16、反比例函数单元复习(基础)
反比例函数知识点归纳(重点)
反比例函数知识点归纳(重点)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-反比例函数知识点归纳和典型例题、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B. C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B. C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B. C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个 B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数 B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效为什么(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图。
反比例函数知识点知识点总结
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是因变量,k 叫做比例系数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。
2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。
3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。
三、反比例函数的图像反比例函数的图像属于双曲线。
当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
反比例函数的图像是以原点为对称中心的中心对称的两条曲线。
四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。
2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。
3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。
4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
反比例函数入门基础知识
反比例函数入门基础知识反比例函数是数学中一种重要的函数形式,也是一种常见的函数类型。
它在许多实际问题中都有广泛的应用,例如物理学、工程学、经济学等领域。
本文将介绍反比例函数的基础知识,包括定义、性质和应用。
一、定义反比例函数,又称为倒数函数,是一种特殊的函数形式。
它的定义可以表示为:y=k/x,其中k为常数。
反比例函数的定义域为除去x=0的所有实数,值域为除去y=0的所有实数。
二、性质1. 反比例函数的图像经过原点(0,0),且关于y=x对称。
2. 反比例函数的图像在x轴和y轴上都有渐近线,即当x无限趋近于正无穷或负无穷时,y趋近于0;当y无限趋近于正无穷或负无穷时,x趋近于0。
3. 反比例函数的图像呈现出一种“反比例”的关系:当x增大时,y减小;当x减小时,y增大。
三、应用反比例函数在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 电阻和电流的关系根据欧姆定律,电阻R和电流I的关系可以表示为R=k/I,其中k 为常数。
这就是一个反比例函数的例子。
当电流增大时,电阻减小;当电流减小时,电阻增大。
2. 速度和时间的关系在某些情况下,物体的速度和时间呈现出反比例的关系。
例如,一个物体在一段时间内行驶的距离是固定的,那么速度和时间就满足反比例函数的关系。
当时间增加时,速度减小;当时间减少时,速度增加。
3. 工作时间和产量的关系在生产过程中,工人的工作时间和产量之间通常存在着反比例的关系。
工作时间增加时,产量减少;工作时间减少时,产量增加。
4. 投资和收益的关系在经济学中,投资和收益之间常常存在反比例的关系。
投资增加时,收益率下降;投资减少时,收益率上升。
反比例函数是一种常见的函数形式,在实际问题中有着广泛的应用。
通过研究反比例函数的定义、性质和应用,可以帮助我们更好地理解和解决实际问题。
无论是在自然科学领域还是社会科学领域,反比例函数都发挥着重要的作用。
因此,掌握反比例函数的基础知识对于数学的学习和实际问题的解决都具有重要意义。
反比例函数知识点归纳和典型例题
反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
反比例函数基本知识点题型梳理
反比例函数基本知识点题型梳理知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠); ②1kx y -=(0k ≠); ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x的反比例函数时,x 也是y 的反比例函数。
注:(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x ky =中的两个变量必成反比例关系。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
注意:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x 的增大而减小。
(完整版)初中数学反比例函数知识点及经典例题
反比例函数一、基础知识1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kx y =1- 2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
45. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
7. 反比例函数的应用二、例题【例1】如果函数222-+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数xky =,(0≠k )即kx y =1-(0≠k )又在第二,四象限内,则0<k 可以求出的值 【答案】由反比例函数的定义,得:⎩⎨⎧<-=-+01222k k k 解得⎪⎩⎪⎨⎧<=-=0211k k k 或1-=∴k1-=∴k 时函数222-+=k k kx y 为xy 1-=【例2】在反比例函数x y 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
反比例函数整章知识点复习
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。
反比例函数(同步复习)基础篇
反比例函数 (基础篇)1、反比例函数旳概念一般地,函数xk y =(k 是常数,k≠0)叫做反比例函数。
反比例函数旳解析式也可以写成1-=kx y 旳形式。
自变量x 旳取值范畴是x ≠0旳一切实数,函数旳取值范畴也是一切非零实数。
(注意:反比例函数xk y =中,x旳次数只能为1,k 为不等于0旳实数)2、反比例函数旳图像反比例函数旳图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们有关原点对称。
由于反比例函数中自变量x ≠0,函数y≠0,因此,它旳图像与x 轴、y 轴都没有交点,即双曲线旳两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数旳性质4、反比例函数解析式旳拟定拟定及诶是旳措施是待定系数法。
由于在反比例函数xk y =中,只有一种待定系数,因此只需要一对相应值或图像上旳一种点旳坐标,即可求出k 旳值,从而拟定其解析式。
5、反比例函数中反比例系数旳几何意义过反比例函数)0(≠=k xk y 图像上任一点P 作x 轴、y轴旳垂线P M,P N,则所得旳矩形PMON 旳面积S=PM •PN=xy x y =•。
k S k xy xky ==∴=,, 。
补充:正比例函数和一次函数 1、正比例函数和一次函数旳概念一般地,如果b kx y +=(k,b是常数,k ≠0),那么y叫做x旳一次函数。
特别地,当一次函数b kx y +=中旳b 为0时,kx y =(k为常数,k≠0)。
这时,y 叫做x 旳正比例函数。
2、一次函数旳图像所有一次函数旳图像都是一条直线3、一次函数、正比例函数图像旳重要特性:一次函数b kx y +=旳图像是通过点(0,b)旳直线;正比例函数kx y =旳图像是通过原点(0,0)旳直线。
k>0b>0 yx图像通过一、二、三象限,y随x旳增大而增大。
b<0yx 图像通过一、三、四象限,y随x旳增大而增大。
K<0b>0yx图像通过一、二、四象限,y随x旳增大而减小b<0yx图像通过二、三、四象限,y随x旳增大而减小。
反比例函数知识点归纳
反比例函数知识点归纳反比例函数是函数的一种特殊形式,其形式为y=k/x,其中k是一个非零常数。
在反比例函数中,自变量x的值增加,因变量y的值会减少;自变量x的值减少,因变量y的值会增加。
1.反比例函数的定义域和值域在反比例函数y=k/x中,除数x不能为0,所以定义域为x≠0。
由于因变量y可以取任意实数值,所以反比例函数的值域为y≠0。
2.反比例函数的图像特征反比例函数的图像是一个直角坐标平面中的双曲线。
这是由于当自变量x接近于0时,因变量y的值会趋向于正无穷大或负无穷大。
因此,反比例函数的图像在原点处有一个垂直渐近线,并且图像在横轴和纵轴上无法触及。
3.反比例函数的性质a)当自变量x不等于0时,反比例函数y=k/x是连续函数。
由于在x=0处没有定义,所以反比例函数在x=0处不连续。
b)反比例函数的导数在定义域的任意一点都存在。
假设反比例函数为y=k/x,则其导数为y'=-k/x^2,可以发现导数对于任意x都存在。
c)反比例函数的最小值或最大值也取决于常数k的符号。
当k>0时,反比例函数的最小值为正无穷大;当k<0时,反比例函数的最大值为正无穷大。
4.反比例函数的应用反比例函数在实际问题中有很多应用,尤其是在与物体运动相关的问题中。
例如,在物理学中,对于一个物体的匀速运动,其速度与所用时间的关系为反比例函数。
速度越大,所用时间越短。
另一个常见的应用是电阻和电流之间的关系。
根据欧姆定律,电阻和电流之间的关系为R=V/I,其中R是电阻,V是电压,I是电流。
根据反比例函数的性质,当电流变大时,电阻变小,电流变小时,电阻变大。
此外,反比例函数在金融市场中也有应用。
例如,根据波动性和流动性的关系,股票价格与交易量之间的关系可以表示为反比例函数。
5.反比例函数的解析式反比例函数的解析式为y=k/x,其中k是一个非零常数。
可以根据具体问题中的条件给出k的值,从而得到反比例函数的具体形式。
总结:反比例函数是一种特殊形式的函数,其定义域为除了0的所有实数,值域为除了0的所有实数。
反比例函数基础知识
反比例函数基础知识反比例函数是中考数学中必考的题型,也是最难的题型之一,以下是由店铺整理关于反比例函数基础知识的内容,提供给大家参考和了解,希望大家喜欢!反比例函数基础知识反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k 叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x 的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y 随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是:x≠0;y的取值范围是:y≠0。
4.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可。
反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
反比例函数知识点总结
反比例函数知识点总结反比例函数是数学中常见的一种函数类型,它在实际生活和工作中有着广泛的应用。
在学习和理解反比例函数时,我们需要掌握一些基本的知识点,本文将对反比例函数的相关概念、特点、图像和应用进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
1. 反比例函数的概念。
反比例函数是指函数的自变量x与因变量y之间的关系满足y与x成反比的规律。
通常来说,反比例函数可以用以下的形式来表示:y = k/x。
其中,k为比例系数,也称为常数项。
在反比例函数中,x不等于0,因为分母不能为0,否则函数就没有意义。
反比例函数在数学中有着重要的地位,它的特点和性质对于我们解决实际问题具有重要的指导作用。
2. 反比例函数的特点。
反比例函数的图像通常表现为一个开口向下的双曲线。
当x增大时,y会减小,当x减小时,y会增大。
这种特点使得反比例函数在描述一些实际问题时具有很好的适用性,比如人口与资源的关系、时间与速度的关系等。
反比例函数的特点还包括,在坐标系中不经过原点,且在x轴和y轴上都有渐近线。
3. 反比例函数的图像。
反比例函数的图像是一个开口向下的双曲线,其渐近线分别为x轴和y轴。
当k为正数时,双曲线位于第一和第三象限;当k为负数时,双曲线位于第二和第四象限。
通过对反比例函数的图像进行分析,我们可以更直观地理解函数的性质和特点,从而更好地应用到实际问题中去。
4. 反比例函数的应用。
反比例函数在实际生活和工作中有着广泛的应用。
比如,在经济学中,人均收入与人口数量之间的关系可以用反比例函数来描述;在物理学中,时间与速度、力与距离之间的关系也可以用反比例函数来表示。
掌握了反比例函数的知识,我们可以更好地理解和解决这些实际问题,为实际工作和生活提供更科学的依据。
总结:通过对反比例函数的概念、特点、图像和应用进行总结,我们可以更好地理解和掌握这一部分内容。
反比例函数在数学中有着重要的地位,它不仅有着严谨的数学性质,还具有广泛的应用价值。
九年级数学反比例函数知识点归纳总结
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
反比例函数知识点总结
反比例函数知识点总结反比例函数,又称为倒数函数,是数学中重要的函数类型之一。
它是一种特殊的函数关系,其中一个量的变化与另一个量的变化成反比。
在反比例函数中,当一个变量增加时,另一个变量会以相应的速度减少,反之亦然。
本文将通过定义、性质、图像和应用等方面,对反比例函数进行详细的知识点总结。
1. 定义与表示:反比例函数是指一种函数关系,其中一个变量的值与另一个变量的值成反比。
一般来说,反比例函数可以通过以下形式来表示:y = k/x其中k是常数,称为比例常数,x和y分别是两个变量的值。
2. 性质:(1) 定义域和值域:反比例函数的定义域为除了x=0外的所有实数,值域也为除了y=0外的所有实数。
(2) 对称性:反比例函数在原点(0,0)处具有对称性,即在x轴和y轴上分别关于原点对称。
(3) 单调性:反比例函数在其定义域内是单调递减的,即当x增加时,y会减小。
(4) 渐进线:反比例函数y=k/x在x趋近正无穷大或负无穷大时,都会逼近x轴和y轴,即有两条渐进线x=0和y=0。
(5) 变换:反比例函数可以通过平移、伸缩等变换来得到相应的函数图像。
3. 图像:反比例函数的图像呈现出一条曲线,并且具有特定的形状。
以y=k/x为例,当k为正数时,函数的图像将出现在第一和第三象限,形状类似于右上方向的双曲线;当k为负数时,图像将出现在第二和第四象限,形状类似于左下方向的双曲线。
同时,倒数函数的图像都会与x轴和y轴有两条渐进线,即x=0和y=0。
4. 应用:反比例函数在现实生活中有着广泛的应用。
以下是一些常见的应用场景:(1) 电阻与电流关系:欧姆定律中,电阻与电流的关系就是一个反比例函数关系。
当电流增大时,电阻会相应减小,反之亦然。
(2) 时间与速度关系:在行驶过程中,车辆在相同的距离内,速度与时间呈反比例。
当时间增加时,速度会相应减小,行驶速度与时间的乘积保持一定的常数。
(3) 人均用水量与总用水量关系:一般情况下,社会的总用水量与人口的数量成反比例。
高中数学-反比例函数专题复习
高中数学-反比例函数专题复习1.定义:一般地,如果两个变量x 、y 之间的关系表示成y=(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数,其中x 是自变量,y 是函数。
例如y =50x ;y =-8x ;y =m 2+1x(m 为常数)等。
提示:(1)y =k x 也可以写作y=kx -1的形式或xy=k 的形式(k为常数且k ≠0);(2)反比例函数的自变量x 不能为0;(3)k=xy 是反比例函数的另一种表示形式,即两变量的积是一个常数。
2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和y=-x 。
对称中心是:原点。
3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。
xk4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
知识点:1·一般地,如果两个变量x、y之间的关系可表示成y=k x(K为常数,K≠0)的形式,那么称y是x的反比例函数。
反比例函数的自变量x不能为零。
2·反比例函数的图象及其画法反比例函数图象的画法——描点法:⑴列表——自变量取值应以0(但(x≠0)为中心,向两边取三对(或三对以上)互为相反数的数,再求出对应的y的值;⑵描点——先描出一侧,另一侧可根据中心对称点的性质去找;⑶连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。
反比例函数y=kx的图象是由两支曲线组成的。
当k>0时,两支曲线分别位于第一、三象限内,当k<0时,两支曲线分别位于第二、四象限内。
小注:⑴这两支曲线通常称为双曲线。
⑵这两支曲线关于原点对称。
⑶反比例函数的图象与x轴、y轴没有公共点。
(完整版)反比例函数知识点归纳总结与典型例题
反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。
x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。
a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。
x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。
专题16-反比例函数篇(原卷版)
专题16 反比例函数考点一:反比例函数之定义、图像与性质1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1-=kx y 表示。
2. 反比例函数的图像:反比例函数的图像是双曲线。
3. 反比例函数的性质与图像:1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过的象限是( )A .一、二、三 B .一、二、四C .一、三、四D .二、三、四2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图象上,则y 1,y 2,y 3,y 4中最小的是( )A .y 1B .y 2C .y 3D .y 44.(2022•云南)反比例函数y =x6的图象分别位于( )A .第一、第三象限B .第一、第四象限C .第二、第三象限D .第二、第四象限5.(2022•镇江)反比例函数y =xk(k ≠0)的图象经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可).6.(2022•福建)已知反比例函数y =xk的图象分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2的图象位于第二、四象限,则k 的取值范围是 .8.(2022•襄阳)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图象,判断反比例函数y =xa与一次函数y =bx +c的图象大致是( )A .B .C .D .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图象是( )A .B .C .D .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图象大致是( )A .B .C .D .13.(2022•绥化)已知二次函数y =ax 2+bx +c 的部分函数图象如图所示,则一次函数y =ax +b 2﹣4ac 与反比例函数y =xcb a ++24在同一平面直角坐标系中的图象大致是( )A .B .C .D .14.(2022•贺州)已知一次函数y =kx +b 的图象如图所示,则y =﹣kx +b 与y =xb的图象为( )A .B .C .D .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图象如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图象大致是( )A .B .C .D .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图象是( )A .B .C .D .18.(2022•阜新)已知反比例函数y =xk(k ≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图象上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定20.(2022•海南)若反比例函数y =xk(k ≠0)的图象经过点(2,﹣3),则它的图象也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1)21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图象上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 222.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 323.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk的图象上,则k 的值是 .24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk(k >0)的图象上,则y 1 y 2(填“>”“=”或“<”).考点二:反比例函数之综合应用1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数综合复习
1.如果函数 y=(n-4)x n2-5n+3 是反比例函数,那么 n 的值为_______
2.下面的函数是反比例函数的是_____________
①y =3x +1 ②y =x 2+2x ③y =x 2 ④y =2
x
3.若y=(a+1)22-a x 是反比例函数,则a 的取值为__________
4.对于函数y= x m 1
-,当m______时,y 是x 的反比例函数,且比例系数是3
5.已知函数y=(m 2+2m )12-+m m x ,当m 取何值时;
(1)y 与x 是正比例函数;
(2)y 与x 是反比例函数.
6.已知y 与x-1成反比例,当x=3时,y=2
(1)求y 与x 之间的函数关系式
(2)求当x=2时,y 的值
7.已知:y=y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x=1时,y=3,x=-1时,y=1,
(1)求y 与x 的函数关系式
(2)当x=4时,求y 的值
8. 已知A (x 1,y 1),B (x 2,y 2)是反比例函数x k
y =(k ≠0)图象上的两个点,
当
x 1<x 2<0时,y 1>y 2,那么一次函数k kx y -=的图象不经过______象限
9.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数x y 6=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为_______
10.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,060=∠AOB ,
反比例函数x y 48=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于____________
11.已知点A (2,y 1)、B (4,y 2)都在反比例函数x k y =
(k <0)的图象上,则y 1、y 2的大小关系为__________
12.对于反比例函数 y=x
2- ,下列说法不正确的是( ) A .图象分布在第二、四象限
B .当 x >0 时,y 随 x 的增大而增大
C .图象经过点(1,-2)
D .若点 A (x 1,y 1),B (x 2,y 2)都在图象上,且 x 1<x 2,则 y 1<y 2
13.在反比例函数 y=x
k 2-的图象上有两点 A (x 1,y 1),B (x 2,y 2).若 x1>x2>0 时,y 1>y 2,则 k 取值范围是___________
14.若一次函数y =kx +1的图象与反比例函数y =1x
的图象没有公共点,则实数k 的取值范围是 . 知识点四:反比例函数综合应用
(1)求k 的值;
(2)直接写出阴影部分面积之和.
象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH=3,AH=4,点B 的坐标为(m ,-2)
(1)求△AHO 的周长;
(2)求该反比例函数和一次函数的解析式
k y 轴于D ,且矩形ABOD 的面积为3.
(1)求两函数的解析式.
(2)求两函数的交点A 、C 的坐标.
(3)若点P 是y 轴上一动点,且S △APC=5,求点P 的坐标.
18..如图,一次函数y=kx+b (k <0)与反比例函数x
m y
的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点A (4,1)
(1)求反比例函数的解析式;
(2)连接OB (O 是坐标原点),若△BOC 的面积为3,求该一次函数的解析式.
19已知反比例函数y =2x
的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,
一次函数图象与y轴交于点C,与x轴交于点D.
(1)求一次函数的解析式;
(2)对于反比例函数y=2
x,当y<-1时,写出x的取值范围;
(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.。