Phase-only sidelobe sector nulling for a tapered array with failed elements
BIOS出错英文提示信息大全
Drive A error 驱动器A错误System halt 系统挂起Keyboard controller error 键盘控制器错误Keyboard error or no keyboard present 键盘错误或者键盘不存在BIOS ROM checksum error BIOS ROM校验错误Single hardisk cable fail 当硬盘使用Cable选项时硬盘安装位置不正确FDD Controller Failure BIOS 软盘控制器错误HDD Controller Failure BIOS 硬盘控制器错误Driver Error 驱动器错误Cache Memory Bad, Do not Enable Cache 高速缓存Cache损坏,不能使用Error: Unable to control A20 line 错误提示:不能使用A20地址控制线Memory write/Read failure 内存读写失败Memory allocation error 内存定位错误CMOS Battery state Low CMOS没电了Keyboard interface error 键盘接口错误Hard disk drive failure 加载硬盘失败Hard disk not present 硬盘不存在Floppy disk(s) fail (40) 软盘驱动器加载失败,一般是数据线插反,电源线没有插接,CMOS内部软驱设置错误CMOS checksum error-efaults loaded. CMOS校验错误,装入缺省(默认)设置Detecting floppy drive A media... 检测软驱A的格式Drive media is : 1.44Mb1.2Mb 720Kb 360K 驱动器格式是1.44Mb、12Mb、720kb、360kb 的一种DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER 磁盘引导失败,插入系统盘后按任意键继续Invalid partition table 无效的分区表Error loading operating system 不能装入引导系统Missing operating system 系统引导文件丢失Invalid system disk 无效的系统盘Disk I/O error, Replace the disk and press any key. 磁盘I/O错误,替换磁盘后按任意键,当C盘系统文件丢失或被破坏时出现。
ISO16750-1-2006
6
Functional status classification .......................................................................................................... 4
6.1 General................................................................................................................................................... 4
6.4 Class C ................................................................................................................................................... 5
2
Normative references ........................................................................................................................... 1
Terms and definitions........................................................................................................................... 1
ULPI_v1_1
UTMI+ Low Pin Interface (ULPI)SpecificationRevision 1.1October 20, 2004Revision HistoryDate CommentRevision Issue0.9 November 12, 2003 Pre-release.1.0rc1 January 3, 2004 Introduce PHY interface “modes”.Update interface timings. Clarify 4-bit data clocking.Clarify sending of RX CMD’s and interrupts.Introduce AutoResume feature.Route int pin to data(3) during 6-pin Serial Mode.Explain VBUS thresholds.Add T&MT diagram and updated text.Add new section to explain how PHY is aborted by Link.Various clarifications.1.0rc2 January 13, 2004 Add block diagram.Tighten interface timing.Modify suspend protocol to more closely resemble UTMI.Add SPKR_L and SPKR_MIC to signal list and T&MTconnector.Various clarifications.1.0rc3 January 19, 2004 Specify that PHY must send RX CMD after Reset.Link + PHY clock startup time of no more than 5.6ms for aperipheral is now mandatory.PHY output delay reduced from 10ns to 9ns.Added link decision time numbers for low speed.Various Clarifications.1.0 February 2, 2004 1.0rc3 adopted as 1.0 release.1.1rc1 September 1, 2004 Various clarifications and fixes to hold time numbers, sendingRXCMDs, FsLsSerialMode, Vbus control and monitoring,Test_J and Tesk_K signalling, Low Power Mode,Hostdisconnect, ID detection, HS SOF packets, interrupts,Carkit Mode, interface protection, No SYNC/EOP mode,linestate filtering, and AutoResume.1.1rc2 October 4, 2004 Re-arranged text in section 3.8.7.3. Updated contributors list.1.1 October 20, 2004 1.1rc2 adopted as 1.1 release.The present Specification has been circulated for the sole benefit of legally-recognized Promoters, Adopters and Contributors of the Specification. All rights are expressly reserved, including but not limited to intellectual property rights under patents, trademarks, copyrights and trade secrets. The respective Promoter's, Adopter's or Contributor's agreement entered into by Promoters, Adopters and Contributors sets forth their conditions of use of the Specification.iiPromotersARC International Inc.Conexant Systems, Inc.Mentor Graphics CorporationPhilipsSMSCTransDimension, Inc.ContributorsVertenten PhilipsBartOkur PhilipsBatuhanBillAnderson MotorolaMcInerney TransDimensionBillBooker CypressBrianARCBelangerChrisKolb ARCChrisChrisSchell PhilipsChung Wing Yan PhilipsSrokaPhilipsDaveWang PhilipsDavidWooten TransDimensionDavidSMSCEricKawamotoPhilipsMackayFarranFrazier ConexantFrankFredRoberts SynopsysFarooqConexantHassanLee TransDimensionHyunParr MentorIanStandiford TransDimensionJayPhilipsTjiaJeromeMentorSaundersMarkMohamed Benromdhane ConexantSMSCMorganMonksISINabilTaklaTengstrand ARCPeterRamanand Mandayam ConexantDouglas MentorRobSaleemMohamed Synopsys(Author)ShaunReemeyer PhilipsCypressSimonNguyenSubramanyam Sankaran PhilipsTexasInstrumentsViningSueRemple QualcommTerryChen ConexantTimothyConexantChangVincentQuestions should be emailed to lpcwg@.iiiTable of Contents1.Introduction (1)1.1General (1)1.2Naming Convention (1)1.3Acronyms and Terms (1)1.4References (1)2.Generic Low Pin Interface (2)2.1General (2)2.2Signals (2)2.3Protocol (3)2.3.1Bus Ownership (3)2.3.2Transferring Data (3)2.3.3Aborting Data (4)3.UTMI+ Low Pin Interface (5)3.1General (5)3.2Signals (6)3.3Block Diagram (7)3.4Modes (9)3.5Power On and Reset (10)3.6Interrupt Event Notification (10)3.7Timing (11)3.7.1Clock (11)3.7.2Control and Data (13)3.8Synchronous Mode (15)3.8.1ULPI Command Bytes (15)3.8.2USB Packets (18)3.8.3Register Operations (30)3.8.4Aborting ULPI Transfers (37)3.8.5USB Operations (39)3.8.6Vbus Power Control (internal and external) (52)3.8.7OTG Operations (52)3.9Low Power Mode (55)3.9.1Data Line Definition For Low Power Mode (55)3.9.2Entering Low Power Mode (55)3.9.3Exiting Low Power Mode (56)3.9.4False Resume Rejection (57)3.10Full Speed / Low Speed Serial Mode (Optional) (58)3.10.1Data Line Definition For FsLsSerialMode (58)3.10.2Entering FsLsSerialMode (59)3.10.3Exiting FsLsSerialMode (60)3.11Carkit Mode (Optional) (61)3.12Safeguarding PHY Input Signals (62)4.Registers (65)4.1Register Map (65)4.2Immediate Register Set (67)4.2.1Vendor ID and Product ID (67)4.2.2Function Control (68)4.2.3Interface Control (69)4.2.4OTG Control (71)4.2.5USB Interrupt Enable Rising (72)4.2.6USB Interrupt Enable Falling (73)4.2.7USB Interrupt Status (74)4.2.8USB Interrupt Latch (75)4.2.9Debug (76)4.2.10Scratch Register (76)4.2.11Carkit Control (77)4.2.12Carkit Interrupt Delay (77)iv4.2.13Carkit Interrupt Enable (78)4.2.14Carkit Interrupt Status (78)4.2.15Carkit Interrupt Latch (79)4.2.16Carkit Pulse Control (79)4.2.17Transmit Positive Width (80)4.2.18Transmit Negative Width (80)4.2.19Receive Polarity Recovery (80)4.2.20Reserved (81)4.2.21Access Extended Register Set (81)4.2.22Vendor-specific (81)4.3Extended Register Set (81)4.4Register Settings for all Upstream and Downstream signalling modes (81)5.T&MT Connector (83)5.1General (83)5.2Daughter-card (UUT) Specification (83)vFiguresFigure 1 – LPI generic data bus ownership (3)Figure 2 – LPI generic data transmit followed by data receive (3)Figure 3 – Link asserts stp to halt receive data (4)Figure 4 – Creating a ULPI system using wrappers (5)Figure 5 – Block diagram of ULPI PHY (7)Figure 6 – Jitter measurement planes (12)Figure 7 – ULPI timing diagram (13)Figure 8 – Clocking of 4-bit data interface compared to 8-bit interface (14)Figure 9 – Sending of RX CMD (17)Figure 10 – USB data transmit (NOPID) (18)Figure 11 – USB data transmit (PID) (19)Figure 12 – PHY drives an RX CMD to indicate EOP (FS/LS LineState timing not to scale) (20)Figure 13 – Forcing a full/low speed USB transmit error (timing not to scale) (21)Figure 14 – USB receive while dir was previously low (22)Figure 15 – USB receive while dir was previously high (23)Figure 16 – USB receive error detected mid-packet (24)Figure 17 – USB receive error during the last byte (25)Figure 18 – USB HS, FS, and LS bit lengths with respect to clock (26)Figure 19 – HS transmit-to-transmit packet timing (29)Figure 20 – HS receive-to-transmit packet timing (29)Figure 21 – Register write (30)Figure 22 – Register read (31)Figure 23 – Register read or write aborted by USB receive during TX CMD byte (31)Figure 24 – Register read turnaround cycle or Register write data cycle aborted by USB receive (32)Figure 25 – USB receive in same cycle as register read data. USB receive is delayed (33)Figure 26 – Register read followed immediately by a USB receive (33)Figure 27 – Register write followed immediately by a USB receive during stp assertion (34)Figure 28 – Register read followed by a USB receive (34)Figure 29 – Extended register write (35)Figure 30 – Extended register read (35)Figure 31 – Extended register read aborted by USB receive during extended address cycle (36)Figure 32 – PHY aborted by Link asserting stp. Link performs register write or USB transmit (37)Figure 33 – PHY aborted by Link asserting stp. Link performs register read (38)Figure 34 – Link aborts PHY. Link fails to drive a TX CMD. PHY re-asserts dir (38)Figure 35 – Hi-Speed Detection Handshake (Chirp) sequence (timing not to scale) (40)Figure 36 – Preamble sequence (D+/D- timing not to scale) (41)Figure 37 – LS Suspend and Resume (timing not to scale) (43)Figure 38 – FS Suspend and Resume (timing not to scale) (44)Figure 39 – HS Suspend and Resume (timing not to scale) (46)Figure 40 – Low Speed Remote Wake-Up from Low Power Mode (timing not to scale) (47)Figure 41 – Full Speed Remote Wake-Up from Low Power Mode (timing not to scale) (48)Figure 42 – Hi-Speed Remote Wake-Up from Low Power Mode (timing not to scale) (49)Figure 43 – Automatic resume signalling (timing not to scale) (50)Figure 44 – USB packet transmit when OpMode is set to 11b (51)Figure 45 – RX CMD V A_VBUS_VLD ≤Vbus indication source (54)Figure 46 – Entering low power mode (55)Figure 47 – Exiting low power mode when PHY provides output clock (56)Figure 48 – Exiting low power mode when Link provides input clock (56)Figure 49 – PHY stays in Low Power Mode when stp de-asserts before clock starts (57)Figure 50 – PHY re-enters Low Power Mode when stp de-asserts before dir de-asserts (57)Figure 51 – Interface behaviour when entering Serial Mode and clock is powered down (59)Figure 52 – Interface behaviour when entering Serial Mode and clock remains powered (59)Figure 53 – Interface behaviour when exiting Serial Mode and clock is not running (60)Figure 54 – Interface behaviour when exiting Serial Mode and clock is running (60)Figure 55 – PHY interface protected when the clock is running (62)Figure 56 – Power up sequence when PHY powers up before the link. Interface is protected (63)Figure 57 – PHY automatically exits Low Power Mode with interface protected (63)Figure 58 – Link resumes driving ULPI bus and asserts stp because clock is not running (64)viFigure 59 – Power up sequence when link powers up before PHY (ULPI 1.0 compliant links) (64)Figure 60 – Recommended daughter-card configuration (not to scale) (83)viiTablesTable 1 – LPI generic interface signals (2)Table 2 – PHY interface signals (6)Table 3 – Mode summary (9)Table 4 – Clock timing parameters (11)Table 5 – ULPI interface timing (13)Table 6 – Transmit Command (TX CMD) byte format (15)Table 7 – Receive Command (RX CMD) byte format (16)Table 8 – USB specification inter-packet timings (26)Table 9 – PHY pipeline delays (27)Table 10 – Link decision times (28)Table 11 – OTG Control Register power control bits (52)Table 12 – Vbus comparator thresholds (52)Table 13 – RX CMD VbusValid over-current conditions (53)Table 14 – Vbus indicators in the RX CMD required for typical applications (54)Table 15 – Interface signal mapping during Low Power Mode (55)Table 16 – Serial Mode signal mapping for 6-pin FsLsSerialMode (58)Table 17 – Serial Mode signal mapping for 3-pin FsLsSerialMode (58)Table 18 – Carkit signal mapping (61)Table 19 – Register map (66)Table 20 – Register access legend (67)Table 21 – Vendor ID and Product ID register description (67)Table 22 – Function Control register (68)Table 23 – Interface Control register (70)Table 24 – OTG Control register (71)Table 25 – USB Interrupt Enable Rising register (72)Table 26 – USB Interrupt Enable Falling register (73)Table 27 – USB Interrupt Status register (74)Table 28 – USB Interrupt Latch register (75)Table 29 – Rules for setting Interrupt Latch register bits (75)Table 30 – Debug register (76)Table 31 – Scratch register (76)Table 32 – Carkit Control Register (77)Table 33 – Carkit Interrupt Delay register (77)Table 34 – Carkit Interrupt Enable register (78)Table 35 – Carkit Interrupt Status Register (78)Table 36 – Carkit Interrupt Latch register (79)Table 37 – Carkit Pulse Control (79)Table 38 – Transmit Positive Width (80)Table 39 – Transmit Negative Width (80)Table 40 – Receive Polarity Recovery (81)Table 41 – Upstream and downstream signalling modes (82)Table 42 – T&MT connector pin view (84)Table 43 – T&MT connector pin allocation (84)Table 44 – T&MT pin description (85)viii1. Introduction1.1 GeneralThis specification defines a generic PHY interface in Chapter 2.In Chapter 3, the generic interface is applied to the UTMI+ protocol, reducing the pin count for discrete USB transceiver implementations supporting On-The-Go, host, and peripheral application spaces.Convention1.2 NamingEmphasis is placed on normal descriptive text using underlined Arial font, e.g. must.Signal names are represented using the lowercase bold Arial font, e.g. clk.Registers are represented using initial caps, bold Arial font, e.g. OTG Control.Register bits are represented using initial caps, bold italic Arial font, e.g. USB Interrupt Enable Falling. 1.3 Acronyms and TermsA-device Device with a Standard-A or Mini-A plug inserted into its receptacleB-device Device with a Standard-B or Mini-B plug inserted into its receptacleDeviceDRD Dual-RoleFPGA Field Programmable Gate ArraySpeedFS FullHNP Host Negotiation ProtocolHS Hi-SpeedLink ASIC, SIE, or FPGA that connects to an ULPI transceiverLPI Low Pin InterfaceSpeedLS LowOTG On-The-GoPHY Physical Layer (Transceiver)PLL Phase Locked LoopSE0 Single Ended ZeroSIE Serial Interface EngineSRP Session Request ProtocolT&MT Transceiver and Macrocell TesterULPI UTMI+ Low Pin InterfaceUSB Universal Serial BusUSB-IF USB Implementers ForumUTMI USB 2.0 Transceiver Macrocell InteraceUUT Unit Under Test1.4 References[Ref 1] Universal Serial Bus Specification, Revision 2.0[Ref 2] On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a[Ref 3] USB 2.0 Transceiver Macrocell Interface (UTMI) Specification, v1.05[Ref 4] UTMI+ Specification, Revision 1.0[Ref 5] CEA-2011, OTG Transceiver Specification[Ref 6] CEA-936A, Mini-USB Analog Carkit Interface Specification[Ref 7] USB 2.0 Transceiver and Macrocell Tester (T&MT) Interface Specification, Version 1.212. Generic Low Pin Interface2.1 GeneralThis section describes a generic low pin interface (LPI) between a Link and a PHY. Interface signals are defined and the basic communication protocol is described. The generic interface can be used as a common starting point for defining multiple application-specific interfaces.Chapter 3 defines the UTMI+ Low Pin Interface (ULPI), which is based on the generic interface described here. For ULPI implementations, the definitions in chapter 3 over-ride anything defined in chapter 2.2.2 SignalsThe LPI transceiver interface signals are described in Table 1. The interface described here is generic, and can be used to transport many different data types. Depending on the application, the data stream can be used to transmit and receive packets, access a register set, generate interrupts, and even redefine the interface itself. All interface signals are synchronous when clock is toggling, and asynchronous when clock is not toggling. Data stream definition is application-specific and should be explicitly defined for each application space for inter-operability.Control signals dir, stp, and nxt are specified with the assumption that the PHY is the master of the data bus. If required, an implementation can define the Link as the master. If the Link is the master of the interface, the control signal direction and protocol must be reversed.Signal Direction DescriptionPHY Interfaceclock I/O Interface clock. Both directions are allowed. All interface signals are synchronous to clock.data I/O Bi-directional data bus, driven low by the Link during idle. Bus ownership is determined by dir. The Link and PHY initiate data transfers by driving a non-zero pattern onto the data bus. LPI defines interface timing for single-edge data transfers with respect to rising edge of clock. An implementation may optionally define double-edge data transfers with respect to both rising and falling edges of clock.dir OUT Direction. Controls the direction of the data bus. When the PHY has data to transfer to the Link, it drives dir high to take ownership of the bus. When the PHY has no data to transfer it drives dir low and monitors the bus for Link activity. The PHY pulls dir high whenever the interface cannot accept data from the Link. For example, when the internal PHY PLL is not stable.stp IN Stop. The Link asserts this signal for 1 clock cycle to stop the data stream currently on the bus. If the Link is sending data to the PHY, stp indicates the last byte of data was on the bus in the previous cycle. If the PHY is sending data to the Link, stp forces the PHY to end its transfer, de-assert dir and relinquish control of the the data bus to the Link.nxt OUT Next. The PHY asserts this signal to throttle the data. When the Link is sending data to the PHY, nxt indicates when the current byte has been accepted by the PHY. The Link places the next byte on the data bus in the following clock cycle. When the PHY is sending data to the Link, nxt indicates when a new byte is available for the Link to consume.Table 1 – LPI generic interface signals22.3 ProtocolOwnership2.3.1 BusThe PHY is the master of the LPI bi-directional data bus. Ownership of the data bus is determined by the dir signal from the PHY, as shown in Figure 1. When dir is low, the Link can drive data on the bus. When dir is high, the PHY can drive data on the bus. A change in dir causes a turnaround cycle on the bus during which, neither Link nor PHY can drive the bus. Data during the turnaround cycle is undefined and must be ignored by both Link and PHY.The dir signal can be used to directly control the data output buffers of both PHY and Link.Figure 1 – LPI generic data bus ownershipData2.3.2 TransferringAs shown in the first half of Figure 2, the Link continuously drives the data bus to 00h during idle. The Link transmits data to the PHY by driving a non-zero value on the data bus. To signal the end of data transmission, the Link asserts stp in the cycle following the last data byte.In the second half of Figure 2, the Link receives data when the PHY asserts dir. The PHY asserts dir only when it has data to send to the Link, and keeps dir low at all other times. The PHY drives data to the Link after the turnaround cycle.The nxt signal can be used by the PHY to throttle the data during transmit and receive. During transmit, nxt may be asserted in the same cycle that the Link asserts stp.Figure 2 – LPI generic data transmit followed by data receive2.3.3 AbortingDataThe PHY can assert dir to interrupt any data being transmitted by the Link. If the Link needs to interrupt data being received from the PHY, it asserts stp for one clock cycle, as shown in Figure 3. This causes the PHY to unconditionally1 de-assert dir and accept a complete data transmit from the Link. The PHY may re-assert dir again only when the data transmit from the Link has completed.Figure 3 – Link asserts stp to halt receive data1 The PHY will not de-assert dir if the ULPI interface is not usable. For example, if the internal PLL is not stable.3. UTMI+ Low Pin Interface3.1 GeneralThis section describes how any UTMI+ core can be wrapped to convert it to the smaller LPI interface. The generic interface described in chapter 2 is used as a starting point. This section always over-rides anything stated in chapter 2. While this specification details support of UTMI+ Level 3, PHY implementers may choose to support any of the Levels defined in UTMI+.ULPI defines a PHY to Link interface of 8 or 12 signals that allows a lower pin count option for connecting to an external transceiver that may be based on the UTMI+ specification. The pin count reduction is achieved by having relatively static UTMI+ signals be accessed through registers and by providing a bi-directional data bus that carries USB data and provides a means of accessing register data on the ULPI transceiver.This specification relies on concepts and terminology that are defined in the UTMI+ specification [Ref 4]. Specifically, if a ULPI PHY design is based on an internal UTMI+ core, then that core must implement the following UTMI+ features.Linestate must accurately reflect D+/D- to within 2-3 clocks. It is up to individual Link designers to use Linestate to time bus events.Filtering to prevent spurious SE0/SE1 states appearing on Linestate due to skew between D+ and D-. Filtering of 14 clock cycles is required in Low Speed, and 2 clock cycles in Full Speed and Hi-Speed modes.The PHY must internally block the USB receive path during transmit. The receive path can be unblocked when the internal Squelch (HS) or SE0-to-J (FS/LS) is seen.TxReady must be used for all types of data transmitted, including Chirp.Due to noise on the USB, it is possible that RxActive asserts and then de-asserts without any valid data being received, and RxValid will not assert. The Link should operate normally with these data-less RxActive assertions.As shown in Figure 4, a PHY or Link based on this specification can be implemented as an almost transparent wrapper around existing UTMI+ IP cores, preserving the original UTMI+ packet timing, while reducing pin count and leaving all functionality intact. This should not be taken to imply that other implementations are not possible.Figure 4 – Creating a ULPI system using wrappers3.2 SignalsTable 2 describes the ULPI interface on the PHY. The PHY is always the master of the ULPI bus. USB and Miscellaneous signals may vary with each implementation and are given only as a guide to PHY designers.Signal Direction DescriptionPHY Interfaceclock I/O Interface clock. The PHY must be capable of providing a 60MHz output clock. Support for an input 60MHz clock is optional. If the PHY supports both clock directions, it must not use the ULPI control and data signals for setting the clock direction.Data bus. Driven to 00h by the Link when the ULPI bus is idle. Two bus widths are allowed:• 8-bit data timed on rising edge of clock.data I/O• (Optional) 4-bit data timed on rising and falling edges of clock.dir OUT Controls the direction of the data bus2. The PHY pulls dir high whenever the interface cannot accept data from the Link. For example, when the internal PLL is not stable. This applies whether Link or PHY is the clock source.stp IN The Link must assert stp to signal the end of a USB transmit packet or a register write operation, and optionally to stop any receive. The stp signal must be asserted in the cycle after the last data byte is presented on the bus.nxt OUT The PHY asserts nxt to throttle all data types, except register read data and the RX CMD. Identical to RxValid during USB receive, and TxReady during USB transmit. The PHY also asserts nxt and dir simultaneously to indicate USB receive activity (RxActive), if dir was previously low. The PHY is not allowed to assert nxt during the first cycle of the TX CMD driven by the Link.USB InterfaceD+ I/O D+ pin of the USB cable. Required.D- I/O D- pin of the USB cable. Required.ID IN ID pin of the USB cable. Required for OTG-capable PHY’s.VBUS I/O V BUS pin of the USB cable. Required for OTG-capable PHY’s. Required for driving V BUS and the V BUS comparators.MiscellaneousXI IN Crystal input pin. Vendors should specify supported crystal frequencies. XO OUT Crystal output pin.C+ I/O Positive terminal of charge pump capacitor.C- I/O Negative terminal of charge pump capacitor.SPKR_L IN Optional Carkit left/mono speaker input signal.SPKR_MIC I/O Optional Carkit right speaker input or microphone output signal.RBIAS I/O Bias current resistor.Table 2 – PHY interface signals2 UTMI+ wrapper developers should note that data bus control has been reversed from UTMI to ensure that USB data reception is not interrupted by the Link.3.3 BlockDiagramAn example block diagram of a ULPI PHY is shown in Figure 5. This example is based on an internal UTMI+ Level 3 core [Ref 4], which can interface to peripheral, host, and On-The-Go Link cores. A description of each major block is given below.ULPI InterfaceUSBCableChargePumpCapacitor Figure 5 – Block diagram of ULPI PHYUTMI+ Level 3 PHY coreThe ULPI PHY may contain a core that is compliant to any UTMI+ level [Ref 4]. Signals for 16-bit data buses are not supported in ULPI. While Figure 5 shows the typical blocks for a Level 3 UTMI+ core, the PHY vendor must specify the intended UTMI+ level, and provide the functionality necessary for compliance to that level.ULPI PHY WrapperThe ULPI PHY wrapper of Figure 5 reduces the UTMI+ interface to the Low Pin Interface described in this document. All signals shown on the UTMI+ Level 3 PHY core are reduced to the ULPI interface signals clock, data, dir, stp, and nxt. The Register Map stores the relatively static signals of the UTMI+ interface. Crystal Oscillator and PLLWhen a crystal is attached to the PHY, the internal clock(s) and the external 60MHz interface clock are generated from the internal PLL. When no crystal is attached, the PHY may optionally generate the internal clock(s) from an input 60MHz clock provided by the Link.General BiasingInternal analog circuits require an accurate bias current. This is typically generated using an external, accurate reference resistor.DrvVbusExternal and ExternalVbusIndicatorThe PHY may optionally control an external VBUS power source via the optional pin DrvVbusExternal. For example, the external supply could be a charge pump or 5V power supply controlled using a power switch. The external supply is controlled by the DrvVbus and the optional DrvVbusExternal bits in the OTG Control register. The polarity of the DrvVbusExternal output pin is implementation dependent.If control of an external VBUS source is provided the PHY may optionally provide for a VBUS power source feed back signal on the optional pin ExternalVbusIndicator. If this pin is provided, the use of the pin is defined by the optional control bits in the OTG Control and Interface Control registers. See Section 3.8.6.3 for further detail.Power-On-ResetA power-on-reset circuit must be provided in the PHY. When power is first applied to the PHY, the power-on-reset will reset all circuitry and leave the ULPI interface in a usable state.Carkit OptionThe PHY may optionally support Carkit Mode [Ref 6]. While in Carkit Mode, the PHY routes speaker and microphone signals between the Link and the USB cable. In carkit mono mode, SPKR_L inputs a mono speaker signal and SPKR_MIC outputs the microphone signal, MIC. In carkit stereo mode, SPKR_L inputs the left speaker signal, and SPKR_MIC inputs the right speaker signal, SPKR_R.3.4 ModesThe ULPI interface can operate in one of five independent modes listed in Table 3. The interface is in Synchronous Mode by default. Other modes are enabled by bits in the Function Control and Interface Control registers. In Synchronous Mode, the data bus carries commands and data. In other modes, the data pins are redefined with different functionality. Synchronous Mode and Low Power Mode are mandatory.Mode Name Mode DescriptionSynchronous Mode This is the normal mode of operation. The clock is running and is stablewith the characteristics defined in section 3.6. The ULPI interface carriescommands and data that are synchronous to clock.Low Power Mode The PHY is powered down with the clock stopped. The PHY keeps dirasserted, and the data bus is redefined to carry LineState and interrupts.See section 3.9 for more information.6-pin FS/LS Serial Mode (optional) The data bus is redefined to 6-pin serial mode, including 6 pins to transmit and receive serial USB data, and 1 pin to signal interrupt events. The clock can be enabled or disabled. This mode is valid only for implementations with an 8-bit data bus. See section 3.10 for more information.3-pin FS/LS Serial Mode (optional) The data bus is redefined to 3-pin serial mode, including 3 pins to transmit and receive serial USB data, and 1 pin to signal interrupt events. The clock can be enabled or disabled. See section 3.10 for more information.Carkit Mode (optional) The data bus is redefined to Carkit mode [Ref 6], including 2 pins for serial UART data, and 1 pin to signal interrupt events. The clock may optionally be stopped. See section 3.11 for more information.Table 3 – Mode summary。
Control4 CORE 1 家庭自动化控制器说明书
Control4 CORE 1 Controller Installation GuideSupported model• C4-CORE1 Control4 CORE 1 Hub & ControllerIntroductionDesigned for an exceptional family room entertainment experience, the Control4® CORE 1 Controller does more than automate the gear around your TV; it is the ideal smart home starter system with entertainment built in.The CORE 1 delivers a beautiful, intuitive, and responsive on-screen user interface with the ability to create and enhance the entertainment experience for any TV in the house. The CORE 1 can orchestrate a wide range of entertainment devices including Blu-ray players, satellite or cable boxes, game consoles, TVs, and virtually any product with infrared (IR) or serial (RS-232) control. It also features IP control for Apple TV, Roku, televisions, AVRs, or other network-connected devices, as well as secure wireless Zigbee control for lights, thermostats, smart locks, and more.For entertainment, the CORE 1 also includes a built-in music server that allows you to listen to your own music library, stream from a variety of leading music services, or from your AirPlay-enabled devices using Control4 ShairBridge technology.Box contentsThe following items are included in the CORE 1 controller box:• CORE 1 controller• AC power cord• IR emitters (2)• Rubber feet (2, pre-installed)• External antenna (1 for Zigbee)Accessories available for purchase• CORE 1 Wall-Mount Bracket (C4-CORE1-WM)• Control4 1U Rack-Mount Kit, Single/Dual Controller (C4-CORE1-RMK)• Control4 3-Meter Wireless Antenna Kit (C4-AK-3M)• Control4 Dual-Band Wi-Fi USB Adapter (C4-USBWIFI OR C4-USBWIFI-1)• Control4 3.5 mm to DB9 Serial Cable (C4-CBL3.5-DB9B) Requirements and specificationsWe recommend using Ethernet instead of Wi-Fi for the best networkThe Ethernet or Wi-Fi network should be installed before starting theThe CORE 1 requires OS 3.3 or newer.Composer Pro UserGuide (ctrl4.co/cpro-ug) for details.WarningsCaution! To reduce the risk of electrical shock, do not expose this apparatus torain or moisture.AVERTISSEMENT ! Pour réduire le risque de choc électrique, n’exposez pas cetappareil à la pluie ou à l’humidité.Caution! I n an over-current condition on USB, the software disables theoutput. If the attached USB device does not appear to power on, remove theUSB device from the controller.AVERTISSEMENT ! Dans une condition de surintensité sur USB ou sortie decontact le logiciel désactive sortie. Si le périphérique USB ou le capteurde contact connecté ne semble pas s’allumer, retirez le périphérique ducontrôleur.SpecificationsInputs / OutputsVideo out 1 video out—1 HDMIVideo HDMI 2.0a; 3840x2160 @ 60Hz; HDCP 2.2 and HDCP 1.4Audio out 2 audio out—1 HDMI and 1 digital coaxAudio playback formats AAC, AIFF, ALAC, FLAC, M4A, MP2, MP3, MP4/M4A, OggVorbis, PCM, WAV, WMAHigh-resolution audio playback Up to 192 kHz / 24 bitNetworkEthernet 2 10/100/1000BaseT compatible ports—1 PoE+ in and1 switch network portWi-Fi Optional Dual-Band Wi-Fi USB Adapter(2.4 GHz, 5 Ghz, 802.11ac/b/g/n/a)Zigbee Pro802.15.4Zigbee antenna External reverse SMA connectorUSB port 1 USB 3.0 port—500mAControlIR out 4 IR out—5V 27mA max outputIR capture 1 IR receiver—front, 20-60 KHzSerial out 2 serial out (shared with IR out 1 and 2)PowerPower requirements100-240 VAC, 60/50Hz or PoE+Power consumption Max: 18W, 61 BTUs/hourIdle: 9W, 30 BTUs/hourOtherOperating temperature32˚F ~ 104˚F (0˚C ~ 40˚C)Storage temperature4˚F ~ 158˚F (-20˚C ~ 70˚C)Dimensions (H × W × D) 1.16 × 7.67 × 5.2" (29.5 × 195 × 132 mm)Weight 1.5 lb (0.68 kg)Shipping weight 2.3 lb (1.04 kg)Additional resourcesThe following resources are available for more support.• Control4 CORE series help and information: ctrl4.co/core• Snap One Tech Community and Knowledgebase: •Control4 Technical Support:ctrl4.co/techsupport• Control4 website: 71231 Connect one of the included IR emitters to an IR OUT port on the controller.2 Place the stick-on emitter end onto the IR receiver on the Blu-ray player, TV, or othertarget device to emit IR signals from the controller to the target device.Setting up external storage devices (optional)You can store and access media from an external storage device, for example, a networkhard drive or USB memory device, by connecting the USB drive to the USB port andconfiguring or scanning the media in Composer Pro.We support only externally powered USB drives or solid state USB sticks.Composer Pro driver informationUse Auto Discovery and SDDP to add the driver to the Composer project. See theComposer Pro User Guide (ctrl4.co/cpro-ug) for details.OvrC setup and configurationOvrC gives you remote device management, real-time notifications, and intuitivecustomer management, right from your computer or mobile device. Setup isplug-and-play, with no port forwarding or DDNS address required.To add this device to your OvrC account:1 Connect CORE 1 controller to the Internet.2 Navigate to OvrC () and log in to your account.3 Add the device (MAC address and Service Tag numbers needed for authentication).Front viewA Activity LED—The Activity LED shows when the controller is streaming audio.B IR window—IR receiver for learning IR codes.C Caution LED—This LED shows solid red, then blinks blue during the boot process.The Caution LED blinks orange during the factory restore process. SeeD —The LED indicates that the controller has been identified in a Control4project and is communicating with Director.E Power LED—The blue LED indicates that AC power is present. The controller turns onimmediately after power is applied to it.Back viewPower port—AC power connector for an IEC 60320-C5 power cord.B IR OUT/SERIAL—3.5 mm jacks for up to four IR emitters or for a combination of IRemitters and serial devices. Ports 1 and 2 can be configured independently for serialcontrol (for controlling receivers or disc changers) or for IR control. See “Connectingthe IR ports/serial ports” in this document for more information.C USB—One port for an external USB drive (such as a USB stick formatted FAT32). See“Setting up external storage devices” in this document.D DIGITAL AUDIO—Outputs audio (AUDIO OUT) shared from other Control4 devices orfrom digital audio sources (local media or digital streaming services).E HDMI OUT—An HDMI port to display navigation menus. Also an audio out over HDMI.F ID button and RESET—ID button is pressed to identify the device in Composer Pro. TheID button on the CORE 1 is also an LED that displays feedback useful during a factoryrestore. The RESET pinhole is used to reset or factory restore the controller.G ENET OUT—RJ-45 jack for Ethernet out connection. Acts as a 2-port network switchwith ENET/POE+ IN jack.H ENET/POE+ IN—RJ-45 jack for a 10/100/1000BaseT Ethernet connection. Also canpower the controller with PoE+.I ZIGBEE—Antenna connector for the Zigbee radio.Installation instructionsTo install the controller:1 Ensure that the home network is in place before starting system setup. An Ethernetconnection to the local network is required for setup. The controller requires anetwork connection to use all of the features as designed. After initial configuration,Ethernet (recommended) or Wi-Fi (with an optional adapter) can be used toconnect the controller to web-based media databases, communicate with other IPdevices in the home, and access Control4 system updates.2 Mount the controller near the local devices you need to control. The controller canbe hidden behind a TV, mounted on a wall, installed in a rack, or placed on a shelf.The CORE 1 Rack Mount Kit is sold separately and is designed for easy installation ofup to two CORE 1 controllers side by side in a rack. The CORE 1 Wall-Mount Bracketis sold separately and designed for easy installation of the CORE 1 controller behinda TV or on the wall.3 Attach antenna to the ZIGBEE antenna connector.4 Connect the controller to the network.• Ethernet—To connect using an Ethernet connection, connect the network cableinto the controller’s RJ-45 port (labeled ENET/POE+ IN) and into the network porton the wall or at the network switch.• Wi-Fi—To connect using Wi-Fi, first connect the unit to Ethernet, connect theWi-Fi adapter to the USB port, and then use Composer Pro System Manager toreconfigure the unit for Wi-Fi.5 Connect system devices. Attach IR and serial devices as described in “Connectingthe IR ports/serial ports” and “Setting up IR emitters.”6 Set up any external storage devices as described in “Setting up external storagedevices” in this document. | 888.400.4070Copyright 2022, Snap One, LLC. All rights reserved. Snap One and its respective logos are registered trademarks or trademarks of Snap One, LLC (formerly known as Wirepath Home Systems, LLC), in the United States and/or other countries. 4Store, 4Sight, Control4, Control4 My Home, SnapAV, Mockupancy, NEEO, OvrC, Wirepath, and Wirepath ONE are also registered trademarks or trademarks of Snap One, LLC. Other names and brands may be claimed as the property of their respective owners. Snap One makes no claim that the information contained herein covers all installation scenarios and contingencies, or product use risks. Informationwithin this specification subject to change without notice.More helpFor the latest version of this document and to view additional materials, open the URL below or scan the QR code on a device that can view PDFs.Legal, Warranty, and Regulatory/Safety informationVisit /legal for details.MOST RECENT VERSIONctrl4.co/core1-ig200-00724-A 2022-05-31 DHATroubleshootingReset to factory settingsCaution! The factory restore process will remove the Composer project.To restore the controller to the factory default image:1 Insert one end of a paper clip into the small hole on the back of the controller labeled RESET .2 Press and hold the RESET button. The controller resets and the ID button changes to solid red.3 Hold the button until the ID flashes double orange. This should take five to seven seconds. The ID button flashes orange while the factory restore is running. When complete, the ID button turns off and the device power cycles one more time to complete the factory restore process.Note: During the reset process, the ID button provides the same feedback as the Caution LED on the front of the controller.Power cycle the controller1 Press and hold the ID button for five seconds. The controller turns off and back on.Reset the network settingsTo reset the controller network settings to the default:1 Disconnect power to the controller.2 While pressing and holding the ID button on the back of the controller, power on the controller.3 Hold the ID button until ID button turns solid orange and the Link and Power LEDs are solid blue, and then immediately release the button.Note: During the reset process, theID button provides the same feedback asthe Caution LED on the front of the controller.LED status informationActivityCautionLinkPowerMORE INFO ON CORE CONTROLLERSctrl4.co/core。
面阵数字波束形成算法研究
电子科技大学硕士学位论文面阵数字波束形成算法研究姓名:李军申请学位级别:硕士专业:信号与信息处理指导教师:龚耀寰20030501摘要数字波束形成(DBF)技术可显著提高阵列天线的性能,这些性能包括:快速自适应波束置零、超低副瓣、密集多波束、自适应空时处理、高分辨测向和大容量有限带宽通信等等。
数字收发组件高额的成本,限制了DBF技术的普遍应用。
但随着近几年电子器件技术、微波组件技术和高速数字处理设备技术的发展,DBF技术在相控阵雷达中的应用获得越来越广泛的重视,其应用也不再限于一维或子阵水平。
二维面阵收发自适应数字波束形成系统的研究将是今后数字化雷达研究的热点之一。
面阵的数字波束形成算法是面阵DBF技术的关键,本文在现有的一维数字波束形成算法基础上,研究了二维面阵的数字波束形成算法,主要工作有:①面阵的幅度相位全控制自适应数字波束形成算法一一对角加载QRD—SMI算法的研究;②⑧两种面阵唯相位(Phase-OnlY)数字波束形成算法一一小相位扰动约束算法和期望方向增益最大约束算法的研究:面阵的数字多波束形成算法一一二维FFT多波束的研究,以及FFT在可编程逻辑器件中的实现。
关键词:面阵、数字波束形成、唯相位、多波束f/,助stractThetechnologyofdigitalbeamforming(DBF)candramaticallyincreasearrayantennaperformances.Theseperformancesincludefastadaptivepatternnulling,ultra—lowsidelobes,closelyspacedmultiplebeams,adaptivespace-timeprocessing,highresolutiondirectionfiding(DF)andincreasedcapacityforband。
limitedcommunicationssystems.TheapplicationofDBFislimitedbythehighcostofdigitalreceiver/transmitterelements.Overtheyears,asthetechnologyofelectroniccomponents,microwaveICsandhighspeeddigitalprocessorcontinuetoimprove,DBF’Spracticalvalueforphasedarrayradarisincreasingrapidly,andtheapplicationofDBFisnotlimitedinone—dimensionorsubarraylevel.Theresearchofadaptivedigitalbeamforming(ADBF)systemfor2Dplanararraywillbeoneoftheemphasesofdigitalradar.TheDBFalgorithmsareessenceoftheDBFtechnology.DBFalgorithmsfor2Dplanararraybasedonthealgorithmsfor1Darrayarediscussedinthispaper.Theauthor’Smaincontributionsinclude①Researchoftheadaptivedigitalbeamformingalgorithm,whichcontrolbothamplitudeandphaseofeacharrayelement:diagonalloadingQRD-SMIalgorithm.②ResearchoftwoPhase—OnlyDBFalgorithms:smallphaseperturbationrestrictionalgorithmandmaximumgainoftheexpecteddirectionrestrictionalgorithm.③Researchofmultiplebeamsalgorithmforplanararray:2D.FFTmultiplebeams.AndtherealizationofFFTwithCPLD.Keywords:planararray,digitalbeamforming(DBF),Phase—Only,multiplebeamsⅡ独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
DF1协议常用命令
DF1协议常⽤命令PCCC:Programmable Controller Communication Commands.AB PLC常⽤指令The best commands for SLC5/MicroLogix controllers are:Protected Typed Logical Read with 3-Address Fields (Cmd=0x0F, SubFnc=0xA2)Protected Typed Logical Write with 3-Address Fields (Cmd=0x0F, SubFnc=0xAA)Protected Typed Logical Masked-Write with 3-Address Fields (Cmd=0x0F, SubFnc=0xAB)Protected Typed Logical Read with 2-Address Fields (Cmd=0x0F, SubFnc=0xA1)Protected Typed Logical Write with 2-Address Fields (Cmd=0x0F, SubFnc=0xA9)Only the first two (0xA2/AA) are documented in the official DF1 protocol specification. The third (0xAB) is not documented but is commonly used by OPC servers; In fact a Rockwell engineer formally sent me details of it when I asked; it is not considered "secret".The last two (0xA1/A9) are only of value if you're creating a slave driver since a few of Rockwell's software tools assume these are supported. While they are not documented in the DF1 specification, RSLogix5000 outlines support for them as part of its legacy support for PCCC messages. But there is no reason for an OPC server or master to use 0xA1/A9 since support by slaves is not universal. Using SubFnc 0xA1 instead of 0xA2 just drops one unrequired NULL byte from the command, so is of modest value. For example, to read N7:1 your Read command would include the 6 bytes "A2 02 07 89 01 00" for the 3-Address Fields form and only the 5 bytes "A1 02 07 89 01" for the 2-Address Fields form. Big deal, eh? Well, yes - a big deal if you try to use 0xA1 with a slave that doesn't understand 0xA1.怎样单独写⼀位:How do I write single bits on a SLC5/MicroLogix?use the undocumented (but well supported) Cmd=0x0F SubFnc=0xAB Masked WriteThe command looks much like the documented Protected Typed Logical Write with 3-Address Fields (Cmd=0x0F, SubFnc=0xAA) except you'll find an added 16-bit word of data. So here are examples of each:0xAA 02 03 85 00 00 01 000xAB 02 03 85 00 00 01 00 01 000xAB 04 03 85 00 00 01 00 01 00 00 00The first command (0xAA) in effect clears bits B3:0/1 to B3:0/15 and sets bit B3:0/0. So the entire first word of the B3 table is changed -often not the desired action. In contrast, the second command (0xAB) just sets B3:0/0 to 1 without affecting the other 15 bits of B3:0.Notice that the 16-bit "mask" is not included in the byte count of 2. The third command (0xAB) shows that more than one data word can be sent, but there is always just a single 16-bit mask. The third command would set B3:0/0 to "1" and clear B3:1/0 to "0". If you - for example - desire to set both bits B3:0/0 and B3:1/6 to "1", then you'd need to issue two separate commands since they don't share the same 16-bit mask. AB PLC常⽤指令--具体A2指令--protected typed logical read with three address fieldsReads data from a logical address in a SLC 500 module读取N7:1⼀个字(2bytes)request: 10 02 01 00 0F 00 36 0D A2 02 07 89 01 00 10 03 80 D8reply: 10 06 10 02 00 01 4F 00 36 0D E8 03 10 03 75 65读取N7:0五个字(10bytes)request: 10 02 01 00 0F 00 08 52 A2 0A 07 89 00 00 10 03 8D 4Dreply: 10 06 10 02 00 01 4F 00 08 52 D0 07 E8 03 00 00 00 00 00 00 10 03 5F E2AA指令--protected typed logical write with three address fieldsWrites data to a logical address in a SLC processor写B3:0request: 10 02 01 00 0F 00 08 54 AA 04 03 85 00 00 03 00 01 00 10 03 DB B2 reply: 10 06 10 02 00 01 4F 00 08 54 10 03 AB 1C 10 05 10 05 10 05 10 05⽰例⼀组PLC数据定义:DF1协议DF1协议控制字符DF1协议传输标志DF1协议链路协议帧Half-duplexFull-duplexDF1协议应⽤帧。
quartus常见警告
1、Warning (10227): Verilog HDL Port Declaration warning at PRESS_MODELE.v(29): data type declaration for "iR" de clares packed dimensions but the port declaration declarati on does not.解释:2、Warning: PLL "DE2_TV:inst1|Sdram_Control_4Port:u6|Sd ram_PLL:sdram_pll1|altpll:altpll_component|pll" output por t clk[0] feeds output pin "DRAM1_CLK" via non-dedicated routing -- jitter performance depends on switching rate of other design elements. Use PLL dedicated clock outputs to ensure jitter performance解释:PLL的输出用在了非专属的PLL_OUT措施:设计电路板的时候最好将PLL_OUT用在相关的时钟信号上,如果没有使用,则这个警告不理会也可。
3、Warning: Using design file cpu.v, which is not specified as a design file for the current project, but contains defini tions for 25 design units and 25 entities in project解释:模块不是在本项目生成的,而是直接copy了别的项目的原理图和源程序生成的,不是用QUARTUS将文件添加进本项目措施:无须理会,不影响使用4、Warning (10240): Verilog HDL Always Construct warning at I2C_V_Config.v(153): inferring latch(es) for variable "L UT_DATA", which holds its previous value in one or more paths through the always construct解释:信号被综合成了latch,锁存器的EN和数据输入端口存在一个竞争的问题措施:将计数器从里面抽出来5、Warning: 12 hierarchies have connectivity warnings - see the Connectivity Checks report folder解释:实例化的时候,有一些端口没用,让没用的端口的位置空着,措施:不用理会6、Warning: Synthesized away the following node(s)解释:以下节点被综合优化掉措施:不用理会7、Warning:Found xx output pins without output pin load c apacitance assignment解释:没有给输出管教指定负载电容措施:该功能用于估算TCO和功耗,可以不理会,也可以在Assignment Edi tor中为相应的输出管脚指定负载电容,以消除警告8、Warning: The following nodes have both tri-state and no n-tri-state drivers解释:该用三态逻辑驱动的信号,被用非三态逻辑驱动了措施:在子信息中定位到警告所在,改用三态逻辑驱动9、Warning: Latch DE2_TV:inst1|I2C_V_Config:I2C_AV_Conf ig|LUT_DATA[8] has unsafe behaviorWarning: Ports D and ENA on the latch are fed by the sam e signal DE2_TV:inst1|I2C_V_Config:I2C_AV_Config|LUT_I NDEX[4]解释:产生了latch措施:用时序代替组合电路,或者是用完备的if/else,和case语句10、Warning: TRI or OPNDRN buffers permanently enabled 解释:输出要加三态控制11、Warning: Output pins are stuck at VCC or GND解释:这几个输出管脚直接接地了措施:如果这符合你的设计要求这种警告可以不管12、Warning (15400): WYSIWYG primitive "DE2_TV:inst1|S dram_Control_4Port:u6|Sdram_WR_FIFO:write_fifo2|dcfifo: dcfifo_component|dcfifo_21m1:auto_generated|altsyncram_ 1l81:fifo_ram|altsyncram_drg1:altsyncram5|ram_block6a15 " has a port clk1 that is stuck at GND解释:这里是采用的SDRAM的读写方式为1入2出的模式,将fifo2的输入信号给接GND了措施:不用理会。
BOSE ControlSpace Designer 软件 5.5 用户指南
BOSE ProfessionalControlSpace®Designer™ software 5.5June 4, 2019Revision: 1.4GeneralThis release of ControlSpace Designer and firmware adds the following features:1.Support for EX-1280, EX-440C, EX-12AEC2.Support for CC-1D, CC-2D, and CC-3D digital zone controllers3.Updated ArrayEQ for ArenaMatch4.Updated SpeakerEQ files for ArenaMatchThis release of ControlSpace Designer and firmware fixes various issues including:Various CSD I/O Issues1.Fixed an issue where CSD was showing that it was still in the "online" state when the connected PC isdisconnected from the ControlSpace network.2.Fixed an issue where changing the Project Address automatically reset the Dante Endpoints and theyneeded to be updated manually.3.If a Parameter Set is changing Levels on an EX1280C Inputs, Outputs or Gains, the Levels not be setcorrectly if the channels are muted.4.Fixed issue where the ESP-880A and ESP-1240A were showing Dante Inputs and Outputs in the "SPToolkit" even though Dante is not available for these devices.5.If the CSD Project Address is changed, and new Dante Devices added to the Project, those devices willnow be assigned addresses consistent with the Project Address.6.Hardware Manager now displays the correct network mode (Static / DHCP) for the MSA12X7.Notes saved within a Logic Design Window are now saved.8.Fixed an issue where Control Space Designer was showing more Input Channels for a PowerMatch devicethan actually physically exist.9.Fixed issue where ControlSpace Designer Hardware Manager was not showing the correct FirmwareVersion for PowerShare Amplifiers.10.Fixed issue when updating the IP Address of multiple devices at one time (such as changing theControlSpace Designer Project Address) did not update and reboot CC-64s.11.Fixed issue where user was unable to add Dante I/O to Parameter Sets.12.Line drawn in project view from the Amplink output on DSP will now connect to any of the Amplinkinputs on amplifiers.13.CSD now displays more than 10 user defined channel names for Dante Output modules.14.Dante Endpoint IP addresses are changed to match updated Project Address.15.Fixed an issue where PowerMatch entered a Fault mode when uploading a design more than 21 times.3rd Party Mics1.Fixed an issue where the "Mute" function for the SHURE-310 Control Panel did not function correctly andmute the Mic.General Issues1.Grouped Input/Output Levels on PowerMatch devices can no longer be set to non-rounded values.2.Change channel count is now available for matrix mixer in right-click menu.3.Fixed an issue where a CC-16 connected to an EX-1280C would display duplicate characters whencontrolling a selector.4.Fixed an issue where designs created in CSD5.4 that included a CC16 generated a red power LED (systemfault) on EX-1280C.5.Grouped Dante Outputs are now functioning with the Master Fader while on line with CSD.6.Dynamic Routing has been fixed for the EX-1280C.ControlSpace Remote1.If the loaded .csp file used by Control Space Remote is changed and saved, ControlSpace Remote Builderwill now prompt the user notifying them the file has been updated.2.ControlSpace Remote now updates changes made to Group Level Sliders outside of Control SpaceRemote.3.When loading a file into ControlSpace Remote builder, the Level Bar now shows the actual level.FirmwareFirmware included in this release:CSRVersion 2.6 Builder and app are required.Known Issues, Defects and LimitationsThe following are the known issues and defects with this release. Information included here can be useful when troubleshooting issues with software or hardware operation.General Issues1.Duplicating objects can crash CSD and/or corrupt design file2.Modules that have been created by the "Duplicate" command will be shown in reverse order.3.When uploading a design file to an EX-1280C, if there is Audio applied to a Meter above itsthreshold before the upload, the Logic for that Channel will not trigger. The audio must be dropped below the threshold and then back to its original level.4.Muting Grouped Dante Modules while online with CSD does not work correctly.5.CSD does not allow grouping of more than 32 single channel Dante Output channels. Attempting toupload with this programming will result in an error.6.If a USB Input Module is not wired to an Output Module, that Module will not show Metering data.7.For the Variable Equalizer Module, the value for Q/BW will always display the "Q" value, not theBW value.8.If an Acoustic Echo Cancelling Module is deleted from CSD, adding a new AEC Module will retainthe settings of the deleted Module, rather than setting to default values.9.There are some issues deleting objects from the CC-16 Smart Simulator.10.If connecting a PC directly to an EX-1280C, if the network cable is disconnected while CSD isrunning, the device will not be recognized, and CSD will need to be restarted.11.Having 30+ PowerMatch amplifiers with digital I/O cards in one project may corrupt design file.12.PowerShare outputs cannot be added to CC-16 and CC-64. Groups can be used as a workaround.13.The Dial Key and Make Call (PSTN/VoIP) command value (e.g. MA"VoIP In 1">1="0"<CR>) needs tobe entered without the quote (MA"VoIP In 1">1=0<CR>)14.If serial output strings are assigned to a Parameter Set and you then load a preset serial list, it willoverwrite the string in the Parameter Sets.CSD I/O Issues1.When CSD flags a Project Address mismatch it will show the "should be" address incorrectly.2.Logic Module "Parameter Set Recall" cannot be changed to a value higher than 16 with the ContextMenu item "Change Channel Count".B Output Logic does not function when using Logic Routes across multiple devices.4.It has been observed that some files do not merge correctly.CSD Logic Blocks1.If a set of Logic Blocks are set up incorrectly, such as an OR Block looped back to itself, whichcauses an "infinite loop", Control Space Designer will crash.2.For some Logic Wiring, vertices cannot be added.3.CSD is not saving settings for Control Points with Logic Wiring.4.CSD is not saving settings for Wire Label Colors and Backgrounds for Logic Wiring.5.It has been observed that the settings for "Pulse" Pulse Logic Modules cannot be set while onlinewith CSD.6.Assigning a Logic Action from an ESP-00 to a Trigger on an EX-1280 will result in an error.7.The states of Logic Connectors within the Logic Wiring View may sometimes show the incorrectstate. This does not affect the functionality.8.Pulse Logic does not function when used with OR logic while CSD is online.Conference Room Router/Combiner1.Deleting a room from a Room Combining Group will remove that room from the “Room Number”dropdown list.ing "Undo" with Conference Room Combiner can cause CSD to not undo the changes correctly.3.Changing the Label of Port in a Conference Room Router will not change the Label in the CRRMatrix view.4.Changing the names of Outputs for CRR does not update those changes in the CRR Matrix View.5.When adding a Conference Room Router to an existing Conference Room Combiner will result inthe Audio Routes not being completely populated, and the Routes will need to be added manually Under Table Boxes1.It is possible that EX-8ML may boot up with a Link Local address upon first use, rather than DHCP.Rebooting the device will then revert the address to DHCP.2.EX UTB, when programmed in DHCP mode, may be shown as “Static” in CSD Hardware Manager. Telephone Call Functionality1.It has been observed that incoming calls to PSTN will not display full caller ID when calling fromsome countries.2.The Call Timer will incorrectly start when dialing rather than when the call is Active.3.PSTN and VoIP Ring and Voice Levels are not being properly set. There is no difference in audiblelevel between 0 dB and +10 dB.Logic1.It has been observed that some Logic events may Log to Serial Output twice, but this does notaffect performance.ControlSpace Remote1.ControlSpace Remote will show 8 Far End Sources regardless of how many exist in the CSD DesignFile.2.The "Flash" functionality in CSR is works differently that it does in CSD when making ConferenceCalls. In CSR, the call is immediately dialed, rather than hitting the "Dial" button in CSD.3.When entering digits via CSR while in an active VoIP call, there will be no audible DTMF tones.4.It is not possible to end a VoIP call with CSR when the Far End is in a “Hold” state.5.If using ControlSpace Remote to control AmpLink, if the number of channels is changed, theAmpLink Block will need to be deleted and re-done in CSR.3rd Party Mics1.The “Load Preset” function for the SHURE-MXA910 Mic Control Panel is not functioning correctly inControlSpace Designer.Other Issues1.When programming Selectors, Gains, Analog Inputs/Outputs for GPI digital, they may not functionwhen using EX-1280C with Legacy devices.2.If performing Firmware Updates on multiple EX-1280Cs, the Front Panel display may go to "sleep",and the "Updating Firmware" message may not be seen.3. A CC-16 connected to an EX-1280C may display duplicate characters when controlling a selector.4. A CC-16 mapped to a selector may continue to show (*) after the selection is made.5.If illegal Serial commands are sent to EX-1280C, it’s possible that doing so may cause the device toreboot.6.It’s not possible to create long device names in “Properties” view.7.CSD Hardware Manager may show that a new version of Dante Firmware is available, but the“Update” button is greyed and n ot functioning. If so, run the “FUM.exe”from to “/bin” directory to update Dante Firmware.8.The EX-1280C LED Display may show incomplete digits for Dante Firmware Versions.9.If a value is changed in the Standard Room Combine Control Panel(BGM/Input/Output/Gain/Mute), those changes are not shown in the dropdown “Room Control”for the STRC Wizard.10.If combining Rooms across EX-1280C and other devices using Standard Room Combine, CSD will notcreate automatic subscriptions on the non-EX-1280C devices.11.When Merging files, the wiring between Signal Processing Modules is lost.12.When muting Grouped Input/Output Levels on PowerMatch devices, the Group Levels will becomeout of sync when the Groups are Muted.13.PowerMatch will not alert the user to a Digital Audio failure. If there is Audio loss on Dante,ESPLink, CobraNet or other Digital Audio Sources, this issue will be seen.Legacy Devices1.Fixed IO DSP analog Inputs and Outputs may not be set correctly by Timers.2.For the ESP-00 II, the indicators for the Gated AMM Control Panel do not display correctly. TheseModules function accurately on all other devices.3.For the ESP-00 II, the Crosspoints of a Standard Mixer cannot be set via Serial Command.4.Grouped Levels do not change via Serial command if the Group is Muted.5.Not all fixed IO DSP output channels Mute/Unmute when triggered with GPI Input.。
ceph-报错日志
ceph-报错⽇志由于时钟不⼀致问题,导致ceph存储有问题clock skew时钟偏移overalladj. 全部的;全体的;⼀切在内的stampedadj. 铭刻的;盖上邮戳的;顿⾜的beaconvt. 照亮,指引2019-04-29 17:00:00.000223 mon.cu-pve04 mon.0 192.168.7.204:6789/0 1959 : cluster [WRN] overall HEALTH_WARN clock skew detected on mon.cu-pve05, mon.cu-pve062019-04-29 17:00:11.495180 mon.cu-pve04 mon.0 192.168.7.204:6789/0 1960 : cluster [WRN] mon.1 192.168.7.205:6789/0 clock skew 1.30379s > max 0.05s2019-04-29 17:00:11.495343 mon.cu-pve04 mon.0 192.168.7.204:6789/0 1961 : cluster [WRN] mon.2 192.168.7.206:6789/0 clock skew 0.681995s > max 0.05s2019-04-29 17:14:41.500133 mon.cu-pve04 mon.0 192.168.7.204:6789/0 2106 : cluster [WRN] mon.1 192.168.7.205:6789/0 clock skew 1.73357s > max 0.05s2019-04-29 17:14:41.500307 mon.cu-pve04 mon.0 192.168.7.204:6789/0 2107 : cluster [WRN] mon.2 192.168.7.206:6789/0 clock skew 0.671272s > max 0.05s2019-04-29 17:35:33.320667 mon.cu-pve04 mon.0 192.168.7.204:6789/0 2342 : cluster [WRN] message from mon.1 was stamped2.355514s in the future, clocks not synchronized2019-04-29 17:39:59.322154 mon.cu-pve04 mon.0 192.168.7.204:6789/0 2397 : cluster [DBG] osdmap e191: 24 total, 24 up, 24 in 2019-04-29 18:32:24.854130 mon.cu-pve04 mon.0 192.168.7.204:6789/0 3026 : cluster [DBG] osdmap e194: 24 total, 24 up, 24 in 2019-04-29 19:00:00.000221 mon.cu-pve04 mon.0 192.168.7.204:6789/0 3324 : cluster [WRN] overall HEALTH_WARN clock skew detected on mon.cu-pve05, mon.cu-pve062019-04-29 17:01:31.898307 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 649 : cluster [DBG] pgmap v676: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail2019-04-29 17:01:33.927961 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 650 : cluster [DBG] pgmap v677: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.97KiB/s wr, 0op/s2019-04-29 17:01:35.956276 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 651 : cluster [DBG] pgmap v678: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 588B/s rd, 2.71KiB/s wr, 1op/s2019-04-29 17:01:37.981052 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 652 : cluster [DBG] pgmap v679: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 588B/s rd, 2.71KiB/s wr, 1op/s2019-04-29 17:01:40.014386 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 653 : cluster [DBG] pgmap v680: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 589B/s rd, 4.03KiB/s wr, 1op/s2019-04-29 17:01:42.042173 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 654 : cluster [DBG] pgmap v681: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 588B/s rd, 4.02KiB/s wr, 1op/s2019-04-29 17:01:44.072142 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 655 : cluster [DBG] pgmap v682: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 588B/s rd, 5.01KiB/s wr, 1op/s2019-04-29 17:01:46.100477 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 656 : cluster [DBG] pgmap v683: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.89KiB/s rd, 3.20KiB/s wr, 1op/s2019-04-29 17:01:48.129701 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 657 : cluster [DBG] pgmap v684: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.31KiB/s rd, 2.46KiB/s wr, 0op/s2019-04-29 17:01:50.161716 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 658 : cluster [DBG] pgmap v685: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.31KiB/s rd, 2.46KiB/s wr, 0op/s2019-04-29 17:01:52.190373 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 659 : cluster [DBG] pgmap v686: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.31KiB/s rd, 1.15KiB/s wr, 0op/s2019-04-29 17:01:54.220284 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 660 : cluster [DBG] pgmap v687: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.31KiB/s rd, 1.15KiB/s wr, 0op/s2019-04-29 17:01:56.248956 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 661 : cluster [DBG] pgmap v688: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail; 1.31KiB/s rd, 168B/s wr, 0op/s2019-04-29 17:01:58.273446 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 662 : cluster [DBG] pgmap v689: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail2019-04-29 17:02:00.305394 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 663 : cluster [DBG] pgmap v690: 1152 pgs: 1152 active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail2019-04-29 17:02:02.334375 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 664 : cluster [DBG] pgmap v691: 1152 pgs: 1152active+clean; 32.1GiB data, 121GiB used, 52.3TiB / 52.4TiB avail2019-04-30 00:22:14.177176 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 13697 : cluster [DBG] pgmap v13716: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:22:16.203475 mgr.cu-pve05 client.64099 192.168.7.205:0/2045992877 13698 : cluster [DBG] pgmap v13717: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:22:28.348815 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6578 : cluster [WRN] daemon mds.cu-pve04 is not responding, replacing it as rank 0 with standby daemon mds.cu-pve062019-04-30 00:22:28.349010 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6579 : cluster [INF] Standby daemon mds.cu-pve05 is not responding, dropping it2019-04-30 00:22:28.353359 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6580 : cluster [WRN] Health check failed: 1 filesystem is degraded (FS_DEGRADED)2019-04-30 00:22:28.353476 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6581 : cluster [WRN] Health check failed: insufficient standby MDS daemons available (MDS_INSUFFICIENT_STANDBY)2019-04-30 00:22:28.364180 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6582 : cluster [DBG] osdmap e195: 24 total, 24 up, 24 in2019-04-30 00:22:28.374585 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6583 : cluster [DBG] fsmap cephfs-1/1/1 up {0=cu-pve06=up:replay}2019-04-30 00:22:29.413750 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6584 : cluster [INF] Health check cleared:MDS_INSUFFICIENT_STANDBY (was: insufficient standby MDS daemons available)2019-04-30 00:22:29.425556 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6585 : cluster [DBG] mds.0 192.168.7.206:6800/3970858648 up:reconnect2019-04-30 00:22:29.425710 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6586 : cluster [DBG] mds.? 192.168.7.204:6800/2960873692 up:boot2019-04-30 00:22:29.425883 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6587 : cluster [DBG] fsmap cephfs-1/1/1 up {0=cu-pve06=up:reconnect}, 1 up:standby2019-04-30 00:22:30.435723 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6588 : cluster [DBG] mds.0 192.168.7.206:6800/3970858648 up:rejoin2019-04-30 00:22:30.435868 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6589 : cluster [DBG] fsmap cephfs-1/1/1 up {0=cu-pve06=up:rejoin}, 1 up:standby2019-04-30 00:22:30.449165 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6590 : cluster [INF] daemon mds.cu-pve06 is now active in filesystem cephfs as rank 02019-04-30 00:22:30.015869 mds.cu-pve06 mds.0 192.168.7.206:6800/3970858648 1 : cluster [DBG] reconnect by client.54450192.168.7.205:0/1578906464 after 02019-04-30 00:22:30.019932 mds.cu-pve06 mds.0 192.168.7.206:6800/3970858648 2 : cluster [DBG] reconnect by client.64366192.168.7.206:0/2722278656 after 0.004000012019-04-30 00:22:30.054313 mds.cu-pve06 mds.0 192.168.7.206:6800/3970858648 3 : cluster [DBG] reconnect by client.54120192.168.7.204:0/254060409 after 0.04000012019-04-30 00:22:31.434592 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6591 : cluster [INF] Health check cleared: FS_DEGRADED (was: 1 filesystem is degraded)2019-04-30 00:22:31.446526 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6592 : cluster [DBG] mds.0 192.168.7.206:6800/3970858648 up:active2019-04-30 00:22:31.446675 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6593 : cluster [DBG] fsmap cephfs-1/1/1 up {0=cu-pve06=up:active}, 1 up:standby2019-04-30 00:22:43.355044 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6595 : cluster [INF] Manager daemon cu-pve05 is unresponsive. No standby daemons available.2019-04-30 00:22:43.355235 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6596 : cluster [WRN] Health check failed: no active mgr (MGR_DOWN)2019-04-30 00:22:43.367182 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6597 : cluster [DBG] mgrmap e18: no daemons active2019-04-30 00:22:53.658070 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6601 : cluster [INF] Activating manager daemon cu-pve05 2019-04-30 00:22:53.898363 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6602 : cluster [INF] Health check cleared: MGR_DOWN (was: no active mgr)2019-04-30 00:22:53.917204 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6603 : cluster [DBG] mgrmap e19: cu-pve05(active, starting) 2019-04-30 00:22:53.979682 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6608 : cluster [INF] Manager daemon cu-pve05 is now available 2019-04-30 00:22:54.928868 mon.cu-pve04 mon.0 192.168.7.204:6789/0 6609 : cluster [DBG] mgrmap e20: cu-pve05(active)2019-04-30 00:22:59.965578 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 1 : cluster [DBG] pgmap v2: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:00.677664 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 2 : cluster [DBG] pgmap v3: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:02.700917 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 3 : cluster [DBG] pgmap v4: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:04.707492 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 4 : cluster [DBG] pgmap v5: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:06.740218 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 5 : cluster [DBG] pgmap v6: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:08.746633 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 6 : cluster [DBG] pgmap v7: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:23:10.780395 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 7 : cluster [DBG] pgmap v8: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:32:18.562962 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 278 : cluster [DBG] pgmap v279: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:32:18.465670 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7327 : cluster [INF] osd.16 marked down after no beacon for 901.455814 seconds2019-04-30 00:32:18.468437 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7328 : cluster [WRN] Health check failed: 1 osds down (OSD_DOWN)2019-04-30 00:32:18.483797 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7329 : cluster [DBG] osdmap e196: 24 total, 23 up, 24 in 2019-04-30 00:32:19.495106 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7331 : cluster [DBG] osdmap e197: 24 total, 23 up, 24 in 2019-04-30 00:32:21.501683 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7334 : cluster [WRN] Health check failed: Reduced data availability: 3 pgs inactive, 47 pgs peering (PG_AVAILABILITY)2019-04-30 00:32:21.501774 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7335 : cluster [WRN] Health check failed: Degraded data redundancy: 794/38643 objects degraded (2.055%), 50 pgs degraded (PG_DEGRADED)2019-04-30 00:32:20.596358 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 279 : cluster [DBG] pgmap v280: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:32:22.603039 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 280 : cluster [DBG] pgmap v281: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:32:24.628896 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 281 : cluster [DBG] pgmap v283: 1152 pgs: 41 stale+active+clean, 1111 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 00:32:26.642893 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 282 : cluster [DBG] pgmap v285: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:28.669528 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 283 : cluster [DBG] pgmap v286: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:30.683129 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 284 : cluster [DBG] pgmap v287: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:32.709629 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 285 : cluster [DBG] pgmap v288: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:34.717180 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 286 : cluster [DBG] pgmap v289: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:36.748749 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 287 : cluster [DBG] pgmap v290: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:38.756345 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 288 : cluster [DBG] pgmap v291: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:40.789378 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 289 : cluster [DBG] pgmap v292: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:42.796488 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 290 : cluster [DBG] pgmap v293: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:44.821576 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 291 : cluster [DBG] pgmap v294: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:46.835641 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 292 : cluster [DBG] pgmap v295: 1152 pgs: 25 active+undersized, 1030 active+clean, 47 peering, 50 active+undersized+degraded; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail; 794/38643 objects degraded (2.055%)2019-04-30 00:32:48.475079 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7371 : cluster [INF] osd.17 marked down after no beacon for 903.631937 seconds2019-04-30 00:32:48.475189 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7372 : cluster [INF] osd.20 marked down after no beacon for 901.611316 seconds2019-04-30 00:32:48.483726 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7373 : cluster [WRN] Health check update: 3 osds down (OSD_DOWN)2019-04-30 00:32:48.500282 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7374 : cluster [DBG] osdmap e198: 24 total, 21 up, 24 in 2019-04-30 00:32:49.510909 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7376 : cluster [DBG] osdmap e199: 24 total, 21 up, 24 in 2019-04-30 00:35:58.536182 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7645 : cluster [INF] osd.7 marked down after no beacon for902.595536 seconds2019-04-30 00:35:58.538784 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7646 : cluster [WRN] Health check update: 5 osds down (OSD_DOWN)2019-04-30 00:35:58.554495 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7647 : cluster [DBG] osdmap e202: 24 total, 19 up, 24 in2019-04-30 00:35:59.565253 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7649 : cluster [DBG] osdmap e203: 24 total, 19 up, 24 in2019-04-30 00:36:01.657260 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7652 : cluster [WRN] Health check update: Reduced data availability: 202 pgs inactive, 206 pgs peering (PG_AVAILABILITY)2019-04-30 00:36:01.657353 mon.cu-pve04 mon.0 192.168.7.204:6789/0 7653 : cluster [WRN] Health check update: Degraded data redundancy: 4903/38643 objects degraded (12.688%), 247 pgs degraded, 285 pgs undersized (PG_DEGRADED)--------------------------------------2019-04-30 05:31:46.580027 mon.cu-pve04 mon.0 192.168.7.204:6789/0 11871 : cluster [INF] Standby daemon mds.cu-pve05 is not responding, dropping it2019-04-30 05:31:46.591494 mon.cu-pve04 mon.0 192.168.7.204:6789/0 11872 : cluster [DBG] fsmap cephfs-1/1/1 up {0=cu-pve06=up:active}, 1 up:standby2019-04-30 05:31:50.842218 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 9143 : cluster [DBG] pgmap v9201: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 05:31:52.872419 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 9144 : cluster [DBG] pgmap v9202: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 05:31:54.899490 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 9145 : cluster [DBG] pgmap v9203: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 05:31:56.925830 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 9146 : cluster [DBG] pgmap v9204: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 05:31:58.957234 mgr.cu-pve05 client.84813 192.168.7.205:0/2429672320 9147 : cluster [DBG] pgmap v9205: 1152 pgs: 1152 active+clean; 50.1GiB data, 175GiB used, 52.2TiB / 52.4TiB avail2019-04-30 05:32:01.596600 mon.cu-pve04 mon.0 192.168.7.204:6789/0 11890 : cluster [DBG] mgrmap e22: cu-pve05(active)2019-04-30 05:43:16.717729 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12763 : cluster [INF] osd.18 marked down after no beacon for 902.818940 seconds2019-04-30 05:43:16.717846 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12764 : cluster [INF] osd.19 marked down after no beacon for 902.818731 seconds2019-04-30 05:43:16.717914 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12765 : cluster [INF] osd.23 marked down after no beacon for 900.786850 seconds2019-04-30 05:43:16.726253 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12766 : cluster [WRN] Health check failed: 3 osds down (OSD_DOWN)2019-04-30 05:43:16.742278 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12767 : cluster [DBG] osdmap e253: 24 total, 21 up, 24 in2019-04-30 05:43:17.753181 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12771 : cluster [DBG] osdmap e254: 24 total, 21 up, 24 in2019-04-30 05:43:19.209031 mon.cu-pve04 mon.0 192.168.7.204:6789/0 12774 : cluster [WRN] Health check failed: Reduced data availability: 51 pgs inactive, 293 pgs peering (PG_AVAILABILITY)-----------------------------------------2019-04-30 08:56:22.240506 mon.cu-pve04 mon.0 192.168.7.204:6789/0 19905 : cluster [DBG] Standby manager daemon cu-pve04 started2019-04-30 05:43:17.030698 osd.18 osd.18 192.168.7.204:6811/5641 3 : cluster [WRN] Monitor daemon marked osd.18 down, but it is still running2019-04-30 05:43:17.030714 osd.18 osd.18 192.168.7.204:6811/5641 4 : cluster [DBG] map e253 wrongly marked me down at e253 2019-04-30 05:43:18.450669 osd.19 osd.19 192.168.7.204:6807/5309 3 : cluster [WRN] Monitor daemon marked osd.19 down, but it is still running2019-04-30 05:43:18.450689 osd.19 osd.19 192.168.7.204:6807/5309 4 : cluster [DBG] map e254 wrongly marked me down at e253 2019-04-30 05:43:18.652645 osd.23 osd.23 192.168.7.204:6801/4516 3 : cluster [WRN] Monitor daemon marked osd.23 down, but it is still running2019-04-30 05:44:07.065692 osd.20 osd.20 192.168.7.204:6809/5441 4 : cluster [DBG] map e263 wrongly marked me down at e263 2019-04-30 08:56:22.458718 mon.cu-pve04 mon.0 192.168.7.204:6789/0 19906 : cluster [INF] daemon mds.cu-pve05 restarted2019-04-30 08:56:26.088398 mon.cu-pve04 mon.0 192.168.7.204:6789/0 19910 : cluster [DBG] Standby manager daemon cu-pve06 started2019-04-30 08:56:26.495852 mon.cu-pve04 mon.0 192.168.7.204:6789/0 19911 : cluster [DBG] mgrmap e23: cu-pve05(active), standbys: cu-pve04。
Indradrive 系列 故障代码
Error MessagesF9001 Error internal function call.F9002 Error internal RTOS function callF9003 WatchdogF9004 Hardware trapF8000 Fatal hardware errorF8010 Autom. commutation: Max. motion range when moving back F8011 Commutation offset could not be determinedF8012 Autom. commutation: Max. motion rangeF8013 Automatic commutation: Current too lowF8014 Automatic commutation: OvercurrentF8015 Automatic commutation: TimeoutF8016 Automatic commutation: Iteration without resultF8017 Automatic commutation: Incorrect commutation adjustment F8018 Device overtemperature shutdownF8022 Enc. 1: Enc. signals incorr. (can be cleared in ph. 2) F8023 Error mechanical link of encoder or motor connectionF8025 Overvoltage in power sectionF8027 Safe torque off while drive enabledF8028 Overcurrent in power sectionF8030 Safe stop 1 while drive enabledF8042 Encoder 2 error: Signal amplitude incorrectF8057 Device overload shutdownF8060 Overcurrent in power sectionF8064 Interruption of motor phaseF8067 Synchronization PWM-Timer wrongF8069 +/-15Volt DC errorF8070 +24Volt DC errorF8076 Error in error angle loopF8078 Speed loop error.F8079 Velocity limit value exceededF8091 Power section defectiveF8100 Error when initializing the parameter handlingF8102 Error when initializing power sectionF8118 Invalid power section/firmware combinationF8120 Invalid control section/firmware combinationF8122 Control section defectiveF8129 Incorrect optional module firmwareF8130 Firmware of option 2 of safety technology defectiveF8133 Error when checking interrupting circuitsF8134 SBS: Fatal errorF8135 SMD: Velocity exceededF8140 Fatal CCD error.F8201 Safety command for basic initialization incorrectF8203 Safety technology configuration parameter invalidF8813 Connection error mains chokeF8830 Power section errorF8838 Overcurrent external braking resistorF7010 Safely-limited increment exceededF7011 Safely-monitored position, exceeded in pos. DirectionF7012 Safely-monitored position, exceeded in neg. DirectionF7013 Safely-limited speed exceededF7020 Safe maximum speed exceededF7021 Safely-limited position exceededF7030 Position window Safe stop 2 exceededF7031 Incorrect direction of motionF7040 Validation error parameterized - effective thresholdF7041 Actual position value validation errorF7042 Validation error of safe operation modeF7043 Error of output stage interlockF7050 Time for stopping process exceeded8.3.15 F7051 Safely-monitored deceleration exceeded (159)8.4 Travel Range Errors (F6xxx) (161)8.4.1 Behavior in the Case of Travel Range Errors (161)8.4.2 F6010 PLC Runtime Error (162)8.4.3 F6024 Maximum braking time exceeded (163)8.4.4 F6028 Position limit value exceeded (overflow) (164)8.4.5 F6029 Positive position limit exceeded (164)8.4.6 F6030 Negative position limit exceeded (165)8.4.7 F6034 Emergency-Stop (166)8.4.8 F6042 Both travel range limit switches activated (167)8.4.9 F6043 Positive travel range limit switch activated (167)8.4.10 F6044 Negative travel range limit switch activated (168)8.4.11 F6140 CCD slave error (emergency halt) (169)8.5 Interface Errors (F4xxx) (169)8.5.1 Behavior in the Case of Interface Errors (169)8.5.2 F4001 Sync telegram failure (170)8.5.3 F4002 RTD telegram failure (171)8.5.4 F4003 Invalid communication phase shutdown (172)8.5.5 F4004 Error during phase progression (172)8.5.6 F4005 Error during phase regression (173)8.5.7 F4006 Phase switching without ready signal (173)8.5.8 F4009 Bus failure (173)8.5.9 F4012 Incorrect I/O length (175)8.5.10 F4016 PLC double real-time channel failure (176)8.5.11 F4017 S-III: Incorrect sequence during phase switch (176)8.5.12 F4034 Emergency-Stop (177)8.5.13 F4140 CCD communication error (178)8.6 Non-Fatal Safety Technology Errors (F3xxx) (178)8.6.1 Behavior in the Case of Non-Fatal Safety Technology Errors (178)8.6.2 F3111 Refer. missing when selecting safety related end pos (179)8.6.3 F3112 Safe reference missing (179)8.6.4 F3115 Brake check time interval exceeded (181)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand ControlsI Bosch Rexroth AG VII/XXIITable of ContentsPage8.6.5 F3116 Nominal load torque of holding system exceeded (182)8.6.6 F3117 Actual position values validation error (182)8.6.7 F3122 SBS: System error (183)8.6.8 F3123 SBS: Brake check missing (184)8.6.9 F3130 Error when checking input signals (185)8.6.10 F3131 Error when checking acknowledgment signal (185)8.6.11 F3132 Error when checking diagnostic output signal (186)8.6.12 F3133 Error when checking interrupting circuits (187)8.6.13 F3134 Dynamization time interval incorrect (188)8.6.14 F3135 Dynamization pulse width incorrect (189)8.6.15 F3140 Safety parameters validation error (192)8.6.16 F3141 Selection validation error (192)8.6.17 F3142 Activation time of enabling control exceeded (193)8.6.18 F3143 Safety command for clearing errors incorrect (194)8.6.19 F3144 Incorrect safety configuration (195)8.6.20 F3145 Error when unlocking the safety door (196)8.6.21 F3146 System error channel 2 (197)8.6.22 F3147 System error channel 1 (198)8.6.23 F3150 Safety command for system start incorrect (199)8.6.24 F3151 Safety command for system halt incorrect (200)8.6.25 F3152 Incorrect backup of safety technology data (201)8.6.26 F3160 Communication error of safe communication (202)8.7 Non-Fatal Errors (F2xxx) (202)8.7.1 Behavior in the Case of Non-Fatal Errors (202)8.7.2 F2002 Encoder assignment not allowed for synchronization (203)8.7.3 F2003 Motion step skipped (203)8.7.4 F2004 Error in MotionProfile (204)8.7.5 F2005 Cam table invalid (205)8.7.6 F2006 MMC was removed (206)8.7.7 F2007 Switching to non-initialized operation mode (206)8.7.8 F2008 RL The motor type has changed (207)8.7.9 F2009 PL Load parameter default values (208)8.7.10 F2010 Error when initializing digital I/O (-> S-0-0423) (209)8.7.11 F2011 PLC - Error no. 1 (210)8.7.12 F2012 PLC - Error no. 2 (210)8.7.13 F2013 PLC - Error no. 3 (211)8.7.14 F2014 PLC - Error no. 4 (211)8.7.15 F2018 Device overtemperature shutdown (211)8.7.16 F2019 Motor overtemperature shutdown (212)8.7.17 F2021 Motor temperature monitor defective (213)8.7.18 F2022 Device temperature monitor defective (214)8.7.19 F2025 Drive not ready for control (214)8.7.20 F2026 Undervoltage in power section (215)8.7.21 F2027 Excessive oscillation in DC bus (216)8.7.22 F2028 Excessive deviation (216)8.7.23 F2031 Encoder 1 error: Signal amplitude incorrect (217)VIII/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage8.7.24 F2032 Validation error during commutation fine adjustment (217)8.7.25 F2033 External power supply X10 error (218)8.7.26 F2036 Excessive position feedback difference (219)8.7.27 F2037 Excessive position command difference (220)8.7.28 F2039 Maximum acceleration exceeded (220)8.7.29 F2040 Device overtemperature 2 shutdown (221)8.7.30 F2042 Encoder 2: Encoder signals incorrect (222)8.7.31 F2043 Measuring encoder: Encoder signals incorrect (222)8.7.32 F2044 External power supply X15 error (223)8.7.33 F2048 Low battery voltage (224)8.7.34 F2050 Overflow of target position preset memory (225)8.7.35 F2051 No sequential block in target position preset memory (225)8.7.36 F2053 Incr. encoder emulator: Pulse frequency too high (226)8.7.37 F2054 Incr. encoder emulator: Hardware error (226)8.7.38 F2055 External power supply dig. I/O error (227)8.7.39 F2057 Target position out of travel range (227)8.7.40 F2058 Internal overflow by positioning input (228)8.7.41 F2059 Incorrect command value direction when positioning (229)8.7.42 F2063 Internal overflow master axis generator (230)8.7.43 F2064 Incorrect cmd value direction master axis generator (230)8.7.44 F2067 Synchronization to master communication incorrect (231)8.7.45 F2068 Brake error (231)8.7.46 F2069 Error when releasing the motor holding brake (232)8.7.47 F2074 Actual pos. value 1 outside absolute encoder window (232)8.7.48 F2075 Actual pos. value 2 outside absolute encoder window (233)8.7.49 F2076 Actual pos. value 3 outside absolute encoder window (234)8.7.50 F2077 Current measurement trim wrong (235)8.7.51 F2086 Error supply module (236)8.7.52 F2087 Module group communication error (236)8.7.53 F2100 Incorrect access to command value memory (237)8.7.54 F2101 It was impossible to address MMC (237)8.7.55 F2102 It was impossible to address I2C memory (238)8.7.56 F2103 It was impossible to address EnDat memory (238)8.7.57 F2104 Commutation offset invalid (239)8.7.58 F2105 It was impossible to address Hiperface memory (239)8.7.59 F2110 Error in non-cyclical data communic. of power section (240)8.7.60 F2120 MMC: Defective or missing, replace (240)8.7.61 F2121 MMC: Incorrect data or file, create correctly (241)8.7.62 F2122 MMC: Incorrect IBF file, correct it (241)8.7.63 F2123 Retain data backup impossible (242)8.7.64 F2124 MMC: Saving too slowly, replace (243)8.7.65 F2130 Error comfort control panel (243)8.7.66 F2140 CCD slave error (243)8.7.67 F2150 MLD motion function block error (244)8.7.68 F2174 Loss of motor encoder reference (244)8.7.69 F2175 Loss of optional encoder reference (245)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG IX/XXIITable of ContentsPage8.7.70 F2176 Loss of measuring encoder reference (246)8.7.71 F2177 Modulo limitation error of motor encoder (246)8.7.72 F2178 Modulo limitation error of optional encoder (247)8.7.73 F2179 Modulo limitation error of measuring encoder (247)8.7.74 F2190 Incorrect Ethernet configuration (248)8.7.75 F2260 Command current limit shutoff (249)8.7.76 F2270 Analog input 1 or 2, wire break (249)8.7.77 F2802 PLL is not synchronized (250)8.7.78 F2814 Undervoltage in mains (250)8.7.79 F2815 Overvoltage in mains (251)8.7.80 F2816 Softstart fault power supply unit (251)8.7.81 F2817 Overvoltage in power section (251)8.7.82 F2818 Phase failure (252)8.7.83 F2819 Mains failure (253)8.7.84 F2820 Braking resistor overload (253)8.7.85 F2821 Error in control of braking resistor (254)8.7.86 F2825 Switch-on threshold braking resistor too low (255)8.7.87 F2833 Ground fault in motor line (255)8.7.88 F2834 Contactor control error (256)8.7.89 F2835 Mains contactor wiring error (256)8.7.90 F2836 DC bus balancing monitor error (257)8.7.91 F2837 Contactor monitoring error (257)8.7.92 F2840 Error supply shutdown (257)8.7.93 F2860 Overcurrent in mains-side power section (258)8.7.94 F2890 Invalid device code (259)8.7.95 F2891 Incorrect interrupt timing (259)8.7.96 F2892 Hardware variant not supported (259)8.8 SERCOS Error Codes / Error Messages of Serial Communication (259)9 Warnings (Exxxx) (263)9.1 Fatal Warnings (E8xxx) (263)9.1.1 Behavior in the Case of Fatal Warnings (263)9.1.2 E8025 Overvoltage in power section (263)9.1.3 E8026 Undervoltage in power section (264)9.1.4 E8027 Safe torque off while drive enabled (265)9.1.5 E8028 Overcurrent in power section (265)9.1.6 E8029 Positive position limit exceeded (266)9.1.7 E8030 Negative position limit exceeded (267)9.1.8 E8034 Emergency-Stop (268)9.1.9 E8040 Torque/force actual value limit active (268)9.1.10 E8041 Current limit active (269)9.1.11 E8042 Both travel range limit switches activated (269)9.1.12 E8043 Positive travel range limit switch activated (270)9.1.13 E8044 Negative travel range limit switch activated (271)9.1.14 E8055 Motor overload, current limit active (271)9.1.15 E8057 Device overload, current limit active (272)X/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage9.1.16 E8058 Drive system not ready for operation (273)9.1.17 E8260 Torque/force command value limit active (273)9.1.18 E8802 PLL is not synchronized (274)9.1.19 E8814 Undervoltage in mains (275)9.1.20 E8815 Overvoltage in mains (275)9.1.21 E8818 Phase failure (276)9.1.22 E8819 Mains failure (276)9.2 Warnings of Category E4xxx (277)9.2.1 E4001 Double MST failure shutdown (277)9.2.2 E4002 Double MDT failure shutdown (278)9.2.3 E4005 No command value input via master communication (279)9.2.4 E4007 SERCOS III: Consumer connection failed (280)9.2.5 E4008 Invalid addressing command value data container A (280)9.2.6 E4009 Invalid addressing actual value data container A (281)9.2.7 E4010 Slave not scanned or address 0 (281)9.2.8 E4012 Maximum number of CCD slaves exceeded (282)9.2.9 E4013 Incorrect CCD addressing (282)9.2.10 E4014 Incorrect phase switch of CCD slaves (283)9.3 Possible Warnings When Operating Safety Technology (E3xxx) (283)9.3.1 Behavior in Case a Safety Technology Warning Occurs (283)9.3.2 E3100 Error when checking input signals (284)9.3.3 E3101 Error when checking acknowledgment signal (284)9.3.4 E3102 Actual position values validation error (285)9.3.5 E3103 Dynamization failed (285)9.3.6 E3104 Safety parameters validation error (286)9.3.7 E3105 Validation error of safe operation mode (286)9.3.8 E3106 System error safety technology (287)9.3.9 E3107 Safe reference missing (287)9.3.10 E3108 Safely-monitored deceleration exceeded (288)9.3.11 E3110 Time interval of forced dynamization exceeded (289)9.3.12 E3115 Prewarning, end of brake check time interval (289)9.3.13 E3116 Nominal load torque of holding system reached (290)9.4 Non-Fatal Warnings (E2xxx) (290)9.4.1 Behavior in Case a Non-Fatal Warning Occurs (290)9.4.2 E2010 Position control with encoder 2 not possible (291)9.4.3 E2011 PLC - Warning no. 1 (291)9.4.4 E2012 PLC - Warning no. 2 (291)9.4.5 E2013 PLC - Warning no. 3 (292)9.4.6 E2014 PLC - Warning no. 4 (292)9.4.7 E2021 Motor temperature outside of measuring range (292)9.4.8 E2026 Undervoltage in power section (293)9.4.9 E2040 Device overtemperature 2 prewarning (294)9.4.10 E2047 Interpolation velocity = 0 (294)9.4.11 E2048 Interpolation acceleration = 0 (295)9.4.12 E2049 Positioning velocity >= limit value (296)9.4.13 E2050 Device overtemp. Prewarning (297)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG XI/XXIITable of ContentsPage9.4.14 E2051 Motor overtemp. prewarning (298)9.4.15 E2053 Target position out of travel range (298)9.4.16 E2054 Not homed (300)9.4.17 E2055 Feedrate override S-0-0108 = 0 (300)9.4.18 E2056 Torque limit = 0 (301)9.4.19 E2058 Selected positioning block has not been programmed (302)9.4.20 E2059 Velocity command value limit active (302)9.4.21 E2061 Device overload prewarning (303)9.4.22 E2063 Velocity command value > limit value (304)9.4.23 E2064 Target position out of num. range (304)9.4.24 E2069 Holding brake torque too low (305)9.4.25 E2070 Acceleration limit active (306)9.4.26 E2074 Encoder 1: Encoder signals disturbed (306)9.4.27 E2075 Encoder 2: Encoder signals disturbed (307)9.4.28 E2076 Measuring encoder: Encoder signals disturbed (308)9.4.29 E2077 Absolute encoder monitoring, motor encoder (encoder alarm) (308)9.4.30 E2078 Absolute encoder monitoring, opt. encoder (encoder alarm) (309)9.4.31 E2079 Absolute enc. monitoring, measuring encoder (encoder alarm) (309)9.4.32 E2086 Prewarning supply module overload (310)9.4.33 E2092 Internal synchronization defective (310)9.4.34 E2100 Positioning velocity of master axis generator too high (311)9.4.35 E2101 Acceleration of master axis generator is zero (312)9.4.36 E2140 CCD error at node (312)9.4.37 E2270 Analog input 1 or 2, wire break (312)9.4.38 E2802 HW control of braking resistor (313)9.4.39 E2810 Drive system not ready for operation (314)9.4.40 E2814 Undervoltage in mains (314)9.4.41 E2816 Undervoltage in power section (314)9.4.42 E2818 Phase failure (315)9.4.43 E2819 Mains failure (315)9.4.44 E2820 Braking resistor overload prewarning (316)9.4.45 E2829 Not ready for power on (316)。
EN_ReleaseNotes_FirewareXTM_11_3_1pdf
Note that most data input must still be made using standard ASCII characters. You can use non-ASCII characters in some areas of the UI, including: Proxy deny message Wireless hotspot title, terms and conditions, and message WatchGuard Server Center users, groups, and role names
Fireware XTM and WSM v11.3.1 Operating System Compatibility
RELEASE NOTES
AUGUST 31, 2010
PAGE 2
FIREWARE XTM V11.3.1
System Requirements
If you have WatchGuard System Manager client software only installed Minimum CPU Minimum Memory Minimum Available Disk Space Minimum Recommended Screen Resolution Intel Pentium IV 1GHz 1 GB 250 MB 1024x768 If you install WatchGuard System Manager and WatchGuard Server software Intel Pentium IV 2GHz 2 GB 1 GB 1024x768
RELEASE NOTES
潍柴汽车产品说明书
I
INDEX
v w
Main Menu
Index
Changing Oil How to......................................... 147 When to...................................Байду номын сангаас... 135
Charging System Indicator .... 46, 186 Checklist, Before Driving............. 123 Child Safety ...................................... 29
Booster Seats ............................... 38 Child Seats.................................... 34 Important Safety Reminders ...... 32 Larger Children ........................... 37 Risk with Airbags ........................ 30 Small Children.............................. 33 Child Seats........................................ 34 Cleaning Seat Belts........................ 160 Clock.................................................. 54 Clutch Fluid.................................... 154 CO in the Exhaust ......................... 207 Cold Weather, Starting in ............. 124 Compact Spare Tire....................... 174 Consumer Informationˎ................ 212 Controls, Instruments and.............. 43 Convertible Top ............................... 70 Convertible Top Cover................ 72 Lowering the Convertible Top... 70 Maintenance................................. 74 Raising the Convertible Top ...... 73
ap autosar中的坑 英语
ap autosar中的坑英语1. Pitfall -安全问题2. Misconfiguration -配置错误3. Incompatibility -不兼容4. Ambiguity -歧义5. Overlapping -重叠6. Deadlock -死锁7. Race condition -竞争条件8. Memory leak -内存泄漏9. Stack overflow -栈溢出10. Infinite loop -无限循环11. Null pointer exception -空指针异常12. Data corruption -数据损坏13. Timing issue -时序问题14. Kernel panic -内核崩溃15. Resource exhaustion -资源耗尽16. Non-deterministic behavior -非确定性行为17. Bus contention -总线冲突18. Buffer overflow -缓冲区溢出19. Denial of Service (DoS) -拒绝服务攻击20. Input validation -输入验证21. Code injection -代码注入22. Side channel attack -侧信道攻击23. Backdoor -后门24. Man-in-the-middle attack -中间人攻击25. Security vulnerability -安全漏洞1. The system encountered a pitfall due to a software bug.系统由于软件漏洞而遭遇到一个安全问题。
2. The misconfiguration of network settings resulted in a communication failure.网络设置的配置错误导致了通讯故障。
3. The new software version is incompatible with the previous hardware version.新软件版本与之前的硬件版本不兼容。
阵列信号处理课件第四章部分自适应阵列处理技术
3
4. Adams, Adaptive Main-Beam Nulling for NarrowBeam Antenna Arrays.IEEE,AES-16,1980,P509~516 用几个指向目标临近方向的波束进行对消
参考文献:
1) L.J.Griffths.An alternative approach to linearly constrained adaptive beamforming.IEEE Trans.on AP-30(1) 1982.27-34
2) N.K.Jablon, “Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections”
通道中的干扰信号进而对消掉。
要求:下支路中不含目标信号,由
C
H n
C
0
保证。
25
x t s t a 0 xn t
C
H n
C
C
H n
a
0
0
C a 0
称 Cn 为信号阻塞矩阵(Block Matrix)
在上述结构中,用了L个约束条件,全自适应处理
的自由度为N-L个。由上述结构可方便设计降维
13
来波方向0 30 ,干扰方向 1 0 和2 60 14
§4.3 波束空间部分自适应处理
➢波束指的是普通波束。 ➢波束空间自适应处理:最常见的是对傅氏基
Micro Focus z Server消息和诊断说明书
z/Server Messages and Diagnosticsz/Server Messages and DiagnosticsMicro FocusThe Lawn22-30 Old Bath RoadNewbury, Berkshire RG14 1QNUKCopyright © 2011-2014 Micro Focus. All rights reserved.MICRO FOCUS and the Micro Focus logo are trademarks or registered trademarks of Micro Focus or its subsidiaries or affiliatedcompanies in the United States, United Kingdom and other countries. All other marks are the property of their respective owners.z/Server Messages and Diagnostics Contents1 Introduction (27)1.1 Message format (27)1.2 Error message example (28)1.3 Warning message example (29)1.4 Information message example (29)1.5 Messages and GTF (29)2 Messages (30)2.1 API - Application Programming Interface (30)2.1.1 API0001I (30)2.1.2 API0002I (31)2.1.3 API0007E (31)2.1.4 API0008I (31)2.1.5 API0009E (31)2.1.6 API0010I (31)2.1.7 API0011I (32)2.1.8 API0015I (32)2.1.9 API0054S (32)2.1.10 API0065I (32)2.1.11 API0069E (32)2.1.12 API0072W (33)2.1.13 API0099I (33)2.1.14 API0106W (33)2.1.15 API0107E (33)2.1.16 API0108W (33)2.1.17 API0109I (34)2.1.18 API0110I (34)2.1.19 API0111I (34)2.2 BND - IEWBIND (Binder) Interface (35)2.2.1 BND0001E (35)2.2.2 BND0002I (35)2.2.3 BND0003I (35)2.2.4 BND0004E (35)z/Server Messages and Diagnostics2.2.5 BND0005E (35)2.2.6 BND0006I (36)2.3 CSI - Catalog Search Interface (37)2.3.1 CSI0001E (37)2.3.2 CSI0002I (37)2.3.3 CSI0003E (37)2.3.4 CSI0004I (37)2.3.5 CSI0005I (37)2.3.6 CSI0006I (38)2.3.7 CSI0007I (38)2.3.8 CSI0008E (38)2.3.9 CSI0009I (38)2.3.10 CSI0010E (39)2.3.11 CSI0011I (39)2.3.12 CSI0012E (39)2.3.13 CSI0013E (39)2.3.14 CSI0014W (39)2.3.15 CSI0015I (39)2.3.16 CSI0016E (40)2.3.17 CSI0017I (40)2.3.18 CSI0018I (40)2.3.19 CSI0019I (40)2.3.20 CSI0020E (40)2.3.21 CSI0021E (40)2.3.22 CSI0022E (41)2.3.23 CSI0023E (41)2.3.24 CSI0024E (41)2.3.25 CSI0025E (41)2.3.26 CSI0026I (41)2.3.27 CSI0027I (42)2.3.28 CSI0028I (42)2.3.29 CSI0029E (42)2.3.30 CSI0030W (42)2.3.31 CSI0031I (42)z/Server Messages and Diagnostics2.3.32 CSI0032I (43)2.3.33 CSI0033E (43)2.3.34 CSI0034I (43)2.3.35 CSI0035E (43)2.3.36 CSI0036E (43)2.3.37 CSI0037E (43)2.3.38 CSI0038E (44)2.3.39 CSI0039E (44)2.3.40 CSI0040I (44)2.3.41 CSI0041I (44)2.3.42 CSI0042E (44)2.3.43 CSI0043I (44)2.3.44 CSI0044E (45)2.3.45 CSI0045E (45)2.3.46 CSI0046E (45)2.3.47 CSI0047E (45)2.3.48 CSI0048E (45)2.3.49 CSI0049I (45)2.3.50 CSI0050E (46)2.3.51 CSI0051E (46)2.3.52 CSI0052E (46)2.3.53 CSI0053E (46)2.3.54 CSI0054I (46)2.3.55 CSI0055E (46)2.3.56 CSI0056E (47)2.3.57 CSI0057W (47)2.3.58 CSI0058E (47)2.3.59 CSI0059E (47)2.3.60 CSI0060E (47)2.3.61 CSI0061I (47)2.3.62 CSI0062I (48)2.3.63 CSI0063E (48)2.4 DSC - Holder Task Configuration (49)2.4.1 DSC0001E (49)z/Server Messages and Diagnostics2.4.2 DSC0002E (49)2.4.3 DSC0003E (49)2.4.4 DSC0004E (49)2.4.5 DSC0005E (49)2.4.6 DSC0008E (49)2.4.7 DSC0009E (50)2.4.8 DSC0020E (50)2.4.9 DSC0022E (50)2.4.10 DSC0023 (50)2.4.11 DSC0024 (50)2.4.12 DSC0025 (50)2.4.13 DSC0026W (50)2.4.14 DSC0027E (50)2.4.15 DSC0099I (51)2.4.16 DSC0100E (51)2.4.17 DSC0101I (51)2.4.18 DSC0102I (51)2.4.19 DSC0200E (51)2.5 EMC - Extended MCS Interface (52)2.5.1 EMC0001E (52)2.5.2 EMC0002I (52)2.5.3 EMC0003E (52)2.5.4 EMC0004E (53)2.5.5 EMC0005I (53)2.5.6 EMC0006E (53)2.5.7 EMC0007E (53)2.5.8 EMC0008I (53)2.5.9 EMC0009I (54)2.5.10 EMC0010W (54)2.5.11 EMC0011E (54)2.5.12 EMC0012E (54)2.5.13 EMC0013I (54)2.5.14 EMC0014E (54)2.5.15 EMC0015I (55)z/Server Messages and Diagnostics2.5.16 EMC0016I (55)2.5.17 EMC0017I (55)2.5.18 EMC0018I (55)2.5.19 EMC0019I (55)2.5.20 EMC0020I (55)2.5.21 EMC0021I (56)2.5.22 EMC0022E (56)2.5.23 EMC0023E (56)2.6 HLD - Holder Task Interface (57)2.6.1 HLD0001I (57)2.6.2 HLD0002I (57)2.6.3 HLD0003I (57)2.6.4 HLD0004I (57)2.6.5 HLD0005I (58)2.6.6 HLD0006I (58)2.6.7 HLD0007I (58)2.6.8 HLD0008E (58)2.6.9 HLD0009I (59)2.6.10 HLD0010E (59)2.6.11 HLD0011I (59)2.6.12 HLD0012I (59)2.6.13 HLD0013E (59)2.6.14 HLD0014E (59)2.6.15 HLD0015E (60)2.6.16 HLD0016W (60)2.6.17 HLD0017E (60)2.6.18 HLD0018I (60)2.6.19 HLD0019I (60)2.6.20 HLD0020I (61)2.6.21 HLD0021I (61)2.6.22 HLD0022I (61)2.6.23 HLD0024I (61)2.6.24 HLD0025I (61)2.6.25 HLD0026I (62)z/Server Messages and Diagnostics2.6.26 HLD0027I (62)2.6.27 HLD0028I (62)2.6.28 HLD0029I (62)2.6.29 HLD0030I (63)2.6.30 HLD0031I (64)2.6.31 HLD0032I (64)2.6.32 HLD0033I (64)2.6.33 HLD0034I (64)2.6.34 HLD0035I (64)2.6.35 HLD0036E (64)2.6.36 HLD0038E (65)2.6.37 HLD0039I (65)2.6.38 HLD0040E (65)2.6.39 HLD0041I (65)2.6.40 HLD0042I (65)2.6.41 HLD0043I (66)2.6.42 HLD0044I (66)2.6.43 HLD0045E (66)2.6.44 HLD0046E (66)2.6.45 HLD0047I (66)2.6.46 HLD0048I (66)2.6.47 HLD0049I (67)2.6.48 HLD0050I (67)2.6.49 HLD0051I (67)2.6.50 HLD0052I (67)2.6.51 HLD0053E (67)2.6.52 HLD0054I (67)2.6.53 HLD0055E (68)2.6.54 HLD0056E (68)2.6.55 HLD0057W (68)2.6.56 HLD0058E (68)2.6.57 HLD0059E (68)2.6.58 HLD0060I (69)2.6.59 HLD0061E (69)z/Server Messages and Diagnostics2.6.60 HLD0062I (69)2.6.61 HLD0063I (69)2.6.62 HLD0064I (69)2.6.63 HLD0065I (69)2.6.64 HLD0066I (70)2.6.65 HLD0067E (70)2.6.66 HLD0066I (70)2.6.67 HLD0066I (70)2.6.68 HLD2001W (70)2.7 IPC - Command Task (71)2.7.1 IPC0001W (71)2.7.2 IPC0002W (71)2.7.3 IPC0003W (71)2.7.4 IPC0004W (71)2.7.5 IPC0005I (71)2.7.6 IPC0006W (71)2.7.7 IPC0007W (72)2.7.8 IPC0040I (72)2.7.9 IPC0042I (72)2.7.10 IPC0043I (72)2.7.11 IPC0044I (72)2.7.12 IPC0052I (72)2.7.13 IPC0061I (73)2.7.14 IPC0062I (73)2.7.15 IPC0063I (73)2.7.16 IPC0064I (73)2.7.17 IPC0065E (73)2.7.18 IPC0066I (73)2.7.19 IPC0067I (74)2.7.20 IPC0068I (74)2.7.21 IPC0069E (74)2.7.22 IPC0070E (74)2.7.23 IPC0071I (74)2.7.24 IPC0072E (74)z/Server Messages and Diagnostics2.7.25 IPC0073I (75)2.7.26 IPC0074I (75)2.7.27 IPC0075I (75)2.7.28 IPC0076I (75)2.7.29 IPC0077E (75)2.7.30 IPC0078E (75)2.7.31 IPC0079I (76)2.7.32 IPC0080I (76)2.7.33 IPC0081E (76)2.7.34 IPC0082I (76)2.7.35 IPC0083E (76)2.7.36 IPC0084I (76)2.7.37 IPC0085E (77)2.7.38 IPC0086W (77)2.7.39 IPC0087E (77)2.7.40 IPC0088E (77)2.7.41 IPC0090I (78)2.7.42 IPC0091I (78)2.7.43 IPC0092E (78)2.7.44 IPC0093E (78)2.7.45 IPC0094I (78)2.7.46 IPC0095I (78)2.7.47 IPC0096I (79)2.7.48 IPC0097E (79)2.7.49 IPC0098I (79)2.7.50 IPC0099I (79)2.7.51 IPC0100E (79)2.7.52 IPC0101I (79)2.8 JES - Job Entry Subsystem Interface (80)2.8.1 JES0001I (80)2.8.2 JES0002I (80)2.8.3 JES0003E (80)2.8.4 JES0004E (81)2.8.5 JES0005E (81)2.8.7 JES0007E (81)2.8.8 JES0008I (82)2.8.9 JES0009I (82)2.8.10 JES0010I (82)2.9 LIC - License Interface (83)2.9.1 LIC0001E (83)2.9.2 LIC0002W (83)2.9.3 LIC0003I (83)2.9.4 LIC0004W (83)2.9.5 LIC0005E (83)2.9.6 LIC0006E (84)2.9.7 LIC0007W (84)2.9.8 LIC0008E (84)2.9.9 LIC0009I (84)2.9.10 LIC0010E (84)2.9.11 LIC0011I (84)2.10 MAL - Email Interface (86)2.10.1 MAL0001E (86)2.10.2 MAL0002E (86)2.10.3 MAL0003E (86)2.10.4 MAL0004E (86)2.10.5 MAL0006I (86)2.10.6 MAL0007I (86)2.10.7 MAL0008I (87)2.10.8 MAL0009I (87)2.10.9 MAL0010I (87)2.10.10 MAL0011E (87)2.10.11 MAL0012E (87)2.10.12 MAL0013E (88)2.10.13 MAL0014I (88)2.11 REC - Recovery Exception Handler (89)2.11.1 REC0001E (89)2.11.2 REC0002E (89)2.11.4 REC0004I (90)2.11.5 REC0005I (90)2.11.6 REC0006I (90)2.11.7 REC0007I (90)2.11.8 REC0008I (90)2.11.9 REC0009E (90)2.11.10 REC0010W (91)2.11.11 REC0011E (91)2.11.12 REC0012E (91)2.11.13 REC0013E (91)2.11.14 REC0014W (91)2.11.15 REC0015I (92)2.11.16 REC0016I (92)2.11.17 REC0017I (92)2.11.18 REC0018I (92)2.11.19 REC0019I (92)2.12 REX - REXX Interface (93)2.12.1 REX0001E (93)2.12.2 REX0002I (93)2.12.3 REX0003I (93)2.12.4 REX0004I (93)2.12.5 REX0005E (94)2.12.6 REX0006E (94)2.12.7 REX0007I (94)2.12.8 REX0008E (94)2.12.9 REX0009E (94)2.12.10 REX0010E (94)2.12.11 REX0011E (95)2.12.12 REX0012I (95)2.12.13 REX0013W (95)2.12.14 REX0014I (95)2.12.15 REX0015E (95)2.12.16 REX0016W (96)2.12.18 REX0018E (96)2.12.19 REX0019S (96)2.12.20 REX0020I (96)2.12.21 REX0021I (96)2.12.22 REX0022E (97)2.12.23 REX0023S (97)2.12.24 REX0024I (97)2.12.25 REX0025E (97)2.12.26 REX0026I (97)2.12.27 REX0027I (98)2.12.28 REX0028I (98)2.12.29 REX0029E (98)2.12.30 REX0030E (98)2.12.31 REX0031I (98)2.12.32 REX0032E (98)2.12.33 REX0033I (99)2.12.34 REX0034I (99)2.12.35 REX0035E (99)2.12.36 REX0036I (99)2.12.37 REX0037I (99)2.12.38 REX0038I (100)2.12.39 REX0039I (100)2.12.40 REX0040I (100)2.12.41 REX0041I (100)2.12.42 REX0042E (100)2.12.43 REX0043I (100)2.12.44 REX0044I (101)2.12.45 REX0045I (101)2.12.46 REX0046I (101)2.12.47 REX0047I (101)2.12.48 REX0048E (101)2.12.49 REX0049E (101)2.12.50 REX0050E (102)2.12.52 REX0052E (102)2.12.53 REX0053I (102)2.12.54 REX0054E (102)2.12.55 REX0055I (102)2.12.56 REX0056I (103)2.12.57 REX0057E (103)2.12.58 REX0058I (103)2.12.59 REX0059I (103)2.12.60 REX0060I (103)2.12.61 REX0062E (103)2.12.62 REX0063I (104)2.12.63 REX0064I (104)2.12.64 REX0065E (104)2.12.65 REX0066W (104)2.12.66 REX0067I (105)2.12.67 REX0068I (105)2.12.68 REX0069E (105)2.12.69 REX0070I (105)2.12.70 REX0071E (105)2.12.71 REX0072E (105)2.13 SJB - Started Job (107)2.13.1 SJB0001E (107)2.13.2 SJB0002E (107)2.13.3 SJB0003E (107)2.13.4 SJB0004I (107)2.13.5 SJB0005E (108)2.13.6 SJB0006I (108)2.14 SLR - TSO Scheduler Interface (109)2.14.1 SLR0001I (109)2.14.2 SLR0002I (109)2.14.3 SLR0003I (109)2.14.4 SLR0004I (109)2.14.5 SLR0005E (109)2.14.7 SLR0007I (110)2.14.8 SLR0008E (110)2.14.9 SLR0009E (110)2.14.10 SLR0010E (110)2.14.11 SLR0011E (110)2.14.12 SLR0012E (110)2.14.13 SLR0013E (110)2.14.14 SLR0014E (111)2.14.15 SLR0015E (111)2.14.16 SLR0016E (111)2.14.17 SLR0017E (111)2.14.18 SLR0018I (111)2.14.19 SLR0019I (111)2.14.20 SLR0020S (112)2.14.21 SLR0021S (112)2.14.22 SLR0021S (112)2.14.23 SLR0023I (112)2.14.24 SLR0024E (112)2.14.25 SLR0025E (112)2.14.26 SLR0026I (113)2.14.27 SLR0027W (113)2.14.28 SLR0028E (113)2.14.29 SLR0029W (113)2.14.30 SLR0030I (113)2.14.31 SLR0031S (113)2.14.32 SLR0032E (113)2.14.33 SLR0033E (114)2.14.34 SLR0034E (114)2.14.35 SLR0035I (114)2.14.36 SLR0036I (114)2.14.37 SLR0037I (114)2.14.38 SLR0038W (115)2.14.39 SLR0039I (115)2.14.41 SLR0041I (115)2.14.42 SLR0042I (116)2.14.43 SLR0043I (116)2.14.44 SLR0044I (116)2.14.45 SLR0045E (116)2.14.46 SLR0046I (116)2.14.47 SLR0047I (117)2.14.48 SLR0048I (117)2.14.49 SLR0049I (117)2.14.50 SLR0050E (117)2.14.51 SLR0051E (117)2.14.52 SLR0052E (118)2.14.53 SLR0053W (118)2.14.54 SLR0054I (118)2.14.55 SLR0055E (118)2.14.56 SLR0056E (118)2.14.57 SLR0057I (118)2.14.58 SLR0058I (119)2.14.59 SLR0059E (119)2.14.60 SLR0060E (119)2.14.61 SLR0061E (119)2.14.62 SLR0062E (119)2.14.63 SLR0063E (119)2.14.64 SLR0064I (120)2.14.65 SLR0065E (120)2.14.66 SLR0066E (120)2.14.67 SLR0067E (120)2.14.68 SLR0068I (120)2.14.69 SLR0069E (120)2.14.70 SLR0070I (120)2.14.71 SLR0071E (121)2.14.72 SLR0072E (121)2.14.73 SLR0073E (121)2.14.75 SLR0075I (121)2.14.76 SLR0076I (122)2.14.77 SLR0077I (122)2.14.78 SLR0078E (122)2.14.79 SLR0079E (122)2.14.80 SLR0080E (122)2.14.81 SLR0081I (123)2.14.82 SLR0082E (123)2.14.83 SLR0083I (123)2.14.84 SLR0084E (123)2.14.85 SLR0085E (123)2.14.86 SLR0086I (124)2.14.87 SLR0087E (124)2.14.88 SLR0088E (124)2.14.89 SLR0089E (124)2.14.90 SLR0090E (124)2.14.91 SLR0091E (125)2.14.92 SLR0092E (125)2.14.93 SLR0093E (125)2.14.94 SLR0094E (125)2.14.95 SLR0095E (125)2.14.96 SLR0096E (126)2.14.97 SLR0097E (126)2.14.98 SLR0098E (126)2.14.99 SLR0099E (126)2.14.100 SLR0100E (126)2.14.101 SLR0101I (127)2.14.102 SLR0102W (127)2.14.103 SLR0103E (127)2.14.104 SLR0104E (127)2.14.105 SLR0105E (127)2.14.106 SLR0106E (127)2.14.107 SLR0107I (128)2.14.109 SLR0109I (128)2.14.110 SLR0110I (128)2.14.111 SLR0111I (128)2.14.112 SLR0112E (129)2.14.113 SLR0113I (129)2.14.114 SLR0114E (129)2.14.115 SLR0115I (129)2.14.116 SLR0116I (129)2.14.117 SLR0117E (129)2.14.118 SLR0118E (130)2.14.119 SLR0119E (130)2.14.120 SLR0120E (130)2.14.121 SLR0121E (130)2.14.122 SLR0122E (130)2.14.123 SLR0123E (131)2.14.124 SLR0124E (131)2.14.125 SLR0125E (131)2.14.126 SLR0126I (131)2.14.127 SLR0127E (131)2.14.128 SLR0128E (131)2.14.129 SLR0129E (132)2.14.130 SLR0130E (132)2.14.131 SLR0131E (132)2.14.132 SLR0132E (132)2.14.133 SLR0133E (132)2.14.134 SLR0134E (133)2.14.135 SLR0135S (133)2.14.136 SLR0136I (133)2.14.137 SLR0137E (133)2.14.138 SLR0139E (133)2.14.139 SLR0140E (134)2.14.140 SLR0141E (134)2.14.141 SLR0142E (134)2.15 SPR - Standard Pool Routine (135)2.15.1 SPR0001I (135)2.15.2 SPR0002E (135)2.15.3 SPR0003E (135)2.15.4 SPR0004I (135)2.15.5 SPR0005I (136)2.15.6 SPR0006I (136)2.15.7 SPR0007E (136)2.15.8 SPR0008W (136)2.15.9 SPR0009E (136)2.15.10 SPR0010S (136)2.15.11 SPR0011I (137)2.15.12 SPR0012I (137)2.15.13 SPR0013I (137)2.15.14 SPR0014I (137)2.15.15 SPR0015I (137)2.15.16 SPR0016I (138)2.16 SRV - Server Interface (139)2.16.1 SRV0001I (139)2.16.2 SRV0002I (139)2.16.3 SRV0003E (139)2.16.4 SRV0004W (139)2.16.5 SRV0005I (139)2.16.6 SRV0006I (140)2.16.7 SRV0007I (140)2.16.8 SRV0008I (140)2.16.9 SRV0009I (140)2.17 SSI - Subsystem Interface Routine (141)2.17.1 SSI0001I (141)2.17.2 SSI0002I (141)2.17.3 SSI0003I (141)2.17.4 SSI0004I (141)2.17.5 SSI0005I (141)2.17.7 SSI0007I (142)2.17.8 SSI0008I (142)2.17.9 SSI0009I (142)2.18 STA - Started Task Interface (143)2.18.1 STA0001E (143)2.18.2 STA0002E (143)2.18.3 STA0003I (143)2.18.4 STA0004E (143)2.18.5 STA0005E (143)2.18.6 STA0006I (143)2.18.7 STA0007E (144)2.19 TAU – Eclipse Client Interface (145)2.19.1 TAU0001I (145)2.19.2 TAU0002I (145)2.19.3 TAU0003I (145)2.19.4 TAU0004I (145)2.19.5 TAU0005I (145)2.19.6 TAU0006I (146)2.19.7 TAU0007E (146)2.19.8 TAU0008I (146)2.19.9 TAU0009E (146)2.19.10 TAU0010I (146)2.19.11 TAU0011I (147)2.19.12 TAU0012E (147)2.19.13 TAU0013I (147)2.19.14 TAU0014I (147)2.19.15 TAU0015I (147)2.19.16 TAU0016I (147)2.19.17 TAU0017I (147)2.19.18 TAU0018I (148)2.19.19 TAU0019W (148)2.19.20 TAU0020E (148)2.19.21 TAU0021I (148)2.19.23 TAU0023I (148)2.19.24 TAU0024I (148)2.19.25 TAU0025I (149)2.19.26 TAU0026W (149)2.19.27 TAU0027E (149)2.19.28 TAU0028W (149)2.19.29 TAU0029I (149)2.19.30 TAU0030E (150)2.19.31 TAU0031E (150)2.19.32 TAU0032E (150)2.19.33 TAU0033E (150)2.19.34 TAU0034E (150)2.19.35 TAU0035E (151)2.19.36 TAU0036I (151)2.19.37 TAU0037I (151)2.19.38 TAU0038I (151)2.19.39 TAU0039I (151)2.19.40 TAU0040E (151)2.19.41 TAU0041I (152)2.19.42 TAU0042I (152)2.19.43 TAU0043E (152)2.19.44 TAU0044E (152)2.19.45 TAU0045I (152)2.19.46 TAU0046I (152)2.19.47 TAU0047S (153)2.19.48 TAU0048W (153)2.19.49 TAU0049W (153)2.19.50 TAU0050E (153)2.19.51 TAU0051W (153)2.19.52 TAU0052I (153)2.19.53 TAU0053I (154)2.19.54 TAU0054S (154)2.19.55 TAU0055I (154)2.19.57 TAU0057E (154)2.19.58 TAU0058E (154)2.19.59 TAU0059I (155)2.19.60 TAU0060I (155)2.19.61 TAU0061I (155)2.19.62 TAU0062E (155)2.19.63 TAU0063S (155)2.19.64 TAU0064W (156)2.19.65 TAU0065I (156)2.19.66 TAU0066I (156)2.19.67 TAU0067I (156)2.19.68 TAU0068I (156)2.19.69 TAU0069E (156)2.19.70 TAU0070I (157)2.19.71 TAU0071I (157)2.19.72 TAU0072W (157)2.19.73 TAU0073S (157)2.19.74 TAU0074I (157)2.19.75 TAU0075W (157)2.19.76 TAU0076I (158)2.19.77 TAU0077I (158)2.19.78 TAU0078E (158)2.19.79 TAU0079E (158)2.19.80 TAU0080E (159)2.19.81 TAU0081E (159)2.19.82 TAU0082E (159)2.19.83 TAU0083W (159)2.19.84 TAU0084E (159)2.19.85 TAU0085E (159)2.19.86 TAU0086I (160)2.19.87 TAU0087I (160)2.19.88 TAU0088S (160)2.19.89 TAU0089E (160)2.19.91 TAU0091E (161)2.19.92 TAU0092I (161)2.19.93 TAU0093I (161)2.19.94 TAU0099I (161)2.19.95 TAU0100E (161)2.19.96 TAU0101I (162)2.19.97 TAU0102I (162)2.19.98 TAU0103W (162)2.19.99 TAU0104I (162)2.19.100 TAU0105E (162)2.19.101 TAU0106W (163)2.19.102 TAU0107I (163)2.19.103 TAU0108E (163)2.19.104 TAU0109W (163)2.19.105 TAU0110I (163)2.19.106 TAU0111I (164)2.19.107 TAU0112I (164)2.19.108 TAU0113E (164)2.19.109 TAU0114I (164)2.19.110 TAU0115E (164)2.19.111 TAU0116I (165)2.19.112 TAU0117E (165)2.19.113 TAU0118I (165)2.19.114 TAU0119E (165)2.19.115 TAU0120E (165)2.19.116 TAU0121E (165)2.19.117 TAU0122W (166)2.19.118 TAU0123S (166)2.19.119 TAU0124E (166)2.19.120 TAU0125I (166)2.19.121 TAU0126I (166)2.19.122 TAU0127E (167)2.19.123 TAU0128E (167)2.19.125 TAU0130E (167)2.19.126 TAU0131I (167)2.19.127 TAU0132E (168)2.19.128 TAU0133E (168)2.19.129 TAU0134I (168)2.19.130 TAU0135S (168)2.19.131 TAU0136S (168)2.19.132 TAU0137I (169)2.19.133 TAU0138E (169)2.19.134 TAU0139E (169)2.19.135 TAU0140E (170)2.19.136 TAU0141I (170)2.19.137 TAU0142I (170)2.19.138 TAU0143S (170)2.19.139 TAU0144W (170)2.19.140 TAU0145I (171)2.19.141 TAU0146I (171)2.19.142 TAU0147I (171)2.19.143 TAU0148E (171)2.19.144 TAU0149E (171)2.19.145 TAU0150I (172)2.19.146 TAU0151I (172)2.19.147 TAU0152I (172)2.19.148 TAU0153I (172)2.19.149 TAU0154S (172)2.19.150 TAU0155W (172)2.19.151 TAU0156E (173)2.19.152 TAU0157I (173)2.20 UNI - Unicode code conversion services (174)2.20.1 UNI0001I (174)2.20.2 UNI0002I (174)2.20.3 UNI0003I (174)2.20.4 UNI0004W (174)2.20.6 UNI0006W (175)2.20.7 UNI0007E (175)2.20.8 UNI0008W (175)2.20.9 UNI0009W (176)2.20.10 UNI0010W (176)2.20.11 UNI0011W (176)2.20.12 UNI0012E (176)2.20.13 UNI0013I (176)2.21 XML - XML System Parser Interface (177)2.21.1 XML0001E (177)2.21.2 XML0002I (177)2.21.3 XML0003E (177)2.21.4 XML0004E (177)2.21.5 XML0005E (178)2.21.6 XML0006I (178)2.21.7 XML0007E (178)2.21.8 XML0008E (178)2.21.9 XML0009I (178)2.21.10 XML0010I (178)2.21.11 XML0011I (179)2.21.12 XML0012I (179)2.21.13 XML0013E (179)2.21.14 XML0014E (179)2.21.15 XML0015E (179)2.21.16 XML0016E (179)2.21.17 XML0017I (179)2.21.18 XML0018I (180)2.21.19 XML0019E (180)2.21.20 XML0020E (180)3 Abend Codes (181)3.1 ABEND Code U2222 (181)3.1.1 Reason Code 1 (181)3.2 Language Environment Abends (181)4 Troubleshooting (182)4.1 Holder (182)4.1.1 MAINTASK (182)4.1.2 SYSTSPRINT (182)4.1.3 DSPPRT (182)4.2 Scheduler (182)4.2.1 MAINTASK (183)4.2.2 CMDTASK (183)4.2.3 SRVTASK (183)4.2.4 T000000x (183)4.2.5 SYSTSPRT (184)4.2.6 ZCOTSPRT (184)4.3 User Server (184)4.3.1 MAINTASK (184)4.3.2 CMDTASK (184)4.3.3 SRVTASK (185)4.3.4 T0000001 (185)4.3.5 SYSTSPRT (185)4.3.6 ZCOTSPRT (185)4.3.7 SYSPRINT (185)4.3.8 ISPLOG (185)4.4 Trace Level (185)4.5 Required Information for Customer Support (186)1 IntroductionThis document provides a description of messages issued by z/Server including possible corrective actions. Every message has an 8-character identification and an associated message text.Troubleshooting often requires knowledge of configuration settings, such as the name of the holder task, the scheduler task, and the user server task(s). Please see the z/Server Installation Guide for details about these settings. Most messages only appear in the JESx job log in different DD names and not in the z/OS hardcopy log. True hardcopy log messages are marked.1.1 Message formatThe message identification has the form: pfxnnnns, where:pfx The z/Server component prefix (facility ID)The following facility IDs exist:nnnn The message number for the component, for example, 0051. The message numbers are unique within a component.s The message severity:I InformationW WarningE ErrorS Severe errorInformational messages are normally used for tracing or debugging purposes. Errors apply to the associated service and are typically caused by incorrect arguments. Severe errors may require z/Server to be restarted.The message description provides information to identify the cause of the problem. Many messages contain placeholders ([mmm], where mmm is a consecutive number; for example, [002] is the second placeholder). These placeholders are replaced with specific values in the actual message.The message description may contain messages, return and reason codes, etc. passed from invoked services (for example, the XML system parser or the security product). In these cases, the IBM manual to be consulted for details of the problem are given.With very few exceptions, the first placeholder ([001]) of each message is the timestamp when the message was issued (hh:mm:ss.ttt):hh hourmm minutess secondsttt millisecondsThe explanation for any message describes if the message is only issued at a certain IPTRACE level. This documented trace level always implies that the message is issued at this trace level and up (since a higher trace level includes all lower trace levels).1.2 Error message exampleError messages have severity E or S. There are three general classes of error:∙Errors caused by incorrect user input, such as incorrect password (SLR0071E) or filter did not find any data sets (CSI0051E). Such errors can be rectified by correcting the input and retrying the action. Some of these error messages can only occur due to incorrect input to the set of z/Server APIs, typically from an eclipse client.∙Errors that indicate problems in the configuration file, such as EMC0011E (port is not available). Such errors may be corrected by changing the configuration (a task for the system administrator), although they can also indicate some other error that needs to be investigated (also a task for the system administrator).Errors that indicate an internal z/Server error, such as API0007E (error during call to EZASOKET). If the message information provided does not help to identify the problem, please contact the support hotline.As an example, the CSI0051E message is issued by the CSI facility (CSI prefix) and has a severity of E (=error).The message is shown as follows in this book:CSI0051E [001] No data sets for filter [002] foundThis message has two placeholders: [001] and [002]. The placeholders are replaced with the timestamp and the associated filter. An actual CSI0051E error message would look like this:CSI0051E 07:48:53.935 No data sets for filter SYS2 foundThe two placeholders have been replaced with the time (07:48) and the filter (SYS2) that could not be resolved. In this case, using a filter that covers available data sets would prevent the error message.1.3 Warning message exampleWarning messages have severity W. Such messages are normally written to the associated JESx DD name, see below. Warnings normally indicate that some standard action has been taken. If this action or default is not required or wanted, change the appropriate setting.TAU0019W 09:14:05.443 Environment-Variable REATTACH was not specified, using defaults !TAU0019W 09:14:05.651 Environment-Variable CCSID was not specified, using defaults !TAU0019W 09:14:05.652 Environment-Variable TSOE_JOB_CLASS was not specified, using defaults !TAU0019W 09:14:05.652 Environment-Variable TSOE_SCHED_TAB was not specified, using defaults !LIC0007W 09:14:05.659 This server may only be used through a licensed client.1.4 Information message exampleInformation messages have severity I. Such messages are normally written to the associated JESx DD name, see below.SLR0111I 09:14:05.998 TSO/E-Scheduler Init/Term-Routine called with function STARTSLR0001I 09:14:06.170 TSO-Scheduler initializationHLD0030I 09:14:06.188 User administration ended with RC 00000000 (hex)1.5 Messages and GTFFor debugging purposes, it is recommended to start GTF and trace user records x'3E8'. In such a case, there will be significantly less messages written to the JESx spool. Most messages will be written to GTF only, regardless of the IPTRACE level being set. It may get difficult to even follow what happens withinz/Server using just the remaining messages to hardcopy log and JESx job log.2 Messages2.1 API - Application Programming InterfaceAll API messages are issued b y TAURIP03. It is used as an interface for all TCPIP communication. Standard return codes are described in the table below. This interface is called using z/Server API calls, both internally and externally.2.1.1 API0001IAPI0001I hh:mm:ss.ttt Before call IP03 starting call in [002] environmentFunction-Code : [003]Task-Area : [004] [005]Explanation:[002] is either server or client.[003] is described in SC31-8788 z/OS Communications Server IP Sockets Application Programming Interface Guide and Reference.[004] is the address of the task area.[005] is global (if [002] is server), otherwise local (if [002] is client)User response: None.Issued by: TAURIP032.1.2 API0002IAPI0002I hh:mm:ss.ttt After Call IP03 ending call. Rc is : [002] Explanation: This is an informational message due to IPTRACE level 4 being set.User response: None.Issued by: TAURIP032.1.3 API0007EAPI0007E hh:mm:ss.ttt Error during call to EZASOKETFunction : [002]Reason-Code : [003]Explanation: This message is issued when IPTRACE level 4 is set. See SC31-8788 z/OS Communications Server IP Sockets Application Programming Interface Guide and Reference for details about the function used and the returned error.System administrator response: Determine why the error occurred. If necessary, contact customer support.Issued by: TAURIP032.1.4 API0008IAPI0008I hh:mm:ss.ttt Timeout for SELECT is [002] seconds and [003] microseconds.Explanation: This is an informational message due to IPTRACE level 4 being set.User response: None.Issued by: TAURIP032.1.5 API0009EAPI0009E hh:mm:ss.ttt For function PeekMsg the sixth Parameter must be 'P'. Explanation: This message is issued in response to an API call.User response: Correct the calling program.Issued by: TAURIP032.1.6 API0010IAPI0010I hh:mm:ss.ttt Using static z/Server environment for client processing at address [002]Explanation: This is an informational message due to IPTRACE level 4 being set.User response: None.Issued by: TAURIP03。
851-468 Rev. C 2200 Series Conveyors 安装、维护与零件手册说明书
Installation, Maintenance& Parts ManualTable of ContentsWarnings – General Safety2. . . . . . . . . . . . . . . . . . . . Introduction2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Installation3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RequiredTools3. . . . . . . . . . . . . . . . . . . . . . . . . . . . Mounting When Ordered With Conveyor3. . . . . . . Mounting When Ordered Without Conveyor4. . . . Service Parts 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Return Policy6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .851-468 Rev. CEnd Stop for 2200 Series Conveyors: Installation, Maintenance & Parts Manual851-468 Rev. C2Dorner Mfg. Corp.IntroductionIMPORTANT: Some illustrations may showguards removed. DO NOT operate equipment with-out guards.Upon receipt of shipment:D Compare shipment with packing slip. Contact factory regarding discrepancies.D Inspect packages for shipping damage. Contact carrier regarding damage.D Accessories may be shipped loose. See accessory in-structions for installation.Dorner 2200 Series conveyors are covered by Patent No. 5,174,435, 5,131,529 and corresponding patents and patent applications in other countries.Dorner ’s Limited Warranty applies.Dorner reserves the right to make changes at any time without notice or obligation.Warnings – General SafetyEnd Stop for 2200 Series Conveyors: Installation, Maintenance & Parts ManualDorner Mfg. Corp.3851-468 Rev. CRequired ToolsD Hex key wrenches:2.5 mm, 4 mm, 5 mm D Torque wrenchMounting When Ordered With Conveyor1.Gather components (Figure 1)Figure 1BACA End StopB Spacer (2x)CM5 x 55 Socket Head Screw (2x)Installation Component List2.Insert spacer (B of Figure 2) in both ends of endstop (A).Figure 2BA3.Install end stop with spacers (A of Figure 3) on endof conveyor with M5 screws (CC). Tighten screws to 60 in-lb (7 Nm).Figure 3ACInstallationEnd Stop for 2200 Series Conveyors: Installation, Maintenance & Parts Manual851-468 Rev. C4Dorner Mfg. Corp.Mounting When Ordered Without Conveyor1.Gather components (Figure 4)Figure 4EDBACA End StopB Spacer (2.)C M5 x 45 Socket Head Screw (2x)D Headplate (LH)EHeadplate (RH)Installation Component List2.Remove conveyor end pulley. See “Pulley Remov-al ” on page 13 of “2200 Series End Drive Convey-ors ” manual, part number 851–452.3.Remove bearings from conveyor headplates and install them into new headplates (D & E of Figure 4).See “Bearing Removal and Replacement ” on page 14 of “2200 Series End Drive Conveyors ” manual,part number 851–452.4.Replace end pulley and new headplates. See “PulleyReplacement ” on page 15 of “2200 Series End Drive Conveyors ” manual, part number 851–452.5.Install conveyor belt. See belt installation section onpage 10 of “2200 Series End Drive Conveyors ”manual, part number 851–452.6.Tension the conveyor belt. See “Conveyor BeltTensioning ” on page 11 of “2200 End Drive Conveyors ” manual, part number 851–452.7.Insert spacer (B of Figure 5) in both ends of endstop (A).Figure 5BA8.Install end stop with spacers (A of Figure 6) on endof conveyor with M5 screws (C). Tighten screws to 60 in-lb (7 Nm).Figure 6ACInstallationEnd Stop for 2200 Series Conveyors: Installation, Maintenance & Parts ManualDorner Mfg. Corp.5851-468 Rev. CNOTE: For replacement parts other than those shown on this page, contact an authorized Dorner Service Center or the factory.Figure 721435Service PartsNo returns will be accepted without prior written factory authorization. When calling for authorization, please have the following information ready for the Dorner Factory representative or your local distributor: and address of customer.2.Item(s) being returned.3.Reason for return.4.Customer ’s original order number used when ordering the item(s).5.Dorner or distributor invoice number.A representative will discuss action to be taken on the Returned items and provide a Returned Goods Authorization Number to reference.There will be a 15% restocking charge on all new items returned for credit where Dorner was not at fault. These will not be accepted after 60 days from original invoice date. The restocking charge covers inspection, cleaning,disassembly, and reissuing to inventory.If a replacement is needed prior to evaluation of returned item, a purchase order must be issued. Credit (if any) is issued only after return and evaluation is complete.Dorner has representatives throughout the world. Feel free to contact Dorner for the name of your local representative. Our technical sales and service staff will gladly help with your questions on Dorner products.For a copy of Dorner ’s Limited Warranty, contact factory, distributor, service center or visit our website @851-468 Rev. CPrinted in U.S.A.For replacement parts, contact an authorizedDorner Service Center or the factory.Return Policy。
BESR异机恢复出错解决方法
How To: 如何在Backup Exec System Recovery的恢复光盘Symantec Recovery Disk里正确加载磁盘阵列卡驱动和网卡驱动?情形如何在Backup Exec System Recovery的恢复光盘Symantec Recovery Disk里正确加载磁盘阵列卡驱动和网卡驱动解释症状1. 在使用Symantec Recovery Disk (SRD)恢复光盘进行系统恢复时无法识别磁盘驱动器;2. 使用Restore Anyware Option对系统恢复后,开机时机器蓝屏无法进入系统,蓝屏错误代码为0x0000007B,或者系统在加载时自动重启;3. 无法启动恢复环境中的网络服务,因而无法对存放在远程文件服务器的恢复点进行还原;原因Symantec Recovery Disk恢复光盘中并没有包含该主机所使用的磁盘阵列卡驱动或网卡驱动;通常在恢复光盘已经包含部分主流的磁盘阵列卡驱动,如果所使用的磁盘阵列卡在SRD中没有包含驱动,则需要单独下载并在SRD中载入驱动。
注:您可以在SRD光盘的DDB目录中查看SRD包含了什么驱动,另外由于SRD使用基于PE2.0的内核引导,您也可以参考Vista的硬件支持列表:https:///hcl/解决方案使用Symantec Recovery Disk对系统进行恢复时对阵列卡驱动加载分为2个阶段:1. 为SRD恢复环境加载正确的驱动程序,以解决SRD无法识别磁盘驱动器的问题,由于SRD基于PE2.0核心进行引导,该阶段需要加载基于Vista操作系统的驱动程序:请从阵列卡硬件厂商网站下载基于Vista的驱动,解压并保存在USB硬盘或者网络共享盘中,然后使用SRD引导需要恢复的主机,在SRD“主页”界面中点击“加载驱动程序”从USB 硬盘或者网络映射盘加载此驱动。
如图1所示:图1:注:如果由于网卡没有驱动而无法访问网络,请参考第三步解决网络问题。
NI 9145 Deterministic Ethernet Expansion Chassis用户
USER MANUALNI 9145Deterministic Ethernet Expansion Chassis for C Series ModulesThis document describes the features of the NI 9145 and contains information about mounting and operating the device.ContentsNI 9145 Features (2)POWER LED Indicators (2)FPGA LED (2)RUN LED Indicators (3)ERR LED Indicators (3)Safe-State Outputs (4)Slave Timing Modes (4)Mounting the Device (5)Dimensions (5)Mounting Requirements (6)Ambient Temperature (7)Mounting the Device Directly on a Flat Surface (7)Mounting the Device on a Panel (8)Mounting the Device on a DIN Rail (10)Mounting the Device on a Rack (11)Mounting the Device on a Desktop (11)Upgrading from the NI 9144 to the NI 9145 (13)Resetting the NI 9145 Network Configuration (15)Updating Your Firmware (16)How to Upgrade Your Firmware (16)Vendor Extensions to the Object Dictionary (16)Worldwide Support and Services (17)NI 9145 FeaturesThe NI 9145 provides the following features.Figure 1. NI 9145 Front Panel1.POWER LED2.FPGA LED3.RUN LED4.ERR LED5.Power Connector6.Ethernet LEDs7.Out Port8.In PortPOWER LED IndicatorsThe following table lists the POWER LED indicators.Table 1. POWER LED IndicatorsFPGA LEDYou can use the FPGA LED to help debug your application or easily retrieve application status. Use the LabVIEW FPGA Module and NI-RIO software to define the FPGA LED to meet the needs of your application2| | NI 9145 User ManualRUN LED IndicatorsThe following table lists the RUN LED indicators.Run Mode TransitionThe following figure shows the Run Mode transition.Figure 2. EtherCAT ModesERR LED IndicatorsThe following table lists the ERR (error) LED indicators.NI 9145 User Manual| © National Instruments| 3Table 3. ERR LED IndicatorsSafe-State OutputsThe NI 9145 has an EtherCAT safe state that the device passes through when moving from LabVIEW Active Mode to LabVIEW Configuration Mode. The NI 9145 passes through the EtherCAT safe state during normal operation or in case of a serious error.In the EtherCAT safe state, output modules are set to pre-defined safe values. By default, zero is the safe value in the output module channel configuration. You can change the safe values by writing to the appropriate object dictionary entries for your output module.Slave Timing ModesThe NI 9145 operates in free-run mode or synchronized mode using the EtherCAT distributed clock (DC).By default, free-run mode runs the conversion cycle at the rate of the slowest module. You can slow the free-run mode conversion cycle down by writing a minimum cycle time in nanoseconds to index 0x3001.1 of the NI 9145.In synchronized mode, each conversion cycle begins with a signal from the EtherCAT master/ scan engine. The NI 9145 procedures an error if the external cycle time is too fast for a module. NI Indcom for EtherCAT only supports synchronized mode.4| | NI 9145 User ManualMounting the DeviceTo obtain the maximum allowable ambient temperature of 70 °C, you must mount the NI 9145 horizontally on a flat, metallic, vertical surface such as a panel or wall. You can mount theNI 9145 directly to the surface or use the NI Panel Mounting Kit. The following figure shows the NI 9145 mounted horizontally.Figure 3. NI 9145 Horizontal Mounting1.UpYou can also mount the NI 9145 in other orientations, on a nonmetallic surface, on a 35-mm DIN rail, on a desktop, or in a rack. Mounting the NI 9145 in these or other configurations can reduce the maximum allowable ambient temperature and can affect the typical accuracy of modules in the NI 9145. For more information about typical accuracy specifications forC Series modules and temperature deratings caused by different mounting configurations, visit /info and enter the Info Code criotypical.Caution Make sure that no C Series modules are in the NI 9145 before mountingit.Tip Before using any of these mounting methods, record the serial number fromthe back of the NI 9145 so that you can identify the NI 9145 in MAX. You will beunable to read the serial number after you mount the NI 9145. DimensionsThe following figures show the front and side dimensions of the NI 9145. For detailed dimensional drawings and 3D models, visit /dimensions and search for the module number.NI 9145 User Manual| © National Instruments| 5Figure 4.NI 9145 Front DimensionsMounting RequirementsYour installation must meet the following requirements for cooling and cabling clearance. Allow 25.4 mm (1.00 in.) on the top and the bottom of the NI 9145 for air circulation, as shown in the following figure.Figure 6. NI 9145 Cooling DimensionsAllow the appropriate space in front of C Series modules for cabling clearance, as shown in the following figure. The different connector types on C Series modules require different cabling clearances. For a complete list of cabling clearances for C Series modules, visit /info and enter the Info Code crioconn.6| | NI 9145 User ManualFigure 7. NI 9145 Cabling ClearanceAmbient TemperatureMeasure the ambient temperature at each side of the NI 9145, 63.5 mm (2.50 in.) from the side and 25.4 mm (1.00 in.) forward from the rear of the NI 9145, as shown in the following figure.Figure 8. NI 9145 Ambient T emperature Location1.Location for measuring the ambient temperatureMounting the Device Directly on a Flat SurfaceFor environments with high shock and vibration, NI recommends mounting the NI 9145 directly on a flat, rigid surface using the mounting holes in the NI 9145.What to Use•NI 9145•Screwdriver, Phillips #2•M4 or number 8 screw (x2), user-provided, longer than 19.0 mm (0.75 in.) to pass all the way through the NI 9145What to DoComplete the following steps to mount the NI 9145 directly on a flat surface.NI 9145 User Manual| © National Instruments| 71.Prepare the surface for mounting the NI 9145 using the Surface Mounting Dimensions.2.Align the NI 9145 on the surface.3.Fasten the NI 9145 to the surface using the M4 or number 8 screws appropriate for thesurface. Tighten the screws to a maximum torque of 1.3 N · m (11.5 lb · in.). Surface Mounting DimensionsThe following figure shows the surface mounting dimensions for the NI 9145.Figure 9. NI 9145 Surface Mounting DimensionsMounting the Device on a PanelYou can use the NI panel mounting kit to mount the NI 9145 on a panel.8| | NI 9145 User ManualWhat to Use•NI 9145•Screwdriver, Phillips #2•NI panel mounting kit, 782863-01–Panel mounting plate–M4 × 23 flathead screw (x3)What to DoComplete the following steps to mount the NI 9145 on a panel.1.Align the NI 9145 and the panel mounting plate.2.Fasten the panel mounting plate to the NI 9145 using the screwdriver and M4 × 23flathead screws. NI provides these screws with the panel mounting kit. Tighten the screws to a maximum torque of 1.3 N · m (11.5 lb · in.).Note You must use the screws provided with the NI panel mounting kitbecause they are the correct depth and thread for the panel mounting plate.3.Fasten the panel mounting plate to the surface using the screwdriver and screws that areappropriate for the surface. The maximum screw size is M5 or number 10.Panel Mounting DimensionsThe following figure shows the panel mounting dimensions for the NI 9145.NI 9145 User Manual| © National Instruments| 9Figure 10. NI 9145 Panel Mounting DimensionsMounting the Device on a DIN RailYou can use the NI DIN rail mounting kit to mount the NI 9145 on a standard 35-mm DIN rail.What to Use•NI 9145•Screwdriver, Phillips #2•NI DIN rail mounting kit, 779018-01–DIN rail clip–M4 × 25 flathead screw (x2)What to DoComplete the following steps to mount the NI 9145 on a DIN rail.1.Align the NI 9145 and the DIN rail clip.10| | NI 9145 User Manual2.Fasten the DIN rail kit to the NI 9145 using the screwdriver and M4 × 25 flathead screws.NI provides these screws with the DIN rail mounting kit. Tighten the screws to amaximum torque of 1.3 N · m (11.5 lb · in.).Note You must use the screws provided with the NI DIN rail mounting kitbecause they are the correct depth and thread for the DIN rail clip.Clipping the Device on a DIN RailComplete the following steps to clip the NI 9145 on a DIN rail.1.Insert one edge of the DIN rail into the deeper opening of the DIN rail clip.2.Press down firmly to compress the spring until the clip locks in place on the DIN rail.Caution Ensure that no C Series modules are in the NI 9145 before removing itfrom the DIN rail.Mounting the Device on a RackYou can use the following rack mount kits to mount the NI 9145 and other DIN rail-mountable equipment on a standard 482.6 mm (19 in.) rack.•NI Sliding Rack-Mounting Kit, 779102-01•NI Rack-Mounting Kit, 781989-01Note You must use the NI DIN rail mounting kit, 779018-01, in addition to a rack-mounting kit.Mounting the Device on a DesktopYou can use the NI desktop mounting kit to mount the NI 9145 on a desktop.What to Use •NI 9145•Screwdriver, Phillips #1•Screwdriver, Phillips #2•NI desktop mounting kit, 779473-01–Desktop mounting brackets (x2)–Adapter bracket –M3 × 20 flathead screw (x2)NI 9145 User Manual | © National Instruments | 11What to DoComplete the following steps to mount the NI 9145 on a desktop.e the Phillips #1 screwdriver to remove the two screws from the back of the NI 9145.2.Use the screwdriver and the M3 × 20 flathead screws to attach the adapter bracket to the NI 9145. NI provides these screws with the desktop mounting kit.Note You must use the screws provided with the NI desktop mounting kitbecause they are the correct depth and thread for the NI 9145.3.Align the brackets with the mounting holes on the ends of the NI 9145.4.Use the Phillips #2 screwdriver to tighten the captive screws on the end of the brackets.Desktop Mounting DimensionsThe following figures show the desktop mounting dimensions for the NI 9145.12 | | NI 9145 User ManualFigure 11. NI 9145 Desktop Mounting Front Dimensions29.9 mmFigure 12. NI 9145 Desktop Mounting Side DimensionsUpgrading from the NI 9144 to the NI 9145You can use the NI 9144 to NI 9145 adapter panel mounting kit (NI part number 785984-01) to mount the NI 9145 to an existing NI 9144 panel mounting plate. Contact NI for information about ordering a NI 9144 to NI 9145 adapter panel mounting kit.Mounting the NI 9145 Using the Adapter KitWhat to Use•NI 9145•#2 Phillips screwdriverNI 9145 User Manual| © National Instruments| 13•Two (2x) M4 or number 8 flathead screw, 10 mm (0.39 in.) minimum length, user-provided•NI 9144 to NI 9145 adapter mounting plate kit, 785984-01–Adapter mounting plate–Three (3x) M4 x 23 mm screwsWhat to Do1.Remove the NI 9144 from the NI 9144 panel mounting plate.2.Align the adapter mounting plate with the holes in the NI 9144 panel mounting plate.3.Fasten the adapter mounting plate to the NI 9144 panel mounting plate using the M4 ornumber 8 flathead screws.Figure 13. Attaching the Adapter Mounting Plate to the NI 9144 Panel Mounting Plate4.Align the NI 9145 chassis to the adapter mounting plate and fasten it using theM4 x 23 mm screws.Note You must use the screws included in the kit because they are the correctdepth and thread for the chassis and the adapter mounting plate. Tighten thescrews to a maximum torque of 1.3 N · m (11.5 lb · in.).14| | NI 9145 User ManualFigure 14. Attaching the NI 9145 to the Adapter Mounting PlateNI 9144 to NI 9145 Adapter Mounting Plate DimensionsResetting the NI 9145 Network ConfigurationTo reset the NI 9145 network configuration, disconnect and reconnect the network cables on the NI 9145 chassis.NI 9145 User Manual| © National Instruments| 15Updating Y our FirmwareFirmware updates are performed by way of the File over EtherCAT (FoE) download protocol. All NI factory firmware update files have a .foe extension and have internal identification information that guides the NI 9145 during the update. Refer to your specific master software documentation for the procedure of sending FoE downloads.The NI 9145 firmware update does not use the filename or password information.You may also use this utility to download custom FPGA projects with a .lvbitx extension. How to Upgrade Y our FirmwareTo upgrade your firmware to a new version or reset your device to the factory state, complete the following steps:1.Discover your real-time target and NI 9145 chassis.2.Right-click the RT target and select Deploy All.3.After a successful deployment, change the controller to Configuration Mode. Right-clickthe RT target and select Utilities»Scan Engine Mode»Switch to Configuration.4.Right-click the NI 9145 that requires a firmware change and select Online Device State.5.Change the online state by clicking the Init button and then clicking the Bootstrapbutton. The LED beside the Bootstrap button lights up.6.Click the Download Firmware button. Navigate to Program Files\NationalInstruments\NI-IndCom for EtherCAT and select the file with a .foe extension or a custom FPGA project with a .lvbitx extension.Do not disconnect the device or interrupt firmware while it is downloading.Vendor Extensions to the Object DictionaryMost object dictionary entries are defined by the EtherCAT and CANOpen specifications for modular slave devices. The NI 9145 and the C Series modules have vendor extensions to those specifications.Note Visit /manuals to access the NI 951x C Series modules objectdictionary.Note Most object dictionary entries are set to usable defaults during the transitionfrom INIT to PRE-OP of the NI 9145. NI recommends writing down the objectdictionary default values, in case you need to revert to them, before you begin tooverwrite them with new values prior to the transition to SAFE-OP.Refer to the EtherCAT® Expansion Chassis Vendor Configurations Guide on /manuals for the list of vendor extensions.16| | NI 9145 User ManualWorldwide Support and ServicesThe NI website is your complete resource for technical support. At /support, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.Visit /services for information about the services NI offers.Visit /register to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For support in the United States, create your service request at /support or dial 1 866 ASK MYNI (275 6964). For support outside the United States, visit the Worldwide Offices section of /niglobal to access the branch office websites, which provide up-to-date contact information.NI 9145 User Manual| © National Instruments| 17Information is subject to change without notice. Refer to the NI T rademarks and Logo Guidelines at /trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at /patents. Y ou can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at /legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMA TION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.© 2016—2018 National Instruments. All rights reserved.378015B-03September 11, 2018。
DataCore SANmelody与ATTO XtendSAN iSCSI initiator配置
Versions Supported9ATTO XtendSAN version 2.0 or later9SANmelody version 2.0.1 update 2 or later OverviewSANmelody™ software converts PC servers into cost-effective expansion disk servers. Their added capacity appears as additional internal drives to disk-starved servers on LANs or SANs.The ATTO Xtend SAN iSCSI initiator package for Macintosh OS X enables block storage access via existing Ethernet networks using standard network interface cards (NICs).This application note reviews one method of configuring SANmelody to allow Macintosh computers to log in and share virtual storage over an iSCSI SAN. Preliminary InformationConsult the SANmelody Configuration Guide and XtendSAN Help (included at the end of this document) for additional information. In order to configure SANmelody to work with XtendSAN, you must manually determine the iqn name for the system running XtendSAN and hand edit the Device Name in the SANmelody software so SANmelody will be able to allow XtendSAN to log in.To determine the iqn on XtendSAN, launch and configure XtendSAN on a Mac, as described in XtendSAN Help. Using the mouse, move the pointer to hover over the Mac computer name in the left panel. Write down the name exactly as displayed, includingall punctuation. Eg: iqn.1995-.attotech:macinitiator:g851199sqpr.Note: “.attotech” is common to all copies of XtendSAN. “macinitiator” has been replaced by “xtendsan” in version 2.0 or later releases.‘”g851199spqr” is the Mac serial number, found on the computer name plate.If the SANmelody server is already running, go ahead and configure XtendSAN to discover the SANmelody server IP address and make it visible. Configuration DetailsTo configure SANmelody to allow the Mac to log in: 1) Open Computer Management on theSANmelody server. Expand Storage andDataCore SANmelody.2) Click Application Servers. Click NewApplication Server. Fill in the server name and type fields. For the type, field, chooseMAC_OS. Click OK.3) Right click the new server pane and select AddChannel.4) In the Channel Name box, enter a name forthe channel, such as Beast_1. In the DeviceName box, enter the iqn exactly as obtainedfrom XtendSAN above.5) Apply the changes.6) Assign one or more virtual volumes to the newapplication server. Apply the changes.7) Now check the newly assigned virtual volumesfor a LUN 0. OS X requires sequential LUN’sstarting with LUN 0 to allow iSCSI log-in. Click the application server in the top right pane. Inthe lower right pane for each virtual volumeassigned, right click the volume name andselect Properties, then Mapping Properties.The assigned LUN and other information willbe displayed. One and only one of the virtualvolumes assigned to the application servershould be at LUN 0.8) Now, you can try to log in on the Mac. LaunchXtendSAN: From the OS X Desktop menu,click Go, Applications. Scroll down in theApplications window to the Xtend SANdirectory, and then click XtendSAN. InXtendSAN, click the computer name in the left pane, then select the name for the SANmelody server. Click Login. If the status changes to“Connected”, you are ready to go. Use OS XDisk Utility to partition and format the VirtualVolume(s). The drives will then mount to thedesktop whenever you log in to SANmelody.XtendSAN HelpWelcomeThe ATTO iSCSI initiator package for Macintosh OSX consists of an iSCSI device driver, an initiator service manager, and a management interface. The iSCSI Device Driver is responsible for moving data from the storage stack over to the network stack, from where it can be passed to and from the outside world using a standard Gigabit Ethernet network. The iSCSI initiator service monitors and controls the iSCSI configuration for the initiator. The management interface is designed to allow you the ability to configure specific protocol options and manage target devices through a graphical user interface.To Add a TargetYou must first add a target in order to manage and access it.1) From the Discovery menu, click IP Address2) Enter the IP address of the target you wish to add.Note: The default Port Number is 32603) Click Discover.4) Choose the target you wish to add and click Add.Note: Click Clear to reset the target search.To Manage TargetsAfter you have added targets, you can now manage then.1) Click Workgroup in the left panel. The ManageTargets panel will be displayed. All added targetsare shown. If the target has an alias associated with it, it will also be displayed.2) Highlight the Network Node in order to manage it.3) You can now choose whether you want the targetto be visible. If you want it to be visible, chose Yes from the Visible dropdown.4) You can also choose whether you want the targetto automatically be logged into on reboot. If youwant the target automatically logged into, chooseYes from the AutoLogin dropdown.5) Click Save to save your changes.To Manage Additional Parameters 1) While in the Manage Targets area, highlight theNetwork Node, and click Params.2) The Login Parameters dialog is displayed.3) You can modify the following parameters from here: Transfer Size:FirstBurstLength — Sets the buffer size of the transfers.MaxBurstLength — Sets the buffer size of the transfers.Transfer Control:DataPDUInOrder — Used for flow control of PDUs. DataSequenceInOrder — Used for flow control of PDUs.ImmediateData — Used for flow control of PDUs. InitialR2T — Used for flow control of PDUs. MaxOustandingR2T — Used for flow control of PDUs. MaxRecvDataSegmentLength: Initiator — How much the initiator can receive in one PDU.Note: You cannot change the parameters in Connection Control, Digest, or Error Recovery.4) Click Save to save your edits.To See Visible Targets1) Click the name of the initiator node in the left panel.The Target Status panel is displayed and all visible targets are displayed.2) Highlight the Network Name and click Login. Thestatus will turn green in the left panel on asuccessful login.3) Click the LUNs button to see all the LUNs on alltargets which have been logged into.4) Highlight the Network Name and click the Paramsbutton to see a read-only view of the NegotiatedParameters.5) Click Close to close the Negotiated Parametersdialog.To Logout of a Target1) Click the name of the initiator node in the left panel.The Target Status panel is displayed and all visible targets are displayed.2) Highlight the Network Name and click Logout. Thestatus will turn red in the left panel.Contacting ATTO TechnologyWhile we do our best to provide you all the information you will need to use our products, we recognize that additional assistance is sometime required. If you have questions about installing, using or obtaining any ofour products, you may contact us at:ATTO Technology, Inc. 155 CrossPoint Parkway Amherst, NY 14068The information you need to answer your questionsmay be available 24-hours a day on our web site (). You may also contact our support departments at the following e-mail addresses:Sales Support: ****************Technical Support: ********************* Corporate InfoATTO Technology, Inc., is a global leader in Fibre Channel and SCSI storage-infrastructure solutions for Content Creation and Enterprise environments. Since its founding in 1988, ATTO has been designing, manufacturing and marketing award-winning solutions specifically for data-intensive applications. ATTO distributes its products worldwide through original equipment manufacturers (OEMs), distributors, VARs and system integrators.Corporate Headquarters:155 CrossPoint ParkwayAmherst, New York, 14068phone: 716.691.1999fax: 716.691.9353。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*s.c . LIU Hughes Aircraft Company, Surface Systems Box P. 0. 3310, Fullerton, CA 92634
0-7803-20093/94/$4.00 0 1994 IEEE.
136
where C is a matrix with matrix element cm, c ,
=
$k(dn-dm)uo sinc [k(dn-dm)~]
(5)
The performance measure P can be defined as a combination of the squared weight perturbation and the average power in the sidelobe sector
3. Results A shipboard phased array with a mechanical back-tilt of 25" requires sidelobe sector nulling in the [20°, 30'1 region of the elevation angle. The elevation beam has a 35 dB Taylor taper and has phase-only control over all 28 elements, Figure 1 shows the result of some slight phase shift (<22 ") of the three elements at each end of the array can create better than -66dJ3 sidelobe sector nulling in the [ZOO, 30°] region with a small increase of peak sidelobe to -3OdB on the opposite side of the main beam. If one of the 28 elements fails, the sector nulling performance degrades significantly. A new set of phase weights with larger phase variation near the failed element can be found through the computer code to re-optimize the antenna pattern. As shown in Figure 2, the failed #3 element is compensated by additional phase changes of four neighboring elements and slight phase variation of all other elements. The resultant antenna pattem has better than -64dB nulling in [20°, 30'1 region with peak sidelobe of the opposite side reaching -26dB. However, the high sidelobe is pointing to the sky and does not increase clutter nor interference level. If the failed element is located closer to the center, then the phase compensation needed is not limited to the local elements. As shown in Figure 3, the failed #10 element is compensated by more than half of the remaining good elements. The sidelobe level in the [ZOO, 30"] region is lower than 63dB while the peak sidelobe reaches -18dB. The phase-only sidelobe sector nulling technique can be applied to more than one failure. Figure 4 shows the re-optimized antenna pattern for an array with failed #3 and #IO elements. The average sidelobe in the [20", 30'1 region is about 64dB while the peak sidelobe on the opposite side is -17dB. The phase plot shows global phase compensation is needed. In summary, the NLP86 computer code is very effective in finding the phase-only sidelobe sector nulling weights for a tapered array with or without failed elements.
The first term keeps the main beam perturbation to a minimum while the second term minimizes the average power in the specified sidelobe sector. Equation (6) has been implemented in the subroutine FXNS of the nonlinear programming code, NLP86, which is the upgraded version of FORTRAN program LPNLP.[2] A driver program to build the input file and an EXCEL based antenna pattern plotting software have been developed to simplify the phased array design. Because most of the array antenna systems do not have control over the amplitude taper &er the antenna system is built, the effort has been concentrated on the phase-only control. A 28-element array with a 35 dB Taylor amplitude taper has been used throughout this report. The cases for partially failed arrays are implemented by zeroing out the amplitude of the failed elements in subroutine FXNS, which calculates the performance measure P. The computer code then uses a search method to find the best phase-only weights to minimize P
8 is the pattern angle measured from broadside ofthe array
We define the sidelobe sector to be minimized as [u~-E, uo+E], then the average power in that sidelobe sector is given in equation (4).
=
[ Wol W02 ... WON IT
I I
3
(1)
(2)
The perturbed field pattern is given by
p(u)
where dn
U
= =
Xn wn exp (jkd,
d(n-1)
U)
for n=1,2,3 ,..., N
(3)
= sin 8
k = 2x/h A. is the waБайду номын сангаасelength
1. Introduction
The application ofthe phase-only sidelobe sector nulling method [ l ] to re-optimize the pattern of a tapered array &er the detection of element failures has been developed under a Hughes RF Computer Aided Design project. T i fault correction technique uses a nonlinear hs computer optimization code developed by Pierre and Lowe [2] to reshape the pattern of a partially failed array by readjusting the phase weights ofthe remaining good elements. The sidelobe sector nulling c n be utilized to suppress interference and sea clutter from sea surface or a distant airborne jammers for a shipboard radar. However, if some elements of the array fail, then the nulling region will degrade significantly. By using the computer code a new set of phase weights can be found to compensate for the lost elements and maintain the sidelobe sector nulling performance.