概念

二次函数的基本概念

二次函数的基本概念二次函数是一种重要的数学概念,广泛应用于数学、物理、经济等领域。

它的基本形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。

本文将介绍二次函数的定义、图像特征以及常见的应用。

一、二次函数的定义二次函数是一个具有二次项的多项式,其中最高次数是 2。

它的标准形式为 y = ax^2 + bx + c,其中 a 是二次项的系数,b 是一次项的系数,c 是常数项。

二、二次函数的图像特征1. 开口方向二次函数图像的开口方向由二次项的系数 a 决定。

如果 a > 0,图像开口向上;如果 a < 0,图像开口向下。

2. 对称轴二次函数的图像是关于对称轴对称的,对称轴的方程为 x = -b/2a。

3. 顶点对于开口向上的二次函数,顶点是图像的最低点;对于开口向下的二次函数,顶点是图像的最高点。

顶点的 x 坐标为 -b/2a,y 坐标为代入 x 值所得到的 y 值。

4. 零点零点是二次函数图像与 x 轴交点的横坐标值,可以通过求解方程ax^2 + bx + c = 0 来确定。

三、二次函数的常见应用1. 抛物线二次函数的图像形状类似于一个U型的抛物线,因此在物理学中经常用于描述抛体运动的轨迹。

例如,从地面抛出的物体在忽略风阻等因素时,其运动轨迹可以使用二次函数来描述。

2. 经济学在经济学中,二次函数常常用于建模分析。

例如,成本函数、收益函数等均可使用二次函数来表达。

通过对二次函数的研究,可以分析经济决策的最优解以及变化的趋势。

3. 工程工程领域中,二次函数广泛应用于设计和优化问题。

例如,工程结构的抗弯强度、最优路径的寻找等问题都可以通过建立相应的二次函数模型来解决。

4. 自然科学自然科学中,二次函数可以用于描述和分析物理量之间的关系。

例如,光的折射、声音的传播等现象可以通过二次函数来描绘。

总结通过对二次函数的基本概念的介绍,我们了解了二次函数的定义、图像特征以及常见的应用。

二次函数知识点

二次函数知识点

二次函数(知识点)1. 二次函数的概念:一般地,如果y=ax 2+bx+c(a ,b ,c 是常数,a ≠0),其中二次项中x 的次数必须是2并且二次项的系数不能为0,那么这样的函数y 叫做x 的二次函数.2.二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)的图象及画法二次函数y=ax 2+bx+c(a ≠0)的图象是对称轴平行于y 轴(或是y 轴本身)的抛物线.几个不同的二次函数.如果二次项系数a 相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 一 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x 轴的交点、与y 轴的交点. 二 用平移法画图象由于a 相同的抛物线y=ax 2+bx+c 的开口及形状完全相同,故可将抛物线y=ax 2的图象平移得到a 值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k 的形式,确定其顶点(h ,k),然后做出二次函数y=ax 2的图象.将抛物线y=ax 2平移,使其顶点平移到(h ,k).3.(1)函数y=ax 2(a ≠0)的图象与性质:a 的符号图象开口方向 顶点坐标 对称轴增减性最大(小)值a>0向上(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小当x=0时,y 最小=0a<0向下(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时,y 最大=0顶点是坐标原点(0,0),对称轴是y 轴或直线x=0的抛物线的解析式形式为220)0(ax x a y =+-=)(0≠a(2)函数y=ax 2+c(a ≠0)的图象及其性质:a 的符号图象开口方向 顶点坐标对称轴 增减性 最大(小)值 a>0向上(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小 当x=0时, y 最小=ca<0向下(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时, y 最大=c顶点在y 轴上其坐标为(0,c ),对称轴是y 轴或直线x=0的抛物线的解析式形式为y=a (x-0)2+c=ax 2+c (3)抛物线y=ax 2与y=ax 2±c 之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同. (4)抛物线之间的平移规律:抛物线y=ax 2向上平移c 个单位可以得到抛物线 y=ax 2+c ;抛物线y=ax 2向下平移c 个单位可以得到抛物线 y=ax 2-c ;4.(1)二次函数 y=ax 2+bx+c 的图像的性质二次函数y=ax 2+bx+c(a ≠0)的图象是一条抛物线.它的顶点坐标是(a b ac a b 44,22--),对称轴是直线x=ab 2-函数 二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0) 图象a>0a<0性质 (1)当a>0时,抛物线开口向上,并向上无限延伸,顶点(a b ac a b 44,22--)有最低点,存在最小值,对称轴为x=a b 2-,当x=a b 2-,y 最小值=ab ac 442-。

二次函数的基本概念及性质

二次函数的基本概念及性质

二次函数的基本概念及性质二次函数是高中数学中经常出现的一个重要函数。

本文将介绍二次函数的基本概念和一些重要的性质。

通过学习,你将对二次函数有更深入的了解。

一、基本概念二次函数是指形如y=ax²+bx+c的函数,其中a、b、c都是实数且a≠0。

其中,a决定了二次函数的开口方向,b决定了二次函数的对称轴位置,c表示二次函数的纵截距。

二、性质1:二次函数的图像二次函数的图像常常是一个抛物线。

具体来说,如果a>0,则二次函数的图像开口向上,形如∩;如果a<0,则二次函数的图像开口向下,形如∪。

对于开口向上的情况,图像的最低点称为最小值点;对于开口向下的情况,图像的最高点称为最大值点。

性质2:对称轴二次函数的对称轴是指图像的对称轴线。

对称轴的公式为x=-b/2a。

可以看到,对称轴与y轴平行。

性质3:顶点坐标二次函数的顶点是指图像的最低点或最高点。

顶点的横坐标即为对称轴的横坐标,也就是x=-b/2a;顶点的纵坐标可以通过代入对称轴的横坐标求得。

性质4:零点二次函数的零点是指函数图像与x轴的交点。

要求二次函数的零点,我们需要解二次方程ax²+bx+c=0。

根据二次方程的求根公式,可以求得二次函数的零点。

三、性质的应用二次函数的性质在实际问题中有广泛的应用。

下面通过几个例子来说明。

例1:抛物线的最大高度一个枪弹以v0的初速度射出,枪口与地面之间的距离为h。

如果不考虑阻力和重力加速度变化,可以用二次函数表示该枪弹的轨迹。

那么枪弹射出的最大高度对应于二次函数的最大值点,可以通过顶点的纵坐标求得。

例2:图像的平移与缩放二次函数的图像可以通过平移和缩放来得到变换后的图像。

平移是通过添加常数项实现的,可以将二次函数的图像沿x轴平移或y轴平移。

缩放则是通过改变系数实现的,可以改变二次函数的开口程度,使图像更加陡峭或平缓。

例3:经济学中的应用二次函数在经济学中有广泛的应用。

例如,成本函数和收益函数常常是二次函数的形式。

二次函数知识点和经典例题详细讲解最终

二次函数知识点和经典例题详细讲解最终

二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y ax2 bx c (a ,b ,c 是常数,a 0 )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y ax2 bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 2.⑵ a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y ax2 的性质:a 的绝对值越大,抛物线的开口越小。

a 的符号开口方向顶点坐标对称轴性质a 0 向上0,0y 轴x 0 时,y 随x 的增大而增大;x 0时,y 随x 的增大而减小;x 0 时,y 有最小值0 .a 0 向下0,0y 轴x 0 时,y 随x 的增大而减小;x 0时,y 随x 的增大而增大;x 0 时,y 有最大值0 .2.y ax2 c 的性质:上加下减。

a 的符号开口方向顶点坐标对称轴性质a 0 向上0,c y 轴x 0 时,y 随x 的增大而增大;x 0时,y 随x 的增大而减小;x 0 时,y 有最小值c .a 0 向下0,c y 轴x 0 时,y 随x 的增大而减小;x 0时,y 随x 的增大而增大;x 0 时,y 有最大值c .2 的性质:a 的符号开口方向顶点坐标对称轴性质a 0 向上h ,0X=hx h 时,y 随x 的增大而增大;x h时,y 随x 的增大而减小;x h 时,y 有最小值0 .a 0 向下h ,0X=hx h 时,y 随x 的增大而减小;x h时,y 随x 的增大而增大;x h 时,y 有最大值0 .4.y a x h 2 k的性质:a 的符号开口方向顶点坐标对称轴性质a 0 向上h ,kX=hx h 时,y 随x 的增大而增大;x h时,y 随x 的增大而减小;x h 时,y 有最小值k .a 0 向下h ,k X=hx h 时,y 随x 的增大而减小;x h时,y 随x 的增大而增大;x h 时,y 有最大值k .三、二次函数图象的平移1.平移步骤:⑴将抛物线解析式转化成顶点式y a x h 2 k,确定其顶点坐标h,k;⑵ 保持抛物线y ax2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y a x h 2 k与y ax2 bx c的比较从解析式上看,y a x h 2 k与y ax2 bx c是两种不同的表达形式,后者通过配方可以得到前者,即 ya (x +x 2x )24xx − x24x,其中h= -x2x,k 4xx − x24x五、二次函数 y ax 2 bx c 的性质 当 a 0 时,抛物线开口向上,对称轴为- x2x,顶点坐标为(−x 2x ,4xx − x 24x).当x - x2x 时,y 随x 的增大而减小; 当xx2x 时,y 随x 的增大而增大;当x =x2x 时,y 有最小值4xx − x 24x.当时,抛物线开口向下,对称轴为x- x 2x , 顶点坐标为(−x 2x ,4xx − x 24x).当x- x2x 时, y 随 x 的大而增大y;当随 x x2x 时,y 随 x 的增大而减小;当x = x2x 时 , y有最大值4xx − x24x.六、二次函数解析式的表示方法1.一般式:y ax2 bx c(a,b,c为常数,a0);2.顶点式:y a(x h)2 k(a,h,k为常数,a0);3.两根式(交点式):y a(x x1 )(x x2 )(a0,x1 ,x2 是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b2 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a⑴ 当a 0 时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当a 0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.(同左异右b为0对称轴为y轴)3.常数项c⑴ 当c 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶ 当c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax2 bx c 0 是二次函数y ax2 bx c 当函数值y 0 时的特殊情况. 图象与x 轴的交点个数:① 当b2 4ac 0 时,图象与x 轴交于两点A x1,0,B x2,0(x1x2) ,其中的x1,x 2是一元二次方程ax2 bx c 0 a 0的两根.② 当 0 时,图象与x 轴只有一个交点;③ 当 0 时,图象与x 轴没有交点.1' 当a 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y 0 ;2 ' 当a 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y 0 .2.抛物线y ax2 bx c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例1 求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得{3=x−x+x3=x+x+x6=4x+2x+x解得{x=1x=0x=2∴解析式为 y=x2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8).设解析式为 y=a(x-h)2+k,即y=a(x-1)2-8.把x=-1,y=0 代入上式得 0=a(-2)2-8, ∴a=2. 即解析式为 y=2(x-1)2-8,即y=2x2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax2-2ax-3a.∵函数有最小值-8.∴4a(−3a)−(2a)24a=-8.又∵a≠0,∴a=2.∴解析式为 y=2(x+1)(x-3)=2x2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式y=a(x-x1)·(x-x2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x1)(x-x2).⎬2. 二次函数的图象例 2 y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在( ).A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上 a>0.抛物线与y 轴负半轴相交 c 0b bc>0.对称轴x2a在y 轴右侧 b 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:开口上下决定a 的正负左同右异(即对称轴在y 轴左侧,b 的符号与a 的符号相同;)来判别b 的符号抛物线与y 轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.23. 二次函数的性质例 4 对于反比例函数 y=- 2x与二次函数 y=-x 2+3, 请说出他们的两个相同点:①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命 题的热点.4. 二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x12+x 2=-2k 2+2k+1. ①求抛物线的解析式.②设点 P(m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2 得m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1. ∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k. ∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1. ∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.②∵点 P 、Q 关于此抛物线的对称轴对称, ∴n 1=n 2.2 2 又 n 1=m 12+m 1,n 2=m2+m 2. ∴m 12+m 1=m2+m 2, 即(m 1-m 2)(m 1+m 2+1)=0. ∵P、Q 是抛物上不同的点, ∴m 1≠m 2,即 m 1-m 2≠0. ∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1. 二次函数 yx 2 4x 7 的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2. 把抛物线 y 2x 2 向上平移 1 个单位,得到的抛物线是( )A. y2(x 1)2B. y2(x 1)2C. y 2x 2 1D. y 2x 2 13.函数 ykx 2k 和 yk(k 0) 在同一直角坐标系中图象可能是图中的( )x4.已知二次函数 y ax 2 bx c (a 0) 的图象如图所示,则下列结论: ①a,b 同号; ② 当 x1和 x 3时,函数值相等;③ 4a b 0 ④当 y 2时,x 的值只能取 0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数y ax2 bx c(a 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax2 bx c 0 的两个根分别是x1 1.3和x()2A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数y ax2 bx c 的图象如图所示,则点(ac, bc) 在()A.第一象限B.第二象限C.第三象限D.第四象限的正根的个数为()7.方程2x x2=2xA.0 个B.1 个C.2 个. 3 个8.已知抛物线过点 A(2,0),B(-1,0),与y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y x2 x 2B. y x2 x 2C. y x2 x 2 或y x2 x 2D. y x2x 2 或y x2 x 2二、填空题9.二次函数y x2 bx 3 的对称轴是x 2 ,则b 。

二次函数及其图像特征

二次函数及其图像特征

二次函数及其图像特征引言:二次函数是高中数学中的重要概念,也是数学中的一种基本函数类型。

它的图像特征丰富多样,反映了函数的性质和变化规律。

本文将从二次函数的定义、图像特征以及应用等方面进行论述,希望能够深入理解二次函数及其图像特征。

一、二次函数的定义二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

其中,a决定了二次函数的开口方向和开口程度,b决定了二次函数的对称轴位置,c决定了二次函数的纵向平移。

二、二次函数的图像特征1. 开口方向和开口程度当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下。

而a的绝对值越大,开口的程度越大,图像越陡峭。

2. 对称轴对称轴是指二次函数图像的中心线,对称轴的方程为x = -b/2a。

对称轴将图像分为两个对称的部分,左右两侧关于对称轴对称。

3. 顶点顶点是二次函数图像的最高点(当a > 0)或最低点(当a < 0)。

顶点的坐标为(-b/2a, f(-b/2a)),它是二次函数的极值点。

4. 零点零点是指二次函数图像与x轴相交的点,即f(x) = 0的解。

二次函数的零点个数取决于判别式Δ = b^2 - 4ac的值,当Δ > 0时,有两个不同的实根;当Δ = 0时,有一个重根;当Δ < 0时,无实根。

5. 函数值的变化当二次函数的a > 0时,函数值随着自变量x的增大而增大,当a < 0时,函数值随着自变量x的增大而减小。

当二次函数开口向上时,函数值的最小值为顶点的纵坐标;当二次函数开口向下时,函数值的最大值为顶点的纵坐标。

三、二次函数的应用1. 物体的抛体运动二次函数可以用来描述物体的抛体运动。

通过分析二次函数的图像特征,可以得到物体的最高点、最远点、落地点等信息,从而对物体的运动轨迹进行预测和分析。

2. 经济学中的成本函数在经济学中,成本函数常常用二次函数来表示。

二次函数的基本概念

二次函数的基本概念

二次函数的基本概念一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4、()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式【例题选讲】 一、二次函数的概念【例1】下列函数中是二次函数的是( )【例2】已知函数是二次函数,则。

二次函数的基本概念与应用

二次函数的基本概念与应用

二次函数的基本概念与应用二次函数是一种基本的代数函数,其形式表达为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

二次函数的图像通常是一个开口向上或向下的抛物线。

本文将介绍二次函数的基本概念以及它在实际应用中的一些常见情境。

一、基本概念1. 零点与轴对称点:在二次函数的图像中,零点是指函数与x轴相交的点,即使得y = 0的x值。

通过求解方程ax^2 + bx + c = 0,可以找到二次函数的零点。

轴对称点是指函数图像关于某条垂直于x轴的线对称的点,其x坐标为二次函数的顶点横坐标,可以通过求解方程-x轴对称点的x值,找到二次函数的轴对称点。

2. 最值与段落:二次函数的图像是一个抛物线,其开口方向决定了函数的最值。

当a>0时,抛物线开口向上,函数的最小值出现在顶点处;当a<0时,抛物线开口向下,函数的最大值出现在顶点处。

段落是函数图像的一部分,通常用来指示函数的定义域。

3. 增减性与凹凸性:根据二次函数的导数,可以判断函数在某个区间内的增减性以及凹凸性。

当函数的导数大于0时,函数在该区间内递增;当函数的导数小于0时,函数在该区间内递减。

凹凸性指函数图像的曲率方向,当函数的二阶导数大于0时,函数在该区间内为凹曲线;当函数的二阶导数小于0时,函数在该区间内为凸曲线。

二、应用场景1. 物理学中的抛体运动:在物理学中,二次函数被广泛应用于描述抛体运动的轨迹。

抛体运动是指任何物体在一定初速度和角度下,沿着曲线轨迹运动的现象。

通过将时间作为自变量,重力加速度作为常数,可以建立二次函数来描述抛体运动的轨迹。

2. 经济学中的成本与收益曲线:在经济学中,二次函数被用来模拟成本与收益的关系。

以企业生产为例,成本通常随着产量的增加而增加,但增长速度逐渐减慢。

类似地,收益随着产量的增加而增加,但增长速度逐渐变缓。

通过建立二次函数,可以分析最大化收益或最小化成本的最优产量。

3. 工程学中的建筑设计:在建筑设计中,二次函数被用来描述拱形结构的特点。

高中二次函数知识点总结

高中二次函数知识点总结

一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的根本形式1. 二次函数根本形式:的性质:a 的.绝对值越大,抛物线的开口越小。

的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:上加下减。

的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3. 的性质:左加右减。

的符号开口方向顶点坐标对称轴性质向上某=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下某=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4. 的性质:的符号开口方向顶点坐标对称轴性质向上某=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下某=h时,随的增大而减小;时,随的增大而增大;时,有最大值.三、二次函数图象的平移1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的根底上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比拟从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(假设与轴没有交点,那么取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.。

初中二次函数知识点总结

初中二次函数知识点总结

初中二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、说课内容:
人教版九年级数学下册的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。

进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相
互关系,我们已学过正比例函数,反比例函数和一次函数。

看下面三个例子中两个变量之间存在怎样的关系。

(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (c m²)与半径之间的关系是什么?
解:s=πr²(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m²)与矩形一边长x(m)之间的关系是什么?
解:y=x(20/2-x)=x(10-x)=-x²+10x (0<x<10)
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解:y=100(1+x)²
=100(x²+2x+1)
= 100x²+200x+100(0<x<1)
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。

(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。

二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。

但在实际问题中,自变量的取值范围是使实际问题有意义的值。

(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+1 00中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)²+1 (2)
(3)s=3-2t² (4)y=(x+3)²- x²
(5) s=10πr² (6) y=2²+2x
(8)y=x4+2x2+1(可指出y是关于x2
的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为S cm2,体积为Vcm3。

(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。

通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为r cm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值
(1)如果函数y= x k^2-3k+2+kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)x k^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六)小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。

而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七)作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。

这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:
1.已知函数是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。

另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则突出一个特色——充分鼓励表扬的特色渗透一个意识——应用数学的意识。

相关文档
最新文档