2011届高三数学一轮复习教案:第三章第六节 三角函数的图像和性质(二)
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
高三数学一轮复习三角函数的图像与性质教案
三角函数的图像与性质先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;8.求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。
9.五点法作y =A sin (ωx +ϕ)的简图: 五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。
二.典例分析考点一:三角函数的定义域与值域典题导入(1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( )A . B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1D.⎣⎢⎡⎦⎥⎤-1,54(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1.(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎢⎡⎦⎥⎤0,π2,试求其值域.解:令t =sin x ,则t ∈.∴y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54.∴y ∈.∴函数的值域为.由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1. (1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2k ∈Z .利用数轴可得 函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3. 答案:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4 (2)B考点二:三角函数的单调性典题导入(2012·华南师大附中模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求:(1)函数的周期;(2)求函数在上的单调递减区间.由y =sin ⎝ ⎛⎭⎪⎫π3-2x 可化为y =-sin ⎝ ⎛⎭⎪⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .从而x ∈时, y =sin ⎝ ⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤-π,-7π12,⎣⎢⎡⎦⎥⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z . (2)f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递增,所以f ⎝ ⎛⎭⎪⎫π7<f ⎝ ⎛⎭⎪⎫π6,而c =f ⎝ ⎛⎭⎪⎫π3=2sin2π3=2sin π3=f (0)<f ⎝ ⎛⎭⎪⎫π7, 所以c <a <b .答案:(1)⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z (2)B考点三:三角函数的周期性与奇偶性典题导入(2012·广州调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),给出下面四个命题:①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,故④正确.综上可知,选C.C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|; (3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2013·青岛模拟)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2(2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝ ⎛⎭⎪⎫-π8,0B .(0,0)C.⎝ ⎛⎭⎪⎫-18,0D.⎝ ⎛⎭⎪⎫18,0 解析:(1)选A 对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝ ⎛⎭⎪⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a=2π,故f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π4.将x =-18代入得函数值为0.板书设计 三角函数的图像与性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间3.函数Bx A y ++=)sin(ϕω),(其中00>>ωA 4.对称轴与对称中心 5.五点法作图教学三角函数的图像与性质是三角函数的重点知识之一,复习时,要让学生熟练记忆三角函数的图。
高中数学一轮复习三角函数的图象与性质优秀教案
例1解答 学生解答区域 计算区域
变式解答
教学后记
本节课能按照学校的“学-讲-练”教学模式推进教学,学生在整个教学中参与度高,参与面广,在教师的引导下对高考重点考点掌握较好。根据当前的内容,设置情景材料和生动的PPT进行配合教学,增强学生对知识的理解,提高学生数学计算能力。师
授课班级
高三
授课时间
教学流程安排
学生活动设计
教学目标:1.理解三角函数的性质。2。掌握常规题的做法。3培养学生的观察,分析,理解,探索能力。
教学重难点:.掌握单调性和周期及最值的性质
温故知新:对于考试的知识进行回顾
教学流程设计
学生活动设计
学生动手操作
探究与实践:根据例题进行变式研究,自己探究和总结。
三角函数的图像与性质复习教案
三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。
引导学生理解三角函数的周期性和奇偶性。
1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。
引导学生理解图像的平移、伸缩等变换。
第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。
举例讲解如何利用三角函数的图像与性质解决实际问题。
第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。
引导学生理解平移的方向和距离对图像的影响。
6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。
引导学生理解伸缩的比例和对称性对图像的影响。
第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。
引导学生理解周期性在图像上的表现。
7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。
引导学生理解对称性在图像上的表现。
第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。
三角函数图像与性质总复习教案
三角函数图像与性质总复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质,包括正弦函数、余弦函数、正切函数等。
2. 提高学生对三角函数图像与性质的理解和应用能力。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 复习正弦函数的图像与性质。
2. 复习余弦函数的图像与性质。
3. 复习正切函数的图像与性质。
4. 复习三角函数的周期性。
5. 复习三角函数的奇偶性。
三、教学方法1. 采用讲解法,通过教师的讲解,引导学生回忆和巩固三角函数的图像与性质。
2. 采用案例分析法,通过具体的例子,让学生理解和掌握三角函数的图像与性质。
3. 采用互动教学法,引导学生积极参与讨论和提问,提高学生的思维能力和解决问题的能力。
四、教学步骤1. 复习正弦函数的图像与性质。
a. 引导学生回忆正弦函数的定义和图像。
b. 讲解正弦函数的周期性和奇偶性。
c. 通过例子,让学生应用正弦函数的性质解决实际问题。
2. 复习余弦函数的图像与性质。
a. 引导学生回忆余弦函数的定义和图像。
b. 讲解余弦函数的周期性和奇偶性。
c. 通过例子,让学生应用余弦函数的性质解决实际问题。
3. 复习正切函数的图像与性质。
a. 引导学生回忆正切函数的定义和图像。
b. 讲解正切函数的周期性和奇偶性。
c. 通过例子,让学生应用正切函数的性质解决实际问题。
4. 复习三角函数的周期性。
a. 引导学生回忆三角函数的周期性定义。
b. 讲解三角函数的周期性性质。
c. 通过例子,让学生应用三角函数的周期性解决实际问题。
5. 复习三角函数的奇偶性。
a. 引导学生回忆三角函数的奇偶性定义。
b. 讲解三角函数的奇偶性性质。
c. 通过例子,让学生应用三角函数的奇偶性解决实际问题。
五、教学评价1. 课堂练习:布置相关的练习题,检查学生对三角函数图像与性质的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对三角函数图像与性质的记忆和理解。
3. 小组讨论:组织学生进行小组讨论,鼓励学生积极参与,提高学生的思维能力和解决问题的能力。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标:1. 让学生理解三角函数的定义和基本概念,掌握正弦函数、余弦函数和正切函数的图象和性质。
2. 培养学生运用数形结合的思想方法研究三角函数的图象与性质。
3. 培养学生的逻辑思维能力和数学审美能力。
二、教学重点与难点:1. 教学重点:三角函数的图象与性质。
2. 教学难点:正弦函数、余弦函数和正切函数的图象与性质的推导和应用。
三、教学方法与手段:1. 教学方法:采用讲练结合、师生互动、分组讨论等教学方法。
2. 教学手段:利用多媒体课件、黑板、粉笔等教学工具。
四、教学过程:1. 导入新课:通过复习三角函数的定义和基本概念,引导学生关注三角函数的图象与性质。
2. 讲解与示范:讲解正弦函数、余弦函数和正切函数的图象与性质,并通过多媒体课件展示图象,让学生直观地感受三角函数的性质。
五、课后作业:1. 绘制正弦函数、余弦函数和正切函数的图象,并分析它们的性质。
2. 练习题:选择适当的函数,分析它们的图象与性质,解决实际问题。
3. 思考题:探讨三角函数图象与性质的内在联系,提出自己的见解。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角函数图象与性质的理解和掌握程度。
2. 观察学生在课堂讨论和练习中的表现,评估他们的逻辑思维能力和数学审美能力。
3. 收集学生对思考题的解答,评价他们的思考深度和创新能力。
七、教学反思:1. 反思本节课的教学内容和方法,评估学生对新知识的接受程度。
2. 思考如何改进教学手段,提高课堂教学效果。
3. 探讨如何引导学生将所学知识应用于实际问题,提高学生的应用能力。
八、教学拓展:1. 介绍三角函数在实际生活中的应用,如测量、信号处理等。
2. 引入高级三角函数的概念,如双曲函数、反三角函数等。
3. 探讨三角函数与其他数学领域的联系,如微积分、线性代数等。
九、教学资源:1. 多媒体课件:三角函数图象与性质的动态展示。
2. 练习题库:涵盖各种难度的练习题。
(完整版)三角函数的图像和性质教案
课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法 导入法、讲授法、归纳总结法学习内容与过程基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x定义域 R R{x |x ≠k π+错误!,k ∈Z }图象值域 [-1,1] [-1,1] R1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙ 特别满意 ⊙ 满意 ⊙ 一般 ⊙ 差 学生签字:课后练习:(具体见附件)课后小结教师签字:审阅签字: 时 间:教务主任签字: 时 间:龙文教育教务处。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标1. 知识与技能:(1)了解正弦函数、余弦函数、正切函数的图像和性质;(2)学会分析三角函数图像的变化规律;(3)能够运用三角函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角函数图像的特性;(2)利用数形结合的方法,研究三角函数的性质;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养学习的积极性;(2)引导学生感受数学的美丽和实用性,提高学生的数学素养;(3)培养学生合作、探究的精神。
二、教学重点与难点1. 教学重点:(1)掌握正弦函数、余弦函数、正切函数的图像和性质;(2)能够运用三角函数的性质解决实际问题。
2. 教学难点:(1)三角函数图像的变换规律;(2)三角函数性质的深入理解。
三、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生探究三角函数的图像与性质;(2)运用数形结合的方法,帮助学生直观地理解三角函数的性质;(3)采用小组合作、讨论的方式,培养学生的团队合作能力。
2. 教学手段:(1)利用多媒体课件,展示三角函数的图像和性质;(2)利用数学软件,进行函数图像的动态演示;(3)提供充足的练习题,巩固所学知识。
四、教学内容与步骤1. 导入新课:(1)复习已知三角函数的图像和性质;(2)引出本节课要学习的内容:三角函数的图像与性质。
2. 探究正弦函数的图像与性质:(1)展示正弦函数的图像;(2)引导学生观察、分析正弦函数的性质;3. 探究余弦函数的图像与性质:(1)展示余弦函数的图像;(2)引导学生观察、分析余弦函数的性质;4. 探究正切函数的图像与性质:(1)展示正切函数的图像;(2)引导学生观察、分析正切函数的性质;五、课堂练习与拓展1. 课堂练习:(1)根据给定的函数式,绘制函数图像;(2)根据函数图像,分析函数的性质;(3)解决实际问题,运用三角函数的性质。
高三数学一轮复习精品教案2:三角函数的图象和性质教学设计
第三节三角函数的图象与性质1.周期函数和最小正周期对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x +T)=f(x),则称f(x)为周期函数,T为它的一个周期.若在所有周期中,有一个最小的正数,则这个最小的正数叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.(人教A 版教材习题改编)函数y =tan 3x 的定义域为( ) A .{x |x ≠32π+3k π,k ∈Z} B .{x |x ≠π6+k π,k ∈Z}C .{x |x ≠-π6+k π,k ∈Z}D .{x |x ≠π6+k π3,k ∈Z}『解析』 由3x ≠π2+k π,k ∈Z 得x ≠π6+k π3,k ∈Z ,故选D.『答案』 D2.函数f (x )=2cos(x +5π2)是( )A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的偶函数『解析』 f (x )=2cos(x +52π)=2cos(x +π2)=-2sin x ,故f (x )是最小正周期为2π的奇函数.『答案』 A3.(2012·福建高考)函数f (x )=sin(x -π4)的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2『解析』 法一 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z.取k =-1,则x =-π4.法二 x =π4时,y =sin(π4-π4)=0,不合题意,排除A ;x =π2时,y =sin(π2-π4)=22,不合题意,排除B ;x =-π4时,y =sin(-π4-π4)=-1,符合题意,C 项正确;而x =-π2时,y =sin(-π2-π4)=-22,不合题意,故D 项也不正确.『答案』 C4.比较大小:sin(-π18)________sin(-π10).『解析』 ∵-π2<-π10<-π18<0,∴sin(-π18)>sin(-π10).『答案』 >5.函数y =2-3cos(x +π4)的最大值为________,此时x =________.『解析』 当cos(x +π4)=-1时,函数有最大值5,此时,x +π4=π+2k π,k ∈Z ,即x =34π+2k π,k ∈Z.『答案』 5 34π+2k π,k ∈Z三角函数的定义域和值域(1)(2012·山东高考)函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( )A .2-3B .0C .-1D .-1-3(2)函数y =1tan x -1的定义域为________.『思路点拨』 (1)先确定πx 6-π3的范围,再数形结合求最值;(2)由tan x -1≠0且x ≠k π+π2,k ∈Z 求解. 『尝试解答』 (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin(π6x -π3)∈『-32,1』.∴y ∈『-3,2』,∴y max +y min =2- 3.(2)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z x ≠π2+k π,k ∈Z.故函数的定义域为{x |x ≠π4+k π且x ≠π2+k π,k ∈Z}.『答案』 (1)A (2){x |x ≠π4+k π且x ≠π2+k π,k ∈Z},1.求三角函数的定义域实际上是解三角不等式,常借助三角函数线或三角函数图象来求解.2.求解三角函数的值域(最值)的常见类型及方法.(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,化为关于t 的二次函数求解.(1)函数y =2sin x -1的定义域为________.(2)当x ∈『π6,7π6』时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.『解析』 (1)由2sin x -1≥0得sin x ≥12,∴2k π+π6≤x ≤2k π+5π6,k ∈Z ,故函数的定义域为『2k π+π6,2k π+56π』(k ∈Z).(2)∵x ∈『π6,76π』∴-12≤sin x ≤1,又y =3-sin x -2cos 2x =2sin 2x -sin x +1=2(sin x -14)2+78,∴当sin x =14时,y min =78,当sin x =1或-12时,y max =2.『答案』 (1)『2k π+π6,2k π+5π6』(k ∈Z) (2)782三角函数的单调性(2012·北京高考)已知函数f (x )=(sin x -cos x )sin 2xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.『思路点拨』 (1)求定义域时考虑分母不为零,然后对f (x )解析式进行化简,转化成正弦型函数的形式,再求周期;(2)求单调递减区间时利用整体代换,把ωx +φ当作一个整体放入正弦的增区间内解出x 即为增区间,不要忽略定义域.『尝试解答』 (1)由sin x ≠0得x ≠k π(k ∈Z), 故f (x )的定义域为{x ∈R|x ≠k π,k ∈Z}.因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x ) =sin 2x -cos 2x -1 =2sin(2x -π4)-1,所以f (x )的最小正周期T =2π2=π.(2)函数y =sin x 的单调递增区间为 『2k π-π2,2k π+π2』(k ∈Z).由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z).所以f (x )的单调递增区间为『k π-π8,k π)和(k π,k π+3π8』(k ∈Z).,1.求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.2.求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2013·武汉模拟)已知函数y =sin(π3-2x ),求:(1)函数的周期;(2)求函数在『-π,0』上的单调递减区间. 『解析』 由y =sin(π3-2x )可化为y =-sin(2x -π3).(1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.所以x ∈R 时,y =sin(π3-2x )的减区间为『k π-π12,k π+5π12』,k ∈Z.取k =-1,0可得函数在『-π,0』上的单调递减区间为『-π,-7π12』和『-π12,0』.三角函数的奇偶性、周期性和对称性设函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2),给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形;③它的图象关于点(π3,0)成中心对称图形;④在区间『-π6,0)上是增函数.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).『思路点拨』 本题是一个开放性题目,依据正弦函数的图象及单调性、周期性以及对称性逐一判断.『尝试解答』 若①、②成立,则ω=2ππ=2;令2·π12+φ=k π+π2,k ∈Z ,且|φ|<π2,故k =0,∴φ=π3.此时f (x )=sin(2x +π3),当x =π3时,sin(2x +π3)=sin π=0,∴f (x )的图象关于(π3,0)成中心对称;又f (x )在『-5π12,π12』上是增函数,∴在『-π6,0)上也是增函数,因此①②⇒③④,用类似的分析可得①③⇒②④.因此填①②⇒③④或①③⇒②④.『答案』 ①②⇒③④或①③⇒②④,1.判断三角函数的奇偶性和周期性时,一般先将三角函数式化为一个角的一种三角函数,再根据函数奇偶性的概念、三角函数奇偶性规律、三角函数的周期公式求解. 2.求三角函数的周期主要有三种方法:(1)周期定义;(2)利用正(余)弦型函数周期公式;(3)借助函数的图象.已知函数f (x )=sin(πx -π2)-1,则下列说法正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数『解析』 周期T =2ππ=2,f (x )=sin(πx -π2)-1=-cos πx -1,因此函数f (x )是偶函数,故选B.『答案』 B两条性质1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z);(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z).2.对称性:正、余弦函数的图象既是轴对称图形,又是中心对称图形且最值点在对称轴上,正切函数的图象只是中心对称图形.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)化为y =A sin(ωx +φ)+k 的形式,逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.从近两年高考试题看,三角函数的周期性、奇偶性、单调性、值域等是高考的热点内容,常与三角变换等知识交汇,在考查三角函数图象与性质的同时,注重考查三角变换的技能,及数形结合、转化与化归等数学思想.创新探究之四 三角函数单调性的创新应用(2012·课标全国卷)已知ω>0,函数f (x )=sin(ωx+π4)在(π2,π)上单调递减,则ω的取值范围是( )A .『12,54』B .『12,34』C .(0,12』 D .(0,2』『解析』 由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆『π2,3π2』,∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.『答案』 A创新点拨:(1)题目背景创新,已知三角函数在给定区间上的单调性,求参数的取值范围,考查了学生的逆向思维.(2)解法创新,本题有多种解法,但每种解法都是建立在对三角函数的单调性深刻理解基础之上的.应对措施:(1)此类题目不管背景如何新颖,都是考查对基础知识的理解与掌握,求解时可从基础知识、基本方法入手.(2)解答本题时,可根据x 的范围求出ωx +π4的范围,再与单调减区间『π2,3π2』相比较求解;也可先求f (x )的单调减区间,然后根据(π2,π)与单调减区间的关系求解.1.(2013·沈阳模拟)已知函数f (x )=2sin ωx 在区间『-π3,π4』上的最小值为-2,则ω的取值范围是( )A .(-∞,-92』∪『6,+∞)B .(-∞,-92』∪『32,+∞)C .(-∞,-2』∪『6,+∞)D .(-∞,-2』∪『32,+∞)『解析』 当ω>0时,由-π3≤x ≤π4得-π3ω≤ωx ≤π4ω,由题意知,-π3ω≤-π2,∴ω≥32, 当ω<0时,由-π3≤x ≤π4得π4ω≤ωx ≤-π3ω,由题意知,π4ω≤-π2,∴ω≤-2,综上知ω∈(-∞,-2』∪『32,+∞).『答案』 D2.(2012·陕西高考)函数f (x )=A sin(ωx -π6)+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈(0,π2),f (α2)=2,求α的值.『解析』 (1)∵函数f (x )的最大值为3,∴A +1=3,即A =2. ∵函数图象的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2,∴函数f (x )的解析式为y =2sin(2x -π6)+1.(2)∵f (α2)=2sin(α-π6)+1=2,∴sin(α-π6)=12.∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,∴α=π3.。
三角函数的图像和性质教案
三角函数的图像和性质教案阳光教育的课题是三角函数的图像和性质。
这是一个重要的内容,但学生可能还不太清楚其中的概念和理解。
因此,需要及时巩固这些知识。
教学目标是掌握三角函数的图像及其性质在图像交换中的应用,并在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。
教学重点是三角函数图像与性质的应用。
教学方法包括导入法、讲授法和归纳总结法。
在基础梳理部分,学生需要掌握“五点法”描图。
对于y=sin x和y=cos x的图像,在[0,2π]上的五个关键点的坐标应该知道。
此外,学生还需要了解三角函数的图像和性质,包括函数、性质、定义域、值域、图像、对称轴、对称中心、周期、单调性和奇偶性。
这些知识将有助于学生更好地理解三角函数的图像和性质。
在教学重点部分,学生需要掌握三角函数图像与性质的应用。
这包括如何求解三角函数的值域(最值),以及如何在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。
为此,教师可以采用三种方法:利用sin x、cos x的有界性;将复杂的函数化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;利用奇偶性来简化函数形式。
最后,教师应该鼓励学生在课后进行练,巩固所学知识。
只有通过不断地练,才能真正掌握三角函数的图像和性质。
换元法是解决三角函数问题的一种常用方法。
通过把sinx 或cosx看作一个整体,可以将其化为求函数在区间上的值域问题。
例如,对于函数y=cos(x+π/3),可以将cos(x+π/3)看作cos(x)的平移,因此其最小正周期与cosx相同,即2π。
另外,对于函数y=tan(-x),其定义域为R\{(2k+1)π/2 | k∈Z},即除去所有奇数个π/2的点。
下面来看几个例题。
对于函数y=sin(-x),其周期为π,因为sin(-x)与sinx的图像关于y轴对称。
对于函数y=tan(3x-π/2),可以将其化为y=tan3x的平移,因此其最小正周期为2π/3.当求解三角函数的定义域和值域时,常常需要借助三角函数线或三角函数图像来解决。
高三数学第一轮复习 44 三角函数的图像与性质(2)教案(学生版)
教案44 三角函数的图像与性质(2)一、课前检测1.5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )A.向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B.向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.在下列函数中,同时满足条件:(1)在)2,0(π上是递增的;(2)以π为周期; (3)是奇函数的函数是( )A. x y tan =B. x y 2tan =C. x y 21tan= D. x y sin =3.已知函数)2,0,0)(tan(πϕωϕω<>>+=A x A y 的图像与x 轴相交的相邻点的坐标为)0,6(π和)0,65(π,且过点(0,-3),求它的表达式。
二、知识梳理解读:三、典型例题分析例1.已知函数f (x)=x x2cos 1sin 2⑴ 求f (x)的定义域.⑵ 用定义判断f (x)的奇偶性.⑶ 在[-π,π]上作出函数f (x)的图象.⑷ 指出f (x)的最小正周期及单调递增区间.变式训练已知函数f (x)=21log (sinx -cosx)⑴ 求它的定义域和值域;⑵ 求它的单调区间;⑶ 判断它的奇偶性;⑷ 判定它的周期性,如果是周期函数,求出它的最小正周期.小结与拓展:例2.已知函数y =acosx +b 的最大值为1,最小值是-3,试确定)(x f =b sin(ax +3π)的单调区间.变式训练:已知函数2()22sin f x x x =-.(Ⅰ)求函数()f x 的最大值;(II )求函数()f x 的零点的集合。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学内容:1. 三角函数的定义与基本概念正弦函数(sin)余弦函数(cos)正切函数(tan)余切函数(cot)正割函数(sec)余割函数(csc)2. 三角函数的图像正弦函数的图像余弦函数的图像正切函数的图像其他三角函数的图像3. 三角函数的性质周期性奇偶性单调性极值三、教学方法:1. 采用讲解法,讲解三角函数的定义、图像和性质。
2. 利用数形结合法,引导学生通过观察图像来理解函数的性质。
3. 运用实例分析法,让学生通过实际问题来应用三角函数的性质。
四、教学步骤:1. 引入三角函数的概念,讲解三角函数的定义和基本性质。
2. 利用计算机软件或板书,绘制三角函数的图像,让学生观察和理解函数的图像。
3. 通过示例,讲解三角函数的性质,引导学生掌握如何判断函数的周期性、奇偶性、单调性和极值。
4. 布置练习题,让学生巩固所学内容,并能够应用三角函数的性质解决实际问题。
五、教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生对三角函数定义和基本概念的掌握程度。
3. 学生能够正确绘制三角函数的图像。
4. 学生能够运用三角函数的性质解决实际问题。
六、教学拓展:1. 探索三角函数的复合函数图像和性质。
2. 研究三角函数在科学和工程中的应用。
3. 引入三角恒等式,让学生了解三角函数之间的关系。
七、教学活动:1. 组织小组讨论,让学生共同探讨三角函数的性质和图像。
2. 开展数学竞赛,激发学生学习三角函数的兴趣。
3. 安排实地考察,让学生观察和理解三角函数在现实世界中的应用。
八、教学资源:1. 利用计算机软件,如GeoGebra或Matplotlib,绘制三角函数的图像。
2. 提供三角函数的图像和性质的参考资料,供学生自主学习。
3. 利用互联网资源,寻找实际问题,让学生应用三角函数的性质解决。
三角函数的图像与性质复习教案
三角函数的图像与性质复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质的基本概念。
2. 提高学生对三角函数图像与性质的理解和应用能力。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 三角函数的图像与性质的基本概念。
2. 三角函数图像的绘制方法。
3. 三角函数性质的推导和应用。
三、教学重点与难点1. 重点:三角函数的图像与性质的基本概念和应用。
2. 难点:三角函数性质的推导和应用。
四、教学方法与手段1. 采用讲解、演示、练习、讨论相结合的教学方法。
2. 使用多媒体课件、黑板、教具等教学手段。
五、教学过程1. 导入:通过复习已学过的三角函数图像与性质的基本概念,激发学生的学习兴趣。
2. 讲解:讲解三角函数图像与性质的基本概念,结合实际例子进行解释和演示。
3. 练习:布置相关的练习题,让学生巩固所学的知识。
4. 讨论:组织学生进行小组讨论,分享各自的解题方法和思路。
六、教学评估1. 课堂练习:及时给予学生反馈,指出其错误,帮助学生纠正。
2. 课后作业:布置相关的作业,巩固所学知识,并及时批改,给予评价和建议。
3. 小组讨论:观察学生在讨论中的表现,了解其对知识的理解和应用能力。
七、教学拓展1. 邀请相关领域的专家或企业人士进行讲座或实践操作,让学生了解三角函数在实际生活中的应用。
2. 组织学生进行实地考察,如测量物体的高度等,运用三角函数解决实际问题。
3. 开展三角函数主题的研究性学习,培养学生的独立思考和探究能力。
八、教学反思1. 在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。
2. 反思教学内容,确保涵盖了三角函数图像与性质的重点和难点。
3. 思考如何激发学生的学习兴趣,提高学生的参与度和积极性。
九、教学计划与进度安排1. 制定详细的教学计划,明确每个阶段的教学目标和内容。
2. 根据学生的学习情况,合理调整教学进度,确保教学效果。
3. 定期进行教学评价,了解学生的学习进展,为后续教学提供参考。
高中数学高三三角函数的图象和性质【教案】
高三一轮(理) 3.3 三角函数的图象和性质【教学目标】1.能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
【重点难点】1。
教学重点:函数y=sin x,y=cos x,y=tan x的图象和性质; 2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】了解理解掌握函数y=sin x,y=cos x,y=tan x的图象和性质√[考纲传真] 1。
能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
真题再现学生通过对高考真题的解决,发现自己对知识的掌握情况。
通过对考纲的解读和分析.让学生明确考试要求,做到有的放矢2.【2014上海】 函数 的最小正周期是________ 【解析】由题意13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎪⎫π2=f ⎝⎛⎭⎪⎪⎫2π3=-f ⎝ ⎛⎭⎪⎪⎫π6,则f (x )的最小正周期为________.典例 (1)(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y =cos ⎝⎛⎭⎪⎪⎫2x +π2B.y =sin ⎝⎛⎭⎪⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x学生通过对高考真题的解决,感受高考题的考察视角。
(2)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象 如图所示,则f (x )的单调递减区间为()A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .故选D.∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,解析 (1)选项A中,y =cos ⎝⎛⎭⎪⎪⎫2x +π2=-sin 2x ,符合题意.6.(2016高考新课标1)已知函数为的零点,为 图像的对称轴, 且在单调,则的最大值为( )数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.知识点3 三角函数的图象和性质y=sin x y=cos x y=tan xR R x≠kπ+错误!,k [-1,1][-1,1]R增区间:错误!,减区间:错误!增区间:[2kπ-π,2kπ],减区间:[2kπ,2kπ+π],递增区间kπ-错误!,kπ+∈Z奇函数偶函数奇函数(kπ,0),k ∈Z 错误!,k∈Zkπ2,0,k∈Z在解题中注意引导学生自主分析和解决问题,教师及时和解题效率.学必求其心得,业必贵于专精。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。
二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。
2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。
四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。
2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。
2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。
3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。
4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。
教案编写完毕,仅供参考。
如有需要,请根据实际情况进行调整。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。
2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。
3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。
七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。
三角函数的图像与性质教学设计
三角函数的图像与性质教学设计一、教学目标:1. 理解正弦函数、余弦函数和正切函数的定义及其图像特点;2. 掌握在不同角度范围内,三角函数图像的变化规律;3. 理解三角函数的周期性和对称性;4. 能够利用三角函数的图像性质解决实际问题。
二、教学内容:1. 正弦函数的定义及其图像性质;2. 余弦函数的定义及其图像性质;3. 正切函数的定义及其图像性质;4. 三角函数的周期性和对称性;5. 利用三角函数图像性质解决实际问题。
三、教学过程:导入(5分钟):通过提问方式引入三角函数的概念,了解学生对该概念的初步认知,引发学生的兴趣。
展示(10分钟):利用投影仪或白板展示正弦函数、余弦函数和正切函数的图像,并让学生观察和比较它们的相似之处和不同之处。
讲解(15分钟):详细讲解正弦函数、余弦函数和正切函数的定义及其图像性质,包括振幅、周期、对称轴和图像的递增递减部分。
练习(15分钟):让学生根据所学知识练习画出给定角度范围内正弦函数、余弦函数和正切函数的图像,并理解图像的变化规律。
巩固(10分钟):出示几道简单的应用题,让学生运用三角函数的图像性质解决实际问题,如寻找某一角度对应的函数值、计算两角间的夹角等。
拓展(10分钟):引导学生思考更广泛的问题,如三角函数的图像在平面几何中的应用,如何利用三角函数的图像找出最值、极值点等。
总结(5分钟):对本次课所学内容进行总结,强调三角函数图像与性质之间的联系,并解答学生的疑问。
四、教学方法与手段:1. 演示法:通过投影仪或白板展示三角函数的图像,帮助学生直观地理解三角函数的性质;2. 解答法:通过解答学生在练习和应用过程中遇到的问题,加深学生对三角函数图像与性质的理解;3. 探究法:通过引导学生思考更广泛的问题,培养学生的创新思维能力。
五、教学评价与反思:在教学过程中,教师可以通过观察学生的学习情况和教学效果,以及布置的相关作业,来评价学生对三角函数图像与性质的掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课 三角函数的图像和性质(二)【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)y =的定义域是______________________________; (2)sin 2cos xy x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________. 6.关于x 的函数)sin()(φ+=x x f 有以下命题:(1)对任意的)(,x f φ都是非奇非偶函数; (2)不存在,φ使)(x f 既是奇函数,又是偶函数; (3)存在,φ使)(x f 是奇函数; (4)对任意的,φ)(x f 都不是偶函数.其中一个假命题的序号是 .因为当φ= 时,该命题的结论不成立. 解析:(1),)(Z ∈k k π;(1),)(2Z ∈+k k ππ;(4),)(2Z ∈+k k ππ等.(两个空格全填对时才能得分.其中k 也可以写成任何整数) 【范例解析】例1.求下列函数的定义域: (1)sin tan x y x=+(2)y ={663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0)10ω-≤<解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩故函数的定义域为(0,)[,4]2ππ⋃.点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集. 例2.求下列函数的单调减区间: (1)sin(2)3y x π=-; (2)2cos sin()42x y x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈.(2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈,又2cos 4sin()24sin()42x x y x ππ==+-,所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈.点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ . 解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=.(2)sin()sin()(sin coscos sin)cos 3233y x x x x x ππππ=++=+2111cos 2sin cos sin 222422xx x x x +=+=+1sin(2)423x π=++T π∴=.点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.例4.已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间. 解:(I )由题设知1π()[1cos(2)]26f x x =++.因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =,即0 π2π6x k =-(k ∈Z ).所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin12644g x =+=+=.(II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时,函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 点评:形如函数sin()A x ωϕ+的对称轴一般过其最高点或最低点,即在其取到最值时. 【反馈演练】 1.函数x x y 24cossin+=的最小正周期为 _____________. 2π2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________. 3.函数()sin ([,0])f x x x x π=-∈-的单调递增区间是________________. 4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos2x f x x =-在[0,]π上的单调递增区间是_______________. 6.把函数f (x )=-2tan (x +π4)的图象向左平移a (a >0)个单位得到函数y =g (x )的图象,若函数y =g (x )是奇函数,则a 的最小值为___________. 7.已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则对于函数)43(x f y -=π,有下列结论:①偶函数且它的图象关于点)0,(π对称; ②偶函数且它的图象关于点)0,23(π对称;③奇函数且它的图象关于点)0,23(π对称; ④奇函数且它的图象关于点)0,(π对称.其中,正确结论的序号有 ④ .8. 若()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,则有序实数对(,a b )可以是 (-1,-1) .(注:只要填满足0a b +=的一组数即可)(写出你认为正确的一组数即可).9. 函数)32sin(3)(π-=x x f 的图象为C ,如下结论中正确的是 ①②③ (写出所有正确结论的编号) .①图象C 关于直线π1211=x 对称;②图象C 关于点)0,32(π对称;③函数125,12()(ππ-在区间x f )内是增函数; ④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .解析:函数)32sin(3)(π-=x x f 的图象为C ,①图象C 关于直线232x k πππ-=+对称,当k=1时,图象C 关于π1211=x 对称;①正确;②图象C 关于点(,0)26k ππ+对称,当k=1时,恰好为关于点)0,32(π对称;②正确;③x ∈)12π5,12π(-时,23x π-∈(-2π,2π),∴ 函数)(x f 在区间)12π5,12π(-内是增函数;③正确;[,0]6π-32π4π[,]3ππ2[,]63ππ,75[,]63ππ④由x y 2sin 3=的图象向右平移3π个单位长度可以得23sin(2)3y x π=-,得不到图象C. ④不正确。
所以应填①②③.10.已知函数π124()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭.(Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α.解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===.从而π124()πsin 2f ααα⎛⎫+- ⎪⎝⎭=⎛⎫+⎪⎝⎭ππ1cos 2cos sin 2sin 44cos ααα⎫++⎪⎝⎭=21cos 2sin 22cos 2sin cos cos cos ααααααα+++==142(cos sin )5αα=+=.11.已知向量b a x f x x b x x a ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos2(令πππ.求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.解:()sin()tan()tan()2242424x x x x f x a b πππ=⋅=+++-21tan tan122sin)222221tan1tan222sin cos2cos1222x xx x xx xx x x+-=++⋅-+=+-xx cossin+==)4sin(2π+x.所以2)(的最大值为xf,最小正周期为,2π]4,0[)(π在xf上单调递增,[,]42ππ上单调递减.12.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像解:(Ⅰ))(8xfyx==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ,.42k k Zππϕπ∴+=+∈.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=xy因此由题意得.,2243222Zkkxk∈+≤-≤-πππππ所以函数.],85,8[)432sin(Zkkkxy∈++-=πππππ的单调增区间为(Ⅲ)由知)32sin(π-=x y故函数上图像是在区间],0[)(πx f y =。