2010年1月高数

合集下载

2010年1月自学考试00023高等数学(工本)真题试卷及参考答案

2010年1月自学考试00023高等数学(工本)真题试卷及参考答案

2010年1月高等教育自学考试全国统一命题考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在空间直角坐标系中,方程x 2+y 2=2的图形是( )A.圆B.球面C.圆柱面D.旋转抛物面2.设函数f(x+y,x-y)=xy2y x 22−,则f(x,y)=( ) A.22y x xy − B.22y x xy 2− C. 22y x xy 4− D. )y x (2xy 22− 3.设积分区域Ω:x 2+y 2+z 2≤1,三重积分I=⎰⎰⎰Ω+dxdydz )1z (,则( ) A.I<0B.I=0C.I>0D.I 与z 有关4.微分方程0y 2y 3y =+'−''的通解y=( )A.C 1e -x +C 2e 2xB. C 1e -x +C 2e -2xC. C 1e x +C 2e -2xD. C 1e x +C 2e 2x5.下列无穷级数中发散的无穷级数是( ) A.∑∞=+1n 221n 3n B. ∑∞=+−1n n 1n )1( C. ∑∞=−−3n 1n n ln )1( D. ∑∞=+1n 1n n 32 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 设函数z=u+v, 而u=x+y, v=xy ,则xz ∂∂=___________. 7. 设区域D :|x|≤1,0≤y ≤1,则二重积分⎰⎰+D 2dxdy )x sin x 1(的值等于___________. 8. 设λ是正常数,并且xy λdx+x λydy 是其个函数u(x,y)的全微分,则λ=___________.9. 微分方程3y y 2y =+'+''的一个特解为y*=___________.10. 函数f(x)=sin x 展开成x 的幂级数为___________.三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (4,-1,2)并且与直线L :⎩⎨⎧−=−−=−+1z y x 7z y x 平行的直线方程. 12.设函数z=)x ,x y (f ,其中f 是可微函数,求yz ,x z ∂∂∂∂. 13.已知函数z=e 3y (x 2+2y-x),求y x z 2∂∂∂. 14.求函数f(x,y,z)=xyz-x 2-y 2+3z 在点(-1,-1, 2)处的梯度.15.求曲面z=4-x 2-y 2上平行于平面2x+2y+z-7=0的切平面方程.16.计算二重积分I=⎰⎰+D dxdy )y 2x (,其中D 是由坐标轴和直线x+y=4所围成的区域. 17.计算三重积分I=⎰⎰⎰Ω++dxdydz )z y x(222,其中积分区域Ω:x 2+y 2+z 2≤1.18.计算对弧长的曲线积分⎰+Lds )y 2x 3(,其中L 是连接点(1,0)和(0,1)的直线段. 19.计算对坐标的曲线积分⎰+L xdy ydx ,其中L 是椭圆1b y a x 2222=+的逆时针方向. 20.求微分方程(1+x 2)dy+(1+y 2)dx=0的通解.21.求幂级数∑∞=+1n n 32x 1n n 的收敛半径和收敛区间. 22.设函数f(x)=x+1,x ∈[)ππ−,的傅里叶级数展开式为∑∞=++1n n n 0)nx sin b nx cos a(2a 求系数a 5 .四、综合题(本大题共3小题,每小题5分,共15分)23.求由四个平面x=0, y=0, x=1, y=1所构成的柱面和平面z=0及x+y+z=7所围成的立体的体积.24.设无穷级数∑∞=1n 2n a 和∑∞=1n 2n b 均收敛,证明无穷级数∑∞=1n n n b a 是绝对收敛.25.设曲线y=y(x)在其上任意点(x,y )处的切线斜率为yx 1+,且过点(-1,0),求该曲线的方程.。

2010高考数学全国卷1(题题详细解析)

2010高考数学全国卷1(题题详细解析)

2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n -=-=…一.选择题 (1)复数3223i i+=-(A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i ii i +++++-===--+.(2)记cos(80)k -︒=,那么tan 100︒=A.21k k- B. -21k k- C.21k k- D. -21k k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin 801cos 801cos (80)1k=-=--=-,所以tan 100tan 80︒=-2sin 801.cos 80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则a a a=(A) 52(B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式0x y += 1Oy x = y20x y --=xA0:20l x y -=2-2 AA BC DA 1B 1C 1D 1O的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23B33C 23D637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO⊥平面AC 1D ,由等体积法得11D A C D DA C DV V --=,即111133A C D A C D S D O S D D ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222AC D S AC AD a a ∆==⨯⨯=,21122A C D S A D C D a ∆== .所以1312333AC D AC D S D D aD O a S a∆∆===,记DD 1与平面AC 1D 所成角为θ,则13sin 3D O D D θ==,所以6cos 3θ=.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32(B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a P F e x a e x x c=--=+=+,22000||[)]21aPF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||P F P F F F P F P F +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为 (A) 42-+(B)32-+(C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos 2P A P B P A P B α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233(B)433(C) 23 (D)83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.PABO。

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1注意事项:1. 在答题卡上用直径0.5毫米黑色墨水签字笔填写姓名、准考证号,并贴好条形码。

请核对条形码上的准考证号、姓名和科目。

选择题:1. 求复数3+2i与2-3i的商。

(A) i (B) -i (C) 12-13i (D) 12+13i2. 已知cos(-80°)=k,求tan100°。

(A) -k/(1-k^2) (B) k/(1-k^2) (C) k (D) -k3. 若变量x,y满足约束条件x+y≥0,x-y-2≤0,y≤1,则z=x-2y的最大值为(A) 4 (B) 3 (C) 2 (D) 14. 已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=?(A) 52 (B) 7 (C) 6 (D) 425. 将(1+2x)^3(1-3x)^5展开式中x的系数求出。

(A) -4 (B) -2 (C) 2 (D) 46. 某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B) 35种 (C) 42种 (D) 48种第Ⅱ卷1. 已知函数f(x)=sin2x+cos2x,求f(x+π/4)的值。

2. 已知函数f(x)=x^2-2x-3,g(x)=2x+1,则f(g(x))=?3. 已知函数f(x)=e^x,g(x)=lnx,则f(g(x))=?4. 求曲线y=x^3-3x^2+2的单调递减区间和单调递增区间。

5. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的零点。

6. 已知函数f(x)=e^x,g(x)=x^2+1,则f(g(x))的最小值为多少?7. 已知函数f(x)=ax^2+bx+c,经过点(1,3),且在x=2处的导数为4,则a+b+c=?8. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(-1)=2,f(0)=1,f(1)=4,则f(-2)=?9. 已知函数f(x)=x^3+ax^2+bx+c,其中a,b,c均为常数,且f(1)=0,f'(1)=-2,f''(1)=2,则f(-1)=?10. 已知函数f(x)=x^3-3x,g(x)=f(x+1),求g(x)的反函数。

2010年高考全国卷1理科数学试题及答案

2010年高考全国卷1理科数学试题及答案

第1/11页2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π= n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-A A =-=⋅⋅⋅一. 选择题第2/11页(1)复数3223i i +-= (A ).i (B ).-i (C ).12—13i (D ).12+13i(2) 记cos (-80°)=k ,那么tan100°=(A ).21k k - (B ). — 21k k - (C.) 21kk - (D ).—21k k - (3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=2(B) 7 (C) 6 2 (5) x )33x )5的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

2010年高考全国卷1理科数学试题答案及解析

2010年高考全国卷1理科数学试题答案及解析

2010年普通高等学校招生全国统一考试(1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=-2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1312333A C D A C D S D D a D O a S a ∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 11.D【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. (13)不等式2211x x +-≤的解集是 .PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4s i n 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 18.(19如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n n a a c a +==- .(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。

2010年高考理科数学试题与答案-全国卷1

2010年高考理科数学试题与答案-全国卷1

【解析 1】如图,在同一直角坐标系内画出直线y 1与曲线y x 2x a ,观图可知,a 的a15取值必须满足,解得14a 1 a.144【解析 2】由数型结合知:1 5a1 a 1 a44y16.3【命题意图】本小题主要考察椭圆的方程与几何性质、第二定B3义、平面向量知识,考察了数形结合思想、方程思想,此题凸显解析几何OFx的特点:“数研究形,形助数〞 ,利用几何性质可寻求到简化问题的捷径.D 1Db 2c 2【解析 1】如图,| BF |a ,uur uur作DD 1y 轴于点 1, 那么由BF2FD ,得D|OF | |BF | 2,所以|DD 1 | 3 |OF | 3c ,|DD 1||BD| 32 2即 x D3c ,由椭圆的第二定义得 |FD |e( a 23c ) a 3c 22c22a又由|BF |2 | FD | ,得 c2a 3c 2 ,整理得3c 22a 2ac0 .a两边都除以 a 2 ,得3e 2e 2 0 ,解得e1(舍去 ),或e 2 .3【解析 2】设椭圆方程为:第一标准形式,F 分 BD 所成的比为 2,x c0 2 x 2 x 23x c3c; y c b 2 y 2 y 23y c b3 0 bb,带入1 222 1 22229 c 21 b 21 ,e34 a24 b2 3三.解答题:本大题共 6 小题,共 70 分.解容许写出文字说明,证明过程或演算步骤.17. 【命题意图】 本小题主要考察三角恒等变形、利用正弦、余弦定理处理三角形中的边 角关系,突出考察边角互化的转化思想的应用.18. 【命题意图】 此题主要考察等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识 , 以及运用概率知识解决实际问题的能力 , 考察分类与整合思想、 化归与转化思想 .( 19〕〔本小题总分值 12 分〕【命题意图】本小题主要考察空间直线与直线、直线与平面、平面与平面的位置关系,二面角等根底知识,考察空间想象能力、推理论证能力和运算能力.(20)(本小题总分值12 分 )【命题意图】本小题主要考察函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考察了考生综合运用数学知识解决问题的能力以及计算能力,同时也考察了函数与方程思想、化归与转化思想.〔 21〕 (本小题总分值 12 分 )【命题意图】本小题为解析几何与平面向量综合的问题,主要考察抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考察考生综合运用数学知识进展推理论证的能力、运算能力和解决问题的能力,同时考察了数形结合思想、设而不求思想..〔 22〕 (本小题总分值12 分 )【命题意图】本小题主要考察数列的通项公式、等比数列的定义、递推数列、不等式等根底知识和根本技能,同时考察分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考察.。

2010年全国考研数学一真题及答案.doc

2010年全国考研数学一真题及答案.doc

2010年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)极限(A)1 (B)(C)(D)【考点】C。

【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换)则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。

(A)(B)(C)(D)【答案】B。

【解析】因为,所以综上所述,本题正确答案是(B)。

【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3)设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】D。

【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。

由于,已知反常积分收敛,则也收敛。

在反常积分中,被积函数只在时无界,由于(洛必达法则) 且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。

综上所述,本题正确答案是D。

【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)【答案】D。

【解析】因为综上所述,本题正确答案是C。

【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】A。

【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。

【考点】线性代数—矩阵—矩阵的秩(6)设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。

【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知D正确综上所述,本题正确答案是D。

2009-2010(1)高数(A卷)(90)解答

2009-2010(1)高数(A卷)(90)解答

广州大学2009-2010学年第一学期考试卷高等数学Ⅰ1(90学时A 卷)参考解答与评分标准一.填空题(每小题4分,本大题满分20分)1.22212lim ()n n nnn→∞+++= 12,22212lim ()12n n n n n n→∞+++=+++ 12.2.设ln(1),0()2sin 1,0ax x f x xx x +⎧>⎪=⎨⎪+≤⎩,则0lim ()x f x -→= 1 ,当常数=a 2 时,)(x f 在0x =处连续.3.曲线221xy x =+有斜渐近线y =1124x -和铅直渐近线=x 12-.4.曲线323y x x =-的拐点横坐标为=x 1 ,凸区间为(,1]-∞. 5.方程0y y '''-=的特征方程为20r r -=,通解为y =12xC e C +.二.选择题(每小题2分, 本大题满分10分)1. 当0→x 时1-是2x 的( B )无穷小. (A) 高阶; (B) 低阶; (C) 同阶; (D) 等价.2.1lim (12)x x x →∞+=( A ).(A) 1; (B) e ; (C) e ; (D) 2e .3.函数23()(2)||f x x x x x =+--的不可导点的个数是( C ). (A) 0; (B) 1; (C) 2; (D) 3.4.二阶可导函数)(x f 在点0x x =处取得极值的充分条件是( D ). (A) 0)(0='x f ; (B) 0)(0>''x f ;(C) 0()0f x ''<; (D) 0)(0='x f 且0()0f x ''≠. 5. 设)(x f 是连续函数,()F x 是)(x f 的一个原函数,则( A ). (A) 当)(x f 是奇函数时,()F x 必是偶函数;(B) 当)(x f 是偶函数时,()F x 必是奇函数;(C) 当)(x f 是周期函数时,()F x 必是周期函数;(D) 当)(x f 是单调增函数时,()F x 必是单调增函数.三.解答下列各题(每小题6分,本大题满分18分)1.ln(cos y =,求dy .解: y ''=…………………………………………………2分'=………………………………………………………3分tan =-4分dy =- ……………………………………………………6分2.求由方程ln 1xy y +=所确定的隐函数()y f x =在0x =处的导数. 解: 把方程两边分别对x 求导数得10y xy y y''++=………………………………………………………4分当0x =时,y e =,代入上式得20|x y e ='=- ……………………………………6分3.求曲线222211t x tty t ⎧=⎪⎪+⎨⎪=⎪+⎩上在参数2t =相应的点处的切线方程. 解: 切点坐标为44(,)55……………………………………………………………1分22222(1)dx tdt t -=+,222(1)dy t dtt =+2()()1dy y t tdxx t t'=='- ……………………………………………………4分切线斜率为 22|3t dyk dx ===-…………………………………………………… 5分切线方程为 424()535y x -=--,即 2340x y +-= ……………………………………………………6分四.解答下列各题(每小题6分,本大题满分12分)1.计算极限011lim ()1xx xe →--.解: 原式01lim(1)xxx e x x e →--=- ………………………………………………………1分 01lim1xxxx e e xe→-=-+ ……………………………………………………3分lim 2xxxx ee xe→=+………………………………………………………5分12= ……………………………………………………………………6分2.设2009()(1)()f x x g x =-,其中()g x 在1x =处连续,且(1)1g =,求(1)f '. 解: 1()(1)(1)lim1x f x f f x →-'=-200911lim()1x xg x x →-=-……………………………3分200911lim1x xx →-=-20081lim 20092009x x→==……………………………6分注: 20082009()2009()(1)()f x x g x x g x ''=+-,(1)2009(1)2009f g '==. 给3分.五.计算下列积分(每小题6分,本大题满分18分)1.21(1)dx x x +⎰. 解: 原积分2221(1)x xdx x x +-=+⎰211xdx dx xx=-+⎰⎰……………………………2分2211ln ||(1)21x d x x=-++⎰………………………………………4分21ln ||ln(1)2x x C =-++ …………………………………………6分2.0⎰.解: 令2sin x t =,arcsin2x t =,则⎰2604cos tdt π=⎰…………………………………………3分60(22cos 2)t dt π=+⎰[]602sin 232t t ππ=+=+……………………6分3.20xxedx --∞⎰.解: 原积分2021()2xed x --∞=--⎰……………………………………………2分21[]2xe--∞=- ………………………………………………………4分12=-………………………………………………………………6分六.(本题满分5分)证明: 当1>x 时,ln 1x x x >-.证明: 令1ln )(+-=x x x x f , 则x x f ln )(='当1>x 时, 0ln >x , 从而0)(>'x f因此)(x f 在区间),1[∞+单调增加 ……………………………………………3分 当1>x 时,0)1()(=>f x f ,即得1ln ->x x x ……………………………………………………………5分七.(本大题满分10分)如图所示, 平行于y 轴的动直线被曲线()y f x =与3y x =截下的线段PQ 之长数值上等于曲线()y f x =和x 轴及直线PQ 所围成曲边三角形的面积(阴影部分), 求曲线()y f x =的方程. 解: 由题意可得3()()x f t dt x f x =-⎰两边求导得2()3()f x x f x '=- 解此微分方程得2()[3]dx dx f x e x e dx C -⎰⎰=+⎰2[3]x xe x e dx C -=+⎰ 2[36]x x xe x e xe dx C -=-+⎰2[366]xxxxe x e xe e C -=-++……9分由0|0x y ==,得6C =-,所求曲线为23666xy x x e-=-+- ……10分八.(本题满分7分)设()f x 在区间[,]a a -上连续, (1)证明: 0()[()()]a a af x dx f x f x dx -=+-⎰⎰;(2)利用(1)的结果计算: 44cos 1xx dx eππ--+⎰.(1)证明: 00()()()a a aaf x dx f x dx f x dx --=+⎰⎰⎰令t x -=, 则0()a f x dx -⎰0()()a f t dt =--⎰0()a f x dx =-⎰所以 0()[()()]a a af x dx f x f x dx -=+-⎰⎰………………………………4分(2)由(1)得44co s 1xx d x eππ--+⎰40cos cos []11xxx x dx eeπ-=+++⎰40cos xdx π=⎰2=……………………………………………………7分。

2010年考研数一试题及答案

2010年考研数一试题及答案

2010年全国硕士研究生入学统一考试数学(一)试题及参考答案一、选择题:1~8小题,每小题4分,共32分。

(1)、极限2lim ()()xx x x a x b →∞⎛⎫= ⎪-+⎝⎭( C ) A 、1 B 、e C 、e a b- D 、eb a-【解析与点评】方法一222ln 1()()()()lim lime lime()()xx x xx x a x b x a x b x x x xx a x b ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞⎛⎫== ⎪-+⎝⎭()()2()()()()limelime a b x ab a b x abxx x a x b x a x b x x -+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞==e a b -=方法二22()()lim lim 1()()()()x xx x x x x a x b x a x b x a x b →∞→∞⎛⎫⎛⎫--+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()()()()()()()()lim 1lim 1()()()()x a x b a b x abxxa b x ab x a x b x x a b x ab a b x ab x a x b x a x b -+-+⋅-+-+→∞→∞⎛⎫⎛⎫-+-+=+=+ ⎪ ⎪-+-+⎝⎭⎝⎭()lim()()()ee x a b x abxa b x a x b →∞-+--+==考点:第二个重要极限,初等函数运算,复合函数极限运算法则,极限运算,无穷小量替换 (2)、设函数(,)z z x y =,由方程(,)0y z F x x=确定,其中F 为可微函数,且20F '≠,则z zxy u y∂∂+=∂∂( B ) A 、x B 、z C 、x - D 、z -【解析与点评】 等式两边求全微分得:12d d 0y z F F x x ⎛⎫⎛⎫''⋅+⋅= ⎪ ⎪⎝⎭⎝⎭,即 1222d d dz d 0x y y x x z xF F x x --''+=12(d d )(dz d )0F x y y x F x z x ''⇒⋅-+⋅-= 12122dz d d yF zF F x y xF F '''+∴=-''所以有,1212222yF zF F zF z z xy x y z u y xF F F ''''+∂∂+=-==∂∂'''(3)、设,m n是正整数,则反常积分x ⎰的收敛性( D )A 、仅与m 的取值有关B 、仅与n 的取值有关C 、与,m n 的取值都有关D 、与,m n 的取值都无关 【解析与点评】:显然0,1x x ==是两个瑕点,有=+⎰对于的瑕点0x =,当0x +→21ln (1)mnx x -=-等价于221(1)mm nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故收敛;对于)的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2(1)nmnmx x <-<-,而2112(1)mxd x-⎰显然收敛,故收敛。

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -︒=,那么tan100︒=B.C.D.(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)(5)35(1(1+-的展开式中x 的系数是ABC DA 1B 1C 1D 1 O(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A B CD 中,B 1B 与平面AC 1D所成角的余弦值为A 3B 3C 23D 3(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1Fp 2F =060,则P 到x 轴的距离为(A)2(B)2(C) (D)(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 4-(B)3-(C) 4-+(D)3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)3 (B)3 (C) (D) 3第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)(13)1x ≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a,b满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)(注意:在试题卷上作答无........效.) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n na a c a +==-. (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .2010年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修II) 答案第I 卷一.选择题1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析1】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+.【解析2】232322323i i i i i i +-+==-- 2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析1】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80=-=-【解析2】cos(80)k -︒=cos(80)k⇒︒=,()()00000sin 18080sin100sin 80tan1001008018080oo ocon con con -︒===--=3.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析1】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.【解析2】2z x y y =-⇒()1213Max z =--= 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析1】由等比数列的性质知31231322()5a a a a a a a ===, 37897988()a a a a a a a ===10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====【解析2】123a a a =5325a ⇒=;x +20y -=ABCDA 1B 1C 1D 1 O789a a a =103810,a ⇒=6333528456550a a a a aa a ⇒==⇒==5.C 【解析】12451335333322(1(1161281510105x x x x x x x x ⎛⎫⎛⎫+-=+++-+-+- ⎪ ⎪⎝⎭⎝⎭x 的系数是 -10+12=26.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种. 【解析2】33373430C C C --=7.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD ∆==⨯⨯=,21122ACD SAD CD a ∆==. 所以131ACD ACD S DD DO a S ∆∆=,记DD 1与平面AC 1D 所成角为θ,则1sin 3DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B1B 与平面AC 1D所成角,1111cos 3O O O OD OD ∠=== 8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e , 3221log log 2e <<< ,32211112log log e<<<; c=12152-=<=,∴c<a<b 9.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||2y =【解析2】由焦点三角形面积公式得:120226011cot 1cot 22222F PF S b c h h θ∆=====⇒=10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a=+>,从而错选A,这也是命题者的用苦良心之处. 【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,求2z x y =+的取值范围问题,11222z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为3,∴(C)(3,)+∞ 11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos 2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤-或3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】法一: 设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭ 法二:换元:2sin,012x x θ=<≤,()()1121233x x PA PB x xx--∙==+-≥或建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析1】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =. 【解析2】()()22210110111001,,2PA PB x x y x x y x x x x y ∙=-⋅--=-+-二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.【解析1】原不等式等价于2221(1),10x xx⎧+≤+⎨+≥⎩解得0≤x≤2.【解析2】(){}2221111020211x xx x x x xx⎧+≤+⎪≤⇒+⇒⇒≤≤⇒≤≤⎨+≥⎪⎩,14.17-【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.【解析1】因为α为第三象限的角,所以2(2(21),2(21))()k k k Zαπππ∈+++∈,又3cos25α=-<0, 所以2(2(21),2(21))()2k k k Zπαπππ∈++++∈,于是有4sin25α=,sin24tan2cos23ααα==-,所以tan(2)4πα+=41tan tan2134471tan tan2143παπα-+==--+.【解析2】α为第三象限的角,3cos25α=-,3222k kππαππ+<<+42243k kππαππ⇒+<<+⇒2α在二象限,4sin25α=a sin(2)sin cos2cos sin2cos2sin21444tan(2)4cos2sin27cos(2)cos cos2sin sin2444πππαααπαααπππααααα++++====--+-15.(1,5)4【命题意图】本小题主要考查函数的图像与性质、不等式的解法,着重考查了数形结合的数学思想. 【解析1】如图,在同一直角坐标系内画出直线1y=与曲线2y x x a=-+,观图可知,a的取值必须满足1,4114aa>⎧⎪⎨-<⎪⎩解得514a<<.【解析2】由数型结合知:151144a a a-<<⇒<<16.【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析1】如图,||BF a==,作1DD y⊥轴于点D1,则由BF2FD=uu r uu r,得1||||2||||3OF BFDD BD==,所以133||||22DD OF c==,即32Dcx=,由椭圆的第二定义得2233||()22a c cFD e ac a=-=-又由||2||BF FD=,得232cc aa=-,整理得22320c a ac-+=.两边都除以2a,得2320e e+-=,解得1()e=-舍去,或23e=.【解析2】设椭圆方程为:第一标准形式,F分BD所成的比为2,222230223330;122212222cc c cy bx b y b bx x x c y y-++⋅-=⇒===⇒===-++,带入222291144c ba b+=,3e⇒=三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.【命题意图】本小题主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想的应用.18.【命题意图】本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.(19)(本小题满分12分)【命题意图】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关2010年普通高等学校招生全国统一考试(全国1卷)理科数学系,二面角等基础知识,考查空间想象能力、推理论证能力和运算能力.(20)(本小题满分12分)【命题意图】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想.(21)(本小题满分12分)【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想..(22)(本小题满分12分)【命题意图】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.答案7。

2010年全国1卷高考数学(含答案)

2010年全国1卷高考数学(含答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:七彩教育网 免费提供Word 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010数学一真题及答案

2010数学一真题及答案

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A) 1. (B) e . (C) a be -. (D) b ae-.(2) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(3) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B)仅与n 的取值有关. (C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (4) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (5) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A) 秩()r A m =,秩()r B m =. (B) 秩()r A m =,秩()r B n =. (C) 秩()r A n =,秩()r B m =. (D) 秩()r A n =,秩()r B n =. (6) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭.(C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (7) 设随机变量X 的分布函数0,1(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A) 0. (B)12. (C) 112e --. (D) 11e --. (8) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A) 234a b +=. (B) 324a b +=. (C) 1a b +=. (D) 2a b +=.二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == .(10)2π=⎰.(11) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.(12) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .(13) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = .(14) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)求微分方程322x y y y xe '''-+=的通解. (16)(本题满分10分)求函数()()2221x t f x xt e dt -=-⎰的单调区间与极值.(17)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (18)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.(19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 处的切平面与xOy 面垂直,求点P 的轨迹C ,并计算曲面积分2x y zI ∑-=,其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (21)(本题满分11 分)已知二次型123(,,)T f x x x x Ax =在正交变换x Qy =下的标准形为2212y y +,且Q 的第三列为T. ( I ) 求矩阵A ;( II ) 证明A E +为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2222(,)x xy y f x y Ae -+-=,x -∞<<+∞,y -∞<<+∞,求常数A 及条件概率密度|(|)Y X f y x .设总体X其中参数()0,1θ∈未知,以i N 表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3i =).试求常数123,,a a a ,使31iii T a N ==∑为θ的无偏估计量,并求T 的方差.2010年全国硕士研究生入学统一考试数学一试题参考答案一、选择题(1)【答案】 (C).【解析】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).(2)【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z xy z x y F F F ''''+⋅∂∂+=-==∂∂'''. (3) 【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于121012[ln (1)]lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,121211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(4)【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (5)【答案】 (A).【解析】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A. (6)【答案】 (D).【解析】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. (7) 【答案】 (C).【解析】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C).(8)【答案】 (A).【解析】根据题意知,()221x f x e -=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰ 所以整理得到234a b +=,故本题应选(A).二、填空题 (9) 【答案】0.【解析】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx ==. (10)【答案】 4π-.t =,2x t =,2dx tdt =,利用分部积分法, 原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.(11) 【答案】0.【解析】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122xx dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭(12) 【答案】23. 【解析】 ()2221221211000211212021r rrz d rdr zdxdydz d rdr zdz dxdydz d rdr dz d r rdrππππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r dr πθπ⎛⎫-⎪⎝⎭=⎰⎰126204122r r d πθπ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰.(13)【答案】6a =.【解析】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.(14) 【答案】2.【解析】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦.三、解答题(15)【解析】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x xx c y y y C e C e x x e =+=+-+.(16)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22tt f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(17)【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(18)【解析】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++, 所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-.(II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-, 故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.(19)【解析】 ( I )令()222,,1F x y z x y z yz =++--,故动点(),,P x y z 的切平面的法向量为()2,2,2x y z zy --,由切平面垂直xOy ,故所求曲线C 的方程为222120x y z yz z y ⎧++-=⎨-=⎩. ( II ) 由⎩⎨⎧=-=-++,02,1222y z yz z y x 消去z ,可得曲线C 在xOy 平面上的投影曲线所围成的xOy 上的区域223:{(,)|1}4D x y x y +≤,由()()x x yz z y x '='-++1222,由dxdy zy yzz y dxdy y z x z dS 24412222--++=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=,故(2DDDx y zI x dxdy xdxdy ∑-==+=+⎰⎰⎰⎰⎰⎰12Dπ==⋅=. (20)【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭ 当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫ ⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(21)【解析】 ( I )由于二次型在正交变换x Qy =下的标准形为2212y y +,所以A 的特征值为1231,0λλλ===.由于Q 的第3列为,0,22T ⎛ ⎝⎭,所以A 对应于30λ=的特征向量为22T⎛ ⎝⎭,记为3α. 由于A 是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于121λλ==的特征向量为()123,,Tx x x α=,则30T αα=,即13022x x +=. 求得该方程组的基础解系为()()120,1,0,1,0,1TTαα==-,因此12,αα为属于特征值1λ=的两个线性无关的特征向量.由于12,αα是相互正交的,所以只需单位化:())1212120,1,0,1,0,1T Tααββαα====-. 取()12302,,10002Q ββα⎛⎪⎪==⎝⎭,则110T Q AQ ⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,且1TQ Q -=, 故 1102201011022TA Q Q ⎛⎫- ⎪ ⎪=Λ= ⎪ ⎪- ⎪⎝⎭. ( II )A E +也是实对称矩阵,A 的特征值为1,1,0,所以A E +的特征值为2,2,1,由于A E +的特征值全大于零,故A E +是正定矩阵.(22)【解析】当给出二维正态随机变量的的概率密度(),f x y 后,要求条件概率密度|(|)Y X f y x ,可以根据条件概率公式|(,)(|)()Y X X f x y f y x f x =来进行计算.本题中还有待定参数,A 要根据概率密度的性质求解,具体方法如下.()()22222222()(),xxy y y x x xy x X f x f x y dy A e dy A e dy Ae e dy +∞+∞+∞+∞-+--------∞-∞-∞-∞====⎰⎰⎰⎰2,x x -=-∞<<+∞.根据概率密度性质有()21x X f x dx edx A π+∞+∞--∞-∞===⎰,即1A π-=,故()2x X f x -=,x -∞<<+∞.当x -∞<<+∞时,有条件概率密度()()()22222222(),,,x xy y x xy y x y Y X X f x y f y x x y f x -+--+---==-∞<<+∞-∞<<+∞.(23)【解析】()()()22123~,1,~,,~,N B n N B n N B n θθθθ--()()()()31122331i i i E T E a N a E N a E N a E N =⎛⎫==++ ⎪⎝⎭∑()()221231a n a n a n θθθθ=-+-+()()212132na n a a n a a θθ=+-+-.因为T 是θ的无偏估计量,所以()E T θ=,即得()()12132010na n a a n a a =⎧⎪-=⎨⎪-=⎩,整理得到10a =,21,a n = 31a n=.所以统计量()()12323111110T N N N N N n N n n n n=⨯+⨯+⨯=⨯+=⨯-.注意到1(,1)N B n θ- ,故()()()11211D T D n N D N n n⎡⎤=⨯-=⨯⎢⎥⎣⎦()11n θθ=-.。

2010年高考理科数学试题及答案-全国卷1

2010年高考理科数学试题及答案-全国卷1

绝密★启用前理科数学(必修+选修II)本试卷分第I卷(选择题)和第□卷(非选择题)两部分。

第I卷1至2页。

第□卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1 •答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2 •每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

5分,共60分。

在每小题给出的四个选项中,只有一球的表面积公式2S =4二R其中R表示球的半径球的体积公式3 3如果事件A在一次试验中发生的概率是p,那么V R34n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径P n(k)二C:p k(1 -p)n±(k =0,1,2,…n)一•选择题(1)复数3 2i =2-3i(A)i(B) -i(C)12-13 i(D)12+13(2)记cos(-80 )二k,那么tan100 二A 1A. B.k•1 -k2k kD --k J1 - k2 1 -k22010年普通高等学校招生全国统一考试(全国 1 卷)3 •第I卷共12小题,每小题项是符合题目要求的。

参考公式:如果事件A、B互斥,那么P(A B) =P(A) P(B)如果事件A B相互独立,那么P(ALB)二P(A)_P(B)[^1,⑶若变量x, y满足约束条件x,y_0, 则z = x-2y的最大值为X - y - 2 空0,(A)4 (B)3 (C)2 (D)1(A) -4.2(C) -4 2 2(D) -3 2・2(4)已知各项均为正数的等比数列 { a n } , a 1a 2a 3=5, a 7asa 9 =10,贝U a 4a 5a 6 =(5) (1 2 ,X)3(1—3t)5的展幵式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4 (6)某校幵设A 类选修课3门,B 类选择课4门,一位同学从中共选 3门, 若要求两类课程中各至少选一门,则不同的选法共有 (A) 30 种(B)35 种(C)42 种(D)48 种x 轴的距离为 (A)-32(10) 已知函数 F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A)(2 .2,::) (B)[2、2, ::) (C)(3, ::) (D)[3,::)(11) 已知圆O 的半径为1,PA PB 为该圆的两条切线, A 、B 为俩切点,那么 ■PA/TB 的最小值为 (A) 5.2(B) 7(C) 6 (D)42⑺正方体ABCD-A 1B 1C 1 D 1中B B i 与平面ACD 1所成角的余弦值为(8)设 a=log 32,b=ln2,c= 5 2,则 A a<b<cBb<c<a Cc<a<bD c<b<a(9)已知F 1、 F 2为双曲线 C: x 2 - y=1的左、右焦点,点 p 在 C 上,/ F-i p F 2 = 60°,贝U P 至U (C)3(D)A。

2010成人高考专升本高数一真题及答案解析

2010成人高考专升本高数一真题及答案解析

2010成人高考专升本高数一真题及答案解析2010成人高考专升本高数一真题及答案解析——2010年成人高等学校招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

A、3B、2C、1D、0正确答案:C【安通名师解析】根据函数的连续性立即得出结果【安通名师点评】这是计算极限最常见的重要题型。

在教学中一直被高度重视。

在上课时多次强调的重点,必须记住。

正确答案:B【安通名师解析】根据基本初等函数求导公式复合函数求导法则或直接用微分计算【安通名师点评】这样的题目已经在安通学校保过班讲义中练习过多次,属于特别重要内容。

【安通名师解析】基本积分公式,直接积分法。

【安通名师点评】这是每年都有的题目。

考的就是公式是否记住了。

课堂上讲过练过多次,要求学生对基本积分公式背熟。

正确答案:C【安通名师解析】使用基本初等函数求导公式【安通名师点评】这是本试卷中第二个直接使用基本初等函数求导公式的计算题。

考的就是公式是否掌握了。

我们在平时教学中一再要求学生对基本公式背熟。

否则寸步难行。

正确答案:D【安通名师解析】用洛必达法则求解【安通名师点评】这类问题在以往的考试中经常出现,重要但并不难。

是一种典型的题目。

也始终是讲课的重点。

正确答案:A【安通名师解析】把y看作常数,对x求导。

【安通名师点评】本题仍然属于基本题目,是年年考试都有的内容正确答案:A【安通名师解析】因为是选择题,只要验证点的坐标满足方程就可以了。

【安通名师点评】本题如果是填空或解答题,难度将大为增加。

现在是选择题,理解概念就行。

正确答案:B【安通名师解析】直接使用公式【安通名师点评】这是计算收敛半径最常见的题型。

比较简单比较重要。

在教学中一直被高度重视。

二、11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

2010高考理科数学参考答案(全国卷1)

2010高考理科数学参考答案(全国卷1)

工具箱(多种工具共用一个快捷键的可同时按【Shift】加此快捷键选取)定义画笔预设:ALT+E+B;定义图案:ALT+E+D;自定义形状:ALT+E+O;清理:ALT+E+U(还原);+C(剪贴板);+H(历史记录);+A(全部)等。

各种选框工具(Marquee)【M】移动工具(moVe) 【V】套索、多边形套索(Lasso) 【L】魔棒(magic Wand)工具【W】各种图像映射(image maP)工具【P】切片工具、切片选择工具【K】像皮擦、魔术像皮擦(Eraser) 【E】画笔(paintBrush)工具【B】喷枪工具【J】铅笔(peNcil)工具【N】像皮图章(clone Stamp) 【S】模糊(bluR)、锐化(shaRpen)、涂抹工具【R】减淡(dOdge)、加深、海棉(spOnge)工具【O】矩形、圆边矩形、椭圆、直线【U】油漆桶工具【G】文字(Text)工具【T】裁剪(Crop)工具【C】颜色取样器【I】抓手(Hand)工具【H】缩放(Zoom)工具【Z】默认(Default)前景色和背景色【D】切换(eXchange)前景色和背景色【X】控制图像映射(image mAp)的可见性(开关) 【A】控制切片的可见性【Q】开始/停止动画预演【Y】在默认浏览器中进行预览(Preview) 【Ctrl】+【Alt】+【P】标准屏幕模式、带有菜单栏的全屏模式(Full)、全屏模式【F】跳转(juMp)到photoshop 6.0中【Ctrl】+【Shift】+【M】临时使用移动工具【Ctrl】临时使用抓手工具【空格】循环选择画笔【[】或【]】文件操作新建(New)图形文件【Ctrl】+【N】打开(Open)已有的图像或影片文件【Ctrl】+【O】关闭(closedoWn)当前图像【Ctrl】+【W】关闭(closedoWn)所有图像【Ctrl】+【Shift】+【W】保存(Save)当前图像【Ctrl】+【S】另存为(Saveas)... 【Ctrl】+【Shift】+【S】存储网页(Save optimized)用图形【Ctrl】+【Alt】+【S】另存为网页(Save optimized as)用图形【Ctrl】+【Alt】+【Shift】+【S】设置输出Html选项【Ctrl】+【Alt】+【H】设置图像信息【Ctrl】+【Shift】+【K】退出Imageready 3.0 【Ctrl】+【Q】回复到上次存盘之前【F12】编辑操作撤消前一步操作【Ctrl】+【Z】重复前一步操作【Ctrl】+【Shift】+【Z】撤消/重做【Ctrl】+【Alt】+【Z】将选择的内容剪切到剪贴板【Ctrl】+【X】拷贝(Copy)选取的图像【Ctrl】+【C】合并拷贝(Copymerged) 【Ctrl】+【Shift】+【C】将剪贴板的内容粘到当前图形中【Ctrl】+【V】拷贝(Copy)所选切片的HTML代码【Ctrl】+【Alt】+【C】自由变换(Transform) 【Ctrl】+【T】使用自由变换(在自由变换模式下) 【Enter】从中心或对称点开始变换 (在自由变换模式下) 【Alt】限制(在自由变换模式下) 【Shift】扭曲(在自由变换模式下) 【Ctrl】取消变形(在自由变换模式下) 【Esc】自由变换复制的象素数据【Ctrl】+【Shift】+【T】再次变换复制的象素数据并建立一个副本【Ctrl】+【Shift】+【Alt】+【T】删除选框中的图案或选取的切片及图像映射【DEL】用背景色填充所选区域或整个图层【Ctrl】+【BackSpace】或【Ctrl】+【Del】用前景色填充所选区域或整个图层【Alt】+【BackSpace】或【Alt】+【Del】弹出"填充"对话框【Shift】+【BackSpace】打开"预置"对话框【Ctrl】+【K】显示最后一次显示的"预置"对话框【Alt】+【Ctrl】+【K】图像调整调整色阶(Level) 【Ctrl】+【L】自动调整色阶(auto Level) 【Ctrl】+【Shift】+【L】自动调整对比度【Ctrl】+【Alt】+【Shift】+【L】打开"色相(hUe)/饱和度(satUration)"对话框【Ctrl】+【U】去色(desatUrate) 【Ctrl】+【Shift】+【U】色彩反相(Invert) 【Ctrl】+【I】打开"液化(Liquify)"对话框【Ctrl】+【Shift】+【X】扭曲(tWist)工具(在"液化"对话框中) 【W】顺时针转动(Rotate)工具(在"液化"对话框中) 【R】逆时针转动工具(在"液化"对话框中) 【L】缩拢工具(在"液化"对话框中) 【P】扩张工具(在"液化"对话框中) 【B】反射工具(在"液化"对话框中) 【M】重构工具(在"液化"对话框中) 【E】冻结工具(在"液化"对话框中) 【F】解冻工具(在"液化"对话框中) 【T】使用"液化"效果并退回Photoshop主界面(在"液化"对话框中) 【Enter】放弃"液化"效果并退回Photoshop主界面(在"液化"对话框中) 【ESC】图层操作从对话框新建(New)一个图层【Ctrl】+【Shift】+【N】以默认选项建立一个新(New)的图层【Ctrl】+【Alt】+【Shift】+【N】通过拷贝增加(join)一个图层【Ctrl】+【J】通过剪切增加(join)一个图层【Ctrl】+【Shift】+【J】和前一图层编组(Group)【Ctrl】+【G】取消编组(unGroup) 【Ctrl】+【Shift】+【G】将当前层下移一层【Ctrl】+【[】将当前层上移一层【Ctrl】+【]】将当前层移到最下面【Ctrl】+【Shift】+【[】将当前层移到最上面【Ctrl】+【Shift】+【]】激活下一个图层【Alt】+【[】激活上一个图层【Alt】+【]】激活底部图层【Shift】+【Alt】+【[】激活顶部图层【Shift】+【Alt】+【]】向下合并(mErge)或合并联接图层【Ctrl】+【E】合并(mErge)可见图层【Ctrl】+【Shift】+【E】盖印或盖印联接图层【Ctrl】+【Alt】+【E】盖印可见图层【Ctrl】+【Alt】+【Shift】+【E】调整当前图层的透明度【0】至【9】保留当前图层的透明区域(开关) 【/】图层混合模式循环选择混合模式【Shift】+【-】或【+】正常(Normal)【Shift】+【Alt】+【N】溶解(dIssolve)【Shift】+【Alt】+【I】正片叠底(Multiply)【Shift】+【Alt】+【M】屏幕(Screen) 【Shift】+【Alt】+【S】叠加(Overlay) 【Shift】+【Alt】+【O】柔光(soFt Light) 【Shift】+【Alt】+【F】强光(Hard Light) 【Shift】+【Alt】+【H】颜色减淡(color Dodge) 【Shift】+【Alt】+【D】颜色加深(color Burn) 【Shift】+【Alt】+【B】变暗(darKen) 【Shift】+【Alt】+【K】变亮(liGhten) 【Shift】+【Alt】+【G】差值(diffErEncE) 【Shift】+【Alt】+【E】排除(eXclusion) 【Shift】+【Alt】+【X】色相(hUe) 【Shift】+【Alt】+【U】饱和度(saTuration) 【Shift】+【Alt】+【T】颜色(Color) 【Shift】+【Alt】+【C】光度(luminositY) 【Shift】+【Alt】+【Y】选择功能全部选取(selectAll) 【Ctrl】+【A】取消选择(Deselect) 【Ctrl】+【D】重新选择【Ctrl】+【Shift】+【D】羽化选择【Ctrl】+【Alt】+【D】反向选择(Inverse) 【Ctrl】+【Shift】+【I】载入选区【Ctrl】+点按图层、路径、通道面板中的缩约图滤镜按上次的参数再做一次上次的滤镜【Ctrl】+【F】重复上次所做的滤镜(可调参数) 【Ctrl】+【Alt】+【F】选择移动(moVe)工具(在"3D变化"滤镜中) 【V】直接选择工具(在"3D变化"滤镜中) 【A】立方体工具(在"3D变化"滤镜中) 【M】球体工具(在"3D变化"滤镜中) 【N】柱体(Cylinder)工具(在"3D变化"滤镜中) 【C】添加锚点工具(在"3D变化"滤镜中) 【+】减少锚点工具(在"3D变化"滤镜中) 【-】旋转(Rotate)轨迹球(在"3D变化"滤镜中) 【R】全景相机工具(在"3D变化"滤镜中) 【E】手掌(Hand)移动视图(在"3D变化"滤镜中) 【H】缩放(Zoom)视图(在"3D变化"滤镜中) 【Z】使用三维变形并退回到Photoshop主界面(在"3D变化"滤镜中) 【Enter】放弃三维变形并退回到Photoshop主界面(在"3D变化"滤镜中) 【Esc】视图操作在四种优化显示方式之间切换【Ctrl】+【Y】优化后是否抖动(切换) 【Ctrl】+【Shift】+【Y】放大视图【Ctrl】+【+】缩小视图【Ctrl】+【-】满画布显示【Ctrl】+【0】实际象素显示【Ctrl】+【Alt】+【0】向上卷动一屏【PageUp】向下卷动一屏【PageDown】向左卷动一屏【Ctrl】+【PageUp】向右卷动一屏【Ctrl】+【PageDown】向上卷动10 个单位【Shift】+【PageUp】向下卷动10 个单位【Shift】+【PageDown】向左卷动10 个单位【Shift】+【Ctrl】+【PageUp】向右卷动10 个单位【Shift】+【Ctrl】+【PageDown】将视图移到左上角【Home】将视图移到右下角【End】显示/隐藏(Hide)图像之外的物体(如切片、映射)【Ctrl】+【H】显示/隐藏标尺(Ruler) 【Ctrl】+【R】打开/关闭捕捉(包括切片、参考线【Ctrl】+【;】锁定参考线【Ctrl】+【Alt】+【;】显示/隐藏"颜色"面板【F6】显示/隐藏"图层"面板【F7】显示/隐藏"信息"面板【F8】显示/隐藏"动作"面板【F9】显示/隐藏"优化"面板【F10】显示/隐藏"动画"面板【F11】显示/隐藏所有命令面板【TAB】显示或隐藏工具箱以外的所有调板【Shift】+【TAB】文字处理(在字体编辑模式中)左/右选择 1 个字符【Shift】+【←或→】下/上选择 1 行【Shift】+【↑或↓】选择所有字符【Ctrl】+【A】显示/隐藏(Hide)字体选取底纹【Ctrl】+【H】选择从插入点到鼠标点按点的字符【Shift】+【点按】将光标左/右移动 1 个字符【←或→】将光标下/上移动 1 行【↑或↓】将光标左/右移动1个字【Ctrl】+【←或→】将所选文本的文字大小减小2 点象素【Ctrl】+【Shift】+【<】将所选文本的文字大小增大2 点象素【Ctrl】+【Shift】+【>】将所选文本的文字大小减小10 点象素【Ctrl】+【Alt】+【Shift】+【<】将所选文本的文字大小增大10 点象素【Ctrl】+【Alt】+【Shift】+【>】将行距减小2点象素【Alt】+【↓】将行距增大2点象素【Alt】+【↑】将基线位移减小2点象素【Shift】+【Alt】+【↓】将基线位移增加2点象素【Shift】+【Alt】+【↑】将字距微调或字距调整减小20/1000ems 【Alt】+【←】将字距微调或字距调整增加20/1000ems 【Alt】+【→】将字距微调或字距调整减小100/1000ems 【Ctrl】+【Alt】+【←】将字距微调或字距调整增加100/1000ems 【Ctrl】+【Alt】+【→】Photoshop之所以在拥有强大功能的同时依然保持了良好的使用性,很大程度上应该归功于其整齐精练的界面和简单易用的可自定义性( 除了它大量的工具和命令)。

2010年全国高考理科数学试题及答案-全国1

2010年全国高考理科数学试题及答案-全国1

第1/15页2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A BP A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π=n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-AA=-=⋅⋅⋅一. 选择题(1)复数3223ii+-=(A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°=(A ).21k k- (B ). —21k k- (C.)21k k- (D ).—21k k-(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为第2/15页(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7(C) 6(5))35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程代码:00023
一、单项选择题(本大题共5小题,每小题3分,共15分)
1.在空间直角坐标系中,方程x 2+y 2=2的图形是( )
A.圆
B.球面
C.圆柱面
D.旋转抛物面
2.设函数f(x+y,x-y)=xy
2y x 2
2-,则f(x,y)=( ) A.
22y x xy - B. 22y x xy 2- C. 22y x xy 4- D. )
y x (2xy 22- 3.设积分区域Ω:x 2+y 2+z 2≤1,三重积分I=
⎰⎰⎰Ω+dxdydz )1z (,则( ) A.I<0
B.I=0
C.I>0
D.I 与z 有关
4.微分方程0y 2y 3y =+'-''的通解y=( )
A.C 1e -x +C 2e 2x
B. C 1e -x +C 2e -2x
C. C 1e x +C 2e -2x
D. C 1e x +C 2e 2x
5.下列无穷级数中发散的无穷级数是( ) A.∑∞=+1n 22
1n 3n B. ∑∞=+-1
n n 1n )1( C. ∑∞=--3n 1
n n ln )1( D. ∑
∞=+1n 1n n 32 二、填空题(本大题共5小题,每小题2分,共10分)
6. 设函数z=u+v, 而u=x+y, v=xy ,则x
z ∂∂=___________. 7. 设区域D :|x|≤1,0≤y ≤1,则二重积分
⎰⎰+D 2dxdy )x sin x 1(的值等于___________. 8. 设λ是正常数,并且xy λdx+x λydy 是其个函数u(x,y)的全微分,则λ=___________.
9. 微分方程3y y 2y =+'+''的一个特解为y*=___________.
10. 函数f(x)=sin x 展开成x 的幂级数为___________.
三、计算题(本大题共12小题,每小题5分,共60分)
11.求过点P (4,-1,2)并且与直线L :⎩
⎨⎧-=--=-+1z y x 7z y x 平行的直线方程. 12.设函数z=)x ,x
y (f ,其中f 是可微函数,求y z ,x z ∂∂∂∂.
13.已知函数z=e 3y (x 2
+2y-x),求y x z 2∂∂∂. 14.求函数f(x,y,z)=xyz-x 2-y 2+3z 在点(-1,-1, 2)处的梯度.
15.求曲面z=4-x 2-y 2上平行于平面2x+2y+z-7=0的切平面方程.
16.计算二重积分I=
⎰⎰+D dxdy )y 2x (,其中D 是由坐标轴和直线x+y=4所围成的区域. 17.计算三重积分I=⎰⎰⎰Ω++dxdydz )z y x
(222,其中积分区域Ω:x 2+y 2+z 2≤1.
18.计算对弧长的曲线积分⎰+L
ds )y 2x 3(,其中L 是连接点(1,0)和(0,1)的直线段. 19.计算对坐标的曲线积分⎰
+L xdy ydx ,其中L 是椭圆1b y a x 22
22=+的逆时针方向. 20.求微分方程(1+x 2)dy+(1+y 2)dx=0的通解.
21.求幂级数∑∞
=+1n n 3
2
x 1n n 的收敛半径和收敛区间. 22.设函数f(x)=x+1,x ∈[)ππ-,的傅里叶级数展开式为∑
∞=++1n n n 0)nx sin b nx cos a (2a 求系 数a 5 .
四、综合题(本大题共3小题,每小题5分,共15分)
23.求由四个平面x=0, y=0, x=1, y=1所构成的柱面和平面z=0及x+y+z=7所围成的立体的体积.
24.设无穷级数∑∞=1n 2n a 和∑∞=1n 2n b 均收敛,证明无穷级数∑∞=1n n n b a 是绝对收敛.
25.设曲线y=y(x)在其上任意点(x,y )处的切线斜率为y
x 1+,且过点(-1,0),求该曲线的方程.。

相关文档
最新文档