2016中考数学考点资料:同类项及其合并
中考数学苏科版知识点总结
中考数学苏科版知识点总结一、代数1. 代数基础代数运算规则:加法、减法、乘法、除法整式与分式:整式的概念、分式的概念代数式的计算:同类项、合并同类项、分拆因式、化简代数式2. 一元一次方程与不等式一元一次方程的解:解方程的基本步骤、方程的解、检验方程的解一元一次不等式的解:解不等式的基本步骤、不等式的解、解不等式的规律3. 二元一次方程组二元一次方程组的解:解二元一次方程组的基本步骤、二元一次方程组的解、检验方程组的解4. 分式方程分式方程的解:解分式方程的基本步骤、分式方程的解、检验分式方程的解5. 平方根与整式平方根的概念:正数的平方根、负数的平方根、根号的运算规则完全平方公式:完全平方公式的应用、完全平方公式的推导6. 二次函数二次函数的图象:二次函数图象的性质、二次函数的平移二次函数的性质:二次函数的增减性、二次函数的大于零值和小于零值、二次函数的最值二、几何1. 几何基本概念角的概念:角的基本概念、角的种类、角的性质直线和线段的概念:直线和线段的基本概念、平行线及其性质2. 直角三角形直角三角形的性质:直角三角形的特殊角、勾股定理3. 四边形四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质4. 圆圆的性质:圆的基本概念、圆心角、圆周角、弧、弦、冠、相交弦定理5. 圆的应用圆的应用:切线的性质、切线定理、切线长度定理、切线与半径的关系6. 相似三角形相似三角形的性质:相似三角形的判定、相似三角形的性质、相似三角形的应用三、数据统计与概率1. 统计图与统计量统计图的绘制:直方图、折线图、饼图统计量的计算:平均数、中位数、众数2. 概率基本概率模型:随机事件、概率、事件的概率计算概率分布模型:二项分布、正态分布四、解决实际问题的数学方法1. 实际问题的建立数学模型解决实际问题的步骤:问题的建立、数学模型的建立、模型的求解2. 运用函数解决实际问题用函数解决实际问题:函数的概念、函数的应用3. 运用方程组解决实际问题用方程组解决实际问题:方程组的应用、方程组的解法4. 运用不等式解决实际问题用不等式解决实际问题:不等式的应用、不等式的解法5. 运用统计与概率解决实际问题用统计与概率解决实际问题:统计与概率的应用、统计与概率的计算总结:数学是一门科学而又实用的学科,对于学生来说,学好数学是非常重要的。
说课稿《合并同类项》
说课稿《合并同类项》标题:说课稿《合并同类项》引言概述:《合并同类项》是初中数学中重要的基础知识之一,通过合并同类项的运算,可以简化数学表达式,方便计算。
在教学中,教师需要引导学生掌握合并同类项的方法和技巧,培养学生的逻辑思维能力和数学运算能力。
一、认识同类项1.1 同类项的定义:同类项是指具有相同字母部份的代数式中的项。
1.2 同类项的特点:同类项的字母部份相同,且指数相同。
1.3 同类项的判断方法:通过观察代数式中的项,判断是否具有相同的字母部份和指数。
二、合并同类项的基本规则2.1 合并同类项的步骤:将代数式中具有相同字母部份和指数的项合并为一个项。
2.2 合并同类项的运算法则:同类项相加时,保持字母部份和指数不变,将系数相加。
2.3 合并同类项的示例演练:通过具体的例题演练,让学生掌握合并同类项的基本规则。
三、合并同类项的应用3.1 合并同类项在方程中的应用:在解方程的过程中,时常需要合并同类项,简化方程的表达式。
3.2 合并同类项在多项式的化简中的应用:将多项式中的同类项合并,可以简化多项式的表达形式。
3.3 合并同类项在数学运算中的应用:在数学运算中,合并同类项可以减少计算的复杂度,提高计算效率。
四、合并同类项的拓展4.1 合并同类项的深入学习:学生可以通过深入学习合并同类项的规则和方法,掌握更多的应用技巧。
4.2 合并同类项的综合运用:通过综合运用合并同类项的知识,解决实际问题,培养学生的数学建模能力。
4.3 合并同类项的拓展应用:在高中数学和大学数学中,合并同类项的知识将会有更广泛的应用和深入的研究。
五、总结与展望5.1 总结合并同类项的重要性:合并同类项是数学运算的基础,对学生的数学学习和思维能力培养具有重要意义。
5.2 展望合并同类项的未来发展:随着数学教育的不断发展和变革,合并同类项的教学方法和应用领域将会有更多的创新和拓展。
5.3 鼓励学生积极学习合并同类项:教师应该鼓励学生积极学习合并同类项的知识,提高数学学习的兴趣和成就感。
中考数学必考考点
千里之行,始于足下。
中考数学必考考点
中考数学的必考考点包括:
1. 数的性质:整数、有理数、无理数、实数的概念和性质。
2. 整式的计算:加减乘除、合并同类项等。
3. 代数式的化简和因式分解:用乘公式、配方法将代数式化简和因式分解。
4. 方程和不等式:一元一次方程、一元一次不等式、二元一次方程、二元一次不等式的解法和运用。
5. 几何:平面图形和空间图形的基本性质,如直线与平面的关系、三角形、四边形和圆的性质,几何体的表面积和体积计算等。
6. 函数:函数的概念和性质,函数的图像、定义域、值域、单调性和奇偶性等。
7. 数据的处理:平均数、中位数、众数的计算,频率分布表、折线图、柱状图和饼图的读取和分析等。
8. 概率和统计:随机事件的概念和性质,概率的计算,样本调查和统计的基本方法等。
以上只是一些中考数学必考考点的简要概述,根据不同地区的中考试卷和
教学大纲,具体考点可能会有所不同。
为了确保备考顺利,建议参考当地中考
数学教材和模拟试题进行系统复习。
第1页/共1页。
中考数学知识板块
中考数学知识板块主要包括以下几个方面:
1. 数与式:实数、代数式、整式与分式。
实数部分需要掌握有理数和无理数的概念,以及相反数、倒
数、绝对值的意义。
代数式部分需要理解代数式的概念,以及合并同类项的方法。
整式与分式部分则需要掌握整式与分式的运算。
2. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式与不等式组。
这些部分需要掌握方
程的解法,以及不等式的性质和解法。
3. 函数与图像:一次函数、反比例函数、二次函数。
这些部分需要理解函数的概念,掌握函数的图像和
性质,以及函数的应用。
4. 图形的性质:几何图形的性质,包括点、线、面、角、三角形、四边形、圆等。
需要掌握这些图形的
性质,以及相关的定理和公式。
5. 图形与变换:图形的轴对称、平移、旋转、相似等。
这些部分需要理解图形的变换方式,以及变换后
的图形与原图形的关系。
6. 统计与概率:统计的基础知识,如数据的收集、整理、描述和分析,以及概率的基础知识,如事件的
可能性、概率的计算等。
在中考数学中,以上知识板块是相互联系的,需要综合运用来解决问题。
同时,还需要注意数学思想和方法的运用,如分类讨论、数形结合、化归与转化等。
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)
初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
—
~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;
数学中考的知识点
数学中考的知识点数学中考的知识点集合15篇在我们平凡的学生生涯里,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。
相信很多人都在为知识点发愁,以下是店铺为大家收集的数学中考的知识点,希望能够帮助到大家。
数学中考的知识点11.有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。
【注】大减小是指绝对值的大小。
2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
9.代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
数学中考的知识点21、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
中考数学核心26题答题技巧
中考数学核心26题答题技巧1.有理数的加法运算同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
2.合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
6.完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
7.因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
8.单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
9.一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
10.一元一次不等式组的解集大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
11.分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
12.分式方程的解法步骤同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。
13.最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。
吉林省中考数学考点归纳
吉林省中考数学考点归纳吉林省中考数学考点归纳1、圆的有关概念:(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。
推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
推论2半圆或直径所对的圆周角都相等,都等于90。
90的圆周角所对的弦是圆的直径。
推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。
中考重点同类项与合并同类项
中考重点同类项与合并同类项同类项在中学数学中占据着重要的地位,理解并熟练掌握同类项的概念以及合并同类项的方法对于解决数学问题至关重要。
本文将介绍中考数学中的同类项相关知识,并详细说明合并同类项的具体方法。
一、同类项的定义与性质同类项是指含有相同的字母变量,并且次数相同的项。
在数学表达式中,同类项可以根据字母变量和次数进行分类和归纳,方便我们进行操作。
同类项的性质如下:1. 同类项可以进行加减运算。
当两个同类项相加或相减时,保留字母变量和次数不变,仅仅对其系数进行运算。
例如,3x和5x是同类项,它们可以合并为8x。
2. 同类项可以进行乘法运算。
当两个同类项相乘时,保留字母变量和次数,同时将系数相乘。
例如,2x和3x是同类项,它们相乘得到6x²。
二、同类项的合并方法合并同类项是利用代数运算法则将含有相同变量以及相同次数的项进行合并,从而简化数学表达式,使计算更加简便。
以下是合并同类项的具体方法:1. 对于同类项的合并,首先需要将它们放在一起,将系数相加或相减。
保留变量和次数不变。
例如,合并3a和5a,可以写成(3+5)a,即8a。
2. 对于同类项的合并,当系数为0时,我们可以将该项消除,即不再出现在合并后的表达式中。
例如,合并2x和-2x,可以写成(2-2)x,即0x,最终结果为0。
三、应用与拓展同类项与合并同类项在中考数学中的应用广泛,涉及到代数式的运算、方程的化简以及解决应用问题等。
通过掌握同类项和合并同类项的方法,我们可以更加熟练地解答各类数学题目。
例如,在解决多项式加减、乘法运算中,我们可以先合并同类项,再进行计算,从而简化问题、提高解题效率。
此外,在解决实际应用问题时,同类项和合并同类项的概念和方法也同样具有重要意义。
通过将问题中的各项进行合并,可以化繁为简,更好地理解和解决实际问题。
总结起来,中考数学中的同类项与合并同类项是数学思维的基础,是解决数学问题的关键。
通过理解同类项的定义与性质,掌握合并同类项的具体操作方法,我们可以更加灵活地应用数学知识、解决各类数学问题,并在中考中取得优异的成绩。
【教育资料】中考数学考点资料:同类项及其合并学习精品
2019中考数学考点资料:同类项及其合并
2019中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2019中考数学考点资料。
合并同类项就是逆用乘法分配律
为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
希望这篇2019中考数学考点资料,可以帮助更好的迎接即将到来的考试!。
中考数学考点资料:同类项及其合并
中考数学考点资料:同类项及其合并
2019中考数学考点资料:同类项及其合并
2019中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2019中考数学考点资料。
合并同类项就是逆用乘法分配律
为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系。
中考数学考前辅导:同类项及其合并
2019年中考数学考前辅导:同类项及其合并为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了2019年中考数学考前辅导。
合并同类项就是逆用乘法分配律为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
初一数学:如何区分同类项与合并同类项
年 级七年级 学 科 数学 版 本 通用版 课程标题如何区分同类项和合并同类项一、同类项1. 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
2. 解读: (1)同类项是对单项式而言的,几个单项式为同类项必须具备两个条件:一是所有的字母相同;二是相同字母的指数分别相同。
这两个条件应同时成立,缺一不可。
(2)同类项与系数无关,与字母的排列顺序无关。
(3)几个常数项也是同类项。
二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项。
2. 法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 步骤:第一步:观察多项式中的各项,准确找出同类项,项数比较多时,不同的同类项初学者可以作出不同的标记;第二步:利用乘法的分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变; 第三步:写出合并后的结果。
4. 解读:(1)一个多项式有可能有两个或两个以上的同类项,如果两个同类项的系数互为相反数,合并同类项后,结果为0。
(2)合并同类项时,只能把同类项合并成一项,不是同类项不能合并;不能合并的项,在每步运算中不能漏掉。
(3)只要不再有同类项,就是最后的结果,结果可能是单项式,也可能是多项式。
(4)注意各项系数应包括它前面的符号,尤其是系数为负数时,不能遗漏负号,同时注意不要丢项。
三、注意事项1. 判断同类项的标准是两相同:所含字母相同,相同字母的指数也相同。
2. 合并同类项时,不要忘记法则,只求系数和,字母和指数不变样。
例题1 如果单项式﹣x a +1y 3与212b y x 是同类项,那么a 、b 的值分别为( )A. a =2,b =3B. a =1,b =2C. a =1,b =3D. a =2,b =2解析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a ,b 的值。
答案:根据题意得:133a b +=⎧⎨=⎩, 则a =1,b =3。
中考数学考点备考资料同类项及其合并
中考数学考点备考资料同类项及其合并
2019中考数学考点备考资料同类项及其合并2019中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2019中考数学考点备考。
合并同类项就是逆用乘法分配律
为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系。
中考数学考点备考资料同类项及其合并
中考数学考点备考资料同类项及其合并2019中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2019中考数学考点备考。
合并同类项就是逆用乘法分配律为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?其实,合并同类项法那么是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法那么进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
条件:①字母相同;②相同字母的指数相同要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
2016中考数学考点资料:同类项及其合并_考点解析
2016中考数学考点资料:同类项及其合并_考点解析
2016中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2016中考数学考点资料。
合并同类项就是逆用乘法分配律
为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
希望这篇2016中考数学考点资料,可以帮助更好的迎接即将到来的考试!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016中考数学是历年拉分科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学失手。
下文为大家准备了2016中考数学考点资料。
合并同类项就是逆用乘法分配律为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?其实,合并同类项法则是有其理论依据的。
它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。
合并同类项实际上就是乘法分配律的逆向运用。
即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。
合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。
如2ab与-3ab,m2n与m2n都是同类项。
特别地,所有的常数项也都是同类项。
把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律希望这篇2016中考数学考点资料,可以帮助更好的迎接即将到来的考试!。