人教a版高中数学必修五:全册配套17
最新人教版高中数学必修5讲义及配套习题(全册 共293页 附解析)
最新人教版高中数学必修5讲义及配套习题(全册共294页附解析)目录第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前N项和2.4 等比数列2.5 等比数列的前N项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4 基本不等式:ab≤a+b 23.5 绝对值不等式模块复习精要复习课(一)解三角形模块复习精要复习课(二)数列模块复习精要复习课(三)不等式模块复习精要模块综合检测正弦定理和余弦定理1.1.1 正弦定理[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C.[点睛] 正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( ) 解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知a sin A =bsin B,即b sin A =a sin B.(3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)× 2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c.3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.[典例] 在△ABC 中,a cos ⎝⎛⎭π2-A =b cos ⎝⎛⎭π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =csin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos C c,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc , 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sinπ4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1, 所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.在△ABC 中,A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积.解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理[新知初探] 余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√(2)√(3)×2.在△ABC中,已知a=9,b=23,C=150°,则c等于()A.39B.8 3C.10 2 D.7 3解析:选D由余弦定理得:c=92+(23)2-2×9×23×cos 150°=147=7 3.3.在△ABC中,已知a2=b2+c2+bc,则角A等于()A.60°B.45°C.120°D.30°解析:选C由cos A=b2+c2-a22bc=-12,∴A=120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac 且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5. [答案] (1)60 (2)4或5[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8,∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.[典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2=2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C . 又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.[活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab,代入已。
2017-2018学年人教A版高中数学必修五全册学案
2017-2018学年人教A版高中数学必修五全册学案目录§1.1.1正弦定理(一)§1.1.1正弦定理(二)§1.1.2余弦定理(一)§1.1.2余弦定理(二)§1.2应用举例(一)§1.2应用举例(二)§1.2应用举例(三)§1习题课正弦定理和余弦定理§1章末复习提升§2 习题课数列求和§2 章末复习提升§2.1数列的概念与简单表示法(一)§2.1数列的概念与简单表示法(二)§2.2等差数列(一)§2.2等差数列(二)§2.3等差数列的前n项和(一)§2.3等差数列的前n项和(二)§2.4等比数列(一)§2.4等比数列(二)§2.5等比数列的前n项和(一)§2.5等比数列的前n项和(二)§3.1不等关系与不等式§3.2一元二次不等式及其解法(一)§3.2一元二次不等式及其解法(二)§3.3.1二元一次不等式(组)与平面区域§3.3.2简单的线性规划问题§3.4基本不等式:√ab≤(a+b)2 (一)§3.4基本不等式:√ab≤(a+b)2 (二)§3章末复习提升1.1.1 正弦定理(一)[学习目标] 1.通过对任意三角形边长和角度的关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形的内角和定理解决简单的解三角形问题.知识点一 正弦定理 1.正弦定理的表示文字语言 在一个三角形中,各边和它所对角的正弦的比都相等,该比值为三角形外接圆的直径符号语言在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则a sin A =b sin B =csin C=2R2.正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径. (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R(R 为△ABC 外接圆的半径).(3)三角形的边长之比等于对应角的正弦比,即a ∶b ∶c =sin A ∶sin B ∶sin C . (4)a +b +c sin A +sin B +sin C =a sin A =b sin B =csin C . (5)a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B . 3.正弦定理的证明(1)在Rt △ABC 中,设C 为直角,如图,由三角函数的定义: sin A =a c ,sin B =bc,∴c =a sin A =b sin B =c sin 90°=csin C ,∴a sin A =b sin B =c sin C.(2)在锐角三角形ABC中,设AB边上的高为CD,如图,CD=a sin__B=b sin__A,∴asin A=bsin B,同理,作AC边上的高BE,可得asin A=csin C,∴asin A=bsin B=csin C.(3)在钝角三角形ABC中,C为钝角,如图,过B作BD⊥AC于D,则BD=a sin(π-C)=a sin__C,BD=c sin__A,故有a sin C=c sin__A,∴asin A=csin C,同理,asin A=bsin B,∴asin A=bsin B=csin C.思考下列有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在△ABC 中,sin A∶sin B∶sin C=BC∶AC∶AB.其中正确的个数有()A.1 B.2 C.3 D.4答案 B解析正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比值也就确定了,所以③正确;由正弦定理可知④正确.故选B.知识点二解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.思考正弦定理能解决哪些问题?答案利用正弦定理可以解决以下两类有关三角形的问题:①已知两角和任意一边,求其他两边和第三个角;②已知两边和其中一边的对角,求另一边的对角,从而求出其他的边和角.题型一 对正弦定理的理解例1 在△ABC 中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则下列关于正弦定理的叙述或变形中错误的是( ) A .a ∶b ∶c =sin A ∶sin B ∶sin C B .a =b ⇔sin 2A =sin 2B C.asin A =b +c sin B +sin CD .正弦值较大的角所对的边也较大 答案 B解析 在△ABC 中,由正弦定理得a sin A =b sin B =c sin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,故a ∶b ∶c =sin A ∶sin B ∶sin C ,故A 正确.当A =30°,B =60°时,sin 2A =sin 2B ,此时a ≠b ,故B 错误. 根据比例式的性质易得C 正确. 大边对大角,故D 正确. 反思与感悟 (1)定理的内容:a sin A =b sin B =c sin C=2R ,在运用正弦定理进行判断时,要灵活使用定理的各种变形. (2)如果a b =cd,那么a +b b =c +dd (b ,d ≠0)(合比定理); a -b b =c -d d (b ,d ≠0)(分比定理); a +b a -b =c +d c -d(a >b ,c >d )(合分比定理); 可以推广为:如果a 1b 1=a 2b 2=…=a n b n ,那么a 1b 1=a 2b 2=…=a n b n =a 1+a 2+…+a nb 1+b 2+…+b n .跟踪训练1 在△ABC 中,下列关系一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin A D .a ≥b sin A 答案 D解析 在△ABC 中,B ∈(0,π),∴sin B ∈(0,1], ∴1sin B≥1,由正弦定理a sin A =b sin B 得a =b sin Asin B ≥b sin A .题型二 用正弦定理解三角形例2 (1)在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. (2)在△ABC 中,已知c =6,A =45°,a =2,解这个三角形. 解 (1)∵A =45°,C =30°,∴B =180°-(A +C )=105°, 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. ∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64, ∴b =c sin B sin C =c sin (A +C )sin C =10×sin 75°sin 30°=20×2+64=52+5 6.∴B =105°,a =102,b =52+5 6. (2)∵a sin A =c sin C, ∴sin C =c sin A a =6×sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°.当C =60°时,B =75°,b =c sin Bsin C =6sin 75°sin 60°=3+1;当C =120°时,B =15°,b =c sin Bsin C =6sin 15°sin 120°=3-1.∴b =3+1,B =75°,C =60°或b =3-1,B =15°, C =120°.反思与感悟 (1)已知两角与任意一边解三角形的方法.首先由三角形内角和定理可以计算出三角形的另一角,再由正弦定理可计算出三角形的另两边.(2)已知三角形两边和其中一边的对角解三角形的方法.首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边.跟踪训练2 (1)在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D .4(2)在△ABC 中,若a =2,b =2,A =30°,则C =______. 答案 (1)C (2)105°或15° 解析 (1)易知A =45°,由a sin A =b sin B得 b =a sin B sin A=8·3222=4 6. (2)由正弦定理a sin A =bsin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°. 题型三 判断三角形的形状例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状. 解 由已知得a 2sin B cos B =b 2sin Acos A ,由正弦定理得sin 2A sin B cos B =sin 2B sin Acos A .∵sin A 、sin B ≠0,∴sin A cos A =sin B cos B . 即sin 2A =sin 2B . ∴2A +2B =π或2A =2B . ∴A +B =π2或A =B .∴△ABC 为等腰三角形或直角三角形.反思与感悟 (1)判断三角形的形状,应围绕三角形的边角关系进行,既可以转化为边与边的关系,也可以转化为角与角的关系.(2)注意在边角互化过程中,正弦定理的变形使用,如a b =sin Asin B等.跟踪训练3 在△ABC 中,b sin B =c sin C 且sin 2A =sin 2B +sin 2C ,试判断三角形的形状. 解 由b sin B =c sin C ,得b 2=c 2, ∴b =c ,∴△ABC 为等腰三角形, 由sin 2A =sin 2B +sin 2C 得a 2=b 2+c 2, ∴△ABC 为直角三角形, ∴△ABC 为等腰直角三角形.1.在△ABC 中,AB =c ,AC =b ,BC =a ,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .a sin C =c sin A 答案 D解析 由正弦定理a sin A =b sin B =csin C ,得a sin C =c sin A .2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b =3,B =60°,那么A 等于( )A .135°B .90°C .45°D .30° 答案 C解析 由a sin A =b sin B 得sin A =a sin Bb =2×323=22, ∴A =45°或135°.又∵a <b ,∴A <B ,∴A =45°.3.在锐角三角形ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则A 等于( ) A.π12 B.π6 C.π4 D.π3 答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B , 又∵sin B ≠0,∴sin A =32. 又A 为锐角,∴A =π3.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A a =cos B b =cos Cc ,则△ABC是( ) A .等边三角形B .直角三角形,且有一个角是30°C .等腰直角三角形D .等腰三角形,且有一个角是30° 答案 C解析 由题a cos B =b sin A , 又由正弦定理a sin B =b sin A , ∴sin B =cos B ,又∵B ∈(0°,180°),∴B =45°. 同理C =45°.故△ABC 为等腰直角三角形.5.在△ABC 中,∠A =2π3,a =3c ,则bc =________.答案 1解析 由a sin A =c sin C 得sin C =c sin A a =13×32=12,又0<C <π3,所以C =π6,B =π-(A +C )=π6.所以b c =sin Bsin C =sin π6sin π6=1.6.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______,a =________.答案255210 解析 由tan A =2,得sin A =2cos A , 由sin 2A +cos 2A =1,得sin A =255,∵b =5,B =π4,由正弦定理a sin A =bsin B ,得a =b sin A sin B =2522=210.1.正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0).2.正弦定理的应用:①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边和两角.3.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.1.1.1 正弦定理(二)[学习目标] 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题.2.能根据条件,判断三角形解的个数.3.能利用正弦定理、三角恒等变换、三角形面积公式解决较为复杂的三角形问题.知识点一 正弦定理及其变形1.定理内容:a sin A =b sin B =c sin C =2R .2.正弦定理的常见变形: (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R .知识点二 对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a ,b 和A 解三角形为例,从两个角度予以说明: (1)代数角度由正弦定理得sin B =b sin Aa,①若b sin A a >1,则满足条件的三角形个数为0,即无解.②若b sin A a=1,则满足条件的三角形个数为1,即一解.③若b sin A a <1,则满足条件的三角形个数为1或2,即一解或两解.(2)几何角度图形关系式解的个数A为①a =b sin A ;②a ≥b一解锐角b sin A <a <b两解a <b sin A无解A 为 钝 角 或 直 角a >b一解a ≤b 无解知识点三 三角形面积公式 任意三角形的面积公式为:(1)S △ABC =12bc sin A =12ac sin B =12ab sin C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )(其中p =a +b +c2).题型一 三角形解的个数的判断例1 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答. (1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103, ∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°, ∵b sin A =6sin 30°=3,a >b sin A , ∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32,又∵B ∈(0°,180°),∴B 1=60°,B 2=120°.当B 1=60°时,C 1=90°,c 1=a sin C 1sin A =23sin 90°sin 30°=43;当B 2=120°时,C 2=30°,c 2=a sin C 2sin A =23sin 30°sin 30°=2 3.∴B 1=60°时,C 1=90°,c 1=43;B 2=120°时,C 2=30°,c 2=2 3.反思与感悟 已知三角形两边和其中一边的对角时,利用正弦定理求出另一边对角的正弦值后,需利用三角形中“大边对大角”来判断此角是锐角、直角还是钝角,从而确定三角形有两解还是只有一解.也可以用几何法来判断,即比较已知角的对边与另一边和该角正弦值乘积的大小来确定解的个数.跟踪训练1 (1)满足a =4,b =3,A =45°的三角形ABC 的个数为________. (2)△ABC 中,a =x ,b =2,B =45°.若该三角形有两解,则x 的取值范围是________. 答案 (1)1 (2)2<x <2 2解析 (1)因为A =45°<90°,a =4>3=b ,所以△ABC 的个数为一个. (2)由a sin B <b <a ,得22x <2<x ,∴2<x <2 2. 题型二 三角形的面积例2 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 ∵cos B 2=255,∴cos B =2cos 2B 2-1=35.∴B ∈(0,π2),∴sin B =45.∵C =π4,∴sin A =sin(B +C )=sin B cos C +cos B sin C =7210.∵a sin A =c sin C ,∴c =a sin C sin A =27210×22=107. ∴S =12ac sin B =12×2×107×45=87.反思与感悟 求三角形的面积关键在于选择适当的公式,因此,要认真分析题目中的条件,结合正弦定理,同时注意三角形内角和定理及三角恒等变换等知识的应用. 跟踪训练2 (1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于________. 答案 (1)23 (2)32或34解析 (1)∵cos C =13,∴C ∈()0°,90°,∴sin C =1-(13)2=223,又S △ABC =12ab sin C =12·32·b ·223=43,∴b =2 3.(2)由正弦定理得sin C =AB ·sin BAC=3×121=32, 又∵C ∈(0°,180°),∴C =60°或120°,∴A =90°或30°, ∴S △ABC =12AB ·AC ·sin A =32或34.题型三 正弦定理与三角恒等变换的综合应用例3 在△ABC 中,AB =c ,BC =a ,AC =b ,若c =2+6,C =30°,求a +b 的取值范围.解 由正弦定理得c sin C =a sin A =bsin B =a +b sin A +sin B ,∵c =2+6,C =30°,∴a +b sin A +sin B =2+6sin 30°,A +B =180°-30°=150°. sin(150°-A )=sin 150°2cos 150°-2A 2+cos 150°2sin 150°-2A2,① sin A =sin150°2cos 150°-2A 2-cos 150°2sin 150°-2A 2,② 由①②得sin A +sin(150°-A )=2sin 75°cos(75°-A ), ∴a +b =2(2+6)[sin A +sin(150°-A )]=2(2+6)×2sin 75°cos(75°-A ) =2(2+6)×2×6+24cos(75°-A ) =(2+6)2cos(75°-A ). 当A =75°时,(a +b )max =8+4 3. ∵A +B =150°,∴0°<A <150°,-150°<-A <0°. ∴-75°<75°-A <75°, ∴cos(75°-A )∈(6-24,1], ∴a +b >(2+6)2×6-24=2+6, ∴2+6<a +b ≤8+4 3.综上所述,a +b ∈(2+6,8+4 3 ].反思与感悟 (1)求某个式子的取值范围,可以将其转化为一个角的三角函数,再求范围.注意不要因为忽略相应自变量的取值范围而导致错误.(2)三角形的内角和等于180°,这一特殊性质为三角恒等变换在三角形中的应用提供了一些特殊的式子,如sin A =sin(B +C ),cos A =-cos(B +C )等,解题中应注意应用.跟踪训练3 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B . (1)求角C 的大小;(2)若c =3,求△ABC 周长的取值范围.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.例4 在△ABC 中,已知c =6,A =π4,a =2,则b =__________.错解 由正弦定理a sin A =csin C ,得sin C =c sin A a =32,∴C =π3,∴B =5π12,∴b =a sin Bsin A =3+1.答案3+1错因分析 求得sin C =32之后,去求角C 的值时,认为C 为锐角,而忽略了C =23π的情况,导致漏解. 正解 因为6sinπ4<2<6,所以本题有两解. 因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin Bsin A =3+1.当C =2π3时,B =π12,b =a sin Bsin A =3-1.答案3+1或3-1误区警示 已知两边和其中一边的对角解三角形时可先由正弦定理求出另一边的对角,该角可能有两解、一解、无解三种情况,故解题时应注意讨论,防止漏解.1.在△ABC 中,A =π3,BC =3,AB =6,则角C 等于( )A.π4或3π4B.3π4C.π4D.π6 答案 C解析 由正弦定理BC sin A =AB sin C 得sin C =AB ·sin ABC=6×323=22,∴C =π4或3π4.又∵AB <BC ,∴C <A ,∴C =π4. 2.已知△ABC 中,b =43,c =2,C =30°,那么此三角形( ) A .有一解 B .有两解 C .无解 D .解的个数不确定 答案 C解析 由正弦定理和已知条件得43sin B =2sin 30°,∴sin B =3>1,∴此三角形无解.3.根据下列条件,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .a =18,b =20,A =60°,有一解 C .a =5,b =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 对A.a =b sin A ,故有一解; 对B.b sin A <a <b ,故有两解; 对C.a >b sin A ,故有一解; 对D.A 为钝角,且a >b ,故有一解.4.在△ABC 中,AB =c ,BC =a ,AC =b ,若b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理b sin B =c sin C 得1sin B =3sin C .∵sin C =sin2π3=32,∴sin B =12. ∵C =2π3,∴B 为锐角,∴B =π6,A =π6,故a =b =1.5.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是________. 答案 直角三角形解析 ∵lg(sin A +sin C )=lg sin 2Bsin C -sin A,∴sin2C-sin2A=sin2B,结合正弦定理得c2=a2+b2,∴△ABC为直角三角形.6.在△ABC中,AB=3,D为BC的中点,AD=1,∠BAD=30°,则△ABC的面积S△ABC =________.答案3 2解析∵AB=3,AD=1,∠BAD=30°,∴S△ABD=12·3·1·sin 30°=34,又D是BC边中点,∴S△ABC=2S△ABD=3 2.1.已知两边和其中一边的对角,求第三边和其他两个角.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,一般情况是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.1.1.2 余弦定理(一)[学习目标] 1.掌握余弦定理的内容与推论及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理及其证明 1.余弦定理的表示及其推论文字语言三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍 符号语言a 2=b 2+c 2-2bc cos__A ,b 2=a 2+c 2-2ac cos__B , c 2=a 2+b 2-2ab cos__C 推论cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab2.余弦定理的证明(1)课本上采用的证明方法:如图,设a =CB →,b =CA →,c =BA →,则c =b -a , ∴|c |2=c ·c =(b -a )2=a 2-2a ·b +b 2=a 2-2ab cos__C +b 2, ∴c 2=a 2+b 2-2ab cos C . (2)利用坐标法证明如图,建立平面直角坐标系,则A (0,0),B (c cos__A ,c sin__A ),C (b ,0)(写出三点的坐标).∴a =BC =(c cos A -b )2+(c sin A -0)2 =c 2-2bc cos A +b 2, ∴a 2=b 2+c 2-2bc cos A .思考1 在△ABC 中,若a 2=b 2+bc +c 2,则A =________. 答案2π3解析 由题意知,cos A =b 2+c 2-a 22bc =-bc 2bc =-12,又A ∈(0,π),∴A =2π3.思考2 勾股定理和余弦定理的联系与区别?答案 二者都反映了三角形三边之间的平方关系,其中余弦定理反映了任一三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例. 知识点二 用余弦定理解三角形的问题 利用余弦定理可以解决以下两类问题: (1)已知两边及其夹角解三角形; (2)已知三边解三角形.思考 已知三角形的两边及一边的对角解三角形,有几种方法? 答案 不妨设已知a ,b ,A ,方法一 由正弦定理a sin A =b sin B可求得sin B ,进而得B ,C ,最后得边c .方法二 由余弦定理a 2=b 2+c 2-2bc cos A 得边c ,而后由余弦或正弦定理求得B ,C .题型一 已知两边及其夹角解三角形例1 在△ABC 中,已知a =2,b =22,C =15°,求角A ,B 和边c 的值(cos 15°=6+24,sin 15°=6-24). 解 由余弦定理知c 2=a 2+b 2-2ab cos C =4+8-2×2×22×6+24=8-43, ∴c =8-43=(6-2)2=6- 2. 由正弦定理得sin A =a sin C c =a sin 15°c=2×6-246-2=12, ∵b >a ,∴B >A ,∴A =30°,∴B =180°-A -C =135°, ∴c =6-2,A =30°,B =135°.反思与感悟 已知三角形的两边及其夹角解三角形的方法(1)先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.(2)用正弦定理求解时,需对角的取值根据“大边对大角”进行取舍,而用余弦定理就不存在这些问题(因为在(0,π)上,余弦值对应的角是唯一的),故用余弦定理求解较好. 跟踪训练1 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A .4 B.15 C .3 D.17 答案 D解析 由三角形内角和定理可知cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×(-13)=17,所以c =17.题型二 已知三边(或三边的关系)解三角形例2 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22(6+23)(43)=32.∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab =(26)2+(6+23)2-(43)22×26×(6+23)=22,∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=712π,∴A =π6,B =712π,C =π4.反思与感悟 已知三边(或三边的关系)解三角形的方法(1)利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为0,角为直角;值为负,角为钝角.(2)方法一:两次运用余弦定理的推论求出两个内角的余弦值,确定两个角,并确定第三个角.方法二:由余弦定理的推论求一个内角的余弦值,确定角的大小;由正弦定理求第二个角的正弦值,结合“大边对大角、大角对大边”法则确定角的大小,最后由三角形内角和为180°确定第三个角的大小.(3)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 跟踪训练2 将例2中的条件改为“a ∶b ∶c =26∶(6+23)∶43”,求A ,B ,C . 解 ∵a ∶b ∶c =26∶(6+23)∶43, 即a26=b 6+23=c43, 不妨设a26=k ,则a =26k ,b =(6+23)k ,c =43k ,下同例题解法.题型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,若a =23,b =6,A =45°,求边c .解 方法一 在△ABC 中,根据余弦定理可得 a 2=b 2+c 2-2bc cos A ,即c 2-23c -6=0, 所以c =3±3.又c >0,所以c =3+3.方法二 在△ABC 中,由正弦定理得 sin B =b sin Aa =6×2223=12,因为b <a ,所以B <A ,又B ∈(0°,180°),所以B =30°, 所以C =180°-A -B =105°,所以sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24, 故c =a sin Csin A =23×6+2422=3+3.反思与感悟 已知三角形的两边及其中一边的对角解三角形的方法可根据余弦定理列一元二次方程求出第三边(注意边的取舍),再利用正弦定理求其他的两个角;也可以由正弦定理求出第二个角(注意角的取舍),再利用三角形内角和定理求出第三个角,最后利用正弦定理求出第三边.跟踪训练3 已知在△ABC 中,b =3,c =3,B =30°,解此三角形. 解 方法一 由余弦定理b 2=a 2+c 2-2ac cos B 得(3)2=a 2+32-2×a ×3×cos 30°, ∴a 2-33a +6=0,∴a =3或a =2 3. 当a =3时,a =b ,∴A =30°,∴C =120°; 当a =23时,由正弦定理得 sin A =a sin B b =23sin 30°3=1,又∵A ∈(0°,180°),∴A =90°,C =60°.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3. 方法二 由b <c ,B =30°,b >c sin 30°知本题有两解. 由正弦定理,得sin C =c sin B b =3×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理得a =b 2+c 2=23; 当C =120°时,A =30°=B ,∴a = 3.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3.1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos A D .cos C =a 2+b 2+c 22ab答案 A解析 由余弦定理及其推论知只有A 正确.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去,故选D. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不确定 答案 A解析 cos 120°=a 2+b 2-c 22ab =a 2+b 2-2a 22ab =-12,∴b =5-12a <a . 4.在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________. 答案π3解析 cos C =a 2+b 2-c 22ab =ab 2ab =12,又B ∈(0,π),∴B =π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________. 答案 56π解析 cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32,又B ∈(0,π),∴B =56π.1.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角. 2.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形.(2)若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形,但用正弦定理时要注意不要漏解或多解.1.1.2 余弦定理(二)[学习目标] 1.熟练掌握余弦定理及其变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 余弦定理及其推论1.a 2=b 2+c 2-2bc cos__A ,b 2=c 2+a 2-2ca cos__B ,c 2=a 2+b 2-2ab cos__C . 2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 知识点二 正弦、余弦定理解决的问题思考 以下问题不能用余弦定理求解的是________. (1)已知两边和其中一边的对角,解三角形; (2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形; (4)已知一个三角形的三条边,解三角形. 答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c2c ,其中a ,b ,c 分别是角A ,B ,C 的对边,则△ABC 的形状为( ) A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 方法一 在△ABC 中,由已知得 1+cos B 2=12+a2c , ∴cos B =a c =a 2+c 2-b 22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C ,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =π2,即△ABC 为直角三角形.反思与感悟 一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac ,代入得12=a 2+c 2-ac 2ac ,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得: sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.反思与感悟 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3. 题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos Ac .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.反思与感悟 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系. 跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2 A 2=3b2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,①∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A .(1,5) B .(13,5)C .(5,13)D .(1,5)∪(13,5) 答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x 22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .锐角三角形 答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac,整理得a 2=b 2,∴a =b .2.在△ABC 中,sin 2A -sin 2C -sin 2B =sin C sin B ,则A 等于( ) A .60° B .45° C .120° D .30° 答案 C解析 由正弦定理得a 2-c 2-b 2=bc , 结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°.3.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.35 答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a 22·1·3>012+a 2-322·1·a >01+3>a 1+a >3,解得22<a <10.5.在△ABC 中,若b =1,c =3,C =2π3,则a =________.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0, 解得a =1或a =-2(舍).6.已知△ABC 的三边长分别为2,3,4,则此三角形是________三角形.答案钝角解析4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.1.判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.2.解决综合问题时应考虑以下两点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角公式列式化简的习惯.[学习目标]利用正弦、余弦定理解决生产实践中的有关距离的测量问题.知识点一基线的定义在测量上,我们根据测量需要适当确定的线段叫做基线,一般地讲,基线越长,测量的精确度越高.知识点二有关的几个术语(1)方位角:指以观测者为中心,从正北方向线顺时针旋转到目标方向线所形成的水平角.如图所示的θ1,θ2即表示点A和点B的方位角.故方位角的范围是[0°,360°).(2)方向角:指以观测者为中心,指北或指南的方向线与目标方向线所成的小于90°的水平角,它是方位角的另一种表示形式.如图,左图中表示北偏东30°,右图中表示南偏西60°.思考上两图中的两个方向,用方位角应表示为30°(左图),240°(右图).(3)视角:观测者的两条视线之间的夹角称作视角.知识点三解三角形应用题解三角形应用题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解三角形,得到实际问题的解,求解的关键是将实际问题转化为解三角形问题.(1)解题思路。
新人教A版高中数学教材目录(必修+选修)
新人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。
高中数学必修5全册人教A版(2024)
如果集合A是集合B的子集且集合B是集合A的子集 ,那么集合A与集合B相等,记作A=B。
2024/1/29
5
集合基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,记作A∪B(或B∪A)。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,记作A∩B(或B∩A)。
圆与圆的位置关系
通过比较两圆圆心距$P$与两圆半径 之和$R + r$和之差$|R - r|$的大小关 系,可以判断两圆的位置关系(外离 、外切、相交、内切、内含)。
2024/1/29
31
空间直角坐标系
空间直角坐标系的概 念
在空间中选定一点$O$作为原点,过 点$O$作三条互相垂直的数轴$Ox, Oy, Oz$,它们都以$O$为公共原点 且一般具有相同的长度单位。这三条 轴分别称作$x$轴(横轴),$y$轴 (纵轴),$z$轴(竖轴),统称为 坐标轴。它们的正方向符合右手规则 ,即以右手握住$z$轴,当右手的四 个手指$x$轴的正向以$pi/2$角度转 向$y$轴正向时,大拇指的指向就是 $z$轴的正向。这样就构成了一个空 间直角坐标系,称为空间直角坐标系 $O-xyz$。定点$O$称为该坐标系的 2024/1/2原9 点。与之相对应的是左手空间直角
空间两点间的距离公 式
在空间直角坐标系中,任意两点 $A(x_1, y_1, z_1)$和$B(x_2, y_2, z_2)$之间的距离公式为
32
2024/1/29
THANKS
感谢观看
33
2024/1/29
16
空间几何体三视图和直观图
01 中心投影与平行投影
02 三视图的形成及其特性 02 由三视图还原成实物图
人教版高中数学教材必修5电子课本(高清版)
培养学生的数学运算能力、逻辑推理能力、数学建模能力和数学创新能力。
2024/1/28
情感目标
培养学生对数学的兴趣和爱好,提高学生的数学素养和审美情趣。
5
教材特点与亮点
突出基础性
注重基础知识和基本技 能的训练,为后续学习
打下坚实的基础。
2024/1/28
强调思想性
通过数学史话、数学家 介绍等内容,渗透数学 思想和文化,培养学生
留出足够的时间进行复习 和模拟考试,查漏补缺。
30
应试技巧与心态调整方法
应试技巧
认真审题,明确题目要求和考查的知识点。
注意答题规范,步骤清晰,表达准确。
2024/1/28
31
应试技巧与心态调整方法
学会取舍,先易后难,确保基础题得分。
心态调整方法
2024/1/28
保持自信,相信自己经过认真备考一定能够取得好成绩。
题目2
已知等差数列 {an} 的前 n 项和为 Sn ,且 a1 = 1,S3 = 9,求数列 {an} 的通项公式及前 n 项和 Sn。
18
不等式与不等式组练习题
题目1
解不等式 |x - 2| + |x + 3| ≥ 7。
题目3
解不等式组 {x^2 - 3x + 2 > 0, x^2 - 5x + 6 < 0}。
的数学素养。
注重实践性
设置丰富的实际问题情 境,引导学生运用数学
知识解决实际问题。
6
体现时代性
引入现代数学和科技发 展的成果,反映数学在 现代社会中的应用和价
值。
02
知识点详解
2024/1/28
7
高中数学必修五全册课件PPT(全册)人教版
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
人教A版高中数学必修五全册教案
人教A版高中数学必修五全册教案教案:高中数学必修五全册教材:人教A版高中数学必修五教学目标:1.掌握数列概念,能够计算等差数列和等比数列的通项和前n项和;2.理解极限的概念,能够计算函数在其中一点的极限;3.理解一元一次方程、二次方程的根及其性质,能够求解一元一次方程和二次方程;4.理解函数概念,能够绘制简单的函数图像,计算函数值及函数的性质;5.掌握数学应用题的解题方法和技巧。
教学内容:第一单元数列与数学归纳法1.1数列的概念与通项的求法1.2等差数列及其求和公式1.3等比数列及其求和公式第二单元函数与极限2.1函数的概念及表示法2.2函数的图像和性质2.3极限的概念及计算第三单元一元一次方程与不等式3.1一元一次方程与方程的解3.2一元一次方程组与解的性质3.3一元一次不等式及其解第四单元二次函数与一元二次方程4.1二次函数的图像和性质4.2一元二次方程及其性质4.3一元二次方程的解法与应用第五单元测度与图形的性质5.1弧长与扇形面积5.2直线与圆的相交关系5.3平面向量的概念与性质5.4弧度制与角的变化率教学方法:1.通过讲解掌握基本概念与定理,引导学生分析例题,提高解题技巧;2.运用举一反三、归纳法,培养学生的综合运用能力和思维能力;3.坚持理论与实践相结合,通过练习和应用题,巩固知识点和技能;4.引导学生进行思考与讨论,激发学生的兴趣,培养其数学思维。
教学步骤:第一步:导入通过引入相关例子,激发学生的兴趣,预习相关内容,引起学生的思考。
第二步:知识点讲解通过课本中的例题和习题,详细讲解每个知识点的概念、公式、性质、注意事项等。
第三步:练习与讨论学生进行课后习题的练习,老师对错的例题进行解析和讲解,学生之间进行讨论和交流。
第四步:拓展与应用通过一些应用题目,让学生把所学内容应用到实际问题中,提高学生的应用能力。
第五步:总结与归纳对所学内容进行总结归纳,涵盖知识点和解题技巧,为下一节课的学习做好准备。
超级资源(共27套1239页)人教版高中数学必修五(全册)教学课件汇总
C=k k
已知三角形的两角分别是 45°、60°,它们夹边的长是 1, 则最小边长为________.
[答案] 3-1
[解析] 不妨假定△ABC 内角 A=45°,B=60°,则 C=75°.
∵C>B>A,∴最小边长为 a.
∵
c
=
1
,
∴
由
正
弦
定
理
得
,
a
=
c·sinA sinC
=
1×sinsi7n54°5°=
[点评] 已知三角形中的边角关系式,判断三角形的形状, 可考虑使用正弦定理,把关系式中的边化为角,再进行三角恒 等变换求出三个角之间的关系式,然后给予判定.在正弦定理 的推广中,a=2RsinA,b=2RsinB,c=2RsinC 是化边为角的 主要工具.
在△ABC 中,sinA=sinB,则△ABC 是( )
自主预习
1.余弦定理 在三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们夹角的余弦的积的两倍,即 a2=__b_2_+__c_2-__2_b_c_c_o_s_A__, b2=_c_2_+__a_2_-__2_a_cc_o_s_B__,c2=__a_2+__b_2_-__2_a_b_c_o_s_C___.
[解析]
(1)sinB=bsina120°=45×
3 2<
23,
∴△ABC 有一解.
(2)sinB=bsina150°=1,∴△ABC 无解.
(3)sinB=bsina60°=190×
23=5 9 3,而
35 2<
9
3<1,
∴当
B
为锐角时,满足
sinB
=
高中数学必修5全册(人教A版)PPT课件
q
q
q 1 三个数为 4,1,2 或 2,1,4 2
(3)若 2为2q,2 的等差中项,则 q 1 2 即:q2q20
q
q
q2 三个数为 4,1,2 或 2,1,4
综上:这三数排成的等差数列为. : 4,1,2或 2,1,4 30
Ⅱ 、运用等差、等比数列的性质
例2(1)已知等差数列{ a n } 满足 a1a2a1010,则 ( C )
域.在点E正北55海里处有一个雷达观测站A,
某时刻测得一艘匀速直线行驶的船,位于点A
北偏东45°方向,且与点A相距
海4 0里2的
位置B.经过40分钟又测得该船已行驶到
点A北偏东45°+θ(其中sin 2266,0
90)
方向,且与点A相距1 0 1 3 海里的位置C.
(1)求该船的行驶速度;
(2)若该船不改变航行方向继续行驶,判断
.
9
例5 (2006年湖南卷)如图,D是直 角△ABC斜边BC上一点,AB=AD,记 ∠CAD=α,∠ABC=β. (Ⅰ)证明sinα+cos2β=0; (Ⅱ)若AC=DC,求β的值.
A
β=60°
α
β B
D
C
.
10
作业: P19习题1.2A组:3,4,5.
.
11
第一章 解三角形 单元复习
第二课时
Aa.1a10 10B.a2a10 00 Ca .3a990 D.a5151
(2)已知等差数列{ a n } 前 m项和为30,前 2m 项和为100,
则前 项和3m为
(C )
A.130
B. 170
C. 210
D. 260
(3)已知在等差数列{an}的前n项中,前四项之和为21,后 四项之和为67,前n项之和为286,试求数列的项数n.
人教版A版高中数学必修5:不等式
2.不等式性质及应用 特别提醒:
(1)同向不等式不能相减.
(2)异向不等式不能相加.
(3)两边同乘或除以一个负数,不等 式要反向.
作业:
1.课本P75的B组第1题(1)(2)
2.活页作业(十八)35页1-11题
•14:12
•12
例1 a b 0, c 0,求证:c c ab
证明:因为a b 0,所以ab 0, 1 0. ab
于是, a 1 b 1 , 即 1 1 .
ab ab
ba
又因为c 0, 得: c c . ba
即
c
c .
ab
课本74页练习3
1.课堂练习:
用不等号 “<”或 “>”填空:
⑴ a b,c d a c ___>____ b d ;
⑵ a b 0,c d 0 ac __<__ bd ;
⑶ a b 0 3 a __>____ 3 b ;
⑷a
b
0
1 a2
_<___
1 b2
.
2.测评54页 例3
•14:12
•11
课堂小结: 1.作差法比较两数(式)的大小
p
2.3%
一 .体验
A
问题1:设点A与平面α的距离为d,
B为平面α上任意一点,则
d
d≤|AB|
B B
B
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万 本.据市场调查,若单价每提高0.1元,销售量就可能相应 减少2000本,若把提价后杂志的定价设为X元,怎样用不等 式表示销售的总收入仍不低于20万元呢?
2024人教版高三数学必修5全册教学课件
运用多媒体技术、网络技术等现代教育技术手段 ,创设生动形象的数学教学情境,提高教学效果 和学生的学习效率。
02
基础知识回顾与拓展
数列概念及性质
01 数列定义
按照一定顺序排列的一列数。
02 数列的通项公式
表示数列第n项与n之间关系的公式。
03 数列的性质
包括周期性、有界性、单调性等。
等差数列及其求和公式
任意角的表示方法
终边相同的角的集合,象 限角的表示方法。
任意角的三角函数
1 2
任意角的三角函数定义
正弦、余弦、正切的定义及性质,各象限三角函 数的符号。
同角三角函数的基本关系
平方关系、商数关系、诱导公式及其应用。
3
三角函数的图象与性质
正弦函数、余弦函数的图象与性质,周期函数的 概念。
三角函数的图象与性质
等差数列定义
相邻两项之差为常数的数 列。
等差数列的求和公式
Sn=n/2*[2a1+(n-1)d], 其中Sn为前n项和。
等差数列的通项公式
an=a1+(n-1)d,其中a1 为首项,d为公差。
等比数列及其求和公式
等比数列定义
相邻两项之比为常数的数列。
等比数列的通项公式
an=a1*q^(n-1),其中a1为首项,q为公比。
对于离散型随机变量,期望表示其取值的平均水平,方差表示其取值 的波动程度。通过具体例子说明期望和方差的计算方法和意义。
07
总结回顾与备考建议
本册知识点总结回顾
集合与函数概念
包括集合的运算、函数的概念、 函数的性质等。
基本初等函数
包括指数函数、对数函数、幂函数 等的基本性质和图像。
高中数学5必修配人教a版新课标
高中数学5必修配人教a版新课标高中数学5必修配人教A版新课标是为高中学生量身定制的数学教材,它依据最新的教育改革要求,旨在培养学生的数学思维和解决实际问题的能力。
本教材涵盖了高中数学的核心知识点,包括函数、几何、概率统计、数列以及微积分等重要领域。
首先,教材在函数部分,详细讲解了函数的概念、性质以及图像,帮助学生理解函数的增减性、奇偶性等基本性质。
通过大量的例题和习题,学生能够熟练掌握函数的求解方法,为后续的数学学习打下坚实的基础。
在几何部分,教材不仅包含了平面几何的知识,还引入了立体几何和解析几何的内容。
通过学习,学生能够掌握空间图形的性质和计算方法,提高空间想象能力和几何直观感。
概率统计是现代数学中的一个重要分支,教材通过生动的实例,引导学生学习概率论的基本概念和统计方法。
学生将学会如何运用概率知识解决生活中的实际问题,如数据分析、风险评估等。
数列作为数学中的一个重要概念,教材通过系统的教学,使学生能够理解数列的通项公式、求和公式等。
通过数列的学习,学生能够培养逻辑思维和抽象思维能力。
最后,教材还涉及了微积分的基础知识,包括导数、积分等概念。
这些内容是高等数学的入门知识,对于学生未来的学术发展具有重要意义。
通过学习微积分,学生能够更好地理解变化率和累积量的概念,为进一步的数学学习奠定基础。
整体而言,高中数学5必修配人教A版新课标教材内容丰富,结构合理,既注重基础知识的传授,又强调实际应用能力的培养。
通过本教材的学习,学生不仅能够掌握高中数学的核心知识,还能够提高解决问题的能力,为未来的学习和生活打下坚实的基础。
2024版年度高中数学必修5课件全册人教A版
函数定义
函数是一种特殊的对应关系,使 得每个自变量对应唯一的因变量。
表示方法
函数可以用解析式、表格、图像 等多种方式表示。
函数三要素
定义域、值域和对应关系是函数 的三个基本要素。
2024/2/3
19
函数单调性与最值问题
单调性定义
函数在某区间内单调增加或减少的性质。
判断方法
通过导数符号或函数图像判断函数的单调性。
15
绝对值不等式解法
2024/2/3
绝对值不等式的定义
01
含有绝对值符号的不等式。
解法步骤
02
首先去掉绝对值符号,将绝对值不等式转化为一般的不等式组,
然后求解该不等式组。
绝对值的性质
03
在解决绝对值不等式时,需要充分利用绝对值的性质,如非负
性、三角不等式等。
16
不等式证明方法
利用已知的不等式和不等式的性 质,通过逻辑推理得到待证明的 不等式。
掌握线性回归模型的建立方法,能够 运用线性回归模型解决实际问题。
回归分析的评价和改进
了解回归分析的评价指标和改进方法, 提高模型的预测精度和可靠性。
2024/2/3
37
பைடு நூலகம் 08
复习总结与提高策略
Chapter
2024/2/3
38
关键知识点回顾总结
函数与导数
包括函数的概念、性质、图像和导数在函 数研究中的应用等。
2024/2/3
25
正弦定理和余弦定理应用
正弦定理
掌握正弦定理的推导及应用,能够解决与三角形边角关系 有关的问题。
余弦定理
了解余弦定理的推导及应用,能够解决与三角形边长及角 度有关的问题。
人教A版数学必修五同步配套课件:第三章不等式3.3第1课时
〔跟踪练习2〕
画出不等式组x2>x--yy-1≥0表示的平面区域. x≤3
• [解析] 不等式2x-y-1≥0表示的平面区域 是直线2x-y-1=0下方区域(包括直线上的 点);不等式x>-y即x+y>0,表示的区域是 直线x+y=0上方区域(不包括直线);x≤3表 示的区域为直线x=3的左侧区域(包括直线) ;不等式组表示的区域为三个平面区域的公 共部分,如图中的阴影部分.
域就是所求△ABC的区域,直线AB、BC、CA的方程分别
为x+2y-1=0,x-y+2=0,2x+y-5=0.
在△ABC内取一点P(1,1),代入x+2y-1,得1+2×1-1=2>0.所以直线x+ 2y-1=0对应的不等式为x+2y-1>0.
把P(1,1)代入x-y+2,得1-1+2>0; 代入2x+y-5,得2×1+1-5<0. 因此对应的不等式分别为x-y+2>0,2x+y-5<0. 又因为所求区域包括边界, 所以所求区域的不等式组为xx-+y2+y-2≥1≥00.
• 『规律总结』 1.在画二元一次不等式组表示的平面区域 时,应先画出每个不等式表示的区域,再取它们的公共部 分即可.其步骤为:①画线;②定侧;③求“交”;④表 示.
• 2.要判断一个二元一次不等式所表示的平面区域,只需 在它所对应的直线的某一侧取一个特殊点(x0,y0),从Ax0 +By0+C的正负判断.
例题 2 画出下列不等式组表示的平面区域.
xx+-yy++15≥≥00. x≤3
• [分析] 不等式组表示的平面区域是各不等式所表示的平 面点集的交集,因而是各个不等式所表示的平面区域的公 共部分.
• [解析] 不等式x-y+5≥0表示直线x-y+5=0上及右下 方的点的集合,x+y+1≥0表示直线x+y+1=0上及右上 方的点的集合,x≤3表示直线x=3上及左方的点的集合, 所以不等式组表示的平面区域为图中阴影部分(包括边界) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(十七)
1.(2013·新课标全国Ⅰ)设首项为1,公比为2
3的等比数列{a n }的前n 项和为S n ,
则( )
A .S n =2a n -1
B .S n =3a n -2
C .S n =4-3a n
D .S n =3-2a n
答案 D
解析 S n =a 1(1-q n )1-q =a 1-a n q
1-q =1-23a n
1-
2
3
=3-2a n ,故选D 项.
2.等比数列{a n }各项都是正数,若a 1=81,a 5=16,则它的前5项和是( ) A .179 B .211 C .248 D .275 答案 B
解析 ∵a 5=a 1q 4,∴16=81q 4.∴q =±23
.
又数列{a n }的各项都是正数,∴q =2
3.
∴S 5=a 1(1-q 5)
1-q =81[1-(2
3)5]
1-
2
3
=211.
3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )
A .3
B .-3
C .-1
D .1
答案 A
解析 思路一:列方程求出首项和公比,过程略; 思路二:两等式相减得a 4-a 3=2a 3,从而求得a 4
a 3
=3=q.
4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( ) A .21 B .42 C .135 D .170
答案 D 解析
5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )
A.152
B.314
C.334
D.172
答案 B
解析
显然公比q ≠1,由题意,得⎩
⎪⎨⎪
⎧
a 1q ·a 1q 3=1,a 1(1-q 3)
1-q =7,解得⎩⎪⎨⎪
⎧
a 1=4,q =1
2
,∴
S 5=
a 1(1-q 5)1-q
=
4(1-1
25)
1-
12
=314
. 6.在14与78之间插入n 个数组成等比数列,若各项总和为77
8,则此数列的
项数( )
A .4
B .5
C .6
D .7
答案 B
解析 ∵q ≠1(14≠78),∴Sn =a1-anq
1-q
.
∴778=14-7
8q
1-q ,解得q =-12,78=14×(-1
2)n +2-1. ∴n =3,故该数列共5项.
7.等比数列{an}的首项为1,公比为q ,前n 项和为S ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪
⎫1a n 的前n 项和为( )。