2014秋北师大版数学八上3.3《轴对称与坐标变化》word导学案
北师大版数学八年级上册3《轴对称与坐标变化》教学设计3
北师大版数学八年级上册3《轴对称与坐标变化》教学设计3一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。
本节课主要介绍了轴对称的性质以及坐标变化中的平移和旋转。
教材通过丰富的实例和图片,引导学生探索轴对称的性质,让学生在实际操作中感受坐标变化带来的几何图形的变换。
教材内容紧密联系实际,有助于激发学生的学习兴趣,提高学生的动手操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但轴对称和坐标变化的知识较为抽象,学生需要通过实际操作和观察来进一步理解和掌握。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与,提高学生的动手操作和观察能力。
三. 教学目标1.理解轴对称的性质,能够判断一个图形是否为轴对称图形。
2.掌握坐标变化中的平移和旋转,能够运用坐标变化解决实际问题。
3.培养学生的观察能力、动手操作能力和解决问题的能力。
四. 教学重难点1.轴对称的性质及判断。
2.坐标变化中的平移和旋转的性质及运用。
五. 教学方法1.情境教学法:通过实际例子和图片,引发学生的兴趣,激发学生的学习欲望。
2.动手操作法:让学生亲自动手,进行实际的轴对称和坐标变换操作,提高学生的动手能力。
3.小组合作法:引导学生分组讨论和合作,培养学生的团队意识和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于导入和讲解。
2.准备坐标纸和绘图工具,供学生动手操作。
3.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际例子和图片,如剪纸、建筑物的设计等,引导学生思考这些实例中的共同特点。
学生通过观察和思考,发现这些实例都具有轴对称的性质。
教师总结轴对称的定义,并提出本节课的学习目标。
2.呈现(15分钟)教师通过讲解和演示,介绍轴对称的性质,如对称轴的定义、对称点的坐标关系等。
同时,教师引导学生进行实际的坐标变换操作,如平移和旋转,让学生感受坐标变化带来的图形变换。
北师大版-数学-八年级上册-3.3 轴对称与坐标变化 教学设计
轴对称与坐标变化教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学方法:引导发现法教学过程设计引入新课我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点A与A 1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
3.如果关于x轴对称呢?在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?4.关于x轴对称的两点,它们的横坐标,纵坐标;关于y轴对称的两点,它们的横坐标,纵坐标。
5.已知点P(2a-3,3),点A(-1,3b+2),(1)如果点P与点A关于x轴对称,那么a+b=;(2)如果点P与点A关于y轴对称,那么a+b=。
探究新知例1 在坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:先根据题意把变化前后的坐标作一对比。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计1一. 教材分析《轴对称与坐标变化》是北师大版八年级数学上册第三章第三节的内容。
本节内容是在学生已经掌握了坐标系、二元一次方程组等知识的基础上,引出轴对称的概念,并探讨其在坐标系中的运用。
通过本节内容的学习,使学生理解轴对称的性质,学会运用坐标系解决轴对称问题,提高学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容时,已具备一定的数学基础,但对于轴对称的概念和其在坐标系中的应用可能还存在一定的困惑。
因此,在教学过程中,需要教师通过生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。
三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。
2.学会运用坐标系解决轴对称问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标系在解决轴对称问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动思考和探索。
2.使用生动形象的讲解和丰富的实例,帮助学生理解和掌握轴对称的性质和坐标系在解决轴对称问题中的应用。
3.学生进行合作交流,提高学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备轴对称的实物模型,如剪刀、纸张等。
3.准备坐标系的相关教具,如坐标轴模型等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪刀、纸张等,引导学生关注轴对称的概念。
然后,教师提问:“请大家思考一下,什么是轴对称?”让学生进行思考和讨论。
2.呈现(10分钟)教师通过PPT呈现轴对称的定义和性质,让学生初步了解轴对称的概念。
同时,教师结合实例进行讲解,帮助学生理解和掌握轴对称的性质。
3.操练(10分钟)教师学生进行小组讨论,让学生运用坐标系解决一些轴对称问题。
教师给予学生一定的指导,并引导学生总结解决轴对称问题的方法。
4.巩固(10分钟)教师通过一些练习题,让学生巩固本节课所学的知识。
八年级数学上册 3.3 轴对称坐标变化教 精品导学案 北师大版
轴对称坐标变化学 科数学 课题 3.3轴对称坐标变化 授课教师教学 目标 经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展形象思维能力和数形结合意识。
重点由坐标的变化探索新旧图形之间的变化。
德育 目标 通过“变化的鱼”,让学生体验数学 活动充满着探索与创造。
难点由坐标的变化探索新旧图形之间的变化。
教学过程二、互动导学例1 、拿出方格纸,并在方格纸上建立直角坐标系,在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。
(1)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?小结:当横坐标分别加3,纵坐标不变时,整个图案课堂笔记-2-1 O 14 3 2 1 xy2 3 4 5 6议一议:当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢? 例2 将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2), (0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?-4-3-2-1O 14321xy2345657891011-4-3-2-1O 14321xy 2345678910115678想一想:1当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。
2当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y 轴成轴对称?-4-3-2-1O 14321x y234567567-1-2-3-4-5-4-3-2-1O 14321x y234567567-1-2-3-4-5-4-3-2-1O 14321xy234567567-1-2-3-4-5归纳结论(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
北师大版-数学-八年级上册-3.3《轴对称与坐标变化》教学设计
3.3《轴对称与坐标变化》教学设计教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系;2.自主探索坐标变化与图形轴对称之间的关系;3.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点:坐标变化与图形轴对称之间的关系教学难点:坐标变化与图形轴对称之间的关系教学过程:一、导入新课活动过程:观察图形,猜测、验证两个图形之间的关系。
活动成果:借助于已经学过的轴对称的知识,通过猜想、验证得出结论。
【设计意图】:为本节课探索图形变换与坐标变换之间的关系做铺垫,引出课题。
二、探究新知活动一:活动过程:通过在直角坐标系中描点,确定坐标,观察、猜想、验证坐标之间的变换关系。
活动成果:图形变换引起坐标变化。
【设计意图】:通过在直角坐标系中描点,确定坐标,观察、猜想、验证坐标之间的变换关系。
体验由特殊到一般的过程。
活动二:活动过程:通过坐标变化,确定图形的变换关系。
活动成果:坐标变化引起图形变换。
【设计意图】:通过坐标变化,观察、猜想、验证图形之间的变换关系。
体验由特殊到一般的过程。
四、课堂练习1.课本随堂练习五、课堂总结本节课我们通过活动更好的感受图形变换与坐标变换之间的关系。
通过本节课的学习,你还有什么新的收获?请与大家分享。
六、课后作业课内作业:课本课后习题习题3.5 1、2七、板书设计课题:3.3 轴对称与坐标变化1.图形变换与坐标变化之间的关系:2.坐标变化与图形变换之间的关系:八、教学反思本节课经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,教学中一定要给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。
北师大版八年级数学上册:3.3《轴对称与坐标变化》说课稿1
北师大版八年级数学上册:3.3《轴对称与坐标变化》说课稿1一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》这一节主要介绍了轴对称的概念和性质,以及坐标变化中的平移和旋转。
这部分内容是学生进一步理解几何图形的基础,也是培养学生空间想象能力的的重要环节。
二. 学情分析八年级的学生已经初步掌握了平面几何的基本知识,对图形的认识有了初步的理解。
但是,对于轴对称和坐标变化的概念和应用,学生可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,用生动形象的语言和丰富的教学手段,帮助学生理解和掌握。
三. 说教学目标1.知识与技能目标:让学生理解轴对称的概念,掌握轴对称的性质,能运用轴对称解决一些实际问题;让学生理解坐标变化中的平移和旋转,能运用平移和旋转解决一些几何问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:轴对称的概念和性质,坐标变化中的平移和旋转。
2.教学难点:轴对称的性质,坐标变化中的平移和旋转的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。
2.探究新知:让学生通过观察、操作、思考,自主发现轴对称的性质,教师引导学生进行总结。
3.巩固新知:通过一些具体的例子,让学生运用轴对称的性质解决实际问题。
4.拓展延伸:引入坐标变化中的平移和旋转,让学生理解并掌握这两种变换的性质和运用。
5.课堂小结:教师引导学生总结本节课所学的知识和方法。
七. 说板书设计板书设计要简洁明了,能突出本节课的主要内容和知识点。
可以设计如下:1.概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案
第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的基本性质,如对称轴、对称点等。
(二)问题导向
在教学过程中,教师将采用问题导向法,引导学生提出问题、分析问题、解决问题。例如,在学习轴对称图形的坐标变化规律时,教师可以提出以下问题:“轴对称图形的坐标是如何变化的?”“你能找出轴对称变换中坐标的规律吗?”通过这些问题,激发学生的思考,促使他们在探究中掌握知识。
(三)小组合作
小组合作是本章节教学的重要环节。教师将根据学生的实际情况,合理分组,确保每个学生都能在小组中发挥自己的优势。在合作学习过程中,教师引导学生相互讨论、交流,共同完成学习任务。例如,在学习轴对称图形的坐标变化规律时,小组成员可以共同分析、总结规律,然后向全班同学分享他们的发现。
2.学生分小组讨论,共同探讨解决问题的方法。
3.各小组分享讨论成果,教师进行点评和指导。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结轴对称与坐标变化的知识点。
2.学生用自己的话复述轴对称图形的坐标变化规律,加深对知识的理解。
3.教师强调本节课的重点和难点,提醒学生注意在实际应用中灵活运用。
三、教学策略
(一)情景创设
为了让学生更好地理解轴对称与坐标变化的概念,教师将从生活实际出发,创设丰富多样的教学情景。例如,引入一些具有轴对称特点的建筑物、图案等,让学生在观察中感知轴对称的美。同时,通过多媒体展示一些动态的轴对称变换过程,激发学生的学习兴趣。此外,还可以设计一些实际操作活动,如让学生制作轴对称的剪纸作品,使他们在动手操作中加深对轴对称的理解。
北师大版数学八年级上册3《轴对称与坐标变化》教案1
北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。
本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。
教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。
同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。
但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。
三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。
2.学会在坐标系中进行对称变换,解决实际问题。
3.培养学生的空间想象能力,提高数学应用能力。
四. 教学重难点1.轴对称的概念及其性质。
2.在坐标系中进行对称变换的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。
2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。
3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。
4.注重启发式教学,引导学生运用坐标系解决实际问题。
六. 教学准备1.准备相关的图形、模型等直观教具。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。
提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。
2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。
提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。
3.操练(10分钟)教师引导学生利用坐标系进行对称变换。
示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。
学生独立完成,教师点评和讲解。
4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。
北师大版数学八上《轴对称与坐标变化》word导学案
学习目标1.在同一直角坐标系中感受图形上点的坐标变化与轴对称之间的关系.2.经历坐标变化与轴对称的探索过程发展学生形象思维能力和数形结合思想 .自主学习认真阅读教材后,完成下列各题。
1、在如同所示的直角坐标系中第一、二象限各画一面小旗。
(1)两面小旗之间有怎样的位置关系?对应点A 与A1的坐标又有什么共同特点?其他对应点也有这个特点吗?(2)在这个直角坐标系中画出小旗ABCD 关于X 轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?2、上面的“鱼”能由下面的“鱼”得到的吗?它们各个对应“点”的坐标有怎么样的关系?关于x 轴对称的图形:对应点坐标横坐( ),纵坐标( )我的疑问合作探究1、(1)在方格纸上建立直角坐标系,根据读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,−1),(3,0),(4,−2),(0,0)。
(2)将图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化?6422468105510(-5,-3)(-5,-5)(-4,-6)(3,-4)(3,4)(0,-4)(-5,0)(-5,3)(-5,5)(-4,6)(0,4)(3)将图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化?2、关于X轴对称的两个点的坐标有什么关系?关于Y轴呢?课堂提升基础目标达成:1.平面直角坐标系中,点P(4,-5)关于x轴的对称点坐标是()2.已知点P(-2,3)关于y轴的对称点为Q(a,b),则Q点坐标为()A.1 B.-1 C.5 D.-53.填表已知点A(-5,1)B(-2,1)C(-2, 5)D(-5,4)关于x轴的对称点关于y轴的对称点4. ABC∆在坐标系中的位置如图所示,点C在原点处.那么,请你写出小明书中的ABC∆的顶点坐标.拓展提升1、已知)4,(),,2(bBaA-,分别根据下列条件求ba,的值.(1)若BA,关于y轴对称,则=a,=b。
北师大版数学八年级上册3.3《轴对称与坐标变化》优秀教学案例
3.教师对学生的学习过程和结果进行评价,关注学生的全面发展,提高学生的学习积极性。
4.创设评价机制,让学生在评价中相互学习,共同进步,培养学生的良好品质。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中的轴对称现象,如剪纸、建筑等,引导学生关注数学与生活的联系,激发学生学习兴趣。
(二)问题导向
1.教师提出富有挑战性的问题,引导学生独立思考,激发学生求知欲。
2.鼓励学生提出疑问,培养学生敢于质疑的精神,提高学生的思维能力。
3.教师引导学生运用坐标变化研究轴对称问题,培养学生解决问题的能力。
4.通过问题引导,使学生了解轴对称在现实生活中的应用,培养学生的数学应用意识。
(三)小组合作
北师大版数学八年级上册3.3《轴对称与坐标变化》优秀教学案例
一、案例背景
北师大版数学八年级上册3.3《轴对称与坐标变化》优秀教学案例,是基于我国教育部门对新课程改革的指导思想和北师大版数学教材的要求,以提高学生数学素养、培养创新精神和实践能力为目的,结合学生实际学情和教师教学经验设计的一节教学实践活动。
3.教师通过讲解典型例题,让学生了解轴对称在现实生活中的应用,培养学生的数学应用意识。
(三)学生小组讨论
1.教师提出讨论题目:“请你们小组探讨一下轴对称的性质,并尝试用坐标表示出来。”让学生进行合作交流。
2.教师巡回指导,关注学生在讨论过程中的困惑和问题,及时给予解答和指导。
3.鼓励学生分享讨论成果,培养学生的表达能力和自信心。
2.教师关注学生作业完成情况,及时给予评价和反馈,提高学生的学习效果。
3.教师通过作业小结,了解学生的学习情况,为下一步的教学提供有力依据。
北师大版八年级上册数学3.3轴对称与坐标变化(导学案)
北师大版八年级上册数学3.3轴对称与坐标变化(导学案)3.3轴对称与坐标变化学习目标:1、经历轴对称变化与点的坐标的变化之间的关系的探索过程,发展数形结合意识,初步建立几何直观。
2、在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
预习案课前导学:阅读课本68-69页回答下列问题:1.关于x轴对称的两个点的坐标特点:横坐标,纵坐标。
2.关于y轴对称的两个点的坐标特点:横坐标,纵坐标。
尝试练习1.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)2.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2)B.(1,-2)C.(2,-1)D.(-1,-2)3.若P(a, 3-b),Q(5, 2)关于x轴对称,则a=___ , b=______.4.横坐标不变,纵坐标分别乘以-1,则所得图形与原图形关于对称.纵坐标不变,横坐标分别乘以-1,则所得图形与原图形关于对称.纵坐标和横坐标分别乘以-1,则所得图形与原图形关于对称.学习案知识点拨例1:在如左下图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
(1)两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么共同特点?其它对应的点也有这个特点吗?(2)在这个坐标系里面画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐标与原来的点的坐标有什么关系?例2 :如右上图所示,(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得的图案的各个顶点的纵坐标保接不变,横坐标分别乘-1,依次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢?课内训练如图所示是一个平面直角坐标系:D 1C 1B 1A 1D C BAx y-7-6-5-4-3-2-1-7-6-5-4-3-2-1o 76543217654321(1)请在图中标出下列各点的位置:A(2,3),B(-1,2),C(4,-3),D(-3,-3)(2)在图中作出点A关于x轴的对称点E,并写出E点的坐标,它与A点的坐标有什么关系?(3)在图中作出点B关于y轴的对称点F,并写出F点的坐标,它与B点的坐标又有什么关系?反馈案基础训练1.点A(-3,1)关于x轴对称的点的坐标为 ,关于y轴对称的点的坐标为。
北师大版初中数学八年级上册教案:3.3轴对称与坐标变化
课题:轴对称与坐标变化●教学目标:知识与技能目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系;2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识.过程与方法目标:1.历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能;2.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.情感态度与价值观目标:1.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.●重点:1.能在平面直角坐标系中,根据坐标找出点,由点求出坐标;2.平行于坐标轴的直线上的点的坐标关系及坐标轴上点的坐标的确定.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.●教学流程:一、情境引入1.在平面直角坐标系中,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的实数a、b分别叫做点P的、,有序实数对叫做点P的坐标.2.对于两个平面图形,如果沿一条直线对折后能够完全重合,那么称这两个图形成,这条直线叫做这两个图形的.解:1、横坐标、纵坐标,(a,b)2、轴对称、对称轴我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
二、自主探究探究1:1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点A与 A1 的坐标又有什么特点?其它对应的点也有这个特点吗?两面小旗关于y轴对称,A与 A1的坐标A(2,6), A1(-2,6)“关于坐标轴对称的点”的坐标特征:横坐标相同,纵坐标互为相反数;2.在这个坐标系里画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐标与原来的点的坐标有什么关系?两面小旗关于x轴对称,A与 A2的坐标A(2,6), A2(2,-6)“关于坐标轴对称的点”的坐标特征:横坐标互为相反数,纵坐标相同.做一做:1.点A(2,- 3)关于y轴对称的点的坐标是.2.点(4,3)与点(4,- 3)的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系解:1、(-2、-3)2、B.例题讲解:例:在直角坐标系中描出以下各点:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用线段依次连接,看一看是什么图案.解:如图,各个顶点的坐标分别为:A(-2,0)B(0,-3)C(3,-3)D(4,0)E(3,3)F(0,3)让学生拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
北师大初中数学八年级上册《3.3轴对称与坐标变化》word教案 (4)
3.3 轴对称与坐标变化教学设计一、学生起点分析学生的知识技能基础:学生已学习了运用多种方法确定物体的位置,使学生感受到了丰富的确定位置的现实背景;系统学习了平面直角坐标系的基本概念,能在平面直角坐标系中准确地表示物体的位置,清楚地认识了点和坐标之间的对应关系;能确定点的坐标及根据坐标描点、进而连线形成图形。
学生的活动经验基础:学生有了一定的合作学习的基础,有了一定的学习能力,教学中要安排一定的合作交流与自主学习的机会,加强学生之间的交流。
二、学习任务分析本节课学生通过“坐标与轴对称”这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想”的认识.具体的教学目标如下:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学方法:引导发现法三、教学过程设计第一环节创设问题情境,引入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
北师大版八年级上册数学3.3轴对称与坐标变化导学案
y x O y x O轴对称与坐标变化编写人: 、 审核人:教师寄语:不要学花儿只把春天等待,要学燕子把春天衔来。
课题3.3轴对称与坐标变化 授课教师 学习目标1、会对轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识建立几何直观。
2、(重点):在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标,并知道对应点坐标之间的关系。
3、(难点):在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标,并知道对应点坐标之间的关系。
课堂流程 环节具 体 内 容(内容·学法·时间) 自疑自探 预习导航 (5分钟) 回顾旧知:1、点P (3,4)关于x 轴对称的点的坐标是 ,关于y 轴对称的点的坐标是 ,关于原点对称的点的坐标为 ;2、如果点P 1 (—1,3 )和P 2 (1,b )关于y 轴对称,则b = ;3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。
自学指导 (10分钟) 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),你得到了一个怎样的图案?1、将所得图案的各个“顶点”的纵坐标保持不变,横坐标分别乘-1,坐标分别为: 。
依次连接这些点,你会得到怎样的图案?这个图案与原来图案的位置关系是2、将上图中的图案的各个“顶点”的横坐标保持不变,纵坐标分别乘-1,坐标为 , 依次连接这些点,你会得到怎样的图案?这个图案与原图案的位置关系3、关于x 轴对称的两个点的坐标之间有什么关系?关于y 轴呢?关于原点呢?我的困惑(内容·形式·时间) 学组研讨研讨策略一 (3分钟) 形式:两人小组交流与分享结合自研成果对子之间进行交流,并就任务完成情况和书写工整度两方面迅速给出等级评定。
研讨策略二 (2分钟) 形式:四人小组冲刺与挑战 总结图形关于x 轴y 轴对称的点的坐标特征。
北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案
3.3轴对称与坐标变化1.探索图形坐标变化的过程;(重点)2.了解掌握图形坐标变化与图形轴对称之间的关系.(难点)一、情境导入在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的黄鹤楼图形放在平面直角坐标系中,其对称轴为某条坐标轴.那么,图形上对称的坐标会有什么关系呢?试一试.二、合作探究探究点一:关于x轴、y轴对称的点的坐标点A(2a-3,b)与点A′(4,a+2)关于x轴对称,求a,b.解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解:由点A(2a-3,b)与点A′(4,a+2)关于x轴对称知2a-3=4,a+2=-b.所以a=72,b=-112.方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若A(x,y)与B(m,n)关于x轴对称,则有x=m,y=-n;若A(x,y)与B(m,n)关于y轴对称,则有x=-m,y=n.探究点二:作图——轴对称变换如下图所示,△ABC三个顶点的坐标分别为A(-1,4),B(-3,1),C(0,0),作出△ABC关于x轴、y轴的对称图形.并写出对称点的坐标.解析:分别作点A,B,C关于x轴、y轴的对称点即可.解:如图所示.A1(1,4),B1(3,1),A2(-1,-4),B2(-3,-1),C点关于x轴、y轴的对称点的坐标不变.方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探究点三:平面直角坐标系中的规律探究如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2015的坐标为________.解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化⎩⎪⎨⎪⎧关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.。
北师大版八年级上册数学 3.3 轴对称与坐标变化教案1
3.3轴对称与坐标变化1.探索图形坐标变化的过程;(重点)2.了解掌握图形坐标变化与图形轴对称之间的关系.(难点)一、情境导入在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的黄鹤楼图形放在平面直角坐标系中,其对称轴为某条坐标轴.那么,图形上对称的坐标会有什么关系呢?试一试.二、合作探究探究点一:关于x轴、y轴对称的点的坐标点A(2a-3,b)与点A′(4,a+2)关于x轴对称,求a,b.解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解:由点A(2a-3,b)与点A′(4,a+2)关于x轴对称知2a-3=4,a+2=-b.所以a=72,b=-112.方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若A(x,y)与B(m,n)关于x轴对称,则有x=m,y=-n;若A(x,y)与B(m,n)关于y轴对称,则有x=-m,y=n.探究点二:作图——轴对称变换如下图所示,△ABC三个顶点的坐标分别为A(-1,4),B(-3,1),C(0,0),作出△ABC关于x轴、y轴的对称图形.并写出对称点的坐标.解析:分别作点A,B,C关于x轴、y轴的对称点即可.解:如图所示.A1(1,4),B1(3,1),A2(-1,-4),B2(-3,-1),C点关于x轴、y轴的对称点的坐标不变.方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探究点三:平面直角坐标系中的规律探究如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2015的坐标为________.解析:从各点的位置可以发现A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),A 6(2,2),A 7(-2,2),A 8(-2,-2),A 9(3,-2),A 10(3,3),A 11(-3,3),A 12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A 2015在第二象限,纵坐标和横坐标互为相反数,所以A 2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计 轴对称与坐标变化⎩⎪⎨⎪⎧关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.。
3.3《轴对称与坐标变化》北师大版八年级数学上册教案
第三章位置与坐标3.3轴对称与坐标变化一、教学目标1.经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观.2.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教学重点及难点重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.三、教学用具多媒体课件,直尺,三角板.四、相关资《复习平面直角坐标系》动画五、教学过程【复习导入】在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标.我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点.如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题.【探究新知】探索两个关于坐标轴对称的图形的坐标关系1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗.两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理.答:(1)关于y轴对称.对应点A与A1的横坐标互为相反数,纵坐标相同,其它对应的点也有这个特点.(2)做出的两个点的横坐标互为相反数,纵坐标相同.【典例精讲】例1 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)你得到了一个怎样的图案?做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解析:先根据题意写出变化后的坐标,然后根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来.你们画出的图形与下面的图形相同吗?这个图形与原来的图形相比有什么变化呢?(1)所得的图案与原图案关于纵轴成轴对称.(2)所得的图案与原图案关于横轴成轴对称.议一议关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?学生思考,讨论,归纳得出结论:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.【课堂练习】1.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定2.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A’,则点A与点A’的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得A3.点(4,3)与点(4,-3)的关系是().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).6.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )A.-2 B.2 C.1 D.-17.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个8.若P(a,3-b),Q(5,2)关于x轴对称,则a= ,b= .9.点A(2,-3)关于x轴对称的点的坐标是.10.点B(-2,1)关于y轴对称的点的坐标是.答案:1.A;2.B;3.B;4.D;5.A;6.B;7.B;8.5,5;9.(2,3);10.(2,1).六、课堂小结对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称;七、板书设计3.3轴对称与坐标变化1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.经历坐标变化与轴对称的探索过程发展学生形象思维能力和数形结合思想 自主学习
认真阅读教材后,完成下列各题。
1、在如同所示的直角坐标系中第一、
二象限各画一面小旗。
(1)两面小旗之间有怎样的位置关系?对应点A 与A1的坐标又有什么共同特点?其他对应点也有这个特点吗?
(2)在这个直角坐标系中画出小旗ABCD 关于X 轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?
2、上面的“鱼”能由下面的“鱼”得到的吗?
它们各个对应“点”的坐标有怎么样的关系?
关于x 轴对称的图形:对应点坐标横坐( ),纵坐标( )
合作探究
1、(1)在方格纸上建立直角坐标系,根据读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,−1),(3,0),(4,−2),(0,0)。
(2)将图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化?
10(-5,0)
(3)将图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化?
2、关于X轴对称的两个点的坐标有什么关系?关于Y轴呢?
课堂提升
基础目标达成:
1.平面直角坐标系中,点P(4,-5)关于x轴的对称点坐标是()
2.已知点P(-2,3)关于y轴的对称点为Q(a,b),则Q点坐标为()
A.1 B.-1 C.5 D.-5
3.填表
∆在坐
4. ABC
∆的顶点标系中的位置如图所示,点C在原点处.那么,请你写出小明书中的ABC
坐标.。