Matlab基于小波变换的图形图像处理
基于MATLAB的小波变换在图像压缩中的应用
{ l I d 一。 f ~ <∞
波 序列. 对 于连续 的情 况 , 小波序列 为 :
(. 1 31 ) .
我们 称 (0 为一个 基本 小波或母 小波 ( ohr vl ) 将母 函数 经伸 缩 和平 移 后 , 可 以得 到一 个 小 6) M te e t . Wa e 就
素间冗余.
() 视觉 冗余 : 3心理 心理视觉冗余 是相对 于人眼 的视觉特 性而言 的 , 人眼对 于图像 的视觉特 性包 括 : 对 亮度 信号 比对 色度信号 敏感 , 对低频 信号 比对 高频信 号敏感 , 静止 图像 比对运 动图像 敏感 , 对 以及对 图像 水平线 条和垂 直线 条 比对斜 线敏感 等.
真 实验 结果 和 分析 表 明此 压 缩 方 法具 有 较好 的效 率 , 满足 图像 压 缩 的要 求 . 能 关键词 : 小波 变换 ; 构 ; 重 图像压 缩 中 图分 类 号 :N.1 .3 T 9 17 收 稿 日期 : 0 0 2 8— 8—3 0 0 文献 标 识 码 : A 文章编号 : 7 1 4—13 (08 0 04 0 6 3 12 0 )6— 0 9— 5
而且 在时频两域都 具有表征 信号局域特 征 的能 力 , 一 种窗 口大 小 固定不 变但 形状 可 变 , 间窗 口和 频 是 时 率窗 口都可以改变 的时频局部 化分析方 法. 即在 低频 部 分具 有较 高 的频率 分辨 率 和较低 的 时间分 辨率 , 在高频部 分具有较高 的时间分 辨率和较低 的频率 分辨率 , 适合 于探 测正常 信号 中夹带 的瞬 态反 常现象 很
小波变换-图像融合matlab代码
%对图像进行放大算子的运算
PIC3 = conv2(conv2(Y, 2*fw, 'valid'),2*fw','valid');
%第i1级图像重构;
PIC1 = PIC3 + L{i};
%选取图像范围
PIC1 = PIC1(1:k1(i),1:k2(i));
% %end;
% %end;
% %%
% %for k=1:256,
% % p1(k)=p1(k)/(d);
% % p2(k)=p2(k)/(d);
% %end;
%
% %for i=1:256
% % for j=1:256
% % p3(i,j) =p3(i,j)/(d);
%图像隔行隔列插值扩展恢复到原尺寸图像
[c d] = size(Y4);
Y6 = zeros(2*c, 2*d);
Y6(1:2:2*c,1:2:2*d) = Y4;
Y7 = zeros(2*c, 2*d);
%PIC2 = X2;
X1 = PIC1;
X2 = PIC2;
%定义滤波窗口;
fw = 1/16.*[1 4 6 4 1];
z =3;
L = cell(1,z);
L1 = cell(1,z);
for i = 1:z % N1
G3 = conv2(conv2(Y3, fw, 'valid'),fw', 'valid');
%将图像进行隔行隔列减半
[a b] = size(G2);
Y4 = G2(1:2:a, 1:2:b);
基于MATLAB的小波分析应用(第二版)(周伟)5-13章 (2)
第6章 小波变换与图像处理
2. 图像的小波分解实例 下面通过两个例子说明如何对图像进行单尺度分解和多 尺度分解,并提取多尺度分解的小波系数。 【例6-1】 对图像进行单尺度分解。 在本例中说明如何对图像进行单尺度分解。程序中调用 函数dwt2对图像进行分解,并画出图像分解的低频分量和水 平、垂直和斜线方向的三个高频分量,可以看出低频分量表 现了图像的轮廓,而高频分量表现了图像的细节。 程序代码如下:
第6章 小波变换与图像处理 subplot(231);image(wcodemat(chd2,nbc)); title('尺度2水平方向的高频系数'); subplot(232);image(wcodemat(cvd2,nbc)); title('尺度2垂直方向的高频系数'); subplot(233);image(wcodemat(cdd2,nbc)); title('尺度2斜线方向的高频系数');
第6章 小波变换与图像处理
2. 图像的平稳小波变换实例 下面举例说明函数swt2的用法。 程序代码如下:
%加载图像 load tire; nbc = size(map,1); colormap(pink(nbc)); cod_X = wcodemat(X,nbc); subplot(221)
第6章 小波变换与图像处理
第6章 小波变换与图像处理
C = [ A(N) | H(N) | V(N) | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ]
式中,A为低频系数;H为水平高频系数;V为垂直高频系 数;D为斜线高频系数;所有向量均以列向量存储在矩阵C中。
小波变换在图像处理中的应用毕业论文
结论.......................................................................15
参考文献...................................................................16
cl是x的小波分解结构则perf0100小波分解系数里值为0的系数个数全部小波分解系数个数perfl2100cxc向量的范数c向量的范数华侨大学厦门工学院毕业设计论文首先对图像进行2层小波分解并通过ddencmp函数获取全局阈值对阈值进行处理而后用wdencmp函数压缩处理对所有的高频系数进行同样的阈值量化处理最后显示压缩后的图像并与原始图像比较同时在显示相关的压缩参数
3.2.2实现增强的算法流程............................................10
3.3小波包图像去噪......................................................10
3.3.1实现去噪的主要函数............................................11
指导教师签名:
日期:
华侨大学厦门工学院毕业设计(论文)
小波变换在图像处理中的应用
摘要
近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,
可以同时进行时域和频域分析。
因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定
利用Matlab进行图像去噪和图像增强
利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
matlab离散小波变换dwt(小波分解)
小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。
在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。
本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。
1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。
具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。
2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。
其中,图像处理是离散小波变换最为常见的应用之一。
通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。
在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。
在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。
3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。
其中,dwt函数是Matlab中常用的离散小波变换函数之一。
其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。
毕业设计---基于小波变换的图像处理方法研究
基于小波变换的图像处理方法研究摘要图像增强是图像处理的一个重要分支,它对提高图像的质量起着重要的作用。
它通过有选择地强调图像中某些信息而抑制另一些信息,以改善图像的视觉效果,将图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。
传统的方法在增强图像对比度的同时也会增强图像噪声,而小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。
本文首先对传统图像增强理论进行概述,并给出直方图均衡化与灰度变换算法,通过matlab来观察其处理效果的特点,然后提出四种基于小波变换的图像增强方法,并分析它们与传统图像增强方法相比的优缺点,最后基于传统小波变换只能增强图像边缘部分而无法增强细节部分的缺点,引出了基于分数阶微分和小波分解的图像增强方法,并通过matlab观察了这种算法的处理效果。
关键词:图像增强;直方图均衡化;小波变换;分数阶微分Image enhancement based on wavelet transformationAbstractImage enhancement is an important branch in image processing.It plays an important role in improving the quality of the images.It will improve the image visual effect through emphasizing the image information and inhibitting some other information selectively.It will converse images into a form more suitable for the human eye observation and computer analysis processing.The traditional method of image enhancement will enhance image contrast,image noise as well,while wavelet transform is a decompositon method of multi-scale and multi-resolution,it can separet noise from signal in different scale so that it can arrive the purpose of image enhancement according to the distribution of the noise.In the paper,firstly, I will summarize the image enhancement theory and give the Histogram equalization algorithm,at the same time,I will analyze the disadvantages of the treatment effect through the Matlab.Then,I will give an image enhancement method based on the wavelet transform and analyze its advantages and disadvantages compared with traditional methods.Finally,because traditional wavelet transformation can only strengthen the edge of images instead of the details,we will introduce the image enhancement based on wavelet decomposition and fractional differentials.At the same time,we will observe the treatment effect of this algorithm by the matlab..Keywords: Image enhancement; Histogram equalization; Wavelet transform; Fractional differenti目录第一章绪论 (1)1.1 论文研究的背景和意义 (1)1.2 国内的研究状况 (1)1.3 论文的主要内容 (2)第二章图像增强的传统方法 (3)2.1 灰度变换法 (3)2.1.1 图像反转 (3)2.1.2 对数变换 (3)2.1.3 分段线性变换 (4)2.2 直方图调整法 (5)第三章小波变换的理论基础 (8)3.1 小波变换与傅里叶变换 (8)3.1.1 小波变换的理论基础 (8)3.1.2 小波变换和傅里叶变换的比较 (8)3.2 小波变换基本理论 (9)3.2.1 一维连续小波变换(CWT) (9)3.2.2 一维离散小波变换(DWT) (10)3.2.4 二维离散小波变换 (11)3.3 小波变换的多尺度分析 (11)第四章基于小波变换的图像增强 (13)4.1 小波变换图像增强原理 (13)4.2 小波变换图像增强算法 (14)4.2.1 非线性增强 (14)4.2.2 图像钝化 (14)4.2.3图像锐化 (15)4.2.4 基于小波变换的图像阈值去噪 (16)4.3 改进的基于小波变换的图像增强算法 (17)4.3.1 分数阶微分用于图像增强理论 (17)4.2.2 分数阶微分滤波器的构造 (19)4.2.3 基于分数阶微分和小波分解的图像增强 (20)4.2.4 小波分解层次与分数阶微分阶次对图像处理结果的影响 (23)第五章结论 (26)致谢 (27)参考文献 (28)第一章绪论1.1 论文研究的背景和意义在我们所处的信息社会,人们对于信息获取和交流的要求越来越高,从而促进了信息处理和应用技术的飞速发展。
MATLAB环境下小波变换处理图像设计
tl ’ ie 第二次压缩 图像 ’ t( ) ;
程 序 2 基 于 二 维 小 波 分 析 的 图 像 边 缘提 取程 序 :
c e ral l a l ;
作 者 简 介 :张 俊 , , 南 开 封 人 , 科 , 理 工 程 师 。 主 要研 究 方 向 : 算 机 应 用 。 女 河 本 助 计
边缘提取 。一个 图像作小波分解后 , 可得 到… 系列不 同分辨率
的子 图像 , 同 分 辨 率 的 子 图像 对应 的频 率 是 不 相 同 的 。高 分 不 辨 率 ( 高 频 ) 图像 上 大 部 分 点 部 接 近 于 0 越 是 高 频 这 种 现 即 子 , 象 越 明 显 。对 一 个 图像 来 说 , 现 图 像 最 主要 的部 分 是低 频 部 表 分 , 以 一 个 最 简 单 的压 缩 方 法 是 利用 小 波 分 解 , 掉 图像 的 所 去
C= { R
lo 。 <。 d ( JI ‘ )J
h = ro f( ,Ssm8 1; lw ce2 C ,y ’) h ,’ , v = rof( c ,y ’) lw ce2V,Ssm8 1; ,’ , d -vce2 ,Ssm8 1; l rof( c ,y ’)  ̄ d , , c=a,l l 1; l [l ; , ] h vd sb l (2 )maec) u po 2 2; g (1; t i
c 2 . c 2; a =025 a
高频部分而只保 留低频部分 。 程序 1基于二维小波分析 的图像压缩处理程序 :
cc; l
sb lt 2 )maec2; lr pga(5 ) upo( 4; g(a) ooma(r 2 6) 2 i c y ;
a ss ua e; xi q r
小波变换matlab
小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
用Matlab实现基于小波变换的图像增强技术
用Matlab实现基于小波变换的图像增强技术
用Matlab实现基于小波变换的图像增强技术摘要:小波是有限宽度的基函数,这些基函数不仅在频率上而且在位置上是变换的,因此,它更适合于处理突变信号和非平稳信号,这一特性可用于图像处理的很多地方,本文将其用于图像增强,并利用matlab软件进行仿真实验,获得了较好的效果。
关键词:图像增强小波变换滤波
1 图像增强原理及方法
对于一个图像处理系统来说,可以分为三个阶段:图像预处理阶段、特征提取阶段、识别分析阶段。
图像预处理阶段尤为重要,如果这个阶段处理不好,后面的工作就无法展开,图像增强是图像预处理中重要的方法。
图像增强不考虑图像质量的下降的因素,只将图像中感兴趣的特征有选择地突出,而衰减不需要的特征,它的目的主要是提高图像的可读度。
图像增强的方法分为空域法和频域法两类,空域法是指直接在图像所在的空间进行处理,即直接对图像中的各个像素点进行操作;而频域法主要是在图像的某个变换域内,将图像转换到其他空间,利用该空间的特有性质,通过修改变换后的系数,例如傅里叶变换、DCT变换等的系数,对图像进行操作,然后再进行反变换得到处理后的图像。
2 频域增强的主要步骤。
matlab wavelet用法
matlab wavelet用法MATLAB中的小波变换(Wavelet Transform)是一种信号处理技术,它可以将信号分解成不同尺度的频率成分,以及时间上的局部特征。
小波变换在信号处理、图像处理和数据压缩等领域有着广泛的应用。
下面我将从使用小波变换进行信号分析和图像处理两个方面来介绍MATLAB中小波变换的用法。
首先,我们来看如何使用小波变换进行信号分析。
在MATLAB中,可以使用`wavedec`函数对信号进行小波分解,使用`waverec`函数对信号进行小波重构。
具体步骤如下:1. 信号分解,使用`wavedec`函数对信号进行小波分解,语法为`[C, L] = wavedec(X, N, wname)`,其中X为输入信号,N为分解层数,wname为小波基函数名称。
函数返回值C为小波系数,L为各层分解系数长度。
2. 信号重构,使用`waverec`函数对信号进行小波重构,语法为`X = waverec(C, L, wname)`,其中C为小波系数,L为各层分解系数长度,wname为小波基函数名称。
函数返回值X为重构后的信号。
其次,我们来看如何使用小波变换进行图像处理。
在MATLAB中,可以使用`wavedec2`函数对图像进行二维小波分解,使用`waverec2`函数对图像进行二维小波重构。
具体步骤如下:1. 图像分解,使用`wavedec2`函数对图像进行二维小波分解,语法为`[C, S] = wavedec2(X, N, wname)`,其中X为输入图像,N为分解层数,wname为小波基函数名称。
函数返回值C为二维小波系数,S为各层分解系数大小。
2. 图像重构,使用`waverec2`函数对图像进行二维小波重构,语法为`X = waverec2(C, S, wname)`,其中C为二维小波系数,S为各层分解系数大小,wname为小波基函数名称。
函数返回值X为重构后的图像。
除了上述基本用法,MATLAB还提供了丰富的小波变换工具箱,包括不同类型的小波基函数、小波域滤波和阈值处理等功能,可以根据具体需求进行选择和使用。
基于 matlab 实现的二维小波分解算法-概述说明以及解释
基于matlab 实现的二维小波分解算法-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括一些关于小波分解算法的基本介绍,可以简要介绍小波分解算法的原理和应用领域,同时提及该算法在信号处理、图像压缩以及特征提取等方面的重要性。
以下是一个示例:在当今信息时代,信号处理和图像处理一直是计算机科学和工程学中的研究热点。
为了更好地理解和处理信号和图像中的信息,及时去除噪声、压缩图像以及提取出关键特征,人们不断寻求更有效的处理方法。
而小波分解算法作为一种新兴的信号处理方法,在近年来得到了广泛的应用和研究。
小波分解算法是一种将信号或图像分解为时频域或时空域的工具,它可以分解出不同尺度和频率的子信号或子图像,这为信号处理和图像处理提供了一种有效途径。
与传统的傅里叶变换相比,小波分解算法具有更好的局部性质和多尺度分析能力,因此被广泛运用于信号处理、图像压缩、图像恢复、特征提取等领域。
在信号处理中,小波分解算法可以用于去噪、压缩、去除偶尔的干扰等。
在图像处理方面,小波分解算法具备较好的多分辨率特性,可以在不同分辨率上进行图像处理,对于边缘检测、纹理分析、目标识别等具备独特的优势。
此外,小波分解算法对于非平稳信号和非线性系统等具备突出的应用优势。
本文将介绍基于Matlab 的二维小波分解算法的实现,通过对该算法的深入剖析和实验验证,展示它在图像处理方面的应用前景以及算法效果的评估。
通过本文的研究,读者将了解到小波分解算法的实际应用场景和优势,进一步提高信号处理和图像处理的能力。
在文章的后续部分中,我们将重点介绍小波分解算法的原理,并详细阐述如何在Matlab 环境下实现二维小波分解算法。
1.2 文章结构本文将按照以下结构展开对基于Matlab 实现的二维小波分解算法的介绍和分析:1. 引言:首先对文章的主题和目的进行概述,介绍小波分解算法在图像处理领域的重要性,并总结文章结构。
2. 正文:2.1 小波分解算法概述:详细介绍小波分解算法的基本原理和应用领域,包括信号分析,压缩,去噪等方面。
matlab实现小波变换
matlab实现小波变换小波变换(Wavelet Transform)是一种信号处理技术,可以将信号分解成不同频率和时间分辨率的成分。
在Matlab中,可以利用小波变换函数实现信号的小波分析和重构。
本文将介绍小波变换的原理和在Matlab中的使用方法。
一、小波变换原理小波变换是一种时频分析方法,通过对信号进行多尺度分解,可以同时观察信号的时间和频率信息。
小波变换使用小波函数作为基函数,将信号分解成不同频率的子信号。
小波函数是一种具有有限长度的波形,可以在时间和频率上进行局部化分析。
小波变换的主要步骤包括:选择小波函数、信号的多尺度分解、小波系数的计算和重构。
1. 选择小波函数:小波函数的选择对小波变换的结果有重要影响。
常用的小波函数有Haar小波、Daubechies小波、Symlet小波等。
不同的小波函数适用于不同类型的信号,选择合适的小波函数可以提高分析的效果。
2. 信号的多尺度分解:信号的多尺度分解是指将信号分解成不同尺度的成分。
小波变换采用层级结构,每一层都将信号分解成低频和高频两部分。
低频表示信号的平滑部分,高频表示信号的细节部分。
3. 小波系数的计算:小波系数表示信号在不同尺度和位置上的强度。
通过计算每一层的小波系数,可以得到信号在不同频率上的能量分布。
4. 信号的重构:信号的重构是指将分解得到的小波系数合成为原始信号。
小波重构的过程是小波分析的逆过程,通过将每一层的低频和高频合并,可以得到原始信号的近似重构。
二、Matlab中的小波变换在Matlab中,可以使用wavedec函数进行小波分解,使用waverec 函数进行小波重构。
具体步骤如下:1. 加载信号:需要加载待处理的信号。
可以使用load函数从文件中读取信号,或者使用Matlab中自带的示例信号。
2. 选择小波函数:根据信号的特点和分析目的,选择合适的小波函数。
Matlab提供了多种小波函数供选择。
3. 进行小波分解:使用wavedec函数进行小波分解,指定分解的层数和小波函数名称。
matlab bwm算法
matlab bwm算法Matlab BWM算法BWM(Binary Wavelet Matching)算法是一种用于图像检索和相似性匹配的算法,它结合了小波变换和二进制编码的特点,能够有效地提取和匹配图像的特征。
本文将介绍BWM算法的原理和应用。
一、BWM算法原理BWM算法的核心思想是将图像分解为不同尺度的小波系数,然后利用二进制编码来表示每个小波系数的正负值。
具体步骤如下:1. 小波变换:首先,将输入的图像进行小波变换,得到不同尺度的小波系数。
小波变换是一种多尺度分解的方法,它可以将图像分解为低频部分和高频部分。
2. 二进制编码:对于每个小波系数,通过比较其值与零的大小关系,将其编码为1或0。
如果小波系数大于零,则编码为1;如果小于零,则编码为0。
3. 特征提取:将编码后的小波系数按照一定的规则进行组合,得到图像的特征向量。
特征向量表示了图像在不同尺度上的特征信息。
4. 相似性匹配:对于待检索的图像,同样进行小波变换和二进制编码,得到其特征向量。
然后,通过计算特征向量之间的欧氏距离或相关系数,来衡量图像之间的相似度。
二、BWM算法应用BWM算法在图像检索和相似性匹配方面有广泛的应用。
下面列举了几个典型的应用场景:1. 图像检索:BWM算法可以通过比较图像的特征向量,快速准确地找到与给定图像相似的图像。
这在大规模图像数据库的检索中非常有用,可以帮助用户快速找到所需的图像。
2. 图像分类:BWM算法可以根据图像的特征向量将其分类到不同的类别中。
通过训练一组已知类别的图像,可以建立分类模型,并用于对新图像进行分类。
3. 目标识别:BWM算法可以用于在图像中检测和识别目标物体。
通过比较目标物体的特征向量与数据库中已知目标的特征向量,可以实现目标的快速准确识别。
4. 图像压缩:BWM算法可以通过保留图像的重要特征信息,将图像进行有效压缩。
在图像传输和存储方面,可以减少数据量和传输时间。
5. 图像鉴别:BWM算法可以用于判断图像的真实性和完整性。
基于Matlab的小波变换在图像压缩中的应用
、 H } l 、 H
图3 2次小波变换后的频 率分布
用子带 结构 实现离散 小波变换 的计算 , 以迭代的方式使用 双 子带编码并 且 自底向上地建立小波变换 , 即分别用低通滤 波 器 和高通滤波器对 fX y 滤波 , 间隔抽样 产生两个 高 、 ( ,) 再 低 半带信号 , 然后对低半带 信号再 一次实施 双子带 编码 , 连续
输 。小波编码方法是 近年来发 展起来 新型编 码方法 。因其
图 2 图像 小 波 重 建 过 程
其 中 h() 0x 是低 通滤波器 , 1x 是 高通滤波器 , 表示 h()
间隔采样 , 即只剩下采样数的一半 , 十表示加倍采样 , 即每 隔
一
具有压缩 比高 , 压缩 速度快 , 压缩 后能保持 信号与 图像 的特
量大 , 且受通 信带 宽、 储 容量 和计 算机 处理 速度 限 制 , 存 因
此, 为满 足实际应 用需 要 , 有必要对图像数据进 行压缩处理 ,
图 1 图像小波分解过程
,
)
以提高图像传 输和存储 的效率。
小波分析 是傅里叶分析 和调和分 析发展史 上 的一个 里
程碑 , 被誉 为“ 数学 显微 镜” …。作 为一种 多 分辨 率分 析 方 法, 小波分析 具有很 好 的时频局部 化特性 , 特别适 合按 照人 眼视觉特性设计编码方法 , 也非常有 利于图像信 号的渐进传
维普资讯
山
图像的细节变化。
西
电
Hale Waihona Puke 子技术 20 0 7年
方法 是一种最 简单 的压缩方法 , 它不需要经过其它处理 即可
2 小波 变换用 于 图像 压缩
基于小波变换的图像去噪方法研究报告附MATLAB程序
2.小波变换概述
2.1 小波变化去噪技术研究现状
上个世纪八十年代 Mallet 提出了 MRA(Multi_Resolution Analysis),并首先把 小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号 的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠 定了基础[1]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不 同传播特性,提出了基于模极大值去噪的基本思想。1992 年,Donoho 和 Johnstone 提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被 Donoho 和 Johnstone 证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要 的就是确定阈值。1995 年,Stanford 大学的学者 D.L.Donoho 和 I.M.Johnstone 提 出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[2]。从这之后的小 波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪 的 效 果 。 影 响 比 较 大 的 方 法 有 以 下 这 么 几 种 : Eero P.Semoncelli 和 Edward H.Adelson 提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[3]; Elwood T.Olsen 等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘 跟踪法、局部相位方差阈值法以及尺度相位变动阈值法;学者 Kozaitis 结合小波 变换 和高阶 统计量 的特点 提出了 基于高 阶统计 量的小 波阈值 去噪方 法[4]; G.P.Nason 等 利 用 原 图 像 和 小 波 变 换 域 中 图 像 的 相 关 性 用 GCV(general crossvalidation)法对图像进行去噪;Hang.X 和 Woolsey 等人提出结合维纳滤波器和小 波阈值的方法对信号进行去噪处理[5],Vasily Strela 等人将一类新的特性良好的小 波(约束对)应用于图像去噪的方法[6];同时,在 19 世纪 60 年代发展的隐马尔科 夫模型(Hidden Markov Model),是通过对小波系数建立模型以得到不同的系数处 理方法;后又有人提出了双变量模型方法[7],它是利用观察相邻尺度间父系数与 子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取 得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。
用Matlab实现基于小波变换的图像增强技术
用Matlab实现基于小波变换的图像增强技术摘要:小波是有限宽度的基函数,这些基函数不仅在频率上而且在位置上是变换的,因此,它更适合于处理突变信号和非平稳信号,这一特性可用于图像处理的很多地方,本文将其用于图像增强,并利用matlab软件进行仿真实验,获得了较好的效果。
关键词:图像增强小波变换滤波1 图像增强原理及方法对于一个图像处理系统来说,可以分为三个阶段:图像预处理阶段、特征提取阶段、识别分析阶段。
图像预处理阶段尤为重要,如果这个阶段处理不好,后面的工作就无法展开,图像增强是图像预处理中重要的方法。
图像增强不考虑图像质量的下降的因素,只将图像中感兴趣的特征有选择地突出,而衰减不需要的特征,它的目的主要是提高图像的可读度。
图像增强的方法分为空域法和频域法两类,空域法是指直接在图像所在的空间进行处理,即直接对图像中的各个像素点进行操作;而频域法主要是在图像的某个变换域内,将图像转换到其他空间,利用该空间的特有性质,通过修改变换后的系数,例如傅里叶变换、DCT变换等的系数,对图像进行操作,然后再进行反变换得到处理后的图像。
2 频域增强的主要步骤频域增强的主要步骤是:(1)选择变换方法,将输入图像变换到频域空间;(2)在频带空间中,根据处理目的设计一个转换函数,并进行处理;(3)将所得的结果用反变换得到增强图像。
常见的频域增强方法有低通滤波和高通滤波。
信号或图像的能量大部分集在在幅度谱的低频和中频段,而在较高的频段,感兴趣的信息常被噪声所淹没。
因此,一个能降低高频成分幅度的滤波器就能明显减弱噪声的影响。
3 基于小波变换的图像增强技术小波变换是最近20多年来发展起来的用于信号分析和信号处理的一种新的频域变换技术。
小波是有限宽度的基函数,这些基函数不仅在频率上而且在位置上是变换的,其具有时间-频率自动伸缩能力,因此,它更适合于处理突变信号和非平稳信号,这一特性可用于图像处理的很多地方。
小波多分辨率分解可以看成信号通过小波滤波器后的小波滤波作用的结果。
基于Matlab的小波分析在图像处理中的应用
其中, 为构造Meyer小波的辅助函数,且有
(16)
4小波分析在图像处理中的应用
4.1小波分析用于图像压缩
4.1.1基于小波变换的图像局部压缩
基于离散余弦变换的图像压缩算法,其基本思想是在频域对信号进行分解,驱除信号点之间的相关性,并找出重要系数,滤掉次要系数,以达到压缩的效果,但该方法在处理过程中并不能提供时域的信息,在我们比较关心时域特性的时候显得无能为力。
%重建处理后的系数
rx=idwt2(rca1,rch1,rcv1,rcd1,'sym4');
subplot(221);image(wcodemat(X,192)),colormap(map);title('原始图像');
subplot(222);image(codx),colormap(map);title('一层分解后各层系数图像');
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。
Nr=2 Nd=2,4,6,8
Nr=3 Nd=1,3,5,7,9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2010-05-20作者简介:刘鹏远(1982-),男,助教.文章编号:1007-1229(2011)01-0066-030引言Matlab 是由Math works 公司开发的一种主要用于数值计算及可视化图形处理的工程语言.它将数值分析、矩阵计算、图形图像处理、信号处理和仿真等诸多强大的功能集成在较易使用的交互式计算机环境之中,为科学研究、工程应用提供了一种功能强、效率高的编程工具[1-3].Matlab 名字由Matrix (矩阵)和Laboratory (实验室)两词的前三个字母组合而成.20世纪70年代后期时任美国新墨西哥大学计算机科学系主任的Clever Moler 博士和他的同事构思并为学生设计了一组调用LINPACK 和EISPACK 库程序的“通俗易用”的接口,此即为用FORTRAN 编写的萌芽状态的Mat -lab.以后几年,Matlab 作为免费软件在大学里使用,深受大学生们的喜爱[1-3].Matlab 基于小波变换的图形图像处理刘鹏远1,骆升平2(1.中山职业技术学院计算机工程系,广东中山,528404;2.北京赛四达科技有限公司,北京,100029)摘要:小波分析是当前数学中一个迅速发展的新领域,在Matlab 中,图像的增强、除噪、压缩是其应用领域中的一个方面.文中首先介绍了小波分析的历史与现状,然后详细地说明了当前小波分析在图像方面的各个应用领域和研究的意义,以及其研究工具Matlab 组成和特点,从理论上讲解了小波变换的由来、定义和特点,在分析中所涉及到的连续小波变换、离散小波变换、二维小波变换.通过小波分析的理论研究,应用Matlab 来实现了一般图像的压缩、除噪和增强,然后利用小波分析的工具箱打开图形接口方式,来实现相关小波分析的应用.由于小波分析在图像中有许多的优点,因此小波分析在各个应用领域也越来越广.关键词:小波分析;小波变换;图形接口方式;Matlab 中图分类号:TP391.41文献标识码:AThe Image Processing by Matlab on Wavelet TransformingLIU Peng-yuan,LUO Sheng-ping(1.Department of Computer Engineering,Zhongshan Professional Technology Institute,Zhongshan 528404,China;2.Beijing Seastars Company ,Beijing 100029,China )Abstract:The issue of wavelet analysis is fast -developing in maths.The history and current situations of the wavelet analysis are introduced in the article,as well as its application and significance.Then the origin,definition and characteristics of the wavelet transform are stated.For continuous wavelet transform,discrete wavelet transform and two -dimensional wavelet transform,the wavelet analysis theory and Matlab are taken to achieve image compression,denoising and enhancement.The wavelet analysis toolbox is adopted to open graphics interface to realize the relevant application.Owning many advantages in the field of image compressing,wavelet analysis is being used in more and more areas.Key word:wavelet analysis;wavelet transform;graphical interface;Matlab江西理工大学学报Jour nalofJi angxiU ni ver si t y of Sci ence and Technol ogy第32卷第1期2011年2月Vol.32,No.1Feb.20111Matlab产品系列与应用Matlab产品族由大量不同功能的产品系列组成:(1)Matlab.它集计算、可视化及编程于一身.在Matlab中,无论是问题的提出还是结果的表达都采用人们习惯的数学描述方法,而不需要用传统的编程语言进行前后处理.这一特点使Matlab成为了数学分析、算法开发及应用程序开发的良好环境.Mat-lab是Math works产品家族中所有产品的基础.(2)Matlab Toolbox.为了支持不同的专业领域的用户,Matlab还提供了大量的面向专业领域的工具箱.以往开发复杂的编程算法需要花费很长的时间才能完成,而且调试需要花费更多的时间.而使用Matlab语言和Matlab工具箱,用户可以专注于算法研究,编程只需要几行就可以完成,而且可以很快地画出图形,从而迅速地进行多种算法的比较,从中找出最好的方案.Matlab工具箱中的大多数函数都是通过M文件编写的,用户可以察看其中的源码,通过适当的修改,便可以形成自己的特殊算法.(3)Matlab compiler.利用Matlab compiler可以从M文件自动产生优化C代码.通过将Matlab代码转换为C或C++,编译器可以有效地加快Matlab应用程序的开发速度和应用程序的运行速度.(4)Simulink.它是用来建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统.Simulink提供了采用鼠标拖放的方法建立系统框图模型,不需要书写一行代码.Simulink还支持Stateflow,用来仿真事件驱动过程.(5)Stateflow.它提供了图形工具,帮助用户设计和分析事件驱动系统.Stateflow基于有限状态机理论,能够建立和仿真复杂的反应和事件驱动系统.这样,Simulink的用户可以在他们的模型之中描述事件驱动行为.通过Simulink和Stateflow可以在统一的环境下设计、建立和仿真整个嵌入式系统的行为.(6)Real-time Workshop.它直接将Simulink,Stateflow,DSP Blockset和Communication Blockset建立的模型自动生成代码(若模型包含Stateflow图时还需要有Stateflow Coder).通过Real-Time Work-shop,能够为嵌入式控制系统和DSP应用速度生成C 代码.它支持连续时间、离散时间和混杂系统,带触发使能的子系统,带事件驱动行为的系统.(7)Simulink模块库.作为Simulink建模系统的补充,Math Works公司开发了专用功能块程序包.如DSP Blockset和Communication Blockset等.通过使用这些程序包,用户可以迅速地对系统进行建模与仿真.更重要的是用户还可以对系统模型进行代码生成,并将生成的代码下载到不同的目标机上.2Matlab中的小波变换函数二维离散小波变换函数.二维离散小波变换是将二维图像在不同的尺度上进行分解,分解的结果为:近似分量cA、水平细节分量cH、垂直细节分量cV和对角细节分量cD.反之,可以利用二维小波分解的结果在不同尺度上重构图像.(1)Dwt2函数和Idwt2函数.Dwt2函数为一层二维离散小波分解.(2)Wavedec2函数和Waverec2函数.Wavedec2函数为多层二维离散小波分解.(3)Dwtmode函数.Dwtmode函数设置离散小波变换信号(图像)的扩展模式,扩展模式表示处理分析边界变形问题的不同方法.(4)Appcoef2函数和Detcoef2函数.Appceof2函数用来提取二维信号小波分解的近似系数.(5)Wrcoef2函数和Upcoef2函数.Wrcoef2函数从多层二维小波分解细节系数重构某一层信号.(6)Upwlev2函数.Upwlev2函数实现二维小波分解的单层重构.(7)Wenergy2函数.函数计算二维小波分解的能量.(8)Wcodemat函数.Wcodemat函数为扩展的伪彩色矩阵比例.(9)Wfilters函数.Wfilters函数设计小波滤波器.(10)Swt2函数和Iswt2函数.Swt2函数计算离散二维平稳小波变换.(11)Wpdec2函数和Wprec2函数.这两个函数是二维小波包变换分析函数.Wpdec2函数实现小波包分解,Wprec2函数实现小波包重构.二维离散小波分析———图形接口方式:(1)启动二维离散小波分析图形工具.小波工具箱主菜单中选择Wavelet2-D,出现二维离散小波分析图形工具.(2)装载信号.单击[File]→[Load signal]菜单命令,选择MATLAB的文件.(3)分析图像.在图中的右上角选择基本小波为bior3.7和尺度数Level为2.选择好以上参数后,就可以单击[Analyze]按钮.进行相关的操作[4].3小波分析用于图像增强图像增强问题描述.图像经二维小波分解后,图像的轮廓主要体现在低频部分,而细节部分则体现在高频部分,因此,通过对低频分解系数进行增强处理,对高频分解系数进行衰减处理,即可以达到图像增强的作用[5].第32卷第1期刘鹏远,等:Matlab基于小波变换的图形图像处理67小波增强实例.load woman ;subplot (121);image (X );colormap (map );title ('原始图像');%画出原图像[c ,s]=wavedec2(X ,2,'sym4');%进行两层小波分解len=length (c );%处理分解系数,突出轮廓,弱化细节for I=1:lenif (c (I )>350)c (I )=2*c (I );elsec (I )=0.5*c (I );end endnx=waverec2(c ,s ,'sym4');%分解系数重构subplot (122);image (nx );title ('增强图像')%画出增强图像代码运行如图1所示.4小波分析在图像压缩和除噪中的应用小波除噪与压缩函数.(1)Ddencmp 函数.函数用于求除噪或压缩的缺省值.(2)Thselect 函数.函数用于除噪阀值选择.(3)Wdencmp 函数.Wdencmp 函数用小波进行降噪或压缩.(4)Wpdencmp 函数.Wpdencmp 函数利用小波包进行图像的除噪或压缩.(5)Wpthcoef 函数.Wpthcoef 函数计算小波小波包系数阀值话.(6)Wthcoef2函数.Wthcoef2函数计算二维小波系数阀值化(一维为wthceof 函数).(7)Wthresh 函数.Wthresh 函数设置软硬阀值.Matlab 实现小波变换压缩.将小波分析引入图像压缩的范畴也是一个重要的手段,并且有着它自己的特点.小波变换压缩的特点在于压缩比高、压缩速度快,压缩后能保持信号与图像的特征基本不变,且在传输过程中可以抗干扰等等.一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的.高分辨率(高频)子图像上大部分点的数值都接近于0,分辨率越高越明显.而对于一个图像来说,表现图像的最主要的部分是低频部分,所以最简单的压缩方法是利用小波分解去掉图像的高频部分而只保留低频部分[6].5总结小波图像分析总结.由于近年来小波技术越来越多在用于图像处理技术中,而图像的增强、去噪、压缩等更是其中的重点,Matlab 就是其有效的工具.不管是对图像的增强、去噪、压缩来说,其原理基本上都是一样,都是利用小波分析的方法(即小波变换),首先是要对图像进行层分解提取分解的低频和高频系数,然后对其各频率(竖直、水平、斜向)进行重构或弱化细节部分,突出近似部分.由于在编程环境下有许多地方需要值得改进,而利用其工具箱具有独特的优点,能实现许多功能,能够更好的满足用户的需要[7-8].小波图像分析展望:近年来,Matlab 在各个领域应用中越来越广泛,而小波分析又是基于Matlab 的,其强大的工具箱也是实现各种图像变换的基础,由于Matlab 本身的优点是效率高、使用方便、扩充的能力强、绘图又很方便.因此,在今后几年内,基于Mat -lab 的各种图像分析技术将会越来越成熟,其应用领域也会越来越广泛.参考文献:[1]张志涌.精通Matlab6.5版[M].北京:航空航天大学出版社,2003.[2]张兆礼.现代图像处理技术及Matlab 实现[M].北京:人民邮电出版社,2001.[3]王家文,曹宇.Matlab6.5图形图像处理[M].北京:国防工业出版社,2004.[4]秦前清,杨宗凯.实用小波分析技术[M].西安:西安电子科技大学出版社,1994.[5]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.[6]邱庚香,陈德海.基于小波变换的信号去噪应用[J].江西理工大学学报,2003,24(4):13.[7]James H McClellan ,Sidncy C Burrus ,Alan V puter-Based Exercises for Signal Processing Using Matlab 5-1st ed [M].USA :Prentice Hall ,1997.[8]Patrick Marchand.Graphics and GUIs with Matlab -Third Edition [M].USA :CRC Press ,2003.图1小波增强江西理工大学学报2011年2月68。