2012-2013七年级第二章整式的加减练习题1

合集下载

(完整)七年级上册数学第二章整式的加减-专项练习100题含答案,推荐文档

(完整)七年级上册数学第二章整式的加减-专项练习100题含答案,推荐文档

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2 1 x)-4(x-x21-+32 +);229、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].+(-35、 - 2 ab + 3 a 2b +ab3a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 3 4 437、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、2x - {-3y + [3x - 2(3x - y )]}45、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).3a )]49、1 12 22 2 2 2xy+(- xy )-2xy -(-3y x ) 50、5a -[a -(5a -2a )-2(a -2 451、5m-7n-8p+5n-9m+8p 52、(5x2y-7xy2)-(xy2-3x2y)+5x 253、3x2y-[2x2y-3(2xy-x2y)-xy] 54、3x2-[5x-4(1x2-1)]21312 255、2a3b- a b-a2b+2a b-ab ;256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.1 167、a-( a-4b-6c)+3(-2c+2b)3 268、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70 、1a2b-0.4ab2-41a2b+22ab2;71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}572、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值1 x2-⎡2- ( 1 x2+ y2)⎤3 2 x2+1 y2),其中x=-2,y=-2 ⎢⎣243⎥⎦-2 (-3 3=-1 ; 74、化简、求值 1 x -2(x - 1 y 2)+(- 3 x + 1 y 2),其中 x =-2,y 2=- .2 3 2 3 375、 1 x 3 - ⎛- 3x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x1 3⎝ 23⎪⎭2276、 化简,求值(4m+n )-[1-(m-4n )],m= 2 5 n=-1 1377、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2.80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.81、若 2a 2-4ab+b 2 与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求 3x 2+x -5 与 4-x +7x 2 的差.84、计算 5y+3x+5z 2 与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2-3 的差 86、 多项式-x 2+3xy- 1 y 与多项式 M 的差是-1 x 2 2 2-xy+y ,求多项式 M87、当 x=- 1,y=-3 时,求代数式 3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 288、化简再求值 5abc-{2a 2 b-[3abc-(4ab 2 -a 2 b )]-2ab 2},其中 a=-2,b=3,c=- 1489、已知 A=a 2 -2ab+b 2 ,B=a 2 +2ab+b 21(1)求 A+B ; (2) 求 (B-A);490、小明同学做一道题,已知两个多项式 A ,B ,计算 A+B ,他误将 A+B 看作 A- B ,求得 9x 2-2x+7,若 B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N.92、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B93、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.94、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b- 2|+c2=0.96、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设 A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3) 2 =0,且B-2A=a ,求 a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当 a 取任意有理数时, 请比较 A 与 B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a2 +6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5 、 3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 2 2b-3ab 2 )-2(a 2 b-7ab ) = -a 2 b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m2 n-5mn )-(4m 2 n-5mn )= 3m 2 n 10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 2 12、2(a-1)-(2a-3)+3.=413、-2(ab-3a2 )-[2b 2 -(5ab+a 2 )+2ab]= 7a 2 +ab-2b 2 14、(x2 -xy+y )-3(x 2 +xy-2y )= -2x 2 -4xy+7y 15、3x 2 -[7x-(4x-3)-2x 2 ]=5x 2 -3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2 -4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2+7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a2 +ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2- 1 +3x )-4(x -x 2+ 1 ) = 6x2 -x- 52 2 229、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a2 -3ab+2b 2 )+(a 2 +2ab-2b 2 )= 4a 2 -ab32、2a 2 b+2ab 2 -[2(a 2 b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235 、36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 37、2x -(3x -2y +3)-(5y -2)=-x-3y-1ab-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、 2x - {- 3y + [3x - 2(3x - y )]} = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x3 -x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、11xy+(- 1xy )-2xy 2-(-3y 2x )= xy+xy2 24450、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy1 54 、 3x 2-[5x-4(x 2-1)]+5x 2= 10x 2 -5x-4211 31 55、2a 3b- a 3b-a 2b+ a 2b-ab 2= a 3b- a 2b-ab 2222256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2= -3a 3+4a 258 、 5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a2 -2b 2 64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+41 11 67、 a-(a-4b-6c)+3(-2c+2b)= - a+10b32668 、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 22 - ab +3 a 2b +ab +(-3 a 2b )-1 = 13 4 4 3⎭71、a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)1-[y 2-(5xy-4x 2)+2xy]=3 2x 2 2-y 21 4 73、化简、求值 x 2-⎡2- ( 1 x 2+ y 2)⎤ - (- x 2+ y 2),其中 x =-2, y =- 2⎢⎣ 2 1 8原 式 =2x 2+ y 2-2 =629⎥⎦ 2 3 3 3 1 1 3 1 2 74、化简、求值 x -2(x - y 2)+(- x + y 2),其中 x =-2,y =- .23233原式=-3x+y2 =6 49 1 x 3 - ⎛- 3 x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x =-11 ;75、 3⎝ 23 ⎪ 223原式=x 3 +x 2 -x+6=6 82 1 76、 化简,求值(4m+n )-[1-(m-4n )],m=n=-153原式=5m-3n-1=577、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中 a =-3,b =2 原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2. 原式=-2x2 +x-6=-16 80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求 3x 2+x -5 与 4-x +7x 2 的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z2 与 12y+7x-3z 2 的和 (5y+3x+5z2 )+(12y+7x-3z 2 )=17y+10x+2z 2 85、计算 8xy 2 +3x 2 y-2 与-2x2 y+5xy 2 -3 的差 (8xy2 +3x 2 y-2)—(-2x 2 y+5xy 2 -3)=5x 2 y+3xy 2 +1 86、 多项式-x2 +3xy- 1 y 与多项式 M 的差是- 1x 2-xy+y ,求多项式 M 221 3 M=- x 2+4xy — y221 a 2b-0.4ab 2- 1 a 2b+2 ab 2 = - 1 4 2 5 4187、当x=- ,y=-3 时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.2原式=-8xy+y= —1588、化简再求值 5abc-{2a 2b-[3abc-(4ab 2-a 2b)]-2ab 2},其中 a=-2,b=3,c=-14原式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2,B=a 2+2ab+b 21(1)求 A+B;(2)求 (B-A);4 A+B=2a 2+2b 21(B-A)=ab 490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N. M-2N=5x2-4x+392、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B3A-B=11x 2-13xy+8y 293、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.2A-3B= 5x2+11xy+2y294、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设 A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且 B-2A=a,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a 取任意有理数时,请比较 A 与B 的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教版七年级数学第二章 整式的加减单元测试 (含答案 )

人教版七年级数学第二章 整式的加减单元测试 (含答案 )

第二章 整式的加减一、单选题1.下列关于单项式223x y 说法正确的是 ( ) A.系数是2,次数是2.B.系数是2,次数是3.C.系数是23,次数是2.D.系数是23,次数是3. 2.多项式﹣6y 4+5xy 3﹣4x 2+x 3y 是按( )A .x 的降幂排列B .x 的升幂排列C .y 的降幂排列D .y 的升幂排列3.若﹣x 3y a 与x b y 是同类项,则a+b 的值为( )A.2B.3C.4D.54.已知一个单项式的系数是5,次数是2,则这个单项式可以是( )A.25xyB.52xC.25x y +D.5xy5.在代数式2m n +,22x y ,1x ,-5,a 中,单项式的个数是 ( ) A.1个 B.2个 C.3个 D.4个6.若A 和B 都是3次多项式,则A+B 一定是( )A .6次多项式B .3次多项式C .次数不高于3次的多项式D .次数不低于3次的多项式7.单项式23xy -的系数是( ) A.13- B.13 C.-1 D.18.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律拼成第6个图案需小木棒( )根.A.53B.54C.55D.569.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样10.当2x =和-2时,多项式222(31)(67)x x x x +--++的值分别是( )A.5和-5B.-5和5C.5和5D.-5和-511.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,….用你发现的规律判断32019的个位数字是( )A .9B .7C .3D .1 12.观察下列等式:71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,那么:71+72+73+…+72 016的末位数字是( )A .9B .7C .6D .0二、填空题13.观察下面一列数,探究其中的规律:-1,12,13-,14,15-,16 …… 第2019个数是 _______; 14.多项式()()211x x x ----是______ (填几次几项式). 15.单项式2 5x π-的系数是____.16.某工厂去年产值是x 万元,今年比去年增产30%,则今年的产值是____万元.三、解答题17.观察下面一列数,探究其中的规律:—1,12,13-,14,15-,16 (1)填空:第11,12,13三个数分别是 , , ;(2)第2020个数是什么?(3)如果这列数无限排列下去,与哪个数越来越近?18.如图所示,四边形ABCD 与四边形ECGF 是两个边长分别为a ,b 的正方形,写出用a ,b 表示阴影部分面积的代数式,并计算当4a =cm ,6b =cm 时,阴影部分的面积.19.化简求值:(1)5x 2+6x ﹣6﹣(﹣5x 2+4x+1),其中x=-12;(2)2(3m+2n)+2[m+2n ﹣(m ﹣n)],其中m=﹣1,n=2.20.化简:()()()135a a b a b -++-()()222252334abc a b abc ab a b ⎡⎤---+⎣⎦.21.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+成立的一对有理数“a ,b ”为“共生有理数对”,记为(a ,b ). (1)通过计算判断数对“−2,1,“4,35”是不是“共生有理数对”; (2)若(6,a)是“共生有理数对”,求a 的值;(3)若(m,n)是“共生有理数对”,则“−n,−m”___“共生有理数对”(填“是”或“不是”),并说明理由答案1.D 2.B 3.C 4.D 5.C 6.C 7.A 8.B 9.C 10.D 11.B 12.D13.1 2019 -14.二次二项式15.-5π16.1.3x17.(1)将−1等价于−11,即:−11,12,13-,14,15-,16可以发现分子永远为1,分母等于序数,奇数项为负数,偶数项为正,由此可以推出第11,12,13个数分别是−111,112 ,−113; (2)第n 个数是(−1)n 1n, 所以第2020个数为:(−1)2020 1=120202020; (3)如果这列数无限排列下去,与0越来越近。

人教版数学七年级上册 第二章 整式的加减测试题(含答案)

人教版数学七年级上册 第二章   整式的加减测试题(含答案)

第二章整式的加减测试题一、选择题(本大题共10小题,每小题3分,共30分)1. 用式子表示“a与5的差的2倍”,下列正确的是()A. a-(-5)×2B. a+(-5)×2C. 2(a-5)D. 2(a+5)2. 单项式-xy2的系数是()A. -1B. 1C. 2D. 33. 下列式子中与2ab2是同类项的是()A. 3abB. 2b2C. ab2D. a2b4. 下列式子:2x,0,12x2+2,-mn,-3x y,其中多项式有()A. 4个B. 3个C. 2个D. 1个5. 下列去括号正确的是()A. -(3x-2y+1)=3x-2y+1B.(2x-3y)-(5z-1)=2x-3y+5z-1C. -(3a+2b)-(c+d)=-3a-2b-c+dD. -(a-2b)-(2c-d)=-a+2b-2c+d6. 已知a是两位数,b是一位数,把b写在a的后面,就成为一个三位数,这个三位数可表示成()A. 10a+bB. abC. 100a+bD. a+10b7. 已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为()A. 7B. -7C. 1D. -18. 有一道题目是一个多项式A减去多项式2x2+5x-3,小胡同学将2x2+5x-3抄成了2x2+5x+3,计算结果是-x2+3x-7(其他计算无误),这道题目的正确结果是()A. x2+8x-4B. -x2+3x-1C. -3x2-x-7D. x2+3x-79. 按如图1所示的运算程序,能使输出的结果为32的是()A. x=2,y=4B. x=2,y=-4C. x=4,y=2D. x=-4,y=2图110. 把四张形状大小完全相同的小长方形卡片(如图2-①)不重叠地放在一个底面为长方形(长为a cm,宽为b cm)的盒子底部(如图2-②),盒子底面未被卡片覆盖的部分用阴影表示,则图2-②中两块阴影部分的周长和是()A. 4a cmB. 4b cmC. 2(a+b)cmD. 4(a-b)cm①②图2二、填空题(本大题共6小题,每小题3分,共18分)11.212x y -是 次单项式. 12. 计算2x 2-3x 2+4x 2的结果等于 .13. 写出一个只含有字母x 的二次三项式 .14. 用括号把多项式4a 2-4a-b 2+2b 分成两组,使其中的所有二次项、一次项分别相结合,两个括号之间用“-”连接,其结果为 .15. 某快递公司在市区的收费标准为:寄一件物品,不超过1千克付费10元;超出1千克的部分每千克加收 2元(不足1千克按1千克算).乐乐在该公司寄市区内的一件物品,质量为x (x >1)千克,则需支付 元.(用含x 的式子表示)16. 如图3是用正三角形、正方形、正六边形设计的一组图案,第1个图案中有6个正三角形,第2个图案中 有10个正三角形,第3个图案中有14个正三角形,……按此规律,第n 个图案中正三角形的个数是 .图3三、解答题(本大题共6小题,共52分)17.(每小题4分,共8分)计算:(1)-4a -122a ⎛⎫- ⎪⎝⎭; (2)3(2x 2-y 2)-2(3y 2-2x 2).18.(6分)先化简,再求值:3xy 2-223232xy xy x y xy ⎛⎫--+ ⎡⎤⎢⎥⎣⎪⎝⎦⎭+3x 2y ,其中x =3,y =13-.19.(8分)如果整式3x 4-2x 3+5x 2+4x 与kx 3+mx 2+5-7x 的和不含x 3和x 2项,求m k 的值.20.(8分)按图4所示的程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?图4(1)补全表格:输入n3 2 12 13 … 输出答案 -1… (2)你发现的规律是 ,用简要的过程说明你发现规律的正确性.21.(10分)问题提出:我们在分析解决某些数学问题时,经常要比较两个数或式子的大小,而解决问题的策 略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”就是通过作差、变形,并利用差的符号确定他们的大小,即要比较式子M ,N 的大小,只要作出它们的差M-N ,若M-N >0,则M >N ;若M-N=0,则M=N ;若M-N <0,则M <N.(1)求图5-①中长方形的周长M 1;(用含a ,b ,c 的式子表示)(2)试比较图5-①和图5-②中两个长方形的周长M 1,N 1的大小(b >c ).① ②图522.(12分)某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备订购一批篮球和跳绳,经过 市场调查后发现每个篮球的定价为120元,每条跳绳的定价为20元.某体育用品商店提供A 、B 两种优惠方案,方案A :买1个篮球送1条跳绳;方案B :篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(x >50).(1)若按方案A 购买,一共需付款 元,若按方案B 购买,一共需付款 元;(用含x 的式子 表示)(2)当x =100时,请通过计算说明此时用哪种方案购买较为合算;(3)当x =100时,你能给出一种更省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元.附加题(共20分,不计入总分)阅读下列材料: 完成下列任务:(1)下列四个式子:①a+b+c ;②a 2+b 2;③a 2b ;④a b.其中是对称式的是__________;(填序号) (2)已知A =2a 2+4b 2,B =a 2-2ab ,求A +2B ,并判断所得结果是否为对称式.(江西 赵 畅)对称式一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:式子abc 中任意两个字母交换位置,可得到式子bac ,acb ,cba ,因为abc=bac=acb =cba ,所以abc 是对称式;而式子a-b 中字母a ,b 交换位置,得到式子b-a ,因为a-b ≠b-a ,所以不是对称式.第二章 整式的加减测试题参考答案一、1. C 2. A 3. C 4. C 5. D 6. A 7. C 8. B 9. A10. B 提示:设小长方形卡片的长为x cm ,宽为y cm.由图得x+2y=a.图②中两块阴影部分的周长和是2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b (cm ).二、11. 三 12. 3x 2 13. 答案不唯一,如x 2+2x +114.(4a 2-b 2)-(4a -2b )或(2b-4a )-(b 2-4a 2) 15.(2x+8)16. 4n +2 提示:第1个图案中正三角形个数为6=2+4;第2个图案中正三角形个数为2+4+4=2+2×4;第3个图案中正三角形个数为2+2×4+4=2+3×4;……第n 个图案中正三角形个数为2+(n -1)×4+4=2+4n =4n +2.三、17.(1)9-2a+2;(2)10x 2-9y 2. 18. 解:原式=3xy 2-()22233xy xy x y xy -+++3x 2y=3xy 2-xy +2xy -3x 2y -3xy 2+3x 2y=xy .当x =3,y =13-时,原式=-1. 19. 解:3x 4-2x 3+5x 2+4x +kx 3+mx 2+5-7x=3x 4+(k-2)x 3+(m+5)x 2-3x+5.由结果不含x 3和x 2项,得k-2=0,m+5=0,解得k=2,m=-5.所以m k =(-5)2=25.20. 解:(1)表格从左到右依次填-1,-1,-1.(2)规律是:输入n 的值为任意数,输出的结果都是-1.理由如下:2(n 2-n )-2n 2+(2n -1)=2n 2-2n -2n 2+2n -1=-1.21. 解:(1)M 1=2(a+b+b+c )=2a+4b+2c.(2)M 1-N 1=(2a+4b+2c )-2(b+3c+a-c )=2a+4b+2c-2b-2a-4c =2b-2c=2(b-c ).因为b >c ,所以M 1-N 1>0,所以M 1>N 1.22. 解:(1)(5000+20x ) (5400+18x ) 提示:按方案A 购买需付款:50×120+(x -50)×20=5000+20x (元);按方案B 购买需付款:(50×120+20x )×0.9=5400+18x (元).(2)当x=100时,按方案 A 购买需付款:5000+20x =5000+20×100=7000(元);按方案B 购买需付款:5400+18x =5400+18×100=7200(元).因为7000<7200,所以当x =100时,选择方案A 购买合算.(3)由(2)可知,当x=100时,方案A 需付款7000元,方案B 需付款7200元.若按方案A 购买50个篮球配送50个跳绳,按方案B 购买50个跳绳,共需付款:120×50+20×50×90%=6900(元). 因为6900<7000<7200,所以更省钱的购买方案是:按方案A 买50个篮球,按方案B 购买50条跳绳,共需 付款6900元.附加题解:(1)①②(2)因为A=2a2+4b2,B=a2-2ab,所以A+2B=2a2+4b2+2(a2-2ab)=2a2+4b2+2a2-4ab=4a2+4b2-4ab,是对称式.。

七年级数学上第二章整式的加减测试卷(有答案)

七年级数学上第二章整式的加减测试卷(有答案)

第二章全加减法(基本试验体积)问题和答案问题得分了一,多选题。

(这个问题有10个小问题,每个问题3分,共30分)在下面的代数公式中,写规则是()A X b X÷y c。

M×2d。

3已知单项式的系数为2,次数为3,则单项式可以为()A B C D。

如果和是相同的类型,则a,b值为()A = 2,b = -1b。

A = 2,b = 1c。

A = -2,b = 1d。

A = -2,b = -1如果x y = 1,代数公式3(4x-1)-2(3-6y)的值为()A. -8 b 8 c。

-3 d。

3有12米长的木材,做一个窗框如图所示。

如果假设窗口框架的长度为米,则窗口框架的面积为()2168A.B.C. D.6.当x = 1时,生成公式的值为7,则当x = -1时,代数值为()A.7 b。

3c。

1 d。

-77.在以下公式中,计算是正确的()A.2-3 = -1b。

-2m2 m2 = -m2C 3÷x = 3÷1 = 3 d。

3ab = 3ab8.图,齐齐和贾家做数学游戏:假设贾家绘制点为x,齐齐猜的结果应为y,则y =()A.2b。

3c。

6 d。

X 39.实数,在数轴上的位置如图所示,减少的结果是()A. - b。

C. D.已知的多项式,可以获得另一个多项式的值()A.3b。

4c。

5d。

6二,填空。

(这个问题有6个小问题,每个问题4分,共24分)用代数形式表示:①矩形宽度为m,长于宽度为2,圆周长为_____________________________。

②笔每元,笔每n元,买两笔三笔笔总需要______________元。

12.如果a2-2a-1 = 0,则2a2-4a 5 = ______________。

观察到以下公式:(1)42-12 = 3×5; (2)52-22 = 3×7; (3)62-32 = 3×9;然后第n(n是正整数)方程是____________。

七年级数学第二章《整式的加减》单元测试题 (1)

七年级数学第二章《整式的加减》单元测试题 (1)

2、在下列各式中: - 2 , x + y -3, , - 8y 6 ,单项式的个数为( ) C 、 3 + x = 3 x D. -0.25ab + ab = 0 2 B 、 - x 2, - 1 x , -1 C 、 x 2, x ,1 D 、 x 2, - x , -1 π 2 七年级数学第二章《整式的加减》单元测试卷学校班别 姓名 座号 成绩一、选择题(每小题 4 分,共 40 分)1、原产量 n 吨,增产 30%之后的产量应为()A 、(1-30%)n 吨.B 、(1+30%)n 吨.C 、n+30%吨.D 、30%n 吨.y 5 3A 、1B 、2C 、3D 、43、下列说法正确的是( ) 1 A 、 3π x 2 1 1 1 的系数为 B 、 xy 2 的系数为 x 3 2 2C 、 - 5 x 2 的系数为 5D 、 3x 2 的系数为 34、甲数比乙数的 2 倍大 3,若乙数为 x ,则甲数为()A .2x -3B .2x+3C . 1 1 x -3D . x+3 2 25、下列各式中,去括号正确的是( )A.3-(a-b )=3-a-bB.3+2(a-b )=3+2a-bC.2+(a-b )=2+a+bD.2-(a-b )=2-a+b6、下面计算正确的是( )A . 3x 2 - x 2 = 3 B. 3a 2 + 2 a 3 = 5 a 51 4 7、多项式 - x2 - 1 2x - 1的各项分别是( )A 、 - x 2, 1 x ,1 2 1 2 1 2 8、下列各组中的两个单项式能合并的是( ) A 、4 和 4xB 、 3x 2 y 3和 - y 2 x 3C 、 2ab 2和100ab 2 cD 、 m 和 m 29、单项式 -3 xyz 3的系数和次数分别是( )A.-π ,5B.-1,6C.-3π ,6D.-3,710、多项式- x 2 +5 x -3 与 x 2 -2 x +1 的和是()A : x 2 -5 x +3B :- x 2 + x -1C :3 x -2D : x 2 -5 x -134b-5ab )-(3a b-4ab二、填空题(每小题4分,共20分)11.列示表示:p的3倍的是。

人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)

人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)

3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14

人教版数学七年级上册第二章《整式的加减》测试题(含答案)

人教版数学七年级上册第二章《整式的加减》测试题(含答案)

第二章《整式的加减》测试题一、单选题(每小题只有一个正确答案)1.在式子:2221212,,,1,,,2223x y x y xy ab x xy y x+-++中,单项式的个数是( ) A .4 B .3 C .2 D .12.一个多项式2232x y -减去一个单项式得2232x y +,则减去的单项式是( ) A .24y - B .24y C .26y - D .26y 3.长方形的宽为2m n +,长比宽多m n -,则这个长方形的周长是( )A .3mB .5m n +C .102m n +D .128m n + 4.将多项式32225x x x --++按降幂排列,正确的是( )A .x 3-2x+2x 2+5B .5-2x+2x 2-x 3C .-x 3+2x 2+2x+5D .-x 3+2x 2-2x+5 5.下列计算正确的是( )A .325a b ab +=B .()325a a a --=C .232a a a -=D .()()3212a a a ---=-6.实数,a b 在数轴上的位置如图所示,化简||b a b --的结果为( )A .2a b -B .a -C .aD .2+a b 7.下列说法正确的是( )A .单项式34xy -的系数是-3B .单项式32x y 的次数是4C .多项式222223b a -+是四次三项式D .多项式226x x -+的项分别是2x ,2x ,6 8.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( ) A .()x 15x - B .()x 30x - C .()x 302x - D .()x 15x + 9.某两位数,十位上的数字为a ,个位上的数字为b ,则这个两位数可表示为 ( ) A .ab B .a+b C .10a+b D .10b+a10.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( , A .36 B .40 C .44 D .4611.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .012.找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )A .149B .150C .151D .152二、填空题 13.如果单项式m m 23x y +与2n 2x y -的和是2n x y ,那么m =________,n =________, 14.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______. 15.单项式212xy π-的系数是__________.16.已知a ,b 互为相反数,c ,d 互为倒数,2,1,x y x y ==<.则代数式(a+b+1)x 2+cdy 2+x 2y -xy 2的值是 .17.如图是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a +b)米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b)米,则王明家楼梯的竖直高度(即BC 的长度)为________米.三、解答题18.已知关于x ,y 的多项式x 4+(m +2)x n y –xy 2+3,其中n 为正整数.,1,当m ,n 为何值时,它是五次四项式?,2,当m ,n 为何值时,它是四次三项式?19.化简,1,5x 2+x+3+4x,8x 2,2 ,2,,2x 3,3x 2,3,,,,x 3+4x 2,,3,3,x 2,5x+1,,2,3x,6+x 2,20.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5; (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=.21.a 、b 、c 三个数在数轴上位置如图所示,且|a|=|b|(1)求出a 、b 、c 各数的绝对值;(2)比较a ,﹣a 、﹣c 的大小;(3)化简|a+b|+|a ﹣b|+|a+c|+|b ﹣c|.22.已知代数式A=2x 2+5xy,7y,3,B=x 2,xy+2,,1)求3A,,2A+3B )的值;,2)若A,2B 的值与x 的取值无关,求y 的值.23.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)参考答案1.A 2.A 3.C 4.D 5.B 6.A 7.B 8.A 9.C 10.A 11.A 12.D 13.2 414.115.12π-16.3或11.17.(a ﹣2b )18. 解:(1,因为多项式是五次四项式,所以n ,1,5,m ,2≠0,所以n ,4,m ≠,2.,2,因为多项式是四次三项式,所以m ,2,0,n 为任意正整数,所以m ,,2,n 为任意正整数.19.解:(1)5x 2+x+3+4x ﹣8x 2﹣2=,5-8,x 2+,1+4,x+,3-2,=-3x 2+5x+1,2,,2x 3,3x 2,3,,,,x 3+4x 2,= 2x 3,3x 2,3+x 3-4x 2=3 x 3,7x 2-3,3,3 ,x 2,5x+1,,2 ,3x,6+x 2,=3x 2,15x+3-6x+12-2x 2=x 2-21x+1520.解:(1)原式=5x 2-3x -3∵x =5,∴原式=107(2)原式=-3xy -2xy 2+2xy -5x 2y +4xy 2+5x 2y=-xy+2xy 2 由214()02x y +++=得x =-4 y =-12,∴原式=-(-4)×(-12)+2×(-4)×(-12)2=-2-2=-4.21.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=,b,|c|=,c,,2,∵从数轴可知:c,b,0,a,|c|,|a|,∴,a,a,,c,,3)根据题意得:a+b=0,a,b,0,a+c,0,b,c,0,则|a+b|+|a,b|+|a+c|+|b,c|=0+a-b,a,c+b-c=,2c,22.解:(1)3A﹣(2A+3B)=3A,2A,3B=A,3B∵A=2x2+5xy,7y,3,B=x2,xy+2∴A,3B=,2x2+5xy,7y,3,,3,x2,xy+2,=2x2+5xy,7y,3,3x2+3xy,6=,x2+8xy,7y,9,2,A,2B=,2x2+5xy,7y,3,,2,x2,xy+2,=7xy,7y,7∵A,2B的值与x的取值无关∴7y=0,∴y=023.解:根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.。

人教版七年级上第二章整式的加减同步练习题(1)含解析

人教版七年级上第二章整式的加减同步练习题(1)含解析

人教版七年级上第二章整式的加减同步练习题(1)含解析学校:___________姓名:___________班级:___________考号:___________一、填空题1.括号前面是“+”号,去掉括号,括号里的每一项都_______符号;括号前面是“-”号,去掉括号,括号里的每一项都_______符号.2.添括号:(1)222312x x x -+=+(_____); (2)221a a a -+=-(_________); (3)264a b c a -+-=-(_____)2a =+(_____);(4)(3)(3)[x y z x y z x +-+-+-=+(_____)][x -(_____)];(5)22()669()6m n m n m n +--+=+-(_____)9+.3.单项式23xm +1y 2-n 与2y 2x 3的和仍是单项式,则mn =_____.4.一台扫描仪的成本价为n 元,销售价比成本价提高了30%,为尽快打开市场.按销售价的八折优惠出售,则优惠后每台扫描仪的实际售价为______元.5.35a -=,且a 在原点左侧,则=a _________. 6.已知4a b -=,则多项式2211()9()()5()42a b a b a b b a -------的值______.二、单选题7.化简:﹣(﹣2)=( )A .﹣2B .﹣1C .1D .28.下列去括号正确的是( )A .()3236a a --=-B .()3232a a --=-C .()3232a a --=-- D .()3236a a --=-+9.(﹣1)2022的相反数是( )A .﹣1B .2022C .﹣2022D .110.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 11.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( )A .七次多项式B .七次整式C .四次多项式D .四次整式 12.疫情期间,小明去药店买口罩和消毒液(每包口罩单价相同,每瓶消毒液价格相同).若购买20包口罩和15瓶消毒液,则身上的钱还少25元,若购买19包口罩和13瓶消毒液,则他身上的钱会剩下15元,若小明购买16只口罩和7瓶消毒液,则( )A .他身上的钱会剩下135元B .他身上的钱会不足135元C .他身上的钱会剩下105元D .他身上的钱会不足105元三、解答题13.计算下列各题:(1)223x y x y -;(2)222227378337ab a b ab a b ab -+++--.14.先化简,后求值:24x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1,其中x =﹣1,y =2.15.如图,化简|a |﹣|b |﹣|c |.参考答案:1. 不改变 改变【解析】略2. 31x -+ 1a - 264b c -+ 32b c -+- 3y z -+ 3y z -+ m n +【分析】根据添括号法则逐一求解即可.【详解】解:(1)()22231231-+=+-+x x x x ;(2)()2211-+=--a a a a ;(3)()()264264232-+-=--+=+-+-a b c a b c a b c ;(4)()()(3)(3)33+-+-+-=+-+--+⎡⎤⎡⎤⎣⎦⎣⎦x y z x y z x y z x y z ;(5)()22()669()69+--+=+-++m n m n m n m n .故答案为:(1)31x -+;(2)1a -;(3)264b c -+,32b c -+-;(4)3y z -+,3y z -+;(5)m n +.【点睛】本题主要考查了添括号法则,熟练掌握添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号是解题的关键. 3.1【分析】根据单项式的和是单项式,可得两个单项式是同类项,根据同类项,可得m 、n 的值,根据代数式求值,可得答案.【详解】解:依题意得:m +1=3,2﹣n =2,m =2,n =0,∴mn =20=1.故答案为:1.【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题的关键. 4.1.04n【分析】根据题意可以用代数式表示出优惠后的每台扫描仪的实际售价.【详解】由题意有,优惠后每台扫描仪的售价为:n ×(1+30%)×80%=1.04n ,故答案为:1.04n .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 5.-2【分析】利用数轴及绝对值得出a 的值,再根据a 在原点左侧确定a 的值即可.【详解】∴35a -=,∴a -3=5或a -3=-5,∴a =8或a =-2,∴a 在原点左侧,∴a =-2.故答案为 -2【点睛】本题主要考查了数轴,解题的关键是利用数轴及绝对值得出a 的值.6.20-【分析】先利用整式的加减运算化简,然后整体代入4a b -=求解即可.【详解】解:∴4a b -=, ∴2211()9()()5()42a b a b a b b a ------- ()()2144a b a b =---- 214444=-⨯-⨯ 20=-,故答案为:-20.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解.7.D【分析】根据去括号原则去括号即可.【详解】由于括号前是负号,去括号后原括号里各项的符号都要改变,故原式=2.故选D .【点睛】本题考查去括号原则,解决本题的关键是熟练应用去括号原则.8.D【分析】根据去括号法则逐项进行判断即可.【详解】()3236a a --=-+,故D 正确.故选:D .【点睛】本题主要考查了去括号法则,括号前面是正号的把括号和正号去掉,括号里的每一项符号不变,括号前是负号的把括号和负号都去掉,括号里的每一项符号发生改变. 9.A【分析】先求出(﹣1)2022,再根据相反数的定义即可求解.【详解】解:(﹣1)2022=1,1的相反数是﹣1.故选:A .【点睛】本题考查了相反数的定义及有理数的乘方,熟练掌握相反数的定义及-1的偶数次方等于1是解题的关键.10.C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.11.D【分析】根据题意,利用整式的加减法则进行判断即可.【详解】解:∴A 是一个四次多项式,B 是一个三次多项式,∴A B -可能是四次多项式,也可能是四次单项式,∴A B -一定是四次整式,故选D .【点睛】本题考查了整式的加减.熟练掌握运算法则是解本题的关键.12.A【分析】设每包口罩x 元,每瓶消毒液y 元,根据小明带的总钱数是不变的,可得到:20x +15y -25=19x +13y +15,整理可得到x +2y =40.小明购买16只口罩和7瓶消毒液会消费16x +7y ,再利用20x +15y -25-(16x +7y )即可表示出小明身上剩下的钱数,代入计算即可.【详解】解:设每包口罩x 元,每瓶消毒液y 元,∴小明带的总钱数是不变的,∴20x +15y -25=19x +13y +15,整理得:x +2y =40.小明购买16只口罩和7瓶消毒液会消费:16x +7y ,∴剩余的钱为:20x +15y -25-(16x +7y )=20x +15y -25-16x -7y=4x +8y -25将x +2y =40代入得:4×40-25=135即小明身上的钱会剩下135元.故选:A【点睛】本题考查了字母表示数,代数式求值,整式加减运算,能够准确分析题意,找到不变量是解决本题的关键.13.(1)22x y -(2)284ab +【分析】(1)根据合并同类项法则计算即可;(2)根据合并同类项法则计算即可.(1)解:原式()22132x y x y =-=-;(2)解:原式()()222222773387384ab ab a b a b ab ab =-+-++-=+.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项时,将系数相加,字母和字母指数不变是解题的关键.14.52x y +2xy ﹣3;3【分析】先去括号,再合并 同类项,即可化简,然后把x 、y 值代入许即可.【详解】解:42x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1=24x y ﹣6xy +2(4xy ﹣2)+2x y + 1=42x y ﹣6xy +8xy ﹣4+2x y + 1=25x y +2xy ﹣3,当x =﹣1,y =2时,原式=5×2(1) ×2+2×(﹣1)×2﹣3=10﹣4﹣3=3.【点睛】本题考查整化简求值,熟练掌握整式加减混合运算法则、去括号法则是解题的关键. 15.a +b +c【分析】根据绝对值的含义和求法,化简即可.【详解】解:由数轴可得:a >0,b <0,c <0,∴|a |=a ,|b |=-b ,|c |=-c ,∴原式=a ﹣(﹣b )﹣(﹣c )=a +b +c .【点睛】此题主要考查了数轴上的点的正负性,绝对值的含义和求法,要熟练掌握数轴上的点的正负性以及绝对值的化简方法是解题的关键.。

人教版数学七年级第二章《整式的加减》测试题(含答案)

人教版数学七年级第二章《整式的加减》测试题(含答案)

第二章《整式的加减》测试题一、精心选一选(每小题2分,共20分)1.下列判断:(1)π2xy -不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)xx +1是整式,其中正确的有( )A.1个 B.2个 C.3个 D.4个2.下列说法正确的是 ( ) A.32xyz 与32xy 是同类项 B.x 1和21x 是同类项 C.0.523y x 和732y x 是同类项 D.5n m 2与-42nm 是同类项3.已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( ) A.-1 B.-2 C.-3 D.-44.一个多项式与2x -2x +1的和是3x -2,则这个多项式为 ( )A.2x -5x +3B.-2x +x -1C.-2x +5x -3D.2x -5x -135.32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于( )A.2B.-2C.4D.-46.甲乙两车同时同地背向出发,速度分别是x 千米/时,y 千米/时,3小时后两车相距( )A.3(x -y ) 千米B.3(x +y ) 千米C.3(y -x )千米D.以上答案都不对7.原产量n 吨,增产30%之后的产量应为 ( )A.(1-30%)n 吨B.(1+30%)n 吨C.n+30%吨D.30%n 吨8.下列计算正确的是 ( )A :x x x x -=+-694B :x x x =-23C :02121=-a a D :xy yx xy 32=- 9.已知,2,3=+=-d c b a 则)()(d a c b --+的值是 ( )A.1-B.1C.5-D.1510.-(m - n )去括号得( )A.n m - B.n m -- C.n m + D.n m +-二、细心填一填(每小题2分,共20分)11.列式表示:p 的3倍的41是 . 12.2x -3是由 和 两项组成. 13.当a=-2时,-a 2-2a +1= . 14.化简3x -2(x -3y )的结果是 . 15.写出325x y -的一个同类项 . 16.单项式-652y x 的系数是 ,次数是 . 17.多项式2-152xy -4y x 3是 次 项式,它的项数为 ,次数是 . 18.已知轮船在静水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的 速度是 千米/时.19.观察下列算式:;52323;31212;10101222222=+=-=+=-=+=- ;94545;734342222=+=-=+=-,若字母n表示自然数,请把你观察到的规律用含有n的式子表示出来 .20.按这样规律做下去第n 张桌子可以坐 人.三、解答题(共24分) 21.化简(每小题4分,共24分)⑴a a a a 742322-+-; ⑵67482323---++-a a a a a a ;⑶)32(3)32(2a b b a -+-; ⑷(-2ab +3a )-(2a -b )+6ab ;⑸2a -[-4ab +(ab -2a )]-2ab ; ⑹212a -[21(ab -2a )+4ab ]-21ab .四、解答题(共18分)22.化简求值(每小题7分,共14分)⑴),23(31423223x x x x x x -+--+其中x =-3. (2)()()222234x y xy x y xy x y +---,其中 1,1x y ==-23.(7分)若y x b a 3221与643b a 是同类项,求y x y y x y 33332443+--的值.五、解答题(共15分)24.(7分)已知325A x x =-,2116B x x =-+.⑴求A +2B 的值;⑵当1x =-时,求A +5B 的值.参考答案11.P 43;12.2x ,-3;13.1;14.y x 6+;15.略;16.65-,3;17.四,三,三,四;18.2-m ;19.12)1(22-=--n n n ;20.12-n . 三、21.(1)a a 972-;(2)633-+a a ;(3)a 5-;(4)b a ab ++4;(5)ab a +22;(6)ab a 52-.四、22.(1)69;(2)10;23.-40.五、24.(1)1222323+--x x x ;(2)84.。

【精选6套】人教版七年级数学第二章整式的加减单元练习(含答案).doc

【精选6套】人教版七年级数学第二章整式的加减单元练习(含答案).doc

人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

人教版七年级数学第二章《整式的加减》易错题训练 (1)含答案解析

人教版七年级数学第二章《整式的加减》易错题训练 (1)含答案解析

第二章《整式的加减》易错题训练 (1) 一、选择题(本大题共15小题,共45.0分)1.在下列式子中:3xy−2、3÷a、12(a+b)、a⋅5、−314abc中,符合代数式书写要求的有()A. 1个B. 2个C. 3个D. 4个2.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是()A. 3B. 9C. 6D. 83.下列选项中的整式,次数是5的是()A. x4+x2y3B. x5+x3y3C. x5yD. 5x4.下列选项中,不是单项式的式子是A. −3B. 12x3y C. 2a3−1 D. m5.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个6.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个7.在代数式3x2y4、7(x+1)8、13(2n+1)、y2+y+1y中,多项式的个数是()A. 1B. 2C. 3D. 48.已知下列各式:5abf,1π,x+3y,6,x−y5,5b,其中是单项式的有()A. 2个B. 5个C. 3个D. 4个9.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有()A. 5个B. 6个C. 7个D. 8个10.已知:2xy23,1x,−a,0,4x+1,1+x2,中单项式有()A. 6个B. 5个C. 4个D. 3个11.在式子:2xy,−12ab,x+y2,1,2x2y3,1x,x2+2xy+y2中,整式的个数是()A. 3B. 4C. 5D. 612.已知正方形的边长为a,若边长增加50%,则它的面积增加()A. 0.5a2B. 1.5a2C. 1.25a2D. 0.25a213.代数式12a ,4xy,a+b3,a,2014,12a2bc,−3mn4中单项式的个数有()A. 3个B. 4个C. 5个D. 6个14.下列式子中代数式的个数有()个.−2a−5,−3,2a+1=4,b,x+y>2,1y,3x3+2x2y4A. 2B. 3C. 4D. 515.一个长20分米的方木的横截面是边长为m分米的正方形,将它锯掉8分米后,方木的体积比原来减少()。

(必考题)初中七年级数学上册第二章《整式的加减》经典测试题(答案解析)

(必考题)初中七年级数学上册第二章《整式的加减》经典测试题(答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A.5次B.6次C.7次D.8次C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.下列用代数式表示正确的是() A.a是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.7.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.8.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.9.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B 解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.2.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 3.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008【解析】a 2=−|a 1+1|=−|0+1|=−1,a 3=−|a 2+2|=−|−1+2|=−1,a 4=−|a 3+3|=−|−1+3|=−2,a 5=−|a 4+4|=−|−2+4|=−2,…,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n ;a 2016=−20162=−1008. 故答案为-1008. 点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.4.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 5.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b aba b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.7.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.8.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.9.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.y=,则输入的数x=________________.10.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.11.用棋子按下列方式摆图形,依照此规律,第n个图形比第()1n-个图形多______枚棋子.…第1个第2个第3个【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.1.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.2.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.3.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.下列代数式符合书写要求的是( ) A .2213x y B .2ab c ÷ C .xy D .32mn ⋅ 2.下列说法中,错误的是( ) A .单项式与多项式统称为整式B .多项式33a b +的系数是3C .2ab +是二次二项式D .单项式2x yz 的系数是1 3.把代数式“”用文字语言叙述,其中表述不正确的是( )A .比x 的倒数小5的数B .x 的倒数与5的差C .x 与5的差的倒数D .1除以x 的商与5的差 4.下列各组中的两项,不是同类项的是( )A .2a -和2aB .3a bc 和32a bc -C .23x 和33xD .2和0.15.把多项式3221ab a b -++按a 的降幂排列,正确的是( )A .3221ab a b -++B .2321a b ab -+C .2312a b ab +-D .3212ab a b -+6.下列各式运算,结果正确的是( )A .21a a -=B .2x y xy +=C .2222347m n mn m n +=D .222910x x x += 7.设a ,b 互为相反数,c ,d 互为倒数,则2018(a +b )﹣cd 的值是( )A .2018B .﹣1C .1D .08.有一列数1234,,,,,n a a a a a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2021a 值为( ).A .2B .-1C .12D .200二、填空题9.单项式-xy 3的次数是————.10.计算:()31a -= .11.用代数式表示:“a 的平方的倒数减去b 的差”是 .12.若710x y -与125m n x y -是同类项,则m = ,n = .13.若23m <<,化简32m m ---的结果是 .14.已知21m m -=,则代数式22020m m ++的值为 .15.如图是一组有规律的图案,它由若干个大小相同的圆组成.第1个图案中有6个白色的圆,第2个图案中有10个白色的圆,第3个图案中有14个白色的圆,依此规律,第10个图案中有 个白色的圆.三、解答题16.化简(1)()835x x ---(2)()()2221322a a a a --+++ (3)()()193213y y -++ (4)221523452ab ab ab ab ab ⎡⎤⎛⎫--+- ⎪⎢⎥⎝⎭⎣⎦17.有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.18.已知2231A x xy y =++-和2B x xy =-.(1)若()2230x y ++-=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.(3)若3A mB x --的值与x 的值无关,求y 的值.19.为了丰富校园体育生活,某学校准备举行运动会,学校需要采购秩序册x 份,他们的报价相同. 甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)请用含x 的式子表示,到甲厂采购需要支付________元,到乙厂采购需要支付________元;(2)当印制200份秩序册时,选哪个印刷厂所付费用较少,为什么?20.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前4天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这四天该钢笔的售价情况和售出情况,如下表所示:第1天第2天第3天第4天每支价格相对标准价格(元)1-+01-2售出支数(支)12153233(1)填空:第一天售价是___________元,该天赚了___________元;(2)求新华文具用品店这四天出售这种钢笔一共赚了多少元;(3)新华文具用品店为了促销这种钢笔,决定从下周一起推出两种促销方式:方式一:购买不超过5支钢笔,每支12元;若购买超过5支钢笔,则5支钢笔,每支12元,超过5支钢笔的部分,每支降价4元;方式二:每支售价9元.x>)支钢笔作为奖品时,如果用方式一购买需要花费___________元,若在该店购买林老师在该店购买x(510支钢笔作为奖品,选择上述两种促销方式中哪种方式购买更省钱?___________(直接填写方式一或方式二).参考答案1.C2.B3.C4.C5.B6.D7.B8.C9.410.33a -11.21b a -12.8 1213.25m -+/5-2m14.202115.4216.(1)115x +(2)241a +(3)51y +(4)23ab17.(1)>,<,>;(2)2c .18.(1)10-;(2)=1x -;(3)1y =. 19.(1)4.8500,6200x x ++(2)选乙厂的付费较少 20.(1)11,60(2)282元(3)()820x +,方式二.。

人教版七年级数学第二章《整式的加减》单元测试题(含答案)

人教版七年级数学第二章《整式的加减》单元测试题(含答案)

人教版七年级数学第二章《整式的加减》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式中,不是代数式的是()A.﹣3B.a2﹣2a C.2x+3=0D.2.(3分)代数式,2x+y,a2b,,,0.5中整式的个数()A.3个B.4个C.5个D.6个3.(3分)下列各组两项中,是同类项的是()A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y4.(3分)已知m,n满足6m﹣8n+4=2,则代数式12n﹣9m+4的值为()A.0B.1C.7D.105.(3分)若a2﹣2a﹣6=0,则代数式的值是()A.1B.6C.﹣6D.﹣16.(3分)下列各式运算正确的是()A.2(b﹣1)=2b﹣2B.a2b﹣ab2=0C.2a3﹣3a3=a3D.a2+a2=2a47.(3分)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E 在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.88.(3分)已知x2﹣3x﹣12=0,则代数式3x2﹣9x+5的值是()A.31B.﹣31C.41D.﹣419.(3分)若□+(﹣x2+1)=3x﹣2,则□表示的多项式是()A.﹣x2+1+3x﹣2B.﹣x2+1﹣(3x﹣2)C.x2﹣1+3x﹣2D.x2+1﹣3x+210.(3分)若A=x2﹣2xy,B xy+y2,则A﹣2B为()A.3x2﹣2y2﹣5xy B.x2﹣2y2﹣3xyC.﹣5xy﹣2y2D.3x2+2y2二、填空题(共5小题,满分15分,每小题3分)11.(3分)如果单项式x m﹣1y2n与x3y m+2是同类项,那么mn的值是.12.(3分)一公路全长xkm,汽车的速度是每小时ykm,如需提前1小时到达,则汽车的速度应变为每小时km.13.(3分)某个数值转换器原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2021次输出的结果是.14.(3分)一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了元.15.(3分)若2x﹣3y=1,则﹣4x+6y+5的值为.三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(2x2﹣5x)﹣(3x2﹣4x+2)+x2,其中x.17.(9分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣2,b=﹣1.18.(9分)已知A=5x2﹣mx+n,B=﹣3y2+2x﹣1,若A+B中不含一次项和常数项,求2(m2n ﹣1)﹣5m2n+4的值.19.(9分)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,完成下列各题:(1)求多项式A;(2)若x2x+1=0,求多项式A的值.20.(9分)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.21.(10分)某花卉基地购买了一批水培植物营养液,已知甲种营养液每瓶2L,乙种营养液每瓶3L.(1)若花卉基地购买了甲种营养液m箱(每箱12瓶),乙种营养液n箱(每箱10瓶),共QL.用含m,n的式子表示Q;(2)若购进甲种营养液6×103瓶,乙种营养液5×104瓶,用科学记数法表示Q.22.(10分)毕业季,某文具批发店购进足够数量的甲、乙两种纪念册,已知每天两种纪念册的销售量共200本,两种纪念册的成本和售价如表:纪念册成本(元/本)售价(元/本)甲1216乙1518设每天销售甲种纪念册x本.(1)用含x的代数式表示该批发部每天销售这两种纪念册的成本,并化简;(2)当x=90时,求该文具批发店每天销售这两种纪念册获得的利润.23.(10分)某中学八年级(1)班5名老师决定带领本班x名学生去迁西景忠山旅游参观.该景区每张门票的票价为40元,现有A、B两种购票方案可供选择:方案A:教师全价,学生半价;方案B:不分教师与学生,全部六折优惠.(1)请用含x的代数式分别表示选择A,B两种方案所需的费用;(2)当学生人数x=50时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠。

七年级第二章整式的加减练习题

七年级第二章整式的加减练习题

七年级数学第二章《整式的加减》单元达标练习题一、选择题(每小题6分,共30分) 1.在代数式222515,1,32,,,1x x x x xx π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.下面计算正确的是( )A .2233x x -=B 。

235325a a a +=C .33x x +=D 。

10.2504ab ab -+=3.多项式2112x x ---的各项分别是( )A.21,,12x x -B.21,,12x x ---C.21,,12x xD.21,,12x x --4.下列去括号正确的是( )A.()5252+-=+-x xB.()222421+-=--x xC.()n m n m +=-323231D.x m x m 232232+-=⎪⎭⎫⎝⎛--5.下列各组中的两个单项式能合并的是( )A .4和4xB .32323x y y x -和 C .c ab ab 221002和D .2m m 和二、填空题(每小题6分,共30分) 6.单项式522xy -的系数是____________,次数是_______________。

7.多项式5253323+-+-y x y x xy 的次数是________.最高次项系数是__________,常数项是_________。

8.任写一个与b a 221-是同类项的单项式:_______________________9.多项式y x 23+与多项式y x 24-的差是______________________.10.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款__________________元.三、解答题(共10小题,共50分) 11.计算(12分)(1)222225533y y x y y x x +-++-- (2)()()22224354abb aabb a ---12.(8分)先化简,后求值:()()xy y x y x 345352222+++-,其中31,1=-=y x13.(12分)如果A=2a+4,B=3a-2。

人教版七年级数学第二章 整式的加减单元练习(含答案 )

人教版七年级数学第二章 整式的加减单元练习(含答案 )

第二章整式的加减一、单选题1.单项式的系数和次数分别是()A.2,2B.2,3C.3,2D.2,4 2.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0是单项式D.34ba是整式3.下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23xx+;(5)s =πr 2;(6)-6kA.2 B.3 C.4 D.54.a的5倍与b的和的平方用代数式表示为()A.(5a+b)2B.5a+b2C.5a2+b2D.5(a+b)2 5.下列各式中,不是整式的是().A.3a B.2x = 1 C.0 D.xy6.23-x yz的系数和次数分别是()A.系数是0,次数是5 B.系数是1,次数是6C.系数是-1,次数是5 D.系数是-1,次数是67.考试院决定将单价为a元的统考试卷降价20%出售,降价后的销售价为()A .20%aB .20%a -C .(120%)a -D .(120%)a + 8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D . 10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米 11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( )A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()() 3242x y x y --+-的结果是__________.14.多项式2239x xy π++中,次数最高的项的系数是_______.15.请将 4 y 2-25 xy 3- 5 y 按字母 y 的降幂排列____________16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b+(D )23xy -(E )0 (F )3yx -+ (G )223a ab b =+ (H )2xya(I )223x y + (1)单项式集合__________;(2)多项式集合____________;(3)整式集合____________;(4)二项式集合___________;(5)三次多项式集合__________;(6)非整式集合__________.18.已知多项式2234546357x y xy x y y y x ++-+,解答下列问题:(1)把它按x 的升幂重新排列;(2)把它按y 的降幂重新排列;19.化简.(1)(5x +4y )+2(2x ﹣3y );(2)2a ﹣4(a +1)+3a .20.先化简,再求值.2x ﹣y +(2y 2﹣x 2)﹣(x 2+2y 2),其中x =1,y =2.21.如图,大小两个正方形的边长分别为a 、b .(1)用含a 、b 的代数式表示阴影部分的面积S ;(2)如果a =6,b =4,求阴影部分的面积答案1.B2.C3.C4.A5.B6.D7.C8.A9.D10.B11.A12.C13.2x y -14.π15.322455xy y y -+- 16.0.17.(1)(D ),(E );(2)(A ),(B ),(C ),(F ),(G );(3)(A ),(B ),(C ),(D ),(E ),(F ),(G );(4)(A ),(C ),(F );(5)(A ),(G );(6)(H ),(I )18.(1)按x 的降幂排列为-7y 5+xy 3+3x 2y 2+5x 4y+y 4x 6;(2)按y 的升幂排列为5x 4y+3x 2y 2+xy 3+y 4x 6-7y 519.(1)9x ﹣2y ;(2)a ﹣420.-821.(1)22111222a b ab +-;(2)14。

(新人教版)七年级(上)第二章整式的加减测试题(含答案)

(新人教版)七年级(上)第二章整式的加减测试题(含答案)

七年级(上)第二章 整式的加减(时间:90分钟,满分120分)章测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x , )9()35(b a b a -+-= 。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ΛΛ= 。

8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长丰县实验高中2012-2013年秋季学期
(七年级数学第二章整式加减试题1) 得分______
一、选择题(每题3分,计30分)
1、用代数式表示a 与-5的差的2倍是--------------------------( ) A 、a-(-5)×2 B 、a+(-5)×2 C 、2(a-5) D 、2(a+5)
2、用字母表示有理数的减法法则是----------------------------( )
A 、a-b=a+b
B 、a-b=a+(-b)
C 、a-b=-a+b
D 、a-b=a-(-b)
3、某班共有学生x 人,其中女生人数占35%,那么男生人数是----( ) A 、35%x B 、(1-35%)x C 、
35%x D 、135%
x - 4、若代数式473b a x + 与代数式 y b a 24- 是同类项,则 y x 的值是--( ) A 、9 B 、9- C 、4 D 、4-
5、把-x-x 合并同类项得--------------------------------------( ) A 、0 B 、-2 C 、-2x D 、-2x 2
6、一个两位数,十位上的数字是x ,个位上的数字是y ,如果把十位上的数与个位上的数对调,所得的两位数是---------------------------------( ) A 、yx B 、y+x C 、10y+x D 、10x+y
7、如果代数式4252y y -+的值为7,那么代数式21
2
y y -+的值等于-( ) A 、2 B 、3 C 、-2 D 、4
8、下面的式子,正确的是---------------------------------------( ) A 、3a 2+5a 2=8a 4 B 、5a 2b-6ab 2=-ab 2 C 、6xy-9yx=-3xy D 、2x+3y=5xy
9、一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是------------( ) A 、3x 2y-4xy 2; B 、x 2y-4xy 2; C 、x 2y+2xy 2; D 、-x 2y-2xy 2
10、若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是-------------( ) (A )A>B (B )A=B (C )A<B (D )无法确定 二、填空题(每题3分,计30分)
1、若4
243b a b a m n
与是同类项,则m =____,n =____。

班级 姓名 学号_______________
装 订 线 内 不 要 答 题
2、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是:____
3、化简:_______
77_________,5722=+-=-ba b a x x 4、去括号:__________)(32________;)2(2=-+-=-+-d c b a y x
5、单项式2335
a bc -的系数是______,次数是______;
6、21
43
x x -+-是 次 项式,其中常数项是 ;
7、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分....每度电价按b 元收费。

某户居民在一个月内用电160度,他这个月应缴纳电费是 元;(用含a 、b 的代数式表示)
8、三个连续偶数中,2n 是最小的一个,这三个数的和为______ _; 9、如图1是小明用火柴搭的1条、2条、3条“金鱼” ,则搭n 条“金鱼”需要火柴 根.
10、根据如图所示的程序计算, 若输入x 的值为1,则输出y 的值为 ;
三、解答题:(60分)
17、化简(每小题4分,计24分)
(1) )22(--a a ; (2))32(3)5(y x y x --+-;
1条 2条 3条
图1
输入x
输出y
平方
乘以2 减去4
若结果大于0
否则
(3))(2)(2b a b a a +-++; (4) )377()5(322222a b ab b ab a a ---+--
(5)22222323xy xy y x y x -++-; (6))32(3)23(4)(5b a b a b a -+--+;
18、(18分)先化简,后求值;
(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y
(2)若()0322
=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值;
(3)()
2,1)45(2)54(23223-=----++-x x x x x x 其中
19、(8分)有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?
20、“十一”黄金周期间,黄山风景区在7天中来旅游的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数。

)(10分)
日期 10月 1日 10月 2日 10月 3日 10月 4日 10月 5日 10月 6日 10月 7日 人数变化(单位:万人)
+1.6
+0.8
+0.4
-0.4
-0.8
+0.2
-1.2
(1)若9月30日来旅游人数记为a 万人,请用a 的代数式表示10月2日来旅游的人数。

(2)请判断七天内来旅游的人数最多是哪一天?最少是哪一天?它们相差多少万人?
(3)统计来旅游的人数,最多的一天是3万人,问9月30日来旅游的人数有多少人?。

相关文档
最新文档