冀教版八年级数学(下)期末考试模拟卷(2018)备课讲稿

合集下载

〖新课标〗2018年最新冀教版八年级数学下册期末模拟试题及答案解析二<精品试卷>

〖新课标〗2018年最新冀教版八年级数学下册期末模拟试题及答案解析二<精品试卷>

冀教版2017-2018学年八年级下学期期末试题数学试卷一、单项选择题(共12小题,每小题2分,满分24分)1.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=12.为了了解2013年石家庄市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年石家庄市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10003.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间距离等于23米,则A、C两点间的距离为()A.46 B.23 C.50 D.255.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等6.一次函数y=﹣3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A . 14B . 15C . 16D . 178.如图,过点Q (0,3.5)的一次函数与正比例函数y=2x 的图象相交于点P ,能表示这个一次函数图象的解析式是( )A . y=B . y=C . y=D . y=﹣9.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x 表示时间,y 表示壶底到水面的高度,则y 与x 的函数关系式的图象是( )A .B .C .D .10.如图,图1、图2、图3分别表示甲、乙、丙三人由A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为( ) A . 甲<乙<丙 B . 乙<丙<甲 C . 丙<乙<甲D . 甲=乙=丙11.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°12.(2分)(2011•宜宾)如图,正方形的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)13.点P(1,2)关于x轴的对称点P1的坐标是_________ .14.写出一个y随x增大而增大的一次函数的解析式:_________ .15.一个正多边形的每个外角都是36°,这个正多边形的边数是_________ .16.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是_________ .17.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B(4,2),直线y=kx﹣2与线段AB有交点,请写出一个k的可能的值_________ .18.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3…l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3…l n分别交于点B1,B2,B3…B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2014= _________ .三、解答题(共题满分58分)19.如图,矩形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,3),D(1,3).(1)将矩形各顶点的横、纵坐标都乘以2,写出各对应点A1B1C1D1的坐标;顺次连接A1B1C1D1,画出相应的图形.(2)求矩形A1B1C1D1与矩形ABCD的面积的比_________ .(3)将矩形ABCD的各顶点的横、纵坐标都扩大n倍(n为正整数),得到矩形A n B n C n D n,则矩形A n B n C n D n与矩形ABCD的面积的比为_________ .20.为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为_________ 名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有_________ 名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的_________ %;(4)你认为上述估计合理吗?理由是什么?21.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.22.已知一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一点,且点A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.23.(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标(_________ ,_________ ).(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).归纳与发现(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e之间的等量关系为_________ .24.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.25.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F 分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.八年级数学(冀教版)参考答案一、请你仔细选一选1、D;2、D;3、B ;4、A ; 5 、B;6、A ;7 、C;8、D ;9、C;10、D;11 、D;12、B;二、请你认真填一填4;17、如1,-3;18、2013.513、(1,-2);14、如y=2x+1;15、10;16、13三、解答题19、解:(1)A1(2,2),B1(4,2),C1(4,6),D1(2,6)……………………………1分图略………………………………………………………………………………………2分(2)4:1 ……………………………………………………………………………………4分(3)(n+1)2:1 ……………………………………………………………………………6分20、解:(1)300;…………………………………………………………………2分(2)1060; …………………………………………………………………4分(3)15; ……………………………………………………………… 6分 (4)合理.理由中体现用样本估计总体即可.(只答“合理”得1分) …… 8分21、 (1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,∴四边形AEBD 是平行四边形,…………………………………………………… 2分 ∵AB =AC ,AD 是△ABC 的角平分线,∴AD ⊥BC , ∴∠ADB =90°,∴平行四边形AEBD 是矩形; …………………………………………………… 6分(2)AB =AC ,且∠BAC =90° …………………………………………………… 8分(若只答∠BAC =90°也可给分)22、解:(1)设b kx y +=⎩⎨⎧=+=+-4412b k b k …………………………………………… 1分解得⎪⎩⎪⎨⎧==221b k …………………………………………… 2分∴221+=x y …………………………………………… 3分(2)A (-4,0)………………………………………………………………………………4分 设P (x, y ),∴S △PAO =21OA y ∵S △PAO =6∴3±=y ……………………………………………………………………………… 6分 ∴)3,10(),3,2(21--P P ……………………………………………………………………… 8分23、(1)(5 ,2 ) ……………………………… 1分(2)(e +c ,d ) ……………………………… 3分 证明如下:过点B 作BM ⊥AD 于M ,过点C 作CN ⊥AD 于N在平行四边形ABCD 中,AB =CD ,AB ∥CD∴∠BAM =∠CDN∵∠AMB =∠DNC =90°∴△AMB ≌△DNC (AAS)∴AM =DN ,BM =CN∴C 点坐标为(e +c ,d ) ……………………………… 6分(3)a +m =c +e ……………………………… 8分24、(1)设按优惠方法①购买需用1y 元,按优惠方法②购买需用2y 元,6054205)4(1+=⨯+⨯-=x x y ……………………………… ···· 2分725.49.0)4205(2+=⨯⨯+=x x y . ………………………………········ 4分 (2)设12y y >,即725.4605+>+x x ,∴24>x .当24>x 时,选择优惠方法②.设12y y =,即725.4605+=+x x∴当24=x 时,选择优惠方法①,②均可.设21y y <,即725.4605+<+x x ,24<x∴当424x <≤整数时,选择优惠方法①. ……………………………… ······ 8分(3)最经济的购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔. …………………………………………………………10分25、(1)证明:连接AC ,如图所示,∵四边形ABCD 为菱形,∠BAD =120°,∠1+∠EAC =60°,∠3+∠EAC =60°,∴∠1=∠3,∵∠BAD =120°,∴∠ABC =60°,∴△ABC 和△ACD 为等边三角形,∴∠4=60°,AC =AB ,∴在△ABE 和△ACF 中,∴△ABE ≌△ACF (ASA ).∴BE =CF ; (4)分(2)解:四边形AECF 的面积不变. (5)分理由:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值,作AH ⊥BC 于H 点,则BH =2,S 四边形AECF =S △ABC =AH BC ⋅⋅21=34 , …………………………………………7分(3)结论1:S △CEF =S 四边形AECF ﹣S △AEF =21S 菱形ABCD ﹣S △AEF ………………………10分结论2:△CEF 的面积随△AEF 面积的变化而变化。

2018-2019学年冀教版八年级(下)期末数学试卷含答案解析

2018-2019学年冀教版八年级(下)期末数学试卷含答案解析

2018-2019学年冀教版八年级(下)期末数学试卷一、选择题:本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知某书店印刷了5000本中学生科普书,为了检测这批书的质量情况,王店长随机抽取了300本书检测它们的质量,则这次抽样调查中的总体是()A.该书店5000本中学生科普书的质量情况;B.该书店300本中学生科普书的质量情况C.该书店4700本中学生科普书的质量情况;D.该书店5300本中学生科普书的质量情况2.河北新闻网报道,2016年3月29日,石家庄南栗学校各中队开展了以“节约用水”为主题的活动课,该活动课让队员们了解了节水的重要性,丰富了节水知识,某校教导处随机调查了该校200名学生的家庭一个月的用水情况,并将结果进行分组,将分组后的结果绘制成如图所示的扇形统计图张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组若点M(x+2,﹣3)在第三象限,则点N(x,5)的坐标可能为()A.(0,5)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣5,5)5.已知在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,4),连接AB,现将线段AB进行平移,平移后得到点B的对应点D的坐标为(1,5),则点A的对应点C的坐标为()A.(3,0)B.(4,1)C.(2,﹣1)D.(0,5)6.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r7.1﹣6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为()月龄/(月) 1 2 3 4 5体重/(克)4700 5400 6100 6800 7500A.7600克B.7800克C.8200克D.8500克8.王亮家与姥姥家相距25km,王亮早上提前从家出发,骑自行车(匀速)去姥姥家,妈妈随后从家出发,乘车沿相同路线去姥姥家,王亮和妈妈的行进路程s(km)与王亮的行进时间t(h)之间的函数关系式的图象如图所示,则下列说法正确的是()第1 页共27 页。

〖新课标〗2018年最新冀教版八年级数学下册期末模拟试题及答案解析一<精品试卷>

〖新课标〗2018年最新冀教版八年级数学下册期末模拟试题及答案解析一<精品试卷>

冀教版2017-2018学年八年级下学期期末试题数学试卷一、请你仔细选一选(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.如图,下列各点在阴影区域内的是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)2.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日3.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形4.如果点A(﹣2,a)在函数y=﹣x+3的图象上,那么a的值等于()A.﹣7 B. 3 C.﹣1 D.45.如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为()A.9 B.12 C.18 D.不能确定6.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B. 1 C.﹣5 D. 57.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策8.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A.B.C.D.9.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A.B.C.D.10.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)11.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<012.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A ′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.二、认真填一填(本大题共6个小题,每小题3分,共18分.请把答案写在横线上)13.下列调查中,适合用抽样调查的为(填序号).①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命.14.在函数y=中,自变量x的取值范围是.15.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为.16.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为.17.如图,在▱ABCD中,对角线AC平分∠BAD,MN与AC交于点O,M,N分别在AB,CD 上,且AM=CN,连接BO.若∠DAC=28°,则∠OBC的度数为°.18.如图,一次函数y=kx+b(k≠0)的图象经过点M(3,2),且与一次函数y=﹣2x+4的图象交于点N.若对于一次函数y=kx+b(k≠0),当y随x的增大而增大时,则点N的横坐标的取值范围是.三、细心解答(本大题共4个小题,19、20每小题16分,21、22每小题16分,共28分)19.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方位角和距离描述点C相对于点B的位置.20.某学校为了了解八年级400名学生期末考试的体育测试成绩,从中随机抽取了部分学生的成绩(满分40分,而且成绩均为整数),绘制了频数分布表与频数分布直方图(如图).分组频数频率15.5~20.5 6 0.1020.5~25.5 a 0.2025.5~30.5 18 0.3030.5~35.5 15 b35.5~40.5 9 0.15请结合图表信息解答下列问题:(1)a= ,b= ;(2)补全频数分布直方图;(3)该问题中的样本容量是多少?答:;(4)如果成绩在30分以上(不含30分)的同学属于优良,请你估计该校八年级约有多少人达到优良水平?21.如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B 点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.22.如图,四边形ABCD的对角线AC,BD交于点O,已知O是BD的中点,BE=DF,AF∥CE.(1)求证:四边形AECF是平行四边形;(2)若OA=OD,则四边形ABCD是什么特殊四边形?请证明你的结论.23.某公司营销人员的工资由部分组成,一部分为基本工资,每人每月1500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元.设营销员李亮月销售产品x件,他应得的工资为y元.(1)写出y与x之间的函数关系式;(2)若李亮某月的工资为2860元,那么他这个月销售了多少件产品?24.有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率,设甲的工作量为y甲(单位:件),乙的工作量为y乙(单位:件),甲、乙合作完成的工作量为y(单位:件),工作时间为x(单位:时).y与x之间的部分函数图象如图1所示,y乙与x之间的部分函数图象如图2所示.(1)图1中,点A所表示的实际意义是.(2)甲改进技术前的工作效率是件/时,改进及术后的工作效率是件/时;(3)求工作几小时,甲、乙完成的工作量相等.25.已知直线y=kx+3(1﹣k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)当k=1时,直线l1的解析式为,请在图1中画出图象;当k=2时,直线l2的解析式为,请在图2中画出图象;探索发现(2)直线y=kx+3(1﹣k)必经过点(,);类比迁移(3)矩形ABCD如图2所示,若直线y=kx+k﹣2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.26.▱ABCD的对角线AC,BD交于点O,∠AOD=60°,∠ADO=90°,BD=12,点P是AO上一动点,点Q是OC上一动点(P,Q不与端点重合),且AP=OQ,连接BQ,DP.(1)线段PQ的长为;(2)设△PDO的面积为S1,△QBD的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着AP的增大,S1+S2的值是如何变化的;(3)DP+BQ的最小值是.八年级(下)期末数学试卷参考答案与试题解析一、请你仔细选一选(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.如图,下列各点在阴影区域内的是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)考点:点的坐标.分析:应先判断出阴影区域在第一象限,进而判断在阴影区域内的点.解答:解:观察图形可知:阴影区域在第一象限,A、(3,2)在第一象限,故正确;B、(﹣3,2)在第二象限,故错误;C、(3,﹣2)在第四象限,故错误;D、(﹣3,﹣2)在第三象限,故错误.故选A.点评:解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日考点:折线统计图.专题:数形结合.分析:根据折线统计图得到6月份1日至7日每天的最高和最低气温,然后计算每日的温差,再比较大小即可.解答:解:1日的温差为24﹣12=12(℃),2日的温差为25﹣13=12(℃),3日的温差为26﹣15=11(℃),4日的温差为25﹣14=11(℃),5日的温差为25﹣12=13(℃),6日的温差为27﹣17=10(℃),7日的温差为26﹣16=10(℃),所以5日的温差最大.故选D.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.3.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形考点:命题与定理.分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解答:解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.4.如果点A(﹣2,a)在函数y=﹣x+3的图象上,那么a的值等于()A.﹣7 B. 3 C.﹣1 D.4考点:一次函数图象上点的坐标特征.专题:计算题.分析:把点A的坐标代入函数解析式,即可得a的值.解答:解:根据题意,把点A的坐标代入函数解析式,得:a=﹣×(﹣2)+3=4,故选D.点评:本题考查了一次函数图象上点的坐标特征,是基础题型.5.如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为()A.9 B.12 C.18 D.不能确定考点:中点四边形.分析:由三角形中位线定理可得EF=AB,FG=BC,HG=DC,EH=AD,再根据题目给出的已知数据即可求出四边形EFGH的周长.解答:解:∵E,F分别为OA,OB的中点,∴EF是△AOB的中位线,∴EF=AB=3,同理可得:FG=BC=5,HG=DC=6,EH=AD=4,∴四边形EFGH的周长为=3+5+6+4=18,故选C.点评:本题考查了中点四边形的性质和三角形中位线定理的运用,解题的关键是根据三角形中位线定理得到四边形EFGH各边是原四边形ABCD的各边的一半.6.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B. 1 C.﹣5 D. 5考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.解答:解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策考点:调查收集数据的过程与方法.分析:根据统计调查的步骤即可设计成C的方案.数据处理应该是属于整理数据,数据表示应该属于描述数据.解答:解:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据.故选:C.点评:本题主要考查了调查收集数据的过程及方法,解题的关键是掌握统计调查的一般步骤.8.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A.B.C.D.考点:函数的图象.分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.解答:解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m,且去时的速度小于返回的速度,故选D.点评:此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.9.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:计算题.分析:根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组y=ax+by=kx的解.解答:解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.故选A.点评:此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.10.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.11.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0考点:一次函数的性质.分析:A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.解答:解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.点评:本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.12.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A ′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.考点:矩形的性质;一元二次方程的应用;旋转的性质.专题:几何图形问题.分析:设DH的值是x,那么CH=8﹣x,BH=x,在Rt△BCH中根据勾股定理即可列出关于x的方程,解方程就可以求出DH.解答:解:设DH的值是x,∵AB=8,AD=6,且BH=DH,那么CH=8﹣x,BH=x,在Rt△BCH中,DH=,∴x2=(8﹣x)2+36,∴x=,即DH=.故选C.点评:此题主要考查了正方形的性质,勾股定理等知识,解题关键是利用勾股定理列出关于所求线段的方程.二、认真填一填(本大题共6个小题,每小题3分,共18分.请把答案写在横线上)13.下列调查中,适合用抽样调查的为②④(填序号).①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命.考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:①了解全班同学的视力情况,适合普查;②了解某地区中学生课外阅读的情况;,适合用抽查;③了解某市百岁以上老人的健康情况,必须普查;④日光灯管厂要检测一批灯管的使用寿命,适合抽样调查;故答案为:②④.点评:本题考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.14.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0 .考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.点评:本题考查了求函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为14 .考点:多边形内角与外角.分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得:(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故答案为:14.点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.16.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为(a+3,b+2).考点:坐标与图形变化-平移.分析:找到一对对应点的平移规律,让点P的坐标也做相应变化即可.解答:解:点B的坐标为(﹣2,0),点B′的坐标为(1,2);横坐标增加了1﹣(﹣2)=3;纵坐标增加了2﹣0=2;∵△ABC上点P的坐标为(a,b),∴点P的横坐标为a+3,纵坐标为b+2,∴点P变换后的对应点P′的坐标为(a+3,b+2).点评:解决本题的关键是根据已知对应点找到各对应点之间的变化规律.17.如图,在▱ABCD中,对角线AC平分∠BAD,MN与AC交于点O,M,N分别在AB,CD 上,且AM=CN,连接BO.若∠DAC=28°,则∠OBC的度数为62 °.考点:平行四边形的性质.分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.解答:解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故答案为:62.点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.18.如图,一次函数y=kx+b(k≠0)的图象经过点M(3,2),且与一次函数y=﹣2x+4的图象交于点N.若对于一次函数y=kx+b(k≠0),当y随x的增大而增大时,则点N的横坐标的取值范围是x>2 .考点:两条直线相交或平行问题.分析:把M点坐标代入可得到关于k、b的关系式,再联立两直线解析式,消去y可求得x,可得到关于k的函数,再结合k的范围可求得x的范围,可得出答案.解答:解:∵y=kx+b(k≠0)的图象经过点M(3,2),∴2=3k+b,解得b=2﹣3k,∴一次函数解析式为y=kx+2﹣3k,联立两函数解析式可得,消去y整理可得(k+2)x=2k+1,∴x===2﹣,∵y=kx+b(k≠0),且y随x的增大而增大,∴k>0,∴﹣<0,∴x>2,即点N的横坐标的取值范围为x>2,故答案为:x>2点评:本题主要考查两函数的交点问题,用k表示出N点的横坐标是解题的关键,注意一次函数的增减性与k的关系.三、细心解答(本大题共4个小题,19、20每小题16分,21、22每小题16分,共28分)19.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方位角和距离描述点C相对于点B的位置.考点:坐标确定位置.分析:(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;(2)利用所画图形,进而结合勾股定理得出答案.解答:解:(1)根据A(﹣3,1),B(﹣2,﹣3)画出直角坐标系,描出点C(3,2),如图所示;(2)BC=5,所以点C在点B北偏东45°方向上,距离点B的5km处.点评:此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.20.某学校为了了解八年级400名学生期末考试的体育测试成绩,从中随机抽取了部分学生的成绩(满分40分,而且成绩均为整数),绘制了频数分布表与频数分布直方图(如图).分组频数频率15.5~20.5 6 0.1020.5~25.5 a 0.2025.5~30.5 18 0.3030.5~35.5 15 b35.5~40.5 9 0.15请结合图表信息解答下列问题:(1)a= 12 ,b= 0.25 ;(2)补全频数分布直方图;(3)该问题中的样本容量是多少?答:60 ;(4)如果成绩在30分以上(不含30分)的同学属于优良,请你估计该校八年级约有多少人达到优良水平?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据第一组的频数是6,对应的频率是0.10,则调查的总人数即可求解;(2)根据(1)即可直接求解;(3)根据(1)即可求解;(4)利用总人数乘以对应的频率即可求解.解答:解:(1)调查的总人数是:6÷0.10=60(人),则a=60×0.20=12(人),b==0.25;故答案是:12,0.25;(2)如图2所示;(3)样本容量是:60;(4)∵所抽查的学生中3(0分)以上(不含30分)的人数有15+9=24(人)∴估计全校达到优良水平的人数约为:400×=160(人).点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B 点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.考点:两条直线相交或平行问题.分析:(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.解答:解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)∵A(3,4),∴A点到y轴的距离为3,且OB=5,∴S=×5×3=.点评:本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.22.如图,四边形ABCD的对角线AC,BD交于点O,已知O是BD的中点,BE=DF,AF∥CE.(1)求证:四边形AECF是平行四边形;(2)若OA=OD,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:平行四边形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)根据平行线的性质推出∠AFO=∠CEO,∠FAO=∠ECO,求出OE=OF,证△AOF ≌△COE,推出AF=CE,根据平行四边形的判定推出即可;(2)根据全等得出OA=OC,求出AC=BD,再根据平行四边形和矩形的判定推出即可.解答:(1)证明:∵AF∥CE,∴∠AFO=∠CEO,∠FAO=∠ECO,∵O为BD的中点,即OB=OD,BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,在△AOF和△COE中∴△AOF≌△COE(AAS),∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形;(2)若OA=OD,则四边形ABCD是矩形,证明:∵△AOF≌△COE,∴OA=OC,∵OB=OD,∴四边形ABCD是平行四边形.∵OA=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,注意:对角线相等的平行四边形是矩形.23.某公司营销人员的工资由部分组成,一部分为基本工资,每人每月1500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元.设营销员李亮月销售产品x件,他应得的工资为y元.(1)写出y与x之间的函数关系式;(2)若李亮某月的工资为2860元,那么他这个月销售了多少件产品?考点:一次函数的应用.分析:(1)根据营销人员的工资由两部分组成,一部分为基本工资,每人每月1500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2)利用李亮3月份的工资为2860元,即y=2860求出x即可;解答:解:(1)∵营销人员的工资由两部分组成,一部分为基本工资,每人每月1500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,设营销员李亮月销售产品x件,他应得的工资为y元,∴y=10x+1500;(2)∵若李亮某月的工资为2860元,则10x+1500=2860,解之得:x=136.∴他这个月销售了136件产品.点评:此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用不等量关系分别求解.24.有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率,设甲的工作量为y甲(单位:件),乙的工作量为y乙(单位:件),甲、乙合作完成的工作量为y(单位:件),工作时间为x(单位:时).y与x之间的部分函数图象如图1所示,y乙与x之间的部分函数图象如图2所示.(1)图1中,点A所表示的实际意义是甲、乙合作2小时的工作量为100件.(2)甲改进技术前的工作效率是20 件/时,改进及术后的工作效率是40 件/时;(3)求工作几小时,甲、乙完成的工作量相等.。

冀教版2018—2019学年度第二学期八年级期末检测数学试题含答案解析

冀教版2018—2019学年度第二学期八年级期末检测数学试题含答案解析

冀教版2018—2019学年度第二学期八年级期末检测数学试题含答案解析说明:1.本试卷共4页,满分120分。

2.请将所有答案填涂在答题卡上,答在试卷上无效。

一、选择题(本大题共16个小题,满分42分,其中1—10小题,每小题3分,11—16小题,每小题2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若2y x b =+−是正比例函数,则b 的值是( ) A.0 B.-2 C.2 D.-0.52.下列调查最适合用查阅资料的方法收集数据的是( ) A.班级推选班长 B.本校学生的到校时间 C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星3.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,那么得到的新图形相当于把原图形( )A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度4.如图所示,已知四边形ABCD 的对角线AC 、BD 相交于点O ,则下列能判断它是正方形的条件是( )A.AO BO CO DO ===,AC BD ⊥B.AB BC CD DA ===C.AO CO =,BO DO =,AC BD ⊥D.AB BC =,CD DA ⊥ 5.如果点P (-2,b )和点Q (a ,-3)关于x 轴对称,则a b +的值是( ) A.-1 B.1 C.-5 D.56.已知一次函数y kx b =+,若0k b +=,则该函数的图象可能( )A. B. C. D.7.函数y =x 的取值范围是( ) A.4x < B.4x ≠ C.4x > D.4x ≤ 8.下列调查中,适合普查的事件是( )A.调查华为手机的使用寿命B.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场)的节目收视率 9.设02k <<,关于x 的一次函数21y kx x =+−(),当12x ≤≤时的最大值是( ) A.22k − B.1k − C.k D.1k +10.在某次实验中,测得两个变量m 和v 之间的4组对应数据如右表,则m 与v 之间的关系最接近于下列各关系式中的( )A.2v m =B.21v m =+C.31v m =−D.31v m =+ 11.把n 边形变为n x +()边形,内角和增加了720°,则x 的值为( ) A.6 B.5 C.4 D.312.点P 是图①中三角形上一点,坐标为(a ,b ),图①经过变化形成图②,则点P 在图②中的对应点P’的坐标为( )A.1,2a b ⎛⎫⎪⎝⎭ B.(1,)a b − C.(2,)a b − D.11,22a b ⎛⎫⎪⎝⎭13.四边形ABCD 中,3AB =,5CD =,M 、N 分别是边AD ,BC 的中点,则线段MN 的长的取值范围是( ) A.28MN <… B.28MN <… C.14MN <… D.14MN <…14.在平而直角坐标系中,已知平行四边形ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-1),C (-m ,-n ),则关于点D 的说法正确的是( )甲:点D 在第一象限 乙:点D 与点A 关于原点对称丙:点D 的坐标是(-2,1) 丁:点D A.甲乙 B.乙丙 C.甲丁 D.丙丁15.如下图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax +…的解集为( ) A.3x … B.3x …C.32x …D.32x …16.如上图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE.设AP x =,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点E 、C 、D 作AB 的垂线) A.线段PD B.线段PC C.线段DE D.线段PE二、填空题(本大题满分10分,其中17、18每小题3分,19题4分)17.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若220A B ∠+∠=︒,则123∠+∠+∠=________. 18.学校位于小亮家北偏东35方向,距离为300m ,学校位于大刚家南偏东85°方向,距离也为300m ,则大刚家相对于小亮家的位置是________.19.如图在平面直角坐标系xOy 中,直线l 经过点A (-1,0),点A 1,A 2,A 3,A 4,A 5,…按所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点A n (n 为正整数)的横坐标为2015,则n=________.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、演算步骤或证明过程)20.(本小题满分9分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示. (1)图象表示了哪两个变量的关系?(2)10时和11时,他分别离家多远?(3)他最初到达离家最远的地方是什么时间?离家多远?(4)11时到13时他行驶了多少千米?21.(本小题满分9分)如图,已知火车站的坐标为(2,2),文化馆的坐标为(-1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.22.(本小题满分10分)阅读可以增进人们的知识也能陶治人们的情操。

冀教版2018-2019学年八年级第二学期期末数学试卷(含答案解析)

冀教版2018-2019学年八年级第二学期期末数学试卷(含答案解析)

冀教版2018-2019学年八年级第二学期期末数学试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,点E、F、G、H是正方形ABCD各边的中点,则四边形EFGH()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.没有对称性考点:中点四边形;轴对称图形;中心对称图形.分析:首先判定四边形EFGH的形状为正方形,即可得到问题答案.解答:解:连接AC,BD,∵点E、F、G、H是正方形个边的中点,∴EF是△ABD的中位线,FG是△ABC的中位线,GH是△BCD的中位线,EH是△ADC 的中位线,∴EF=BD,FG=AC,GH=BD,EH=AC,∵四边形ABCD是正方形,∴BD=AC,∴EF=FG=GH=HE,∵∠AEF=∠DEH=45°∴∠E=90°,∴四边形EFGH的形状为正方形,∴四边形EFGH即是轴对称图形又是中心对称图形,故选B.点评:此题主要考查了正方形的性质和判定,关键是要熟知正方形的性质及三角形的中位线定理.三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半.2.(3分)某班参加课外兴趣小组情况的统计图如图所示,则参加人数最多的兴趣小组是()A.美术B.舞蹈C.书法D.体育考点:扇形统计图.分析:求出参加舞蹈的人数百分比,再比较即可得出答案.解答:解:参加舞蹈的人数百分比为1﹣25%﹣22%﹣28%=25%,所以参加体育的人数最多.故选:D.点评:本题考查的是扇形统计图,扇形统计图直接反映部分占总体的百分比大小.3.(3分)已知:点P的坐标为(﹣2,1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣2<0,纵坐标1>0,∴这个点在第二象限.故选:B.点评:本题考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A. 2 B. 3 C. 4 D. 6考点:三角形中位线定理.分析:根据三角形的中位线等于第三边的一半进行计算即可.解答:解:∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=3.故选B.点评:本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.5.(3分)一个多边形的内角和是720°,这个多边形是()A.五边形B.六边形C.七边形D.六边形考点:多边形内角与外角.分析:利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解答:解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选:B.点评:本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n﹣2)•180°是解题的关键.6.(3分)正方形不同于矩形的性质是()A.对角线相等B.对角相等C.对边相等D.对角线互相垂直考点:多边形.分析:根据正方形对角线相互垂直平分相等与矩形对角线平分相等的性质即可求解.解答:解:∵正方形对角线相互垂直平分相等,矩形对角线平分相等,∴正方形不同于矩形的性质是对角线相互垂直,故选:D.点评:本题考查了正方形、矩形的性质,解决本题的关键是熟记正方形、矩形的性质.7.(3分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数的性质.分析:由于k=2,函数y=2x﹣1的图象经过第一、三象限;b=﹣1,图象与y轴的交点在x 轴的下方,即图象经过第四象限,即可判断图象不经过第二象限.解答:解:∵k=2>0,∴函数y=2x﹣1的图象经过第一,三象限;又∵b=﹣1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=﹣x﹣1的图象经过第一,三,四象限,即它不经过第二象限.故选B.点评:本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.8.(3分)已知:在平面直角坐标系中,菱形ABCD三个顶点的坐标分别是A(﹣2,0)、B (0,1)、C(2,0),则点D的坐标是()A.(﹣4,﹣1)B.(4,﹣1)C.(0,﹣1)D.(0,﹣2)考点:菱形的性质;坐标与图形性质.分析:根据题意画出坐标系,在坐标系内描出各点,根据菱形的性质即可得出结论.解答:解:如图所示,∵菱形的对角线互相垂直平分,∴D(0,﹣1).故选C.点评:本题考查的是菱形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.9.(3分)如图是表示的是甲、乙两名同学运动的图象,图中s和t分别表示运动的路程和时间,根据图象判断,快者的速度比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米考点:函数的图象.分析:根据图象可知快者8秒走了64﹣12米,慢者8秒走了64米,由此求出各自的速度即可求出答案.解答:解:∵慢者8秒走了64﹣12=52米,快者8秒走了64米,∴快者每秒走:64÷8=8m,慢者每秒走:52÷8=6.5m,所以64÷8﹣52÷8=1.5m.故选C.点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A.67.5°B.45°C.22.5°D.无法确定考点:矩形的性质.分析:由矩形的性质和已知条件得出OA=OB,∠OAB=∠OBA,∠BAE=∠BAD=22.5°,再求出∠OAB,即可得出∠EAC的度数.解答:解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=∠BAD=22.5°,∵AE⊥BD,∴∠AEB=90°,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠EAC=67.5°﹣22.5°=45°;故选:B.点评:本题考查了矩形的性质、等腰三角形的判定与性质,角的互余关系;熟练掌握矩形的性质,并能进行推理计算是解决问题的根据.11.(3分)若弹簧的总长度y(cm)是所挂重物x(千克)的一次函数,图象如图所示,由图可知,不挂重物时,弹簧的长度是()A.7cm B.8.5cm C.9cm D.10cm考点:一次函数的应用.分析:先根据函数图象运用待定系数法求出函数的解析式,当x=0时代入解析式就可与y 的值而得出结论.解答:解:设函数的解析式为y=kx+b,由函数图象得,解得:,∴y=x+10.当x=0时,y=10.故选:D.点评:本题考查了待定系数法求一次函数的解析式的运用,由自变量的值求函数的解析式的运用,解答本题时求出解析式是关键.12.(3分)一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A.20分钟B.22分钟C.24分钟D.26分钟考点:函数的图象.专题:压轴题;分段函数.分析:先求出他改乘出租车赶往考场的速度和到考场的时间,再求出步行到达考场的时间,进而即可求出答案.解答:解:他改乘出租车赶往考场的速度是÷2=,所以到考场的时间是10+÷=16分钟,∵10分钟走了总路程的,∴步行的速度=÷10=,∴步行到达考场的时间是1÷=40,则他到达考场所花的时间比一直步行提前了40﹣16=24分钟.故选C.点评:本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8个小题,每小题3分,共24分,把答案写在题中横线上)13.(3分)已知一次函数y=kx+5过点P(﹣1,2),则k=3.考点:待定系数法求一次函数解析式.分析:把点的坐标代入一次函数,即可求解.解答:解:根据题意得:﹣1×k+5=2,解得k=3.故填3.点评:本题考查函数图象经过点的含义,经过点,则点的坐标满足函数解析式.14.(3分)如图是根据某市2010年至2014年的工业生产总值绘制的条形统计图,观察统计图可以看出,工业生产总值(亿元)增长最多的年份是2014年.考点:条形统计图.分析:从条形统计图能清楚地看出每年的工业生产总值,求出增长的数,比较得到答案.解答:解:从条形统计图可以看出,2011年增长10亿元,2012年增长20亿元,2013年增长20亿元,2014年增长40亿元,则增长最多的年份是2014年,故答案为:2014.点评:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.15.(3分)如图,一次函数y=kx+b(k≠0)与坐标轴交于点A,B,则△AOB的面积为4.考点:一次函数图象上点的坐标特征.分析:先根据点AB的坐标得出OA及OB的长,再由三角形的面积公式即可得出结论.解答:解:∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴S△AOB=OA•OB=×2×4=4.故答案为:4.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(3分)如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是10℃.考点:函数的图象.分析:根据观察函数图象的纵坐标,可得最低气温,最高气温,根据有理数的减法,可得温差.解答:解:观察图象,由纵坐标看出最高气温是12℃,最低气温是2℃,所以温差是12﹣2=10℃.故答案为:10.点评:本题考查了函数图象,仔细观察函数图象的纵坐标得出最高和最低气温是解题关键.17.(3分)菱形的两条对角线长分别为6和8,则这个菱形的周长为20.考点:菱形的性质;勾股定理.分析:根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解答:解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.点评:本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.18.(3分)A、B两地之间的路程是200km,一辆汽车从A地出发以每小时80km的速度向B地行驶,t小时后距离B地s km,那么s与t的函数关系式为s=200﹣80t(0≤t≤).考点:根据实际问题列一次函数关系式.分析:根据汽车匀速行驶的速度80km/h,可得出t小时行驶的距离为80t,再由A,B两点之间的总距离200km,即可得出s与t的函数关系式.解答:解:∵汽车以平均每小时80km的速度从A地开往B地,则t小时内行驶的路程为80xkm∴80t+s=200即s=200﹣80t(0≤t≤).故答案为:s=200﹣80t(0≤t≤).点评:此题主要考查了根据实际问题列一次函数解析式,解答本题关键是要读懂题意,能正确的列出函数之间的关系式.19.(3分)如图,矩形内两相邻正方形的面积分别是1和9,那么矩形内阴影部分的面积是2.考点:算术平方根.分析:根据正方体面积公式计算,阴影面积=1×解答即可.解答:解:阴影面积=1×=2,故答案为:2点评:此题考查算术平方根问题,关键是根据正方体面积公式计算.20.(3分)已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为8:40.考点:函数的图象.专题:行程问题;压轴题.分析:根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.解答:解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.点评:本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.三、解答题(本大题共2个小题,解答应写出必要的计算过程、推演步骤或文字说明)21.(8分)如图,在平面直角坐标系中,菱形ABCD各顶点均在格点上.(1)写出菱形ABCD各顶点的坐标;(2)将菱形ABCD各顶点的横纵坐标都乘2,对应的点依次记作A′,B′,C′,D′,请在图中画出四边形A′B′C′D′.考点:菱形的性质;作图—复杂作图.分析:(1)根据各点在平面直角坐标系的位置,直接写出各点的坐标即可;(2)把(1)中的各点的横纵坐标都乘2,再描出各点的位置,顺次连接即可画出四边形A′B′C′D′.解答:解:(1)由图可知点A(0,2),B(2,1),C(4,2),D(2,3);(2)将菱形ABCD各顶点的横纵坐标都乘2,对应的点A′,B′,C′,D′的坐标分别记为(0,4),(4,2),(8,4),(4,6),四边形A′B′C′D′的位置如图所示:点评:本题考查了菱形的性质以及复杂作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)在学校组织的体育训练活动中,小明和小亮参加了举重训练,在近5次的测试中,所测成绩如图所示,请根据图中的信息解答以下问题:第1次第2次第3次第4次第5次小明(kg)105107.5105102.5105小亮(kg)102.5107.5100110105(1)将表格填写完整;(2)指出小明和小亮哪次成绩最好?(3)如果从他们两人中挑选1人参加比赛,你认为挑选谁参加比赛更有优势?简单说明理由.考点:折线统计图;算术平均数;方差.分析:(1)根据折线统计图,判断出小明和小亮在近5次的测试中的成绩,将表格填写完整即可.(2)分别比较出两人在近5次的测试中举起的重量的高低,即可判断出小明和小亮哪次成绩最好.(3)如果从他们两人中挑选1人参加比赛,应该挑选小明参加比赛更有优势,因为小明的平均成绩和小亮的平均成绩相等,但是小明的稳定性高于小亮的稳定性,据此判断即可.解答:解:(1)填表如下:第1次第2次第3次第4次第5次小明(kg)105107.5105102.5105小亮(kg)102.5107.5100110105(2)∵102.5<105<107.5,∴小明第二次成绩最好;∵100<102.5<105<107.5<110,∴小亮第四次成绩最好.(3)小明的平均成绩是:(105+107.5+105+102.5+105)÷5=525÷5=105(千克).小明的举重成绩的方差是:×[(105﹣105)2+(107.5﹣105)2+(105﹣105)2+(102.5﹣105)2+(105﹣105)2]=×[0+6.25+0+6.25+0]=12.5=2.5;小亮的平均成绩是:(102.5+107.5+100+110+105)÷5=525÷5=105(千克);小亮的举重成绩的方差是:×[(102.5﹣105)2+(107.5﹣105)2+(100﹣105)2+(110﹣105)2+(105﹣105)2]=×[6.25+6.25+25+25+0]=62.5=12.5,∵2.5<12.5,∴小明的稳定性高于小亮的稳定性,∴挑选小明参加比赛更有优势,因为小明的平均成绩和小亮的平均成绩相等,但是小明的稳定性高于小亮的稳定性.故答案为:102.5、107.5.点评:(1)此题主要考查了折线统计图的应用,要熟练掌握,解答此题的关键是要明确:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.(2)此题还考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.(3)此题还考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.四、解答与证明题(本大题共2个小题,解答应写出证明过程、推演步骤或文字说明)23.(10分)如图,在▱ABCD中,O是对角线AC的中点,过点O的直线EF分别交点BC、AD于点E、F.证明:(1)△AOF≌△COF;(2)BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)根据平行四边形的性质得到AD∥BC,于是得到∠F AC=∠BCA,∠AFE=∠CEF,AO=CO于是证得结论;(2)根据全等三角形的性质即可得到结论.解答:证明:(1)在平行四边形ABCD中,∵AD∥BC,∴∠F AC=∠BCA,∠AFE=∠CEF,又∵AO=CO,在△AOF与△COF中,∴△AOF≌△COE;(2)由(1)知△AOF≌△COF;∴AF=CE,又∵AD=BC,∴AD﹣AF=BC﹣BE,即BE=DF.点评:本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点,①平行四边形的对边相等且平行,②全等三角形的对应边、对应角分别相等.24.(10分)若y+2与x﹣4成正比例,且当x=时,y=﹣1.(1)求出y与x的函数关系式;(2)当x=﹣2时,求y的值;(3)当y=﹣2时,求x的值.考点:待定系数法求一次函数解析式.分析:(1)根据y+2与x﹣4成正比例可设y+2=k(x﹣4)(k≠0),再把当x=时,y=﹣1代入求出k的值即可得出结论;(2)把x=﹣2代入函数解析式求出y的值即可;(3)把y=﹣2代入函数解析式求出x的值即可.解答:解:(1)∵y+2与x﹣4成正比例,∴设y+2=k(x﹣4)(k≠0),∵当x=时,y=﹣1,∴﹣1+2=k(﹣4),解得k=﹣,∴y与x的函数关系式为y=﹣x﹣;(2)当x=﹣2时,y=﹣×(﹣2)﹣,解得y=﹣;(3)当y=﹣2时,﹣2=﹣x﹣,解得x=4.点评:本题考查的是用待定系数法求一次函数的解析式,熟知用待定系数法求一次函数解析式的一般步骤是解答此题的关键.五、应用与探究题(本大题共2个小题,解答时写出证明过程、推演步骤或文字说明)25.(11分)如图,在平面直角坐标系xOy中,直线y=x+1与y=﹣x+3交于点A,且分别交x轴于点B和点C.(1)求点A、B、C的坐标;(2)点D是直线AC上的一个动点,当△CBD为等腰三角形时,求满足条件的第四象限点D的坐标.考点:两条直线相交或平行问题.分析:(1)在两直线解析式中分别令y=0,求得相应的x的值,可求得B、C两点的坐标,联立两直线方程可求得A点坐标;(2)由条件可得到BD=CD,设出D点坐标,过D作DM⊥x轴于点M,可表示出MC、DC,由勾股定理可得到关于x的方程,可求得D点坐标.解答:解:(1)在y=x+1中,令y=0可得x=﹣1,∴B点坐标为(﹣1,0),在y=﹣x+3中,令y=0可得0=﹣x+3,解得x=4,∴C点坐标为(4,0),联立两直线方程可得,解得,∴A点坐标为(,);(2)当△CBD为等腰三角形,点D在第四象限时,∠BCD为钝角,则BC=C D.设点D的坐标为(x,y),由(1)得B(﹣1,0),C(4,0),∴BC=5.如图,过D作DM⊥x轴于点M,则DM2+CM2=CD2,∵MC=x﹣4,DM=|﹣x+3|,DC=5,∴(x﹣4)2+(﹣x+3)2=52,解得x=8或x=0(舍去),此时y=﹣×8+3=﹣3,∴D点坐标为(8,﹣3).点评:本题主要考查一次函数的交点,掌握两函数的交点坐标为对应方程组的解是解题的关键,在(2)中注意等腰三角形性质的应用.26.(13分)已知:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,P为射线AB上的一点,以PD,PC为边作平行四边形PCQD,证明:当AP=3时,平行四边形PCQD是菱形;(2)如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,过点Q作QH⊥BC,交BC的延长线于点H.①证明:∠ADP=∠HCQ;②证明:△APD≌△HQC;③在点P变化的过程中,对角线PQ的长存在最小值,请直接写出PQ长的最小值.考点:四边形综合题.分析:(1)首先根据勾股定理,判断出PD=PC,然后根据四边形PCQD是平行四边形,可得当AP=3时,平行四边形PCQD是菱形,据此判断即可.(2)①首先根据AD∥BC,可得∠ADC=∠DCH;然后根据PD∥CQ,可得∠PDC=∠DCQ,据此判断出∠ADP=∠HCQ即可.②首先根据四边形PCQD是平行四边形,可得PD=QC;然后根据全等三角形判定的方法,判断出△APD≌△HQC即可.③首先判断出当点P是AB的中点时,对角线PQ的长最小,然后求出CH的最小值,即可求出PQ长的最小值是多少.解答:(1)证明:如图1,,∵AD=1,AB=2,BC=3,AP=3,∴PB=AP﹣AB=3﹣2=1,∵AD∥BC,AB⊥BC,∴AD⊥AB,∴PD2=AD2+AP2=12+32=10,∴PC2=PB2+BC2=12+32=10,∴PD=PC,∵四边形PCQD是平行四边形,∴当AP=3时,平行四边形PCQD是菱形.(2)①证明:如图2,,∵AD∥BC,∴∠ADC=∠DCH,∵PD∥CQ,∴∠PDC=∠DCQ,∴∠ADP=∠HCQ.②证明:如图3,,∵四边形PCQD是平行四边形,∴PD=QC,在△APD和△HQC中,(AAS)∴△APD≌△HQ C.③解:如图4,,当点P是AB的中点时,对角线PQ的长最小,∵AD=1,AP=2÷2=1,∴PD2=12+12=2,又∵QH=PB=2÷2=1,∴CH==,∴PQ=BC+CH=3+1=4,即PQ长的最小值为4.点评:(1)此题主要考查了四边形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用.(2)此题还考查了全等三角形的判定,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.(3)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.。

八年级数学冀教版下学期期末试卷

八年级数学冀教版下学期期末试卷

【本讲教育信息】一、教学内容:期末试卷【模拟试题】(答题时间:100分钟)一. 选择题(每小题2分,共20分)1. 下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴对称图形又是中心对称图形的是()A B C D2.这些运动员跳高成绩的中位数和众数分别是()A. 1.65,1.70B. 1.70,1.65C. 1.70,1.70D. 3,53. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE、EC的长度分别为()A. 2和3B. 3和2C. 4和1D. 1和4AB C DE4. 一次函数y=x-1的图像不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 函数y=(k2+1)x+2中,y随x的增大而()A. 增大B. 减小C. 与k有关D. 无法确定6. 炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台. 设乙队每天安装x台,根据题意,下面所列方程中正确的是()A. 66x=60x-2B.66x-2=60x C.66x=60x+2D.66x+2=60x7. 如图所示,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程s与时间t之间的函数关系,则他们行进的速度关系是()A. 甲比乙快B. 乙比甲快C. 甲、乙同速D. 不一定s*8. 平行四边形两邻边分别为20和16,若两长边的距离为8,则两短边的距离为( ) A. 5 B. 10 C. 4 D. 8*9. 若梯形的两底长分别是8cm 和16cm ,两底角分别为60°和30°,则较短的腰长为( )A. 4cmB. 5cmC. 6cmD. 8cm **10. 如图,在直角梯形ABCD 中,DC ∥AB ,∠A =90°,AB =28cm ,DC =24cm ,AD =4cm ,点M 从点D 出发,以1cm /s 的速度向点C 运动,点N 从点B 同时出发,以2cm /s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )A B CD M二. 填空题1. 样本-2,-1,0,3,5的平均数是__________,方差是__________.2. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE =5,则BC 的长是__________.ABCD E3. 已知平行四边形的周长为20cm ,对角线AC 、BD 相交于点O ,△OAB 的周长比△OBC 的周长多4cm ,则AB =__________,BC =__________.4. 若菱形的两条对角线长分别为24和10,则菱形的边长为__________.5. 已知等腰梯形ABCD 的对角线相交于点O ,∠BOC =120°,∠BDC =80°,则∠DAB 的度数为__________.6. 如果一次函数y =(m -1)x +(n -2)的图像不经过第一象限,则m 的取值范围是__________,n 的取值范围是__________.7. 为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为__________.(小时)体育锻炼时间858. 如图,若平行四边形ABCD 与平行四边形EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F =__________°.ABCDEF*9. 如图,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系. 在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是__________.*10. 星期天,小明与小刚骑自行车去离家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,行驶1小时到达目的地. 请在所给的平面直角坐标系中,画出符合他们行驶的路程s (千米)与行驶时间t (时)之间的函数图象.三. 解答题1. 甲做180个机器零件与乙做240个机器零件所用的时间相同,已知两人每小时共做140个零件,求甲、乙每小时各做多少个机器零件?2. 如图,四边形ABCD 中,AB =AD ,CB =CD ,但AD ≠CD ,我们称这样的四边形为“半菱形”. 小明说“‘半菱形’的面积等于两条对角线乘积的一半”. 他的说法正确吗?请你判断并证明你的结论.ABCDO3. 下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).12345678请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1). 4. △ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移6个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;并写出点C 1的坐标;(2)将△ABC 绕原点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.*5. 如图:在平面直角坐标系中,有A (0,1),B (-1,0),C (1,0)三点坐标. (1)若点D 与A 、B 、C 三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 的解析式.**6. 如图所示,在梯形ABCD中,AD∥BC,AD=5cm,BC=8cm,M是CD的中点,P 是BC边上的一个动点(P与B、C不重合),连结PM并延长,交AD的延长线于Q.(1)试说明△PCM≌△QDM;(2)当P在B、C之间运动到什么位置时,四边形ABPQ是平行四边形?AB CDPQM【试题答案】一. 选择题1. C2. A3. B4. B5. A6. D7. A8. B9. A 10. D二. 填空题1. 1 6.82. 103. 7cm 3cm4. 135. 110°6. m <1,n <27. 178. 45°9. (-x ,-y )10. 如图所示:三. 解答题1. 设甲每小时做x 个零件,则乙每小时做(140-x )个零件,则180x =240140-x ,解得x =60,140-x =80. 所以甲每小时做60个,乙每小时做80个.2. 正确. 设AC ,BD 交于O ,因为AB =AD ,BC =DC ,AC =AC ,所以△ABC ≌△ADE ,所以∠BAC =∠DAC ,AB =AD ,所以AO ⊥BD ,所以S △ABD =12BD ·AO ,S △BCD =12BD ·CO ,所以S 四边形ABCD =S △ABD +S △BCD =12BD ·(AO +CO )=12BD ·AC.3. 平均数是521127=52.4,中位数是52,众数是52.4. (1)如图所示:C 1(1,1)(2)如图所示:5. (1)符合条件的点D 的坐标分别是D 1(2,1)、D 2(-2,1)、D 3(0,-1)(2)①选择点D 1(2,1)时,直线BD 1的解析式为y =13x +13. ②选择点D 2(-2,1)时,直线BD 2的解析式为y =-x -1. ③选择点D 3(0,-1)时,直线BD 3的解析式为y =-x -1.6. (1)因为AD ∥BC ,所以∠C =∠QDM ,又因为∠PMC =∠QMD ,M 是CD 的中点,所以CM =DM ,所以△PCM ≌△QDM. (2)设PC =x 时,四边形ABPQ 是平行四边形,则DQ =x ,BP =8-x ,AQ =5+x ,因为BP =AQ ,所以8-x =5+x ,所以x =1.5(cm ),即当P 运动到距C 点1.5cm 处时,四边形ABPQ 是平行四边形.。

【翼教版】初二数学下期末模拟试卷(带答案)

【翼教版】初二数学下期末模拟试卷(带答案)

一、选择题1.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数2.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16B .10,6C .3,2D .8,83.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a 颗球的号码小于40,有b 颗球的号码大于40,则关于a,b 的值,下列选项正确的是( ) A .a=15B .a=16C .b=24D .b=354.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表: 选手 甲 乙 丙 丁 平均数(环) 9.0 9.0 9.0 9.0 方差0.251.002.503.00则成绩发挥最不稳定的是( ) A .甲B .乙C .丙D .丁5.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .6.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-7.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②216的平方根是2±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( ) A .1B .2C .3D .49.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B 2240064-C .2240064-D .40064+10.n 2n 可以取的数为( ). A .4B .6C .8D .1211.下列条件中不能判定一定是平行四边形的有( ) A .一组对角相等,一组邻角互补 B .一组对边平行,另一组对边相等 C .两组对边相等D .一组对边平行,且另一组对边也平行12.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( ) A .296cmB .248cmC .224cmD .232cm二、填空题13.有一组数据如下:2,3,3,4,则这组数据的方差是____________. 14.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.15.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -++296m m -+=__________.16.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.17.如图,平行四边形ABCD 中,CE AD ⊥于点E ,点F 为边AB 的中点,连接EF ,CF ,若12AD CD =,38CEF ∠=︒,则AFE ∠=_____________.18.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为______cm 2.19.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭_________. 20.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.三、解答题21.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分 方差 中位数 众数 男生 2 8 7 女生7.921.998(1)这个班共有男生 人,共有女生 人; (2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性) 23.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值; (2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.24.已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若CAD DBC ∠=∠. (1)求证:四边形ABCD 是正方形.(2)E 是OB 上一点,DH CE ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OE OF =.25.计算:()0312 3.14832π+--+-26.有一块四边形草地ABCD (如图),测得10AB AD ==m ,26CD =m ,24BC =m ,60A ∠=︒. (1)求ABC ∠的度数;(2)求四边形草地ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少. 故选:D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.3.A解析:A 【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案. 【详解】解:∵甲箱98−49=49(颗), ∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,b=34. 故选:A 【点睛】本题考查了中位数,正确进行分析,掌握中位数的概念是解题的关键.4.D解析:D 【解析】 【分析】根据方差的定义,方差越小数据越稳定,反之波动越大. 【详解】 由表可知:丁的方差最大,这四个人中,发挥最不稳定的是丁 故选:D 【点睛】本题考查方差的意义,熟知方差越小数据越稳定,反之波动越大是解题关键.5.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.6.B解析:B 【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6, ∴点A '的坐标为(-8,6), ∵点A '落在直线y kx =, ∴6= -8k ,解得k=34-, 故选:B..【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键.7.B解析:B 【分析】先根据二元一次方程组无解,得出k 的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x =-的图象不经过第二象限. 【详解】 解:∵(7)2(31)5y k x y k x =--⎧⎨=-+⎩∴(7-k )x-2=(3k-1)x+5 (7-k )x-(3k-1)x=7 (7-k-3k+1)x=7 (8-4k)x=7∵二元一次方程组无解 ∴8-4k=0 解得:k=2∴将k=2代入一次函数32y kx =- 得322y x =-∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B 【点睛】本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.8.A解析:A 【分析】根据关于y 轴对称的坐标特征判断①;根据平方根定义判断②;根据直线与x 轴交点坐标判断③;根据方程的解的定义判断④. 【详解】解:①()1,2A -关于y 轴的对称点为(1,2);②±; ③2y x =-+与x 轴交于点(2,0); ④21x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.∴正确的是:③,1个 故选:A 【点睛】本题考查关于y 轴对称的坐标特征、平方根定义、直线与x 轴交点坐标、方程的解,考查学生的辨析能力,熟知以上知识点是解答此题的关键.9.A解析:A 【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案. 【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b , 则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得: 22240064a c b =-=-,故选:A . 【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.10.C解析:C 【分析】是同类二次根式. 【详解】解:A 2=不是同类二次根式;B不是同类二次根式;C=是同类二次根式,正确;D=不是同类二次根式;故选:C.【点睛】本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.11.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A、能用两组对角相等的四边形是平行四边形判定平行四边形;B、不能判定平行四边形,如等腰梯形;C、能用两组对边相等的四边形是平行四边形判定平行四边形;D、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.12.B解析:B【分析】如图:作AD⊥BC于D,先根据等腰三角形的性质求得BD,然后运用勾股定理求得AD,最后运用三角形的面积公式解答即可.【详解】解:如图:作AD⊥BC于D,∵AB=AC=10,∴BD=DC=1BC=8cm,2∴==6∴S△ABC=1BC·AD=48cm2.2故答案为B.【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.二、填空题13.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可.【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.14.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ ,∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12. 点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.15.5-2m 【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限可得m-2<0进而得到m <2再根据二次根式的性质进行计算即可【详解】方法一:一次函数的图象经过第一二四象限∴∴故答案为:方解析:5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩,∴=23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ∴2m <,=|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.16.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.17.24°【分析】延长CF 交DA 延长线于点G 证△BCF ≌△AGF 得GF=FC 由垂直得△FEC 是等腰三角形可知△BFC 是等腰三角形求出∠GFE 和∠GFA 即可【详解】解:延长CF 交DA 延长线于点G ∵AG ∥B解析:24°【分析】延长CF 交DA 延长线于点G ,证△BCF ≌△AGF ,得GF=FC ,由垂直得△FEC 是等腰三角形,12AD CD =,可知△BFC 是等腰三角形,求出∠GFE 和∠GFA 即可. 【详解】解:延长CF 交DA 延长线于点G ,∵AG ∥BC ,∴∠G=∠BCF ,∠GAF=∠B ,∵AF=FB ,∴△AGF ≌△BCF ,∴GF=CF ,AG=BC ,∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°,∵38CEF ∠=︒,∴∠FEG=∠FGE=52°,∠GFE=76°, ∵12AD CD =, ∴BC=BF=AF ,∵AG=BC ,∴AG=AF ,∠G=∠AFG=52°, AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.18.24【分析】画出符合题意的图形利用菱形的对角线互相垂直平分求解另一条对角线的长再利用菱形的面积等于两条对角线的长之积的一半即可得到答案【详解】解:如图菱形的周长为20cm 一条对角线的长为8cm 故答案 解析:24【分析】画出符合题意的图形,利用菱形的对角线互相垂直平分,求解另一条对角线的长,再利用菱形的面积等于两条对角线的长之积的一半即可得到答案.【详解】解:如图,菱形ABCD 的周长为20cm ,一条对角线AC 的长为8cm ,5,4,,,AD AB BC CD cm OA OC cm OB OD AC BD ∴=======⊥2222543OD AD AO ∴=-=-=,26,BD OD cm ∴==2116824.22ABCD S AC BD cm ∴==⨯⨯=菱形 故答案为:24. 【点睛】本题考查的是菱形的性质,菱形的面积,掌握菱形的性质及菱形的面积的计算是解题的关键.19.【分析】根据负整数指数幂定义绝对值的性质二次根式的除法计算法则依次计算再计算加减法即可【详解】解:原式==故答案为:【点睛】此题考查计算能力正确掌握负整数指数幂定义绝对值的性质二次根式的除法计算法则解析:2+【分析】根据负整数指数幂定义,绝对值的性质,二次根式的除法计算法则依次计算,再计算加减法即可.【详解】解:原式=42-+2+故答案为:2+.【点睛】此题考查计算能力,正确掌握负整数指数幂定义,绝对值的性质,二次根式的除法计算法则是解题的关键.20.【分析】运用勾股定理可求出平面直角坐标系中AB 的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB 的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC +∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键.三、解答题21.(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.22.(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人), 故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.23.(1)2,k =1b =-;(2)()4,3D -.【分析】(1)依据一次函数4y kx =+与12y x b =-+的图象都经过点A (−2,0),将点A 的坐标分别代入两个一次函数表达式,即可得到k 和b 的值; (2)根据解析式求得B 、C 两点的坐标,然后依据S △ABC +S △BCD =15,即可得到点D 的横坐标,进而得出点D 的坐标.【详解】()1将()20A -,代入4y kx =+,得:240k -+= 解得2k =.将()20A -,代入12y x b =-+,得:10b +=, 解得:1b =-. ()2如图,过D 作DE y ⊥轴于E ,在24y x =+中,令0x =,则4y =,所以点B 的坐标为()04,. 在112y x =--中, 令0x =,则1y =-. 所以点C 的坐标为()01-,. 所以5BC =.15ABD ABC BCD S S S ∆∆∆=+=, 即1111255152222AO BC DE BC DE ⨯+⨯=⨯⨯+⨯⨯=. 解得4DE = 在112y x =--中,令4x =,得3y =-. 所以点D 的坐标为()43-,. 【点睛】本题主要考查了一次函数的图象问题,关键是掌握一次函数图象上点的坐标特征,并弄清题意,学会综合运用其性质解决问题.24.(1)见解析;(2)见解析【分析】(1)由菱形的性质得出//AD BC ,2,2BAD DAC ABC DBC ∠∠∠∠==,得出180BAD ABC ∠+∠=︒,证出BAD ABC ∠=∠,求出90BAD ∠=︒,即可得出结论;(2)由正方形的性质得出11,,,22AC BD AC BD CO AC DO BO ⊥===,得出90COB DOC ∠∠==︒,CO DO =,证出ECO EDH ∠∠=,证明ΔΔ()ECO FDO ASA ≅,即可得出结论.【详解】证明:(1)四边形ABCD 是菱形,//,2,2AD BC BAD DAC ABC DBC ∠∠∠∠∴==,180BAD ABC ∴∠+∠=︒CAD DBC ∠=∠BAD ABC ∴∠=∠2180BAD ∠∴=︒90BAD ∴∠=︒,∴四边形ABCD 是正方形;(2)证明:四边形ABCD 是正方形,11,,,22AC BD AC BD CO AC DO BO ∴⊥===, 90,COB DOC CO DO ∠∠∴==︒=DH CE ⊥,垂足为H ,,9090DHE EDH DEH ∠∠∠︒︒∴=+=,90ECO DEH ∠∠+=︒ECO EDH ∠∠∴=,在ΔECO 和ΔFDO 中,90ECO EDH CO DO COE DHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,ΔΔ()ECO FDO ASA ∴≅OE OF ∴=.【点睛】本题考查了正方形的判定与性质、菱形的性质、全等三角形的判定与性质等知识;熟练掌握正方形的判定与性质是解题关键.251【分析】根据零指数幂,立方根,绝对值的性质,二次根式的混合运算,逐一化简合并同类项即可.【详解】()03.142π-122=-+31=+ 【点睛】 本题主要考查了实数的混合运算,涉及的知识点有二次根式的混合运算,零指数幂,立方根,绝对值等知识点,熟悉掌握化简的方法是解题的关键. 26.(1)150°;(2)253+120(m 2)【分析】(1)连接BD ,可得∆ABD 是等边三角形,利用勾股定理的逆定理得∠DBC=90°,进而即可求解;(2)过点A 作AP ⊥BD 于点P ,可得AP=53,结合三角形的面积公式,即可求解.【详解】(1)连接BD ,∵10AB AD ==m ,∠A=60°∴∆ABD 是等边三角形,∴∠ABD=∠A=60°,BD=10AB AD ==m ,∵26CD =m ,24BC =m ,∴BD 2+BC 2=CD 2,∴∠DBC=90°,∴∠ABC=90°+60°=150°;(2)过点A 作AP ⊥BD 于点P ,则BP=DP=12BD=5m ,AP=2253AD DP -=, ∴四边形草地ABCD 的面积=S ∆ABD +S ∆CBD =12BD∙AP+12B C∙BD=12×10×53+12×10×24=253+120(m 2).【点睛】本题主要考查等边三角形的判定和性质以及勾股定理的逆定理,添加辅助线,构造直角三角形和等边三角形,是解题的关键.。

【翼教版】初二数学下期末模拟试卷(及答案)

【翼教版】初二数学下期末模拟试卷(及答案)

一、选择题1.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图: 编号 1 2 3 4 5 方差 平均成绩 得分3834■3740■37A .35 2B .36 4C .35 3D .36 32.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃3.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是 ( ) A .平均数 B .极差 C .中位数 D .方差 4.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定6.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限7.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫⎪⎝⎭B .2,02⎛⎫⎪⎪⎝⎭C .10,010⎛⎫⎪⎪⎝⎭D .1,010⎛⎫⎪⎝⎭8.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.二次根式32a ,12,35,44a +,22x y +中,是最简二次根式的个数有( ) A .1个B .2个C .3个D .4个10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=11.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12a B .25a C .32a D .33a 12.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△ B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.14.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.15.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.16.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.17.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.18. 3.4 1.844≈340≈__________.19.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.20.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,2BD =,114AC =,则边BC 的长为_______.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x <85,B .85≤x <90,C .90≤x <95,D .95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94.23.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠: A 店铺:"双11"当天购实所有商品可以享受8折优惠:B 店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元; 设购买颈椎枕x (个),若王阿姨在“双11"当天下单,A ,B 两个店铺优惠后所付金额分别为y A (元)、y B (元).(1)试分别表示y A 、y B 与x 的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱? 24.已知点()0,6B ,点C 为x 轴正半轴上一动点,连接BC ,分别以OC 和BC 为边长作等边ODC △和EBC ,连接DE .(1)如图(a ),当D 点在OBC 内部时,求证:BO DE =;(2)如图(b ),当D 点在OBC 外部时,上述结论是否还成立?请说明理由. (3)当D 点恰好落在EBC 的边上时,利用图(c )探究分析后,直接写出ODC △的高的长度为______. 25.计算: (1483(2632⨯1 (3)(55﹣2) (4)2(323)26.已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90° (1)若D 为△ACB 内部一点,如图,AE =BD 吗?说明理由 (2)若D 为AB 边上一点,AD =5,BD =12,求DE 的长【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案. 【详解】 解:这组数据的平均数是37,∴编号3的得分是:375(38343740)36⨯-+++=;方差是:222221[(3837)(3437)(3637)(3737)(4037)]45-+-+-+-+-=;故选:B . 【点睛】本题考查平均数和方差的定义,一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.B解析:B 【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数. 【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8, 中位数为:6+72=6.5, 故选B . 【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.C解析:C【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分,8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变,故选C.【点睛】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.4.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44,原数据的3,4,4,5的中位数为4+4=24,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为3+4+4+4+5=45,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.5.B解析:B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可. 【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱. 故选:B . 【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.D解析:D 【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可. 【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意. 故选:D . 【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.7.A解析:A 【分析】作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭.【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长, ∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2), 设直线A'D 的解析式为y=kx+b (k≠0),则12k bb =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩,∴y=3x -2, 当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A . 【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.C解析:C 【分析】根据一次函数图象与系数的关系解答. 【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0, ∴一次函数的图象经过第一、二、四象限, ∵点P 在一次函数31y x =-+的图象上, ∴点P 一定不在第三象限, 故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.9.B解析:B 【分析】根据最简二次根式的定义进行求解即可. 【详解】=2==2个,故选:B . 【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.10.A解析:A 【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题. 【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠ M 是AB 的中点,11,22CM AB DM AB ∴==CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠ CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键. 11.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∴OB=OC ,∠BCD=90°,由翻折不变性可知:BC=BO ,∴BC=OB=OC ,∴△OBC 是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:, 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:70481060⨯+⨯=76(分), 故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数. 14.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.15.【分析】根据一次函数y=(m-2)x+m -3的图象经过第一二四象限可得函数表达式中一次项系数小于0常数项大于0进而得到关于m 的不等式组解不等式组即可得答案取值范围【详解】∵一次函数的图像经过第一二四解析:12m <<【分析】根据一次函数y=(m-2)x+m -3的图象经过第一、二、四象限,可得函数表达式中一次项系数小于0,常数项大于0,进而得到关于m 的不等式组,解不等式组即可得答案取值范围.【详解】∵一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,∴2010m m -<⎧⎨->⎩, 解得:1<m <2,故答案为:1<m <2【点睛】本题考查了一次函数y=kx+b (k≠0)的图象与系数的关系:对于一次函数y=kx+b (k≠0),k >0,b >0时,图象在一、二、三象限;k >0,b <0时,图象在一、三、四象限;k <0,b >0时,图象在一、二、四象限;k <0,b <0时,图象在二、三、四象限;熟练掌握一次函数的性质是解题关键.16.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭, 12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.17.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=.∴在Rt MND △中,222MN MD ===【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 18.【分析】根据二次根式的乘法运算即可得【详解】因为所以故答案为:【点睛】本题考查了二次根式的乘法运算熟练掌握运算法则是解题关键 解析:18.44【分析】根据二次根式的乘法运算即可得.【详解】1.844≈,==,=,10 1.844≈⨯,18.44≈,故答案为:18.44.【点睛】本题考查了二次根式的乘法运算,熟练掌握运算法则是解题关键.19.【分析】如详解图:作垂足为F 的延长线垂足为G 可证可得四边形AFOG 为正方形BF=CGAF=AG=进而可求得答案【详解】如图所示:作垂足为F 的延长线垂足为G 则四边形AFOG 为矩形四边形BCDE 是正方形解析:3【分析】如详解图:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,可证OFB OGC △≌△,可得四边形AFOG 为正方形,BF=CG ,AF=AG=【详解】如图所示:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,则四边形AFOG 为矩形,四边形BCDE 是正方形,∴OB=OC ,90BOC ∠=°,9090COG COF BOF COF BOF COG∠+∠=︒∠+∠=︒∴∠=∠,,OFB OGC OB OC OFB OGCOF OG∠=∠=∴∴=△≌△ S ∴四边形AFDG 为正方形63233233233223AO AF AG AC CG AG AC BF CGAB AF BF AG CG =∴===∴=-==∴=+=+=+= 故答案为:623.【点睛】本题考查了正方形的性质和判定,全等三角形的性质,关键是构造全等三角形证明. 20.【分析】延长BD 到F 使得DF=BD 根据等腰三角形的性质与判定勾股定理即可求出答案【详解】解:延长BD 到F 使得DF=BD ∵CD ⊥BF ∴△BCF 是等腰三角形∴BC=CF 过点C 作CH ∥AB 交BF 于点H ∴∠ 5【分析】延长BD 到F ,使得DF=BD ,根据等腰三角形的性质与判定,勾股定理即可求出答案.【详解】解:延长BD 到F ,使得DF=BD ,∵CD ⊥BF ,∴△BCF 是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H ∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=DF=2,AC=114,∴DH=BH-BD=AC-BD=34,∴HF=HC=DF-DH=2-34=54,在Rt△CDH中,∴由勾股定理可知:CD=22CH DH-=1,在Rt△BCD中,∴BC=22BD CD+=5,故答案为:5.【点睛】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)40,94,99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级;(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人【分析】(1)根据中位数和众数的定义可求出b和c的值,根据扇形统计图可求出a的值;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)a =(1﹣20%﹣10%﹣310)×100=40, ∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴b =94942+=94; ∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c =99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】 本题考查读扇形统计图的能力和利用统计图获取信息的能力,以及用样本估计总体;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)y A =480x +1600,y B =600x +1240;(2)在A 店铺购买更省钱.【分析】(1)根据两个店铺的优惠方案即可得到结果;(2)把4x =代入到(1)的式子中,即可得解;【详解】(1)解:由题意得:.y A =1000×2×0.8+0.8×600x =480x +1600;y B =1000×2+600(x -1)-160=600x +1240;(2)解:当x =4时,y a =480×4+1600=3520;y B =600×4+1240=3640;∵3520<3640,∴在A 店铺购买更省钱.【点睛】本题主要考查了一次函数的应用,准确理解题意列式计算是解题的关键.24.(1)证明见解析;(2)还成立,理由见解析;(3)3或9.【分析】(1)利用“SAS”证明BCO ECD ≅△△即可解答;(2)同(1)利用“SAS”证明BCO ECD ≅△△即可解答;(3)分当D 点恰好落在EBC 的边BC 上或边BE 上两种情况讨论,利用全等三角形的性质以及三角形中位线或含30度角的直角三角形的性质求解即可.【详解】证明:(1)在等边ODC △与等边EBC 中,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB DCB BCE ∠+∠=∠+∠, 即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≅△△,∴BO DE =;(2)还成立.理由:连接DE ,与(1)同理,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB BCE DCB ∠-∠=∠-∠, 即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≌△△, ∴BO DE =;(3)当D 点恰好落在EBC 的边BC 上时,如图, 作DG ⊥OC 于G ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∵△EBC 是等边三角形,∴D 点恰好是边BC 的中点,∵DG ⊥OC ,∴DG 是△BOC 的中位线,∴DG=12BO=3; 当D 点恰好落在EBC 的边BE 上时,如图,作DF ⊥OC 于F ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∠ECD=∠BCO ,∵△EBC 是等边三角形,∴D 点恰好是边BE 的中点,∴∠ECD=∠BCD=∠BCO=30︒,∴BC=2BO=12,∴2263BC BO -=∵△DOC 是等边三角形,∴DC=OC=3,FC=OF=33∴229DC CF -=,综上,ODC △的高的长度为3或9.故答案为:3或9.【点睛】本题是三角形综合题,考查了坐标与图形的性质、全等三角形的判定和性质、等边三角形的性质、直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题.25.(1);(2)2;(31;(4)21﹣【分析】(1)先化简二次根式,再合并同类项即可求解;(2)根据二次根式乘除法性质进行化简计算即可解答;(3)根据二次根式的乘法运算法则进行求解即可;(4)利用完全平方公式进行计算即可.【详解】解:(1(21=1 =3﹣1=2;(3)(﹣2)6+5﹣=1;(4)2=222-⨯=18﹣+3=21﹣.【点睛】本题考查了二次根式的加减乘除混合运算、完全平方公式,熟记公式,掌握二次根式的运算法则是解答的关键.26.(1)AE =BD ,见解析;(2)13【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE 的长.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ACE =∠BCD在△ACE和△BCD中∵EC=CD,∠ACE=∠BCD,AC=BC,∴△ACE≌△BCD(SAS)∴AE=BD;(2)如图,由(1)可知:△ACE≌△BCD,∴BD=AE=12,∠CAE=∠CBD=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,即52+122=ED2∴DE=13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE≌△BCD是本题的关键.。

【翼教版】八年级数学下期末模拟试卷及答案

【翼教版】八年级数学下期末模拟试卷及答案

一、选择题1.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变2.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年3.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .254.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t的函数关系大致是( )A .B .C .D .5.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .6.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x 的解集是( )A .0<x <32B .32<x <6 C .32<x <4 D .0<x <37.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .8.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm参考答案9.下列二次根式中是最简二次根式的是()A.15B.32C.18D.210.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.611.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.3C.16 D.16312.已知实数a,b为ABC2a1b4b40--+=,第三边c5=则第三边c上的高的值是()A 554B455C55D255二、填空题13.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.14.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.15.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t(分)和离家距离S(米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.16.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BECCEFSS<中,一定成立的是_________.(请填序号)18.如图,正方形ABCD 的边长为2,O 是对角线BD 上一动点(点O 与端点B ,D 不重合),OM ⊥AD 于点M ,ON ⊥AB 于点N ,连接MN ,则MN 长的最小值为_____.19.计算82-的结果是_____. 20.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.三、解答题21.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次 第2次 第3次 第4次 第5次甲 86 83 90 80 86 乙 7882848992中位数 平均数 方差甲 ▲ 85 ▲ 乙 848524.822.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题. (1)这次调查获取的样本容量是 .(直接写出结果)(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果) (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)在如图所示的平面直角坐标系中,作出所求函数的图象.24.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 25.解方程组和计算 (1)计算:6﹣153﹣1237)0128(12)2 (2)解方程组: ①43522x y y x +=⎧⎨=-⎩;②3414233x y x y -=⎧⎨-=⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE . 容易证明△ACD ≌△BCE ,则①∠AEB 的度数为 ; ②直接写出AE 、BE 、CM 之间的数量关系:(3)如图3,△ABC 中,若∠A =90°,D 为BC 的中点,DE ⊥DF 交AB 、AC 于E 、F ,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.2.C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.3.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C. 【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键4.B解析:B 【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案. 【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变; 当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选B . 【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.5.B解析:B 【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置. 【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B . 【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.6.B解析:B 【分析】先求解A 的坐标,再求解一次函数的解析式及B 的坐标,结合函数图像解0<ax +4<2x 即可得到答案.【详解】 解:一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),23,m ∴=3,2m ∴=3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=-24,3y x ∴=-+令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6, ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方,3,3,2A ⎛⎫ ⎪⎝⎭ x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.7.D解析:D 【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得. 【详解】A、由图象知,(3)0pp>⎧⎨-->⎩,解得03p<<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;B、由图象知,(3)0pp>⎧⎨--=⎩,解得3p=,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;C、由图象知,(3)0pp<⎧⎨-->⎩,解得0p<,即它可能是关于x的一次函数(3)y px p=--的图象,此项不符题意;D、由图象知,(3)0pp<⎧⎨--<⎩,不等式组无解,即它不可能是关于x的一次函数(3)y px p=--的图象,此项符合题意;故选:D.【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.8.B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.9.A解析:A【分析】利用最简二次根式定义判断即可.【详解】=,故本选项不合题意;=2=,故本选项不合题意.故选:A.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.10.C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.11.A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.12.D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a 、b 的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c 边上高即可.【详解】()2a 1b 20--=,所以a 10b 20-=-=,,解得a 1b 2==,;因为2222a b 125+=+=, 22c 5)5==,所以222a b c +=, 所以ABC 是直角三角形,C 90∠=︒,设第三边c 上的高的值是h ,则ABC 的面积115h 1222==⨯⨯, 所以25h = 故选:D .【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题13.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.14.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:70481060⨯+⨯=76(分), 故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数. 15.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160 800153÷=;25分~35分的速度:(800500)1030-÷=;45分~50分的速度:5005100÷=;∵160301003<<,∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.16.③④【分析】根据一次函数的性质进行计算即可【详解】解:把x=1代入解析式得到y=1即函数图象经过(11)不经过点(10)故①错误;函数y=2x−1中k=2>0则该函数图象y值随着x值增大而增大故②错解析:③④【分析】根据一次函数的性质进行计算即可.【详解】解:把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故①错误;函数y=2x−1中,k=2>0,则该函数图象y值随着x值增大而增大,故②错误;把x=0代入解析式得到y=-1,即函数图象经过(0,-1),故③正确;函数y=2x−1中,k=2>0,b=−1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故④正确;故答案为:③④.【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.17.②③④【分析】如图延长EF交CD的延长线于H作EN∥BC交CD于NFK∥AB交BC于K利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF交CD的延长线于H作EN∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD2BD2=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=1BD=1,2∴MN的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN的最小值转化为线段AO的最小值是解题的关键.19.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.11cm12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大当筷子与杯底及杯高构成直角三角形时h最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h最大h最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内的长度=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12cm.故答案为:11cm;12cm.【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键.三、解答题21.(1)86,11.2;(2)见解析【分析】(1)根据中位数的定义和方差的公式进行解答即可求解;(2)从中位数和方差的意义进行分析即可求解.【详解】(1)把甲同学5次测试成绩按从小到大的顺序排列如下,80,83,86,86,90, 则中位数即为86, 甲同学成绩的方差:()()()()()22222186858385+9085+8085+86855⎡⎤⨯-+----⎣⎦()()22222112+5+5+15⎡⎤=⨯+--⎣⎦ ()114+25+25+15=⨯+ 1565=⨯ 11.2=(2)数据的集中趋势:①从中位数看,甲的中位数略大于乙的中位数,说明甲的数学成绩略好于乙;数据的离散程度:②从方差看,甲的方差小于乙的方差,且两人的平均成绩相同,说明甲的成绩比乙更稳定;数据的变化趋势:③从两人成绩的变化趋势看,乙的成绩在逐渐上升,说明乙的成绩进步较大.【点睛】本题考查中位数的定义、方差的计算公式及意义,解题的关键是熟练掌握求一组数据的中位数和方差的方法公式.22.(1)40;(2)30,50;(3)50500元【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084⨯+⨯+⨯+⨯+⨯++++×1000=50500(元), 答:该校本学期计划购买课外书的总花费是50500元.故答案为(1)40;(2)30,50;(3)50500元.【点睛】 本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)()404y x x =-+<<;(2)详见解析【分析】(1)根据矩形的周长公式用x ,y 的式子表示出来,然后进行变形即可,根据矩形的边长要大于0可以求出自变量x 的取值范围;(2)由(1)的结论运用描点法先描点,再连线即可得到函数的图象.【详解】解:(1)矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y ,则228x y +=,4y x =-+,∵40x -+>,∴4x <,∴y 关于x 的函数关系式为()404y x x =-+<<.(2)函数图象如图所示.【点睛】本题考查了一次函数的图象及一次函数的应用.在解答中自变量的取值范围不能忽视. 24.(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE , ∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒, ∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠, ∵90EAD ∠=︒,EAN DAF ∠=∠, ∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠, ∴,MAN BAF ANM AFB ∠=∠∠=∠, ∵AN=AF ,∴AMN ABF △≌△,∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+;(3)解:由题意可得AD=AE ,90EAD ∠=︒, ∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题. 25.(1)①65-②3+22;(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式62=⨯==-,故答案为:-②原式=4+(122⨯+-=4+2-故答案为:;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x yy x,把(2)代入(1)中得:4x+3(2x﹣2)=5,解得:x=11 10,把x=1110代入(2)得y=15,所以方程组的解为:111015xy⎧=⎪⎪⎨⎪=⎪⎩,故答案为111015xy⎧=⎪⎪⎨⎪=⎪⎩;解②方程组:3414(1) 233(2)-=⎧⎨-=⎩x yx y,(1)×2﹣(2)×3得:-8y+9y=28﹣9,解得y=19,把y=19代入(2)中得:2x﹣57=3,解得x=30,所以方程组的解为:3019 xy=⎧⎨=⎩.故答案为:3019 xy=⎧⎨=⎩.【点睛】本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。

【翼教版】初二数学下期末模拟试卷(附答案)

【翼教版】初二数学下期末模拟试卷(附答案)

一、选择题1.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .42.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .83.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐4.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( ) A .142,142B .143,142C .143,143D .144,1435.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .7.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-8.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ).A .-1B .3C .43D .539.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等. A .1 B .2 C .3D .410.下列二次根式中,不能..与3合并的是( ) A .12B .8C .48D .10811.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BC B .AD ∥BC ,AB =CD C .OA =OC ,OB =ODD .AB =CD ,AD =BC12.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .13二、填空题13.有一组数据如下:2,3,3,4,则这组数据的方差是____________.14.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者 网页制作 语言 甲 80 70 乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 15.函数21xy x =-中自变量x 的取值范围是________. 16.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 17.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.18.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________. 19.计算:2(32)(32)+-=______.20.如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为﹣1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为___________.三、解答题21.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 97 78 80 初二(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?22.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是 ;(2)由于C 、E 两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C 、E 两名候选人平时成绩、任课老师打分情况如表所示.23.如图,在平面直角坐标系中,四边形OABC 是直角梯形,//BC OA ,(8,0)A ,(0,4)C ,5AB ,现有一动点P 从点A 出发,以每秒2个单位长度的速度沿AO 方向,经O 点再往OC 方向移动,最后到达C 点.设点P 移动时间为t 秒.(1)求点B 的坐标;(2)当t 为多少时,ABP ∠的面积等于13;(3)在(2)的条件下,取BP 中点M ,在x 轴上找一点N ,使BN MN +和最小,求此时N 点的坐标.24.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由; (3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.25.先化简,再求值:221141⎛⎫++-÷- ⎪⎝⎭x x x x x ,其中122=+x . 26.如图,在四边形ABCD 中,AB =13,BC =5,CD =15,AD =9,对角线AC ⊥BC . (1)求AC 的长;(2)求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平均数的计算公式列出算式,再进行计算即可得出x 的值. 【详解】解:∵5,7,6,x ,7的平均数是6,∴15(5+7+6+x +7)=6, 解得:x =5; 故选:C . 【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.2.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.3.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐;【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键4.B解析:B 【解析】 【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值. 【详解】 中位数:142144=1432+ 平均数:135138142144140147145145=1428+++++++故选B 【点睛】考核知识点:中位数,算术平均数.理解定义是关键.5.D解析:D 【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩,∴212x a x >⎧⎪⎨-<⎪⎩,∵不等式组有解,∴122->a , ∴5a >,∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.6.A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断. 【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限. 故选:A . 【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.7.A解析:A 【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案. 【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A 【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.8.D解析:D 【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1,∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1,∴x>43,即:x>43时,y=2x-1,∵x>43,∴2x>83,∴2x-1>53,∴y>53,∴y的最小值=53,故选:D.【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.9.B解析:B【分析】先把每一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:“全等三角形的对应角相等”的逆命题是“三组角分别对应相等的两个三角形全等”,逆命题是假命题,故①不符合题意;“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,逆命题是真命题,故②符合题意;“等腰三角形的两个底角相等”的逆命题是“在一个三角形中,有两个角相等的三角形是等腰三角形”,逆命题是真命题,故③符合题意;“正方形的四个角相等”的逆命题是“四个角相等的四边形是正方形”,逆命题是假命题,故④不符合题意;综上:符合题意的有②③.故选:.B【点睛】本题考查的是命题与逆命题,命题真假的判断,正方形的判定方法,掌握由原命题得到逆命题,以及判断命题的真假是解题的关键.10.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C被开方数相同,是同类二次根式,能进行合并,故本选项错误;D故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.11.B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.12.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×1ab=102∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.二、填空题13.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可.【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.14.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a 语言的权重为b 则甲的分数为80a+70b 乙的分数为70a+80b 而甲的分数高所以80a+70b >70a+80b 解得a >b 则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a ,语言的权重为b ,则甲的分数为80a +70b ,乙的分数为70a +80b ,而甲的分数高,所以80a +70b >70a +80b ,解得a >b ,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.15.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从 解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.y =,根据题意得:x≥0 10≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 17.10【分析】由菱形的性质和勾股定理求出CD =20证出平行四边形OCED 为矩形得OE =CD =10即可【详解】解:∵DEACCEBD ∴四边形OCED 为平行四边形∵四边形ABCD 是菱形∴AC ⊥BDOA =O解析:10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.解:∵DE//AC,CE//BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90︒,CD=10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.18.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB再以E为圆心EA为半径作圆与正方形的交点即为满足条件的P点分类讨论即可【详解】如图所示在正方形ABCD中∠AEB=105°∵点P在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB,再以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,分类讨论即可.【详解】如图所示,在正方形ABCD中,∠AEB=105°,∵点P在正方形的边上,且AE=EP,∴可以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,①当P在AD上时,如图,AE=EP1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP1=60°,△EAP1为等边三角形,∴此时∠AEP1=60°;②当P在CD上时,如图,AE=EP2,AE=EP3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键 32【分析】 先将2(32)化成32)(32),再运用平方差公式计算,从而可得解.【详解】 解:2(32)(32) =32)(32)(32) =22(3)(2)(32)⎡⎤-⎣⎦ =32 32【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.【分析】根据勾股定理求出PB 的长即PD 的长再根据两点间的距离公式求出点D 对应的数【详解】由勾股定理知:PB ===∴PD =∴点D 表示的数为﹣1故答案是:﹣1【点睛】此题考查勾股定理及圆的半径数轴等知识 51【分析】根据勾股定理求出PB 的长,即PD 的长,再根据两点间的距离公式求出点D 对应的数.【详解】由勾股定理知:PB 22PC BC +2221+5∴PD 5∴点D 5﹣1. 5 1.【点睛】此题考查勾股定理及圆的半径、数轴等知识,结合各知识点熟练运用是解题关键.三、解答题21.(1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序;(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:8097903++=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是初二(1)班;(2)∵初二(1)班的平均分为:802843875235⨯+⨯+⨯++=84.7分;初二(2)班的平均分为:972783805235⨯+⨯+⨯++=82.8分;初二(3)班的平均分为:902783855235⨯+⨯+⨯++=83.9;∴排名最好的是初二一班,最差的是初二(2)班;(3)加强动作整齐方面的训练,才是提高成绩的基础.【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.22.(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E 的平均成绩是:852*********⨯+⨯+⨯++=89(分), ∴88<89, ∴最终候选人E 将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义. 23.(1)(5,4) (2)13 s 4t =或19 s 4t = (3)23,06⎛⎫ ⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭ 【分析】 (1)过点B 作BD OA ⊥于点D ,得出ADB △为直角三角形,利用勾股定理求出AD ,BD 的值,从而可求出点B 的坐标,(2)当点P 运动时间为t 秒时,则2AP t =,由三角形的面积公式建立等量关系即可求出t 的值,(3)结合(2)问,求出点P 的坐标,进而求出BP 中点M 的坐标,再作出点B 关于x 的对称点,求出该对称点与点M 所在直线的的解析式,该直线与x 的交点即为点N .【详解】(1)过点B 作BD OA ⊥于点D ,∴90BDO ∠=︒,∵四边形OABC 是直角梯形,BCOA , ∴90BCO COD ∠=∠=︒,∴四边形ODBC 为矩形,∵(0,4)C ,(8,0)A ,∴4OC BD ==,8OA =,∵5AB =,在Rt ABD △中,由勾股定理得:222AB BD AD =+,∴2222543AD AB BD =--=,∴5OD OA AD =-=,∴(5,4)B .(2)当P 点在O 点时,4s t =,当P 点在C 点时,6s 2OA OC t +==, ①当04s t <≤时,由题可知:2AP t =,∴112441322ABP S AP BD t t =⋅=⨯⨯==△, ∴13s 4t =. ②当46t <≤时,则28OP t =-,4122CP OP t =-=-,∴ABP AOP BCP OABC S S S S =--△△△梯形()111222OA BC OC OA OP BC CP =+⋅-⋅-⋅ 111(48)48(28)4(122)222t t =⨯+⨯-⨯⨯--⨯⨯- 24832244t t =-+-+324t =-13=.∴419t =,19s 4t =. 故当13s 4t =或19s 4t =时,ABP △的面积是13. (3)由(2)得:①当13s 4t =时,132AP =, ∴32OP =, ∴3,02P ⎛⎫ ⎪⎝⎭, 又∵(5,4)B ,M 为BP 的中点,∴13,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴对称点B ',则(5,4)B '-,连接MB '交x 轴于点N ,则BN MN B N MN B M ''+=+=.设直线B M '的解析式为(0)y kx b k =+≠,代入B ',M 两点,得451324k bk b -=+⎧⎪⎨=+⎪⎩,解得247927kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B M'为249277y x=-+,令0y=,则249277x=,236x=,∴23,06N⎛⎫⎪⎝⎭.②当19s4t=时,3282OP t=-=,∴30,2P⎛⎫⎪⎝⎭,又∵(5,4)B,M为BP中点,∴511,24M⎛⎫⎪⎝⎭,作B点关于x轴的对称点B'',∴(5,4)B''-,设直线B M''交x轴于点N,则MN BN MN B N MB'''+=+=.设直线B M''的解析式为()111y k x b k=+≠,代入M,B''得4511542k bk b-=+⎧⎪⎨=+⎪⎩,解得2710192kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B M''为2719102y x=-+,令0y=,得19109522727x=⨯=,∴95,027N ⎛⎫ ⎪⎝⎭. 综上N 的坐标为23,06⎛⎫⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了勾股定理,矩形的判定及性质,点的坐标的确定,以及利用轴对称求最值,待定系数法求一次函数解析式,熟练运用三角形面积,以及利用轴对称方法求最值是解题关键.24.(1)见解析;(2)CE=CF ,理由见解析;(3)52或122【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,在R t △DFK 中,根据勾股定理可得,DF 22122DK FK +=综上所述,DF 的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.25.121x -;4【分析】 根据分式的混合运算法则把原式化简,代入计算即可.【详解】 解:221141⎛⎫++-÷- ⎪⎝⎭x x x x x ()21421-+-+=÷x x x x x x 22141+-=÷x x x x ()()212121+=⋅-+x x x x x121=-x ,当12=x 时,原式11212=⎫-⎪⎭=4=. 【点睛】本题考查了分式的混合运算以及二次根式的运算,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(1)12;(2)84.【分析】(1)在Rt ABC 中,利用勾股定理即可得;(2)先根据勾股定理的逆定理可得ACD △是直角三角形,再根据四边形ABCD 的面积等于Rt ABC 的面积与Rt ACD △的面积之和即可得.【详解】(1)AC BC ⊥,ABC ∴是直角三角形,13,5AB BC ==,2222213514412AC AB BC AC ∴=-=-==,;(2)15,9,12CD AD AC ===,222AC AD CD ∴+=, ACD ∴是直角三角形,则四边形ABCD 的面积为1122Rt ABC Rt ACD S S AC BC AC AD +=⋅+⋅, 1112512922=⨯⨯+⨯⨯, 84=,即四边形ABCD 的面积为84.【点睛】本题考查了勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.。

【翼教版】初二数学下期末模拟试题附答案

【翼教版】初二数学下期末模拟试题附答案

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( )A .85B .90C .92D .892.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )A .10,12B .12,11C .11,12D .12,12 3.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是15 4.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A .6B .6.5C .7D .85.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( )A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 6.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→7.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5 8.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( ) A .k≠3 B .k =±3 C .k =3 D .k =﹣3 9.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30 10.下列计算正确的是( ) A 42=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 11.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组. 12.在ABC 中,10AB =,40AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或10二、填空题13.一组数据2,3,4,x ,6的平均数是4,则x 是_______.14.某班七个兴趣小组人数分别为4,5,6,x ,6,7,7,已知这组数据的平均数是6,则这组数据的众数是______.15.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当1n =时,直线1:21l y x =-+与x 轴和y 轴分别交于点1A 和1B ,设11AOB (其中0是平面直角坐标系的原点)的面积为1S ;当2n =时,直线2l :3122y x =-+与x 轴和y 轴分别交于点2A 和2B ,设22A OB 的面积为2S ;……依此类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n A OB 的面积为n S .则1S =________,123n S S S S +++⋅⋅⋅+=________. 16.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.17.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.18.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.19.如图,ABC 中,AB 5=,BC 6=,BC 边上的中线AD 4=,则ADC ∠=________.20.计算:()235328-+---=__________.三、解答题21.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t ,单位:h )的一组样本数据,其部分条形图和扇形图如下: (1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数;(3)估计全班学生上周双休日的平均课外阅读时间.22.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 人 ,图①中m 的值为 .(2)求本次调查获取的样本数据的众数、中位数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.23.如图,在直角坐标系中,ABC 的三个顶点的坐标分别是()3,4A -,()5,2B -,()2,1C -.(1)画出ABC 关于x 轴成轴对称的111A B C △,并写出点1A ,1B ,1C 的坐标; (2)请在x 轴上找一点P ,使1AP PC +的值最小,标出点P 的位置并写出点P 的坐标. 24.如图,BD 为ABC 的角平分线,E 为AB 上一点,BE BC =,连结DE . (1)求证:BDC BDE ≅△△;(2)若7AB =,2CD =,90︒∠=C ,求ABD △的面积.25.计算:10181220202-⎛⎫+-+- ⎪⎝⎭. 26.在△ABC 中,AB =AC =10, AD 是BC 边上的高,点E 在边BC 上,连接AE .(1)当AD =6时,①求△ABC 的面积.②若AE 平分∠BAD ,求CE 的长.(2)探求三条线段AE , BE ,CE 之间的等量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:8520%9030%9250%17274690⨯+⨯+⨯=++=(分),故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.2.C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.3.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D 正确.故选:C .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.4.C解析:C【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案.【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7,∴()775667898x =⨯-+++++=,∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7,∴这组数据的中位数是7.故选C .【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.5.B解析:B【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;.【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误;故选:B .【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.6.D解析:D【分析】根据图像,以及点的运动变化情况,前两段是y 关于x 的一次函数图像,判断y 随x 的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C 选项.【详解】根据图像,前端段是y 关于x 的一次函数图像,∴应在AC,BD 两段活动,故A ,B 错误,第一段y 随x 的增大而减小,第二段y 随x 增大而增大,第一段的最高值与第二段的最高值不相等,∵AE=EC∴C 错误故选:D【点睛】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.7.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.8.D解析:D【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答.【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数,∴k 2﹣9=0,且k ﹣3≠0,解得:k =﹣3,故选:D.【点睛】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.9.C解析:C【分析】延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.10.C解析:C【分析】A 选项利用二次根式的化简判断即可;B 利用合并同类项的运算判断即可;C 利用积的乘方判断即可;D 利用同底数幂的除法判断即可;【详解】A 42= ,不符合二次根式的化简,故该选项错误;B 、22223x x x += ,不符合合并同类项的运算,故该选项错误;C 、()326328a ba b -=-,故该选项正确; D 、()523x x x -÷=- ,不符合同底数幂的除法,故该选项错误;故选:C .【点睛】本题考查了二次根式的化简,合并同类项,整数指数幂,正确掌握公式是解题的关键;11.C解析:C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】解:①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键. 12.C解析:C【分析】分两种情况分类讨论,如图所示,分别在Rt ABD △与Rt ACD △中,利用勾股定理求出BD 与CD 的长,即可求出BC 的长.【详解】根据题意画出图形,如图所示,AD 是ABC 的高,∴90ADB ADC ∠=∠=︒,如图1,10AB =,40AC ,6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=, ∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=, ∴()22224062CD AC AD =-=-=,∴10BC BD CD =+=;如图2,10AB =,40AC 6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=,∴8BD ==,在Rt ACD △中,由勾股定理得:222AD CD AC +=,∴2CD ===,∴6BC BD CD =-=,∴BC 的长度为:6或10.故选:C .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.二、填空题13.5【分析】根据用平均数的定义列出算式再进行计算即可得出答案【详解】解:∵数据234x6的平均数是4∴(2+3+4+x+6)÷5=4解得:x=5;故答案为:5【点睛】本题考查了平均数的概念平均数是指在解析:5【分析】根据用平均数的定义列出算式,再进行计算即可得出答案.【详解】解:∵数据2,3,4,x ,6的平均数是4,∴(2+3+4+x+6)÷5=4,解得:x=5;故答案为:5.【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数. 14.7【解析】【分析】根据平均数的计算公式先求出x 的值再根据众数的定义求解即可【详解】根据题意知解得:则这组数据为4566777所以这组数据的众数为7故答案为:7【点睛】此题考查众数与平均数众数是一组数解析:7【解析】【分析】根据平均数的计算公式先求出x 的值,再根据众数的定义求解即可.【详解】根据题意知4562x 7267++⨯++⨯=, 解得:x 7=,则这组数据为4,5,6,6,7,7,7,所以这组数据的众数为7,故答案为:7.【点睛】此题考查众数与平均数,众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.15.【分析】首先求得S1S2Sn 的值然后由规律:×=−求解即可求得答案【详解】当n =1时直线l1:y =−2x +1与x 轴和y 轴分别交于点A1和B1则A1(0)B1(01)∴S1=××1=∵当n =2时直线l 解析:1422n n + 【分析】 首先求得S 1,S 2,S n 的值,然后由规律:11n +×1n =1n −11n +求解即可求得答案. 【详解】当n =1时,直线l 1:y =−2x +1与x 轴和y 轴分别交于点A 1和B 1,则A 1(12,0),B 1(0,1), ∴S 1=12×12×1=14, ∵当n =2时,直线l 2:y =−32x +12与x 轴和y 轴分别交于点A 2和B 2, 则A 2(13,0),B 2(0,12), ∴S 2=12×13×12, ∴直线l n 与x 轴和y 轴分别交于点A n 和B n ,△A n OB n 的面积为S n =12×11n +×1n , ∴S 1+S 2+S 3+…+S n =12×12×1+12×13×12+…+12×11n +×1n =12×(1−12+12−13+…+1n −11n +) =12×(1−11n +) =22n n +. 故答案为:14,22n n +. 【点睛】此题考查了一次函数的应用.解题的关键是找到规律:△A n OB n 的面积为S n =1 2×11n+×1n与11n+×1n=1n−11n+.16.(0)【分析】过A和B分别作AF⊥OC于FBE⊥OC于E利用已知条件可证明△AFC≌△CEB再有全等三角形的性质和已知数据即可求出B点的坐标然后求出直线BC的解析式即可得到结论【详解】解:过A和B分解析:(0,83)【分析】过A和B分别作AF⊥OC于F,BE⊥OC于E,利用已知条件可证明△AFC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标,然后求出直线BC的解析式,即可得到结论.【详解】解:过A和B分别作AF⊥OC于F,BE⊥OC于E,∵∠ACB=90°,∴∠ACF+∠CAF=90°∠ACF+∠BCE=90°,∴∠CAF=∠BCE,在△AFC和△CEB中,90AFC CBECAF BCEAC AC︒⎧∠=∠=⎪∠∠⎨⎪=⎩=,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF﹣OC=4,OE=CE﹣OC=2﹣1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.17.75【分析】由将正方形纸片对折折痕为MN可得MA=MD=由折叠得AB=AH 由四边形ABCD是正方形得AD=AB可推出AH=AD=2AM可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB解析:75.【分析】由将正方形纸片对折,折痕为MN,可得MA=MD=1AD2,由折叠得AB=AH由四边形ABCD是正方形得AD=AB,可推出AH=AD=2AM,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB中,AH=AB由内角和可求∠ABH=75 即可.【详解】解:∵正方形纸片对折,折痕为MN,∴MN是AD的垂直平分线,∴MA=MD=1AD2,∵把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,∴AB=AH,∵四边形ABCD是正方形,∴AD=AB,∴AH=AD=2AM,∵∠AMH=90°,AM=1AH2,∴∠AHM=30°,∵MN∥AB,∴∠BAH=30°,在△AHB中,AH=AB,∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】 本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.18.【分析】由四边形ABCD 是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA ∠BEC=∠BCA 继而得到∠ACB=2∠BAC 再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC , ∠ABC=∠D=102°,∵AD=AE=BE ,∴BC=AE=BE ,∴∠EAB=∠EBA ,∠BEC=∠BCA ,∵∠BEC=∠EAB +∠EBA=2∠EAB ,∴∠ACB=2∠BAC ,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.19.【分析】根据中线的性质及勾股定理的逆定理即可求出的度数【详解】∵边上的中线∴∵∴【点睛】本题考查中线的性质勾股定理的逆定理的应用掌握相应的性质定理是解答此题的关键解析:90【分析】根据中线的性质及勾股定理的逆定理即可求出ADC ∠的度数.【详解】∵AB 5=,BC 6=,BC 边上的中线4AD =,∴BD 3=,∵222+=,345∴ADC ADB90∠∠==.【点睛】本题考查中线的性质勾股定理的逆定理的应用,掌握相应的性质定理是解答此题的关键.20.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.三、解答题21.(1)详见解析;(2)中位数是3(h),众数是4(h);(3)全班学生上周双休日的平均课外阅读时间为3.36h.【分析】(1)由条形统计图知:读1小时的人数为3人,在扇形统计图中占的比例为12%,则总调查人数可求出.这样可分别求出读2小时的人数,读3小时的人数,以及读4小时的人数占的比例,再计算其在扇形统计图中的圆心角.最后求出读5小时的人数占的比例和读5小时的人数;(2)根据中位数和众数的定义解答.(3)根据平均数的定义计算即可.【详解】解:(1)由条形统计图知,读1小时的人数为3人,在扇形统计图中占的比例为12%,∴总调查人数=3÷12%=25人,∴读2小时的人数=25×16%=4人,读3小时的人数=25×24%=6人,读4小时的人数占的比例=7÷25=28%,在扇形统计图中的圆心角=360°×28%=100.8°,读5小时的人数占的比例=1﹣28%﹣24%﹣16%﹣12%﹣8%=12%,读5小时的人数=25×12%=3人.(2)中位数是3(h ),众数是4(h );(3)1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(h ).估计全班学生上周双休日的平均课外阅读时间为3.36h .【点睛】本题考查了条形统计图和扇形统计图以及从统计图中获取信息的能力.解题时要掌握平均数、中位数、众数的概念和求法.22.(1)50,32;(2)众数为4;中位数是3;(3)420【分析】(1)根据2台的人数和所占百分比可求出调查的学生总人数,用4台的人数除以总人数可得m 的值;(2)根据众数和中位数的定义求解;(3)用1500乘以拥有3台移动设备的学生人数所占的百分比即可.【详解】解:(1)本次接受随机抽样调查的学生人数为:10÷20%=50(人),16%100%32%50m , ∴m =32,故答案为:50,32; (2)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,且332+=3, ∴这组数据的中位数是3;(3)1500×28%=420(人),答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,众数和中位数的定义以及样本估计总体,能够从不同的统计图中获取有用信息是解题的关键.23.(1)作图见解析,A 1的坐标为(-3,-4)、B 1的坐标为(-5,-2)、C 1的坐标为(-2,-1);(2)标出点P 的位置见解析,点P 的坐标为(115-,0).【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得;(2)连接1AC ,与x 轴的交点即为所求,再利用待定系数法求得直线1AC 的解析式即可求解.【详解】(1)如图所示,△A 1B 1C 1即为所求,由图知,A 1的坐标为(-3,-4)、B 1的坐标为(-5,-2)、C 1的坐标为(-2,-1); (2)如图所示,点P 即为所求.设直线1AC 的解析式为y kx b =+,∴3421k b k b -+=⎧⎨-+=-⎩, 解得:511k b =-⎧⎨=-⎩, ∴直线1AC 的解析式为511y x =--,当0y =时,115x =-, ∴点P 的坐标为(115-,0). 【点睛】本题主要考查了作图-轴对称变换,待定系数法确定一次函数的解析式,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.24.(1)证明见解析;(2)7【分析】(1)根据角平分线的性质可得DBC DBE ∠=∠,再根据已知条件BE BC =,BD BD =,即可证明;(2)根据(1)中结果,得2DE CD ==,90DEB C ∠=∠=︒,即可求得ABD △的面积.【详解】(1)∵BD 平分ABC ∠,∴DBC DBE ∠=∠,∴在BDC 和BDE 中,BD BD =,DBC DBE ∠=∠,BE BC =,∴BDC ≌BDE ;(2)∵BDC ≌BDE ,∴2DE CD ==,90DEB C ∠=∠=︒, ∴1172722ABD S AB DE =⋅=⨯⨯=△. 【点睛】本题考查了角平分线的性质、全等三角形的证明和性质、三角形面积等知识,解题的关键是熟练掌握运用以上知识点.25.【分析】利用二次根式的化简,去绝对值,负整数指数幂,零指数幂进行计算,再进行混合加减即可.【详解】101120202-⎛⎫+- ⎪⎝⎭121=+-=.【点睛】本题考查二次根式的混合运算.掌握二次根式的化简,绝对值、负整数指数幂、零指数幂的意义是计算本题的关键.26.(1)①△ABC 的面积=48;②CE=11;(2)2100AE BE CE =-⋅.【分析】(1)①利用等腰三角形三线合一和勾股定理可求得BC=16,再计算面积即可;②作EF ⊥AB ,与AB 相交于F ,根据角平分线的性质可得EF=ED ,利用等面积法即可求得ED ,从而求得EC ;(2)在Rt △AED 和Rt △ADC 利用勾股定理可得等量关系式,再借助线段的和差和等量代换即可得出AE , BE ,CE 之间的等量关系.【详解】解:(1)①∵AB =AC =10, AD 是BC 边上的高,∴DC=BC=2BD,AD ⊥BC ,∵AD =6,在Rt △ABD 中,根据勾股定理22221068BD AB AD =-=-=,∴BC=16,△ABC 的面积=111664822BC AD ⋅=⨯⨯=; ②作EF ⊥AB ,与AB 相交于F ,∵AD ⊥BC ,AE 平分∠BAD ,∴EF=ED ,∵AD =6,AB=10,∴111()8222ABD S AB FE AD ED ED AB AD ED =⋅+⋅=⋅+=, 11862422ABD S BD AD =⋅=⨯⨯=, ∴3ED =, ∴CE=DC+ED=8+3=11;(2)在Rt △AED 中222AE AD ED =+,在Rt △ADC 中,222221()2AD AC DC AC BC =-=-, 12DE BD BE BC BE =-=-, ∴222211()()22AE AC BC BC BE =-+-=22221144AC BC BC BC BE BE -+-⋅+ =22AC BC BE BE -⋅+=2()AC BE BC BE --=2AC BE CE -⋅=100BE CE -⋅,故2100AE BE CE =-⋅.【点睛】本题考查勾股定理,等腰三角形的性质,角平分线的性质.(1)中掌握等面积法是解题关键;(2)中能借助勾股定理列出等量关系式建立线段之间的联系是解题关键.。

【翼教版】初二数学下期末模拟试题及答案

【翼教版】初二数学下期末模拟试题及答案

一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5 B .中位数是5C .平均数是6D .方差是3.62.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A .50B .52C .48D .23.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.5 4.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差5.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限6.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1 D .当1x >时,0y >7.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定8.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .9.下列运算正确的是( ). A .235+=B .3223-=C .236⨯=D .632÷=10.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5 B .若∠ACP=∠B ,则CP=5 C .若∠ACP=45°,则CP=245 D .若∠ACP=∠B ,则CP=24511.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+12.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =二、填空题13.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.14.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲 乙 丙 丁 x7 8 8 7 s 211.20.91.815.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.16.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.17.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.18.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.19.已知8817y x x =--,则x y +的平方根为_________.20.已知△ABC 中,AB=AC=5,BC=6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图.(1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲1089108乙109a b9()1若甲、乙射击平均成绩一样,求+a b的值;()2在()1条件下,若,a b是两个连续整数,试问谁发挥的更稳定?23.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?24.正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)若AB BE =,求DAE ∠度数; (2)求证:CE EF = 25.计算:(1)182722+-(2)232632⎛⎫+⨯ ⎪ ⎪⎝⎭26.如图,AC 与BD 相交于点O ,AB //CD , OA =OC . (1)求证: △AOB ≌△COD .(2)若∠A +∠D =90°, AB =AC =2,求BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.B解析:B【详解】解:由题意知,新的一组数据的平均数=1n[(1x﹣50)+(2x﹣50+…+(n x﹣50)]=1 n [(12x x++…+nx)﹣50n]=2,∴1n (12x x++…+nx)﹣50=2,∴1n (12x x++…+nx)=52,即原来的一组数据的平均数为52.故选B.3.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可. 【详解】原数据的3,4,4,5的平均数为3+4+4+5=44, 原数据的3,4,4,5的中位数为4+4=24, 原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5; 新数据3,4,4,4,5的平均数为3+4+4+4+5=45, 新数据3,4,4,4,5的中位数为4, 新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4; ∴添加一个数据4,方差发生变化, 故选D . 【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.5.D解析:D 【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩,∴212x a x >⎧⎪⎨-<⎪⎩,∵不等式组有解,∴122->a , ∴5a >,∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限, 故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.6.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C . 【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.7.A解析:A 【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解. 【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小, ∵-2<3, ∴12y y >, 故选:A . 【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.8.A解析:A 【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像. 【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°, ∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°, ∴∠OAB=∠DAC , 在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ), ∴OB=CD , ∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1, ∴y=x+1(x >0). 故选A . 【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.9.C解析:C 【分析】二次根式的加减法法则,乘除法法则计算并依次判断. 【详解】A 23∴A 选项不符合题意;B 选项:原式22=∴B 选项不符合题意;C 选项:原式236=⨯=∴C 选项符合题意;D 632=∴D 选项不符合题意.故选:C . 【点睛】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.10.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D.【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.11.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.二、填空题13.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy 的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 83【解析】【分析】由中位数及众数的定义和给定的条件求出x ,y 的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=. ∴这组数据的平均数为3; 这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83.故答案为3;8 3 .【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 14.丙【分析】先比较平均数得到乙组和丙组成绩较好然后比较方差得到丙组的状态稳定于是可决定选丙组去参赛【详解】因为乙组丙组的平均数比甲组丁组大而丙组的方差比乙组的小所以丙组的成绩比较稳定所以丙组的成绩较好解析:丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.15.【分析】先求出y=2x+3与y轴交点坐标为(03)代入y=3x﹣2b即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y轴交点为(03)将(03)代入y=3x﹣2b中得-2b=解析:3 2 -【分析】先求出y=2x+3与y轴交点坐标为(0,3),代入y=3x﹣2b,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y轴交点为(0,3),将(0,3)代入y=3x﹣2b中,得-2b=3,解得b=32 -,故答案为:32 -.【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键.16.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中 解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 19.±5【分析】先根据二次根式有意义的条件求得x 的值然后再求得y 的值最后再求x+y 的平方根即可解答【详解】解:∵x-8≥08-x≥0∴x=8∴∴x+y 的平方根为故答案为±5【点睛】本题考查了二次根式的意解析:±5【分析】先根据二次根式有意义的条件求得x 的值,然后再求得y 的值,最后再求x+y 的平方根即可解答.【详解】解:∵x-8≥0,8-x≥0∴x=8 ∴1717y =∴x+y 的平方根为5==±.故答案为±5.【点睛】本题考查了二次根式的意义和代数式求值,根据二次根式的意义求得x 的值成为解答本题的关键.20.4【分析】过A 作AP ⊥BC 于P 根据勾股定理以及垂线段最短即可得到结论【详解】解:过A 作AP ⊥BC 于P ∵AB=AC=5∴BP=BC=3在Rt △ABP 中由勾股定理得AP=4∵点P 是线段BC 上一动点∴AP解析:4【分析】过A 作AP ⊥BC 于P ,根据勾股定理以及垂线段最短即可得到结论.【详解】解:过A 作AP ⊥BC 于P ,∵AB=AC=5,∴BP=12BC=3,在Rt△ABP中,由勾股定理得,AP=4∵点P是线段BC上一动点,∴AP≥4所以,AP的最小值为4故答案为:4.【点睛】本题考查了等腰三角形的性质以及勾股定理,求出AP=4是解题的关键.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数. (3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人). 【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)17a b +=;(2)乙更稳定【分析】(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出+a b 的值;(2)根据题意令8,9a b ==,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1) 108910895x ++++==甲(环) 109995a b x ++++==乙(环) 17a b ∴+=(2)17a b +=且,a b 为连续的整数∴令8,9a b ==()()()()()22222211098999109890.85S ⎡⎤=-+-+-+-+-=⎣⎦甲, ()()()()()2222221109999989990.45S ⎡⎤=-+-+-+-+-=⎣⎦乙, 22S S >甲乙∴乙更稳定【点睛】本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.23.(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 24.(1)22.5︒;(2)见解析.【分析】(1)用正方形对角线平分对角,等腰三角形性质计算即可;(2)借助正方形的性质,证明三角形全等,运用等角对等边证明即可.【详解】(1)∵ABCD 为正方形,∴45ABE ∠=︒.又∵AB BE =, ∴()11804567.52BAE ∠=⨯︒-︒=︒. ∴9067.522.5DAE ∠=︒-︒=︒(2)证明:∵正方形ABCD 关于BD 对称,∴ABE CBE △△≌,∴BAE BCE ∠=∠.又∵90ABC AEF ∠=∠=︒,∴BAE EFC ∠=∠,∴BCE EFC ∠=∠,∴CE EF =.【点睛】本题考查了正方形的性质,等腰三角形的性质,三角形的全等,等腰三角形的判定,运用正方形的性质,证明三角形的全等是解题的关键.25.(1;(2)【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭=32=32+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.26.(1)证明见解析;(2)BD =【分析】(1)根据平行的性质可得两组对应角相等,再结合OA =OC 根据AAS 即可证明全等; (2)先证明△DOC 为直角三角形,根据勾股定理即可求得DO ,从而求得BD .【详解】解:(1)证明:∵AB //CD ,∴∠A=∠C ,∠B=∠D ,又∵OA =OC ,∴△AOB ≌△COD (AAS );(2)∵∠A +∠D =90°,∠A=∠C ,∴∠C +∠D =90°,∴∠DOC=90°,△DOC 为直角三角形,∵△AOB ≌△COD ,AB =AC =2,∴BO=DO ,DC=AB=2,OA =OC =1,∴在Rt △DOC 中根据勾股定理,OD=∴=+=BD BO DO【点睛】本题考查全等三角形的性质和判定,勾股定理,两锐角互余的三角形是直角三角形.(1)中掌握全等三角形的几种判定定理,能根据已知条件选取合适的定理是解题关键;(2)中能证明△DOC为直角三角形是解题关键.。

【翼教版】八年级数学下期末模拟试卷含答案

【翼教版】八年级数学下期末模拟试卷含答案

一、选择题1.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .92.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表: 第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁 3.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( )A .4-B .1-C .0D .14.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,385.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)6.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大 B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <8.如图,边长为2的正方形ABCD 中,点P 从点A 出发沿路线A B C D →→→匀速运动至点D 停止,已知点P 的速度为1,运动时间为t ,以P .A .B 为项点的三角形面积为S ,则S 与t 之间的函数图象可能是( )A .B .C .D .9.x 2-x 的取值范围为( ) A .x 2≥B .x 2≠C .x 2>D .x 2<10.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个11.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠12.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm二、填空题13.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.14.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 126 132 136 138 142 人数14212则这10名学生的数学周考成绩的中位数是________分. 15.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;16.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k xy k x b =⎧⎨=+⎩的解是___________.17.已知5ab =,则baab a b+=__. 18.如图,在正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN 、点E F P Q 、、、分别在边AB BC CD AD 、、、上,点M N 、在边HG 上,且组成的图形为轴对称图形,则正方形ABCD 的面积为__________.19.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.20.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.三、解答题21.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?22.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?23.上个周末,姚家中学的李老师开车带着家人从学校出发,沿着图①中的线路去绿博园、中牟黄河滩区游玩、然后去官渡中学探望朋友.李老师一家早上7:30开着电动汽车从学校出发行走一段时间到绿博园,在绿博园游玩了一段时间;又开车去雁鸣湖镇辖区的黄河滩,他们在滩区游玩了1.5h ;然后在中午12:30赶到官渡中学(电动汽车的行驶速度是40km/h ).图②中的图象表示李老师一家所行驶的路程()km y 与时间()h x 的函数关系.请结合图中信息解答下列问题:(1)点A 的坐标是______,他们在绿博园游玩了_____h ,线段OA 的函数表达式是______;(2)线段OA ,BC ,DE 平行吗?请简单说明理由. (3)请求出线段BC 的函数表达式;(4)如果李辉在11:30骑电动车从官渡中学出发,以20km/h 的速度沿图①中的线路前往黄河滩区游玩,那么李辉在几点钟会和李老师相遇?24.正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)若AB BE =,求DAE ∠度数; (2)求证:CE EF =25.解方程组和计算 (1)计算:①(6﹣215) ×3﹣612; ②4(3+7)0+12×8﹣(1﹣2)2 (2)解方程组: ①43522x y y x +=⎧⎨=-⎩;②3414233x y x y -=⎧⎨-=⎩.26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n+=∴m,n中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.2.C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.3.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.4.B解析:B【分析】根据众数和中位数的概念求解可得. 【详解】将数据重新排列为37,37,38,39,40,40,40 所以这组数据的众数为40,中位数为39, 故选B . 【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.B解析:B 【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴, B 点坐标为(-2,0), D 是OB 的中点, ∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3), 设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩,∴A 'D 的直线解析式为y =x +1, 当x =0时,y =1 ∴E (0,1). 故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.6.B解析:B 【分析】由一次函数的增减性判断A ;通过求直线与坐标轴交点可判断B ;根据一次函数图象与系数的关系判断C ;根据k 值相同而b 值不相同两条直线平行判断D ;. 【详解】解:A 、因为-2<0,所以y 随x 的增大而减小,故A 错误;B 、当b=4时,直线与坐标轴的交点分别为(2,0),(0,4),所以与坐标轴围成的面积是4,故B 正确;C 、图象一定过第二、四象限,故C 错误;D 、2y x b =-+与直线y=3-2x 重合或平行,不相交,故D 错误; 故选:B . 【点睛】本题主要考查了一次函数的图象与性质,采用数形结合的方法求解是关键.7.D解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x >0,∴211+2y x =>12,此选项正确;C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D.【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P在AB上运动,P.A.B为项点的三角形AB边上的高为0,即面积s=0;当2<t≤4时,P在BC上运动,P.A.B为项点的三角形AB边上的高为逐渐增大,即面积s逐渐增大;当4<t≤6时,P在DC上运动,P.A.B为项点的三角形AB边上的高恒为2,即面积s为1222⨯⨯=2;综上可以发现C满足题意.故答案为C.【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.9.A解析:A【分析】因为二次根式的被开方数是非负数,所以x20-≥,据此可以求得x的取值范围.【详解】则x20-≥,解得:x2≥.故选:A【点睛】(a0≥)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.A解析:A【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED⊥CA,根据三角形中位线定理可得EF=12AB;由直角三角形斜边上中线等于斜边一半可得EG=12CD,即可得EF=EG;连接EG,可证四边形DEFG是平行四边形,即可得EH=12 EG.【详解】解:如图,连接FG,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E,F,G分别是OA,OB,CD的中点,∴EF∥AB,EF=12AB,∵∠CED=90°,CG=DG=12CD,∴EG=12CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴EH=HG,即EH=12EG,故③正确;故选:A.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.11.D解析:D【分析】先证明△ADF≌△BEF,得到AD=BE,推出四边形AEBD是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD中,AD∥BC,∴∠DAB=∠EBA,∵点F是AB的中点,∴AF=BF,∵∠AFD=∠BFE,∴△ADF≌△BEF,∴AD=BE,∵AD∥BE,∴四边形AEBD是平行四边形,A、当BAD BDA∠=∠时,得到AB=BD,无法判定四边形AEBD是菱形,故该选项不符合题意;B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;D、当DE平分ADB∠时,四边形AEBD是菱形,故该选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.12.B解析:B【分析】要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm,矩形的宽是圆柱的高12cm.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即13==cm故选:B.【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.二、填空题13.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x解析:30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.14.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数.【详解】由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分),故答案为:134.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 15.(12)【分析】根据二元一次方程组的解对应的x 和y 值就是对应函数交点的横纵坐标即可得解【详解】解:由可得它的解为故直线与直线的交点坐标是(12)故答案为:(12)【点睛】本题考查一次函数与二元一次方 解析:(1,2)【分析】根据二元一次方程组的解对应的x 和y 值,就是对应函数交点的横纵坐标即可得解.【详解】解:由1mx y y nx -=⎧⎨=⎩可得1y mx y nx =-⎧⎨=⎩,它的解为12x y =⎧⎨=⎩, 故直线1y mx =-与直线y nx =的交点坐标是(1,2),故答案为:(1,2).【点睛】本题考查一次函数与二元一次方程组.理解二元一次方程组与一次函数的关系是解题关键.16.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 17.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b =+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即25b a a b a b +=±. 故答案为25±.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.18.【分析】连接交于交于交于依据轴对称图形的性质即可得到的长进而得到正方形的面积【详解】解:如图连接交于交于交于正方形中有面积为4的正方形和面积为2的正方形又组成的图形为轴对称图形为对称轴为等腰直角三角 解析:279242+ 【分析】连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,依据轴对称图形的性质,即可得到BD 的长,进而得到正方形ABCD 的面积.【详解】解:如图,连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN , 2EH EF ∴==,2MQ QP ==,又组成的图形为轴对称图形,BD ∴为对称轴,BEF ∴∆、DPQ ∆为等腰直角三角形,四边形EKSH 、四边形MSRQ 为矩形, 112EK BK EF ∴===,11222DR QR PQ ===,2KN EH ==,2RS MQ ==, 1312223222BD ∴=+++=+, ∴正方形ABCD 的面积22113279(32)222242BD ==⨯+=+, 故答案为:279242+.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.19.【分析】根据题意可知最小时落在线段PD 上利用勾股定理求出PD 即可【详解】如图连接PD 根据题意可知当落在线段PD 上时最小且最小值为PD 长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意 解析:17 【分析】 根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.20.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详 2【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP△为等腰直角三角形,再根据等腰直角三角形的性质求解即可.【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小,连接12,PO P O ,则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角, 所以,22121222PP OP OP ===, 即PQR 2. 2.【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.三、解答题21.(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大; 一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.22.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.23.(1)点1,202A ⎛⎫ ⎪⎝⎭,1.5h ,40y x =;(2)线段,,OA BC DE 平行;理由见解析;(3)线段BC 的函数表达式4060y x =-,(4)李辉在12点10分会和李老师相遇.【分析】(1)用路程除以速度求出A 点的时间,用B 点的时间减去A 点的时间在绿博园游玩时间,OA 的表达式y 用时间x 乘以电动汽车的速度40即可,(2)利用电动汽车速度确定三段函数的k 值,k 相同则线段,,OA BC DE 位置关系即可判断,(3)先求出B 点坐标,设出BC 的解析式,由k 为电动汽车的速度,代入求b 即可,(4)先求李老师从黄河区出发的时间,再列出两者相遇的方程,求出相遇时间,加上李辉出发时的时间即可【详解】(1)20÷40=12,点1,202A ⎛⎫ ⎪⎝⎭,2-12=1.5h ,线段OA 表达式:40y x =;(2)线段,,OA BC DE 平行,因为电动汽车的行驶速度都是40/km h ,三条线段的函数表达式系数k 都是电动汽车的行驶速度,由一次函数的性质,k 相同,直线是平行的;(3)设BC 的函数表达式y kx b =+,由(1)(2)得40k =,又由图象可知,点B 的坐标是()2,20,所以,20402b =⨯+,解得60b =-,所以,线段BC 的函数表达式4060y x =-;(4)设李辉出发a 小时后,两车相遇,李老师所用时间7时30分出发到在黄河区游玩结束11时45分,比李辉晚出发14小时, 根据题意,得12040304a a ⎛⎫+-= ⎪⎝⎭, 解得23a =, 11时30分出发到相遇用260=403⨯分,即11时70分=12时10分, 所以,他们在12点10分相遇.【点睛】本题考查点的坐标,线段的表达式,线段的位置关系,相遇行程问题,掌握点的坐标求法,线段表达式的求法,会列行程问题应用题,会用数形结合的思想解一次函数中行程问题是解题关键.24.(1)22.5︒;(2)见解析.【分析】(1)用正方形对角线平分对角,等腰三角形性质计算即可;(2)借助正方形的性质,证明三角形全等,运用等角对等边证明即可.【详解】(1)∵ABCD 为正方形,∴45ABE ∠=︒.又∵AB BE =, ∴()11804567.52BAE ∠=⨯︒-︒=︒. ∴9067.522.5DAE ∠=︒-︒=︒(2)证明:∵正方形ABCD 关于BD 对称,∴ABE CBE △△≌,∴BAE BCE ∠=∠.又∵90ABC AEF ∠=∠=︒,∴BAE EFC ∠=∠,∴BCE EFC ∠=∠,∴CE EF =.【点睛】本题考查了正方形的性质,等腰三角形的性质,三角形的全等,等腰三角形的判定,运用正方形的性质,证明三角形的全等是解题的关键.25.(1)①65-②3+22;(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩ 【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式2184562=⨯ 32653265==-, 故答案为:65-② 原式2=4+2(1222)2⨯+- =4+23+22=3+22- 故答案为:3+22;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x yy x,把(2)代入(1)中得:4x+3(2x﹣2)=5,解得:x=11 10,把x=1110代入(2)得y=15,所以方程组的解为:111015xy⎧=⎪⎪⎨⎪=⎪⎩,故答案为111015xy⎧=⎪⎪⎨⎪=⎪⎩;解②方程组:3414(1) 233(2)-=⎧⎨-=⎩x yx y,(1)×2﹣(2)×3得:-8y+9y=28﹣9,解得y=19,把y=19代入(2)中得:2x﹣57=3,解得x=30,所以方程组的解为:3019 xy=⎧⎨=⎩.故答案为:3019 xy=⎧⎨=⎩.【点睛】本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.26.5【分析】过点C作CE⊥AB于点E,连接AC,根据题意直接得出AE,EC的长,再利用勾股定理得出AC的长,进而求出答案.【详解】如图所示:过点C作CE⊥AB于点E,连接AC,由题意可得:EC=BD=1.2m,AE=AB−BE=AB−DC=1.3−0.8=0.5m,∴1.3==m,∴1.3÷0.2=6.5s,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。

【翼教版】初二数学下期末模拟试卷带答案

【翼教版】初二数学下期末模拟试卷带答案

一、选择题1.某校九年级(1)班部分学生上学路上所花时间如图所示.设他们上学路上所花时间的平均数为a ,中位数为b ,众数为c ,则有( )A .b a c >>B .c a b >>C .a b c >>D .b c a >> 2.数据2-,1-,0,1,2的方差是( )A .0B .2C .2D .43.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表: 班级 参加人数 中位数 方差 平均数 甲 55 149 1.91 135 乙551511.10135某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③B .①②C .①③D .②③5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( )A .B .C .D .7.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .8.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0) D .(43,0)或(0,2) 9.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .2B .3C .231D .23210.函数2y x=-x 的取值范围是( ). A .2x > B .2x ≠ C .2x <D .0x ≠11.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( )A .AC BD ⊥B .AC BD =C .AC 平分BAD ∠ D .ADB ABD ∠=∠12.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB 边上的高长为( )A.35B.25C.35D.322二、填空题13.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.14.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.15.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在直线AC上,且△OMC的面积是△OAC的面积的14,则点M的坐标为_____.16.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).17.如图,在平面直角坐标系xOy中,点A的坐标为(10,8),过点A作AB x⊥轴于点B,AC y⊥轴于点C,点D在AB上.将△CAD沿直线CD翻折,点A恰好落在x轴上的点E处,则点D的坐标为_______.18.如图,正方形ABCD2,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为_____.19.()9920020211(0.25)2232(2)(3)22π-⨯--+--÷-⨯+-=∣∣_________20.已知:直角三角形两直角边a ,b 满足a+b=17,ab=60,则此直角三角形斜边上的高为__________;三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?22.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分): 甲 78 9 7 10 10 910 10 10乙 10 8 7 9 8 10 10 910 9)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分 2,则成绩较为整齐的是 队.23.某公司市场营销部的营销员的个人月收入y (元)与该营销员每月的销售量x (万件)成一次函数关系,图象如图所示.根据图象提供的信息,解答下列问题:(1)求出营销员的个人月收入y (元)与该营销员每月的销售量x (万件)(0x ≥)之间的函数关系式.(2)该公司营销员李平5月份的销货量为1.2万件,求李平5月份收入. 24.综合与实践——探究正方形旋转中的数学问题 问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形. 深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 25.计算:(12(132)486-+ (2)63)(36)--26.有一块四边形草地ABCD (如图),测得10AB AD ==m ,26CD =m ,24BC =m ,60A ∠=︒. (1)求ABC ∠的度数;(2)求四边形草地ABCD的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据图形得出相关数据,再分别求出平均数、中位数、众数,由此即可得.【详解】由图可知,统计的学生人数为43310++=(人),他们上学路上所花时间分别为20,20,20,20,30,30,30,40,40,40,则平均数202020203030304040402910a+++++++++==,中位数3030302b+==,因为20出现的次数最多,所以众数20c=,因此有b a c>>,故选:A.【点睛】本题考查了平均数、中位数、众数,熟练掌握相关定义和计算公式是解题关键.2.C解析:C【分析】先计算平均数,再计算方差.方差的定义一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].【详解】解:平均数x=15(-2-1+0+1+2)=0,则方差S2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2.故选:C.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,x=1 n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C解析:C【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.D解析:D【分析】本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A、B、C都可证正确,选项D,面积为8时,对应x值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ的边长,MN=9-4=5,NP=4,故选项A正确;选项B,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误; 故选:D . 【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.6.C解析:C 【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决. 【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<,∴该函数的图象经过第一、三、四象限, 故选:C . 【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.7.A解析:A 【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像. 【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°, ∴∠OAB=∠DAC , 在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ), ∴OB=CD , ∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1, ∴y=x+1(x >0). 故选A . 【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.8.C解析:C 【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求. 【详解】∵要使得△PAB 的周长最小,A ,B 为固定点, ∴在x 轴上找到P 点,使得PA PB +最小即可, ∴将A 沿x 轴对称至A 1,则()11,1A -, 设直线A 1B 的解析式为:y kx b =+, 将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-,令0y =,解得:43x =, 即4,03P ⎛⎫⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.9.D解析:D【分析】连接HF ,过点G 作GI HF 交HF 于点I ,根据甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD ,可得EFH △是等腰直角三角形,则可求得45GFI ,30GHI ,根据勾股定理,可得:1GI =,3HI,则有1FI GI ,31EF HF HI FI ,根据正方形的对角线2AC EF =可求出答案.【详解】解:如图示,连接HF ,过点G 作GI HF 交HF 于点I ,∵甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .∴根据题意,根据对称性可得EFH △是等腰直角三角形,则有:90EFH,45EHF HEF ∵45GFE ,15EHG , ∴45GFI ,30GHI,又∵GI HF ,2MN =, ∴根据勾股定理,可得:1GI =,3HI , 则有1FIGI , ∴31EF HF HI FI , ∴正方形的对角线2231232ACEF ,故选:D .【点睛】 本题考查了正方形的性质,勾股定理,直角三角形的性质,熟悉相关性质是解题的关键. 10.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩ ∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.11.B解析:B【分析】根据矩形的性质及正方形的判定进行分析即可.【详解】解:四边形ABCD 是矩形,AC BD ⊥,∴矩形ABCD 是正方形;四边形ABCD 是矩形,//AD BC ∴, DAC BCA ∴∠=∠,AC 平分BAD ∠,BAC DAC ∴∠=∠,BAC ACB ∴∠=∠,∴AB BC =,∴矩形ABCD 是正方形;ADB ABD ∠=∠,∴AB AD =,∴四边形ABCD 是矩形,∴矩形ABCD 是正方形;故选:B .【点睛】本题考查矩形的判定,解题的关键是掌握正方形的判定方法.12.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△, ∵22125AB =+= ∴1322AB CD ⋅=, 则355CD ==, 故选:A .【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.二、填空题13.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20.【解析】【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】 设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13 [(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13[4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2=4×5=20,故答案为:20.【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.14.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 15.(15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m =∴1116322OMC S OC h m m =⋅⋅=⨯⋅=在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 16.>【分析】由k =2>0利用一次函数的性质可得出y 随x 的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k =2>0∴y 随x 的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,结合2>﹣1即可得出y 1>y 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大,又∵2>﹣1,∴y 1>y 2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k 的正负,判断y 随x 的变化规律是解题关键.17.【分析】如详解中图先作出△CDE ;再由折叠性质得到CE=CA=10DE=DA=8-m 利用勾股定理计算出OE=6则EB=4在Rt △DBE 中利用勾股定理得到(8-m )2=m2+42然后解方程求出m 即可得解析:(10,3)【分析】如详解中图,先作出△CDE ;再由折叠性质得到CE=CA=10,DE=DA=8-m ,利用勾股定理计算出OE=6,则EB=4.在Rt△DBE中利用勾股定理得到(8-m)2=m2+42.然后解方程求出m即可得到点D的坐标.【详解】解:如图,作△CDE.设DB=m.由题意可得,OB=CA=10,OC=AB=8,∵△CED与△CAD关于直线CD对称,∴CE=CA=10,DE=DA=8-m,在Rt△COE中,22,108∴EB=10-6=4.在Rt△DBE中,∠DBE=90°,∴DE2=DB2+EB2.即(8-m)2=m2+42.解得m=3,∴点D的坐标是(10,3).故答案为(10,3).【点睛】本题考查了作图以及利用折叠的性质和勾股定理解直角三角形,掌握相关性质是解答此题的关键.18.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO,∵四边形ABCD 是正方形,∴AB =AD 2BD 2=2,∠DAB =90°,又∵OM ⊥AD ,ON ⊥AB ,∴四边形AMON 是矩形,∴AO =MN ,∵当AO ⊥BD 时,AO 有最小值,∴当AO ⊥BD 时,MN 有最小值,此时AB =AD ,∠BAD =90°,AO ⊥BD ,∴AO =12BD =1, ∴MN 的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN 的最小值转化为线段AO 的最小值是解题的关键. 19.【分析】分别利用积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性质计算各项即可求解【详解】解:故答案为:【点睛】本题考查实数的混合运算掌握积的乘方逆运算绝对值的性质有理数的运算法则二次根式的性 解析:π7-【分析】分别利用积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质计算各项,即可求解.【详解】 解:()9920020211(0.25)2232(2)(3π)22-⨯--+--÷-⨯-∣∣ ()9910011(0.25)491π35222⎛⎫=-⨯-+--⨯-⨯+- ⎪⎝⎭ ()991(0.254)410π4532⎛⎫=-⨯⨯-+-⨯-+- ⎪⎝⎭()14π32255=-⨯-++- π7=-,故答案为:π7-.【点睛】本题考查实数的混合运算,掌握积的乘方逆运算、绝对值的性质、有理数的运算法则、二次根式的性质是解题的关键.20.【分析】设此直角三角形的斜边为c斜边上的高为h先根据勾股定理和完全平方公式的变形求出c再利用三角形的面积求解即可【详解】解:设此直角三角形的斜边为c斜边上的高为h则因为此直角三角形的面积=所以故答案解析:60 13【分析】设此直角三角形的斜边为c,斜边上的高为h,先根据勾股定理和完全平方公式的变形求出c,再利用三角形的面积求解即可.【详解】解:设此直角三角形的斜边为c,斜边上的高为h,则13c=====,因为此直角三角形的面积=1122ab ch=,所以6013abhc==.故答案为:60 13.【点睛】本题考查了勾股定理和完全平方公式等知识,正确变形、掌握解答的方法是关键.三、解答题21.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元), 答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大. 23.(1)1000800(0)y x x =+≥ (2)2000元【分析】 (1)设y 与x 的函数关系式为y=kx+b ,由图可知,函数经过点(0,800)和点(2,2000),列方程组求解;(2)当x=1.2时,代入(1)中函数关系式计算.【详解】(1)设所求的函数关系式为y kx b =+,函数图象过(0,800)和(2,2800)两点,80022800b k b =⎧∴⎨+=⎩,解得1000800k b =⎧⎨=⎩, 即营销员的个人月收入y (元)与该营销员每月的销售量x (万件)(0x ≥)之间的函数关系式为1000800(0)y x x =+≥.(2)当 1.2x =时,1000 1.28002000y =⨯+=,即李平5月份的收入为2000元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的相关知识点,会用待定系数法求函数解析式,会求函数值是解题关键.24.(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形.(2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒. 180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC . 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND =90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a ,∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.25.(1)6-32;(2)-15. 【分析】 (1)利用二次根式的加减运算法则计算即可; (2)根据平方差公式计算. 【详解】(1)原式=2622-+-=6-32(2)原式=22(326)(326)(3)(26)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.26.(1)150°;(2)253+120(m 2)【分析】(1)连接BD ,可得∆ABD 是等边三角形,利用勾股定理的逆定理得∠DBC=90°,进而即可求解;(2)过点A 作AP ⊥BD 于点P ,可得AP=53,结合三角形的面积公式,即可求解.【详解】(1)连接BD ,∵10AB AD ==m ,∠A=60°∴∆ABD 是等边三角形,∴∠ABD=∠A=60°,BD=10AB AD ==m ,∵26CD =m ,24BC =m ,∴BD 2+BC 2=CD 2,∴∠DBC=90°,∴∠ABC=90°+60°=150°;(2)过点A 作AP ⊥BD 于点P ,则BP=DP=12BD=5m ,AP=2253AD DP -=, ∴四边形草地ABCD 的面积=S ∆ABD +S ∆CBD =12BD∙AP+12BC∙BD=12×10×53+12×10×24=253+120(m 2).【点睛】本题主要考查等边三角形的判定和性质以及勾股定理的逆定理,添加辅助线,构造直角三角形和等边三角形,是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冀教版八年级数学(下)期末考试模拟卷
(2018)
八年级数学(下)期末考试模拟卷(2018)
一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)
1、下列调查中,比较适合用普查而不适合抽样调查方式的是()
A.调查一批显像管的使用寿命
B.调查“浆水苹果”的甜度和含水量
C.调查某县居民的环保意识
D.调查你所在学校数学教师的年龄状况
2、为了考查一批电脑的质量,从中抽取100台进行检测,在这个问题中的样本是()
A.电脑的全体
B.100台电脑
C.100台电脑的全体
D.100台电脑的质量
3、某校有300名学生参加毕业考试,其数学成绩在80~90分之间的有180人,则在80~90分之间的频率是()
A.0.1
B.0.3
C.0.5
D.0.6
4、在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(-1,1)上,“相”位于点(4,-2)上,则“帅”位于点()
A.(-3,3)
B.(-2,2)
C.(3,-3)
D.(2,-1)
5、若点P(a,b)在第二象限,则点P到x轴,y轴的距离分别是()
A. a,b
B.b,a
C.-a,-b
D.b,-a
6、已知点A与点B关于y轴对称若点A的坐标为(-1,a),点B的坐标为(b,3),则ab等于()
A.-3
B.3
C.-1
D.1
7、函数y=
5
3
-
-
x
x
中,自变量x的取值范围是()
A.x> 5
B.x≥3
C.3≤x<5
D.x≥3,x≠5
8、济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变)。

储运部库存物资S(吨)与时间t(时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()
A.4小时
B.4.4小时
C.4.8小时
D.5小时
9、已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x;④y=-x;⑤y=
4x;⑥y=-(2-x),其中y的值随x的增大而增大的函数有()
A.1个
B.2个
C.3个
D.4个
10、若一次函数y=kx-b,kb<0,且函数值随x的减小而增大,则它的大致图像是()
11、如图所示,在直角坐标系中,直线l所表示的一次函数是()
A.y=3x+3
B.y=3x﹣3
C.y=﹣3x+3
D.y=﹣3x﹣3
第4题第8题
12、如图所示,小球从点A
运动到点B,速度y(米/秒)和时间t(秒)的函数关系式是y=2t。

如果小球运动到点B时的速度为6米/秒,那么小球从点A到点B的时间是
()
A.1秒
B.2秒
C.3秒
D.4秒
13、已知



-
=
=
2
3
y
x
和,



=
=
1
2
y
x
是二元一次方程by
ax+=﹣3的两个解,则一次函数y=b
ax+与y轴的交点坐标是()
A.(0,﹣7)
B.(0,4)
C. (0,﹣37)
D. (﹣37,0)
14、平行四边形的一个内角是70°,则其他三个内角分别是()
A.70°,130°,130°
B.110°,70°,120°
C.110°,70°,110°
D.70°,120°,120°
15、如图所示,在四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,点E、F 分别是PA、PQ的中点,当点P在BC上移动时,线段EF的长度()
A.先变大,后变小
B.保持不变
C.先变小,后变大
D.无法确定
16、如图所示,矩形ABCD中,E是BC的中点,且∠AED=90°。

当AD=10 cm时,AB 等于()
A.10 cm
B.5 cm
C.52 cm
D.53 cm
二、填空题(第17~18小题各3分,第19小题4分,共10分)
17、如图所示,在菱形ABCD中,对角线AC,BD相交于点O,AC=8cm,BD=6cm,则AB= cm,菱形ABCD的面积= cm2。

18、如图所示,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,
CF∥AE,则∠BCF的度数为。

19、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为()
三、解答题(共68分)
20、(9分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):(注:30~40为时速大于等于30千米而小于40千米,其他类同。


(1)请你把表中的数据填写完整;
(2)补全频率分布直方图;
(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
第19题
第17题第18题
第11题第12题第15题第16题
21、(9分)如图所示,四边形ABCD 的四个顶点的坐标分别
为A (-2,2),B (-4,-3),C (3,-3),D (2,
1),求四边形ABCD 的面积。

22、(9分)已知一次函数16)3(2-++=m x m y ,且y 的值随x 值的增大而增大。

(1)求m 的取值范围;
(2)若此一次函数又是正比例函数,试m 的值。

23、(9分)[2016·北京中考]如图所示,在四边形ABCD 中,∠ABC =90°,AC =AD 。

M 、N 分别为AC 、CD 的中点,连接BM ,MN ,BN 。

(1)求证BM =MN ;
(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长。

24、(10分)为了号召市民向贫困山区的孩子捐赠衣物,某校七年(1)班的同学准备发放倡议书,倡议书的制作有两种方案可供选择:
方案一:由复印店代做,所需费用1y 与倡议书张数x 满足如图(1)所示的函数关系; 方案二:租赁机器自己制作,所需费用2y (包括租赁机器的费用和制作倡议书的费用)与倡议书张数x 满足如图(2)所示的函数关系。

(1)方案一中每张倡议书的价格是 元;方案二中租赁机器的费用是 元;
(2)请分别求出1y ,2y 关于x 的函数关系式;
(3)从省钱角度看,如何选择制作方案?
25、(10分)已知:如图所示,四边形ABCD 中,∠ABC =∠ADC =90°,M 是AC 上任一点,O 是BD 的中点,连接MO ,并延长MO 到N ,使NO =
MO ,连接BN 与ND 。

(1)判断四边形BNDM 的形状,并证明;
(2)若M 是AC 的中点,则四边形BNDM 的形状又如何?说明理
由。

第21题图 第23题图 第25题图 第24题图
26、(12分)如图所示,点M是正方形ABCD的边CD的中点,正方形ABCD的边长为4cm,点P按A-B-C-M-D的顺序在正方形的边上以每秒1cm的速度做匀速运动,设点P的运动时间为x(秒),△APM的面积为y(cm2)。

(1)直接写出点P运动2秒时,△AMP的面积;
(2)在点P运动4秒后至8秒这段时间内,y与x的函数关系
式;
(3)在点P整个运动过程中,当x为何值时,y=3?
第26题图。

相关文档
最新文档