牛顿定律中的弹簧问题

合集下载

专题三-弹簧与受力分析

专题三-弹簧与受力分析

专题三-弹簧与受力分析弹簧是一种用于弹性成分的机械构件,它通常由能够弯曲和变形的金属制成。

在物理学中,弹簧是一个非常重要的概念,因为它是弹性力学的基础。

在本篇文章中,我们将学习弹簧的基础知识和受力分析。

弹性力学弹性力学是物理学中研究材料弹性的分支学科。

材料的弹性是指其在受到外力作用后,能够恢复到原来的形态和大小。

弹性力学主要研究材料受力的变形、应力分布、变形量、变形速率、破坏条件等方面,其中弹簧作为弹性体的一种常见构件,也是弹性力学的重要内容之一。

弹簧的基础知识弹簧的定义弹簧是一种弹性成分,通常由金属制成。

它可以被弯曲或压缩,但一旦没有外力作用,它将恢复到原始状态。

弹簧的种类弹簧可以分为两种类型:压缩弹簧和拉伸弹簧。

压缩弹簧是通常被挤压的弹簧,而拉伸弹簧则通常被拉伸。

弹簧的形态弹簧可以有各种形状和大小。

最常见的是圆弧形和线形。

弹簧的系数弹簧的系数是一个重要的参数,它用于描述弹簧的强度和弹性。

弹簧系数越高,弹簧所能承受的重量也就越大。

受力分析受力分析的基本概念受力分析是物理学中的基本概念,它用于描述物体在受到外部力作用时的运动状态。

在物理学中,我们通常使用牛顿第二定律来描述物体的运动状态。

牛顿第二定律的公式如下所示:F=ma其中“F”是物体所受的外力,“m”是物体的质量,“a”是物体的加速度。

受力分析的应用在物理学中,我们可以利用受力分析来计算物体所承受的力的大小和方向。

例如,在弹簧中,我们可以利用受力分析来计算所需弹簧的系数,以便将所需的重量承载在弹簧上。

受力分析还可以用于解决其他许多问题,如力的矢量分解、摩擦力、重力和弹力等等。

弹簧作为物理学中非常重要的概念,是弹性力学的基础。

在物理学的研究中,我们可以利用受力分析来计算弹簧所需系数,并解决其他许多问题。

通过本篇文章对弹簧和受力分析的学习,我们可以更好地理解物理学的相关概念,为我们的学习和生活带来便利。

三弹簧问题分析

三弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

例题分析:例1:劲度系数为K的弹簧悬挂在天花板的O点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a由静止开始匀加速下降,求物体匀加速下降的时间。

分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G–KX=maX=1/2at2解以上两式得:t=ka agm)(2例2:一质量为M 的塑料球形容器,在A处与水平面接触。

它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。

分析:由题意知弹簧正好在原长时小球恰好速度最大,所以:对小球 qE=mg (1)小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时: 对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得:小球的加速度为:a=mMg由振动的对称性可知:小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N=Mg+Kx=2Mg例3:已知弹簧劲度系数为K,物块重G,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。

现给物块一向下的压力F,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘,求:(1)给物块的向下的压力F 。

(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1)由对称性,在最低点时:kx-mg=ma (2)A qEkx mg物块被压到最低点时有:F+mg=Kx (3)由以上三式得: F=mg(2)在最低点时盘对物块的支持力最大,此时有:F N-mg=ma 所以:F N=2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。

牛顿第二定律(二)弹簧专题

牛顿第二定律(二)弹簧专题

牛顿第二定律(二)弹簧专题1、物体都处于静止状态,判断下列弹簧处于什么状态(伸长、压缩、原长)?2.如右图所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点,如果物体受到的摩擦力大小恒定,则A .物体从A 到O 先加速后减速B .物体从A 到O 加速,从O 到B 减速C .物体在A 、O 间某点时所受合力为零D .物体运动到O 点时所受合力为零3.如图所示,轻弹簧下端固定,竖立在水平面上。

其正上方A 位置有一只小球。

小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。

小球下降阶段下列判断中正确的是 A .在B 位置小球动能最大B .在C 位置小球加速度最大 C .从A →C 位置小球重力势能的减少等于小球动能的增加D .从B →D 位置小球重力势能的减少小于弹簧弹性势能的增加乙 丙 F图2 甲 mABC D B C D4.如图3所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为A .0 B.233g C .g D.33g5.甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A 的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;剪断瞬间甲中倾斜细线OA 与乙中弹簧的拉力之比为________(θ角已知).6.[瞬时加速度的求解]在光滑水平面上有一质量为1 kg 的物体,它的左端与一劲度系数为800 N /m 的轻弹簧相连,右端连接一细线.物体静止时细线与竖直方向成37°角,此时物体与水平面刚好接触但无作用力,弹簧处于水平状态,如图3所示,已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2,则下列判断正确的是( )A .在剪断细线的瞬间,物体的加速度大小为7.5 m/s 2B .在剪断弹簧的瞬间,物体所受合外力为15 NC .在剪断细线的瞬间,物体所受合外力为零D .在剪断弹簧的瞬间,物体的加速度大小为7.5 m/s 27.质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图5所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力F 撤去,此瞬间A .A 球的加速度为F 2mB .A 球的加速度为零C .B 球的加速度为F 2mD .B 球的加速度为F m8.如图1所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2 B.g 2和0 C.g 2和m A m B ·g 2 D.m A m B ·g 2和g 29.[瞬时加速度的求解]如图2所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB .B 球的受力情况未变,瞬时加速度为零C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零10..如图3-2-2所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上。

3.牛顿定律-典型例题-详解

3.牛顿定律-典型例题-详解

牛顿定律第2课时牛顿第二定律动力学问题题型探究题型1 区分绳与弹簧的特点【例1】如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为gsin θB.两图中A球的加速度均为0C.图乙中轻杆的作用力一定不为0D.图甲中B球的加速度是图乙中B球的加速度的2倍题型2 弹簧的动态分析【例2】如图所示,自由下落的小球下落一段时间后与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?题型3 与弹簧相连的连接体问题【例3】两个质量均为m的相同的物块叠放在一个轻弹簧上面,处于静止状态.弹簧的下端固定于地面上,弹簧的劲度系数为k.t=0时刻,给A物块一个竖直向上的作用力F,使得两物块以0.5g的加速度匀加速上升,下列说法正确的是()A.A、B分离前合外力大小与时间的平方2t成线性关系B.分离时弹簧处于原长状态C.在t 时刻A、B分离D.分离时B题型4 斜面上的自由滑动问题【例4】一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流淌离开房顶,要设计好房顶的坡度(房顶的底边长度相同).设雨滴沿房顶下流时做无初速度无摩檫的运动,那么,下图所示的情况中符合要求的是()A. B.C. D.【例5】如图所示,在光滑水平面AB上,水平恒力F 推动质量为m=1kg的物体从A点由静止开始做匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度大小不变,最高能到达C.用速度传感器测量物体的瞬时速度,表中记录了部分测量数据),(1)恒力F的大小.(2)斜面的倾角α.(3)t="2.1" s时物体的速度.题型5 等时圆问题【例6】如图所示,AD是固定斜面体底边BC的高,F、G分别是光滑斜面AB、AC的中点DE垂直于AB,DH 垂直于AC,甲、乙两个小球(均视为质点)从斜面的顶点A分别沿斜面AB、AC同时由静止下滑,下列说法正确的是()A.当甲球运动到E点时,乙球可能运动到AG间某点B.当甲球运动到E点时,乙球一定运动到H点C.当甲球运动到F点时,乙球一定运动到G点D.当甲球运动到F点时,乙球一定运动到H点题型6 滑环与杆问题【例7】.如图所示,一端固定在地面上的杆与水平方向的夹角为θ,将一质量为m1的滑块套在杆上,滑块通过轻绳悬挂一质量为m2的小球,杆与滑块之间的动摩擦因数为μ.先给滑块一个沿杆方向的初速度,稳定后,滑块和小球一起以共同的加速度沿杆运动,此时绳子与竖直方向的夹角为β,且β>0,不计空气阻力,则滑块的运动情况是( )A.沿着杆减速上滑B.沿着杆减速下滑C.沿着杆加速下滑D.沿着杆加速上滑【例8】有一质量m=2kg的小球套在长L=1m的固定轻杆顶部,杆与水平方向成θ=37o角.静止释放小球,1s后小球到达杆底端.取重力加速度大小g= 10 m/s2,sin37o=0.6,cos37o=0.8.(1)求小球到达杆底端时速度为多大?(2)求小球与杆之间的动摩擦因数为多大?(3)若在竖直平面内给小球施加一个垂直于杆方向的恒力,静止释放小球后保持它的加速度大小为1m/s2,且沿杆向下云动,则这样的恒力为多大?题型7轻绳连接问题【例9】如图所示,材料相同的物体m l、m2由轻绳连接,在恒定拉力F的作用下沿斜面向上加速运动。

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

牛顿第二定律热点题型(3):弹簧绳子瞬间分析

牛顿第二定律热点题型(3):弹簧绳子瞬间分析

物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?【例2】如图,两个质量分别为M和m的小球,通过两条轻绳a、b相间连接,悬挂于天花板下,试分析两条绳子的张力大小;现用剪刀分别剪断a
断前后张力变化情况
断前后张力变化情况。

,弹簧质量不计,其劲度系数为k=800N/m,P施加一个竖直向上的
40使静止在撤去计算瞬间受支持力变化(
力F=40N,使P静止。

现在撤去F,计算一瞬间P受支持力变化。


g=10m/s2)
球的加速度
弹断瞬,Q
轻质弹簧托住⑴当悬绳被剪断的瞬间,P、的加速度大小分别是多
少?⑵从悬绳被剪断到弹簧恢复原长的过程中,P,Q的运动情况如

何?
.两物块所受摩擦力的大小总是相等
.两物块不可能同时相对绸带静止
两物块不可能同时相对绸带静止
【例7】如图,滑轮不计质量,不计摩擦,A,B绳子质量都为m
1)剪断A上部的绳子,则B加速度多大?
2)剪断A下部的绳子,则B加速度多大?。

牛顿第二定律(瞬时性)

牛顿第二定律(瞬时性)
以下两种典型的模型:
(1)轻绳,轻杆( 或接触面 ) ——不发生明显形变 就能产生弹力的物体,剪断( 或脱离) 后,不需要 形变恢复时间, 其弹力立即消失. 当外界条件 突然改变瞬间其弹力可以发生突然的改变, 比如 突然增大、 减小、消失等等。也就是可以发生突 变。
(2)弹簧( 或橡皮绳 ) ——两端同时连接 ( 或 附着 ) 有物体的弹簧 ( 或橡皮绳) ,特点是形 变量大,其形变恢复需要较长时间。在两端的约束 物仍然存在时, 在瞬时性问题中, 其弹力的大小 往往可以看成保持不变.
4ห้องสมุดไป่ตู้已知A质量为2Kg,B物体质量为3Kg,A物体静止
在轻质弹簧上,现将物块B轻放在物体A上,求B刚 放上去一瞬间所受到的支持力?
B
A
A
知小球与地面间恰好无挤压,地面的动摩擦因素为μ。 现剪短轻绳,求此瞬间小球的加速度
3.光滑的水平面上有一质量为m=1kg的小球,小球与水 平轻弹簧和与水平面成θ=30°的角的轻绳的一端相连, 如图所示,此时小球处于静止状态,且水平面对小球的弹力 恰好为零,当剪断绳的瞬间,小球的加速度大小及方向如 何?此时轻弹簧的弹力与水平面对球的弹力的比值为多少? (g=10m/s2)
牛顿第二定律的瞬时性
牛顿第二定律的瞬时性
A A
B B
课堂练习
1.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾 角为30°的光滑木板AB托住,小球恰好处于静止状态.在木 板AB突然撤离的瞬间,重力加速度为g,小球的加速度为?
2.轻质弹簧左端与竖直墙壁相连,右端与质量为m的小
球相连,连接小球的轻绳与竖直方向的夹角为θ,已

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

牛顿第二定律的应用-弹簧类问题学案

牛顿第二定律的应用-弹簧类问题学案

成功源于勤奋成功源于勤奋
=g =
四、连接体弹簧
6.一根劲度系数为k,质量不计的轻弹簧,上端固定
将物体托住,并使弹簧处于自然长度。

如图7
匀加速向下移动。

求经过多长时间木板开始与物体分离。

的最大速度为
的大小为mg
恒力在此过程中做的功为
的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为
,弹簧水平且无形变.用水平力,缓慢推动物体,在弹性限度内弹簧
后,物体刚运动时的加速度大小为

.大小为
.大小为
定在框架上,下端固定
加速度为的加速度可能也为只有重力和弹力对
:对篮球受力分析如图,

,解得:越来越大,压力传感器的示数逐渐增大。

故项可能。

:若升降机正在减速下降,对篮球受力分析,由牛顿第二定律可得:
,解得:
逐渐增小。

故项不可能。

的位移,即为,解得:,故
解决本题关键处理好当B刚好离开地面时,
出弹簧的伸长量,结合刚开始时系统处于平衡状态即可求出弹簧的压缩量,进而求出间的弹簧拉伸量减小,当弹簧的弹力为时,的加速度为的加速度为。

高中物理中的弹簧问题归类剖析

高中物理中的弹簧问题归类剖析

高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。

牛顿运动定律常见题型

牛顿运动定律常见题型

牛顿运动定律复习1、 连接体问题解题思路:整体法与隔离法的灵活运用a) 各部分间没有相对运动,或者虽有相对运动但为匀速运动:整体及各部分有相同的加速度,整体法求加速度,隔离法求各物体受力情况。

b) 各部分间有相对运动且不是匀速运动:整体及部分间没有共同的加速度,且整体的加速度不等于各部分的加速度平均。

必须灵活运用整体法及隔离法求解问题。

整体的加速度用整体法求解,部分的加速度用隔离法求解;受力情况运用整体、隔离及牛三定律等求解。

例1、 如图所示,小车向右做匀加速运动的加速度大小为a ,bc 为固定在小车上的水平横杆,物块M 串在杆上,M 通过细线悬吊着一小铁球m , M 、m 均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大到2a 时,M 仍与小车保持相对静止,则A .横杆对M 的作用力增加到原来的2倍B .细线的拉力增加到原来的2倍C .细线与竖直方向的夹角增加到原来的2倍D .细线与竖直方向夹角的正切值增加到原来的2倍例2、 如图所示,水平地面上有两块完全相同的木块AB ,水平推力F 作用在A 上,用F AB 代表A 、B 间的相互作用力,下列说法可能正确的是A .若地面是完全光滑的,则F AB =FB .若地面是完全光滑的,则F AB =F /2C .若地面是有摩擦的,且AB 未被推动,可能F AB =F /3D .若地面是有摩擦的,且AB 被推动,则F AB =F /2例3、 如图所示,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是A .f = 0 ,N = Mg +mgB .f 向左,N <Mg +mgC .f 向右,N <Mg +mgD .f 向左,N =Mg +mg例4、 某人拍得一张照片,上面有一个倾角为α的斜面,斜面上有一辆无动力的小车,小车上悬挂一个小球,如图所示,悬挂小球的悬线与垂直斜面的方向夹角为β,下面判断正确的是A 、如果βα=,小车一定处于静止状态B 、如果0β=,斜面一定是光滑的C 、如果βα>,小车一定是沿斜面加速向下运动D 、无论小车做何运动,悬线都不可能停留图中虚线的右侧例5、 如图所示,一轻绳通过一光滑定滑轮,两端各系一质量为m 1和m 2的物体,m 1放在地面上,当m 2的质量发生变化时,m 1的加速度a 的大小与m 2的关系大致如下图中的图( ).αβF V α B A2、 弹簧类问题可视为特殊的连接体问题,注意关键点:弹簧的弹力不能突变。

第9讲 牛顿运动定律之弹簧连接体模型(解析版)

第9讲 牛顿运动定律之弹簧连接体模型(解析版)

第9讲弹簧第二定律—弹簧连接体模型1一、连接体问题1.连接体与隔离体:两个或几个物体相连组成的物体系统为连接体,如果把其中某个物体隔离出来,该物体即为隔离体。

2.连接体的类型:物+物连接体、轻杆连接体、弹簧连接体、轻绳连接体。

3.外力和内力:如果以物体系统为研究对象,物体受到的系统之外的作用力是该系统受到的外力,而系统内各物体间的相互作用力为内力。

应用牛顿第二定律列方程时不用考虑内力,如果把某物体隔离出来作为研究对象,则一些内力将作为外力处理。

4.解答连接体问题的常用方法(1)整体法:当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度,这种处理问题的思维方法称为整体法。

(2)隔离法:为了研究方便,当求系统内物体间相互作用的内力时,常把某个物体从系统中“隔离"出来进行受力分析,再依据牛顿第二定律列方程,这种处理连接体问题的思维方法称为隔离法。

温馨提示:处理连接体问题时,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力。

特别说明:在处理连接体问题时,必须注意区分内力和外力,特别是用整体法处理连接体问题时,切忌把系统内力列入牛顿第二定律方程中。

若用隔离法处理连接体问题,对所隔离的物体,它所受到的力都属外力,也可以采用牛顿第二定律进行计算。

2一、单选题1.(2020·山东省高三其他)如图甲、乙所示,细绳拴一个质量为m的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。

已知重力加速度为g,sin53°=0.8,cos53°=0.6。

下列结论正确的是()A.甲、乙两种情境中,小球静止时,细绳的拉力大小均为43mgB.甲图所示情境中,细绳烧断瞬间小球的加速度大小为43mg C.乙图所示情境中,细绳烧断瞬间小球的加速度大小为53mg D.甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53mg 【答案】C【解析】A.甲、乙两种情境中,小球静止时,轻杆对小球与轻弹簧对小球的作用力都是水平向右,如图所示由平衡条件得细绳的拉力大小都为5cos533mg T mg ==︒ 故A 错误; BCD.甲图所示情境中,细绳烧断瞬间,小球即将做圆周运动,所以小球的加速度大小为1a g =乙图所示情境中,细绳烧断瞬间弹簧的弹力不变,则小球所受的合力与烧断前细绳拉力的大小相等、方向相反,则此瞬间小球的加速度大小为253T a g m == 故C 正确,BD 错误。

牛顿运动定律的10种典型例题

牛顿运动定律的10种典型例题
例19、一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图9所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)
9.传送带有关的问题。
8.面接触物体分离的条件及应用
相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关案例。下面举例说明。0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s这段时间内P向上运动的距离: x=mg/k=0.4m 因为 ,所以P在这段时间的加速度 当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N. 当P与盘分离时拉力F最大,Fmax=m(a+g)=360N.
1. 力和运动的关系
加速度与力有直接关系,速度与力没有直接关系。 速度如何变化需分析加速度方向与速度方向之间的关系: 加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。
1.力和运动的关系
例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是( ) 探测器加速运动时,沿直线向后喷气 探测器加速运动时,竖直向下喷气 探测器匀速运动时,竖直向下喷气 探测器匀速运动时,不需要喷气

牛顿运动定律专题弹簧类模型

牛顿运动定律专题弹簧类模型

牛顿运动定律专题——弹簧类模型班级姓名【考情分析】教材中并未专题讲述弹簧。

主要原因是弹簧的弹力是一个变力。

不能应用动力学与运动学的知识来详细研究。

但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。

即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。

而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。

所以我们只需了解一些关于弹簧的基本知识即可。

具体地说,要了解下列关于弹簧的基本知识:1、认识弹簧弹力的特点。

2、了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。

特别要理解“平衡位置”的含义3、物体的平衡中的弹簧4、牛顿第二定律中的弹簧5、用功与能量的观点分析弹簧连接体【经典题型】3. 有一水平放置的圆盘,上面放一个劲度系数为k的轻弹簧,其一端固定于轴O上,另一端系着质量为m的物体A,物体A与盘面间最大静摩擦力为F fm,弹簧原长为L,现将弹簧伸长 L后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n的最大值与最小值各是多少?(k L>F fm)5.如图所示,劲度系数为k的轻质弹簧两端连接着质量分别为m与2m的两木块,1开始时整个系统处于静止状态。

现缓慢向上拉木块m,直到木2块m将要离开地面,1在这过程中木块移动的距离为___________。

6.如图所示,U型槽放在水平桌面上,M=0.5kg的物体放在槽内,弹簧撑于物体与槽壁之间并对物体施加压力为3N,物体与槽底之间无摩擦力。

当槽与物体M一起以6 m/s2的加速度向左运动时,槽壁对物体M的压力为_____N.7.如图所示,小球在竖直力F作用下将竖直弹簧压缩(小球与弹簧不栓连),若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中,下列说法中正确的是()A.小球的动能先增大后减小B.小球在离开弹簧时动能最大C.小球的动能最大时弹性势能为零D.从撤去外力F到小球上升到最高点的过程中,弹簧一直与小球一起运动8. 如图所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为F f,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?当物体离开平衡的位移为x时,A、B间磨擦力的大小是多少?9.两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。

高一物理弹簧临界问题

高一物理弹簧临界问题

高一物理弹簧临界问题
高一物理弹簧的临界问题是一个涉及动力学和弹力学的复杂问题。

以下是解决此类问题的一般步骤:
1. 分析物体的受力情况:对于与弹簧相连的物体,我们需要分析其受到的重力、弹力和其他可能的力。

2. 确定临界条件:弹簧的临界状态通常发生在其形变量最大或最小的时候。

这些临界状态可能是物体速度为零、加速度为零、弹簧伸长量或压缩量最大等。

3. 运用动力学方程:根据牛顿第二定律,结合物体在临界点的速度和加速度信息,可以建立动力学方程。

4. 求解方程:解方程以找到物体的速度、加速度、弹簧的形变量等。

5. 考虑能量守恒:在某些情况下,弹簧的弹力可能会引起其他形式的能量变化,如动能和势能的相互转化。

在这种情况下,需要使用能量守恒定律来解决问题。

6. 分析多过程问题:对于涉及物体与弹簧相互作用的多过程问题,需要仔细分析每个过程中的受力情况和运动状态,并找出临界条件。

7. 总结答案:根据以上步骤,可以总结出物体与弹簧相互作用时的运动规律和临界条件,从而得出最终答案。

解决此类问题需要深入理解牛顿运动定律、能量守恒定律和胡克定律的应用,并且能够灵活运用这些知识来分析复杂的物理情景。

如有需要,可以查阅相关资料或咨询物理老师。

牛顿第二定律弹簧切断问题

牛顿第二定律弹簧切断问题

牛顿第二定律弹簧切断问题
当系统中存在弹簧时,剪断弹簧,其弹力不能瞬间消失,俗称就叫非瞬变力。

与之相对,将系统中的弹簧换为细绳,剪断细绳,弹力瞬间消失,俗称就叫瞬变力。

牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比;加速度的方向跟作用力的方向相同。

换成公式表达就是F(作用力)=m(物体质量)a(物体加速度),其中F单位为牛顿N、m单位为千克kg、a单位为米每平方秒m/s2。

由公式可以看出,加速度和力是同时产生、同时变化、同时消失的。

F改变,a也会随之改变。

牛顿第二定律应用:连接体与弹簧问题教案

牛顿第二定律应用:连接体与弹簧问题教案

3.如图所示,A 、B 两木块用轻绳连接,放在光滑水平面上,在水平外力F =12 N 作用下从静止开始运动,轻绳中的拉力F 1=3 N ,已知A 木块的质量是m 1=6 kg ,则( ) A .B 木块的质量m 2=18 kg B .B 木块的质量m 2=2 kg C .B 木块的加速度a 2=2 m / s 2D .经过时间2 s ,A 木块通过的距离是1 m4.如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面向右做匀加速直线运动,这时弹簧长度为1L ;若用水平恒力F 拉B ,使A 、B 一起向左做匀加速直线运动,此时弹簧长度为2L .则下列关系式正确的是( ) A .2L <1L B .2L >1LC .2L = 1LD .由于A 、B 质量关系未知,故无法确定1L 、2L 的大小关系 5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg ,木板的质量是10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g=10m/s 2.当人以440N 的力拉绳时,人与吊板的加速度a 和人对吊板的压力F 分别为( ) A . a=1.0m/s 2,F=260N B . a=1.0m/s 2,F=330N C . a=3.0m/s 2,F=110N D . a=3.0m/s 2,F=50N6.A 、B 二物块相靠,放于倾角为 的斜面上,如图所示,A 、B 与斜面的动摩擦因数都相同.同时由静止释放.A 、B 向下滑动,下面的说法中正确的是( ) A .A 、B 共同向下滑的加速度大于A 单独滑的加速度 B .A 、B 共同向下滑的加速度小于A 单独滑的加速度 C .A 、B 共同向下滑的加速度等于A 单独滑的加速度D .A 、B 共同向下滑的加速度等于B 单独滑的加速度7.如图所示,物体A 、B 叠放在粗糙的水平桌面上,水平外力F 作用在B 上,使AB 一起沿水平桌面向右加速运动,设A 、B 之间的摩擦力为f 1,B 与水平桌面间的摩擦力为f 2,若水平外力F 逐渐增大,但A 、B 仍保持相对静止,则摩擦力f 1和f 2的大小( )A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律应用之弹簧问题
例1:物体从某一高度自由落下,落在直立的轻弹簧上,如图所示,
在A 点物体开始与弹簧接触,到B 点时弹力与重力大小相等,到C 点时物
体速度为零,然后弹回,则下列说法正确的是( )
A.物体从A 下降到C 的过程中,速率不断变小
B.物体从C 上升到A 的过程中,速率不断变大
C.物体从A 下降到C ,以及从C 上升到A 的过程中,速率都是先增大
后减小
D.物体在C 点时,所受合力为零
例2 电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速
直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤
的示数变为8N ,关于电梯的运动,以下说法正确的是:( )
A 、电梯可能向上加速运动,加速度大小为2m/s 2
B 、电梯可能向下加速运动,加速度大小为
2m/s 2
C 、电梯可能向上减速运动,加速度大小为2m/s 2
D 、电梯可能向下减速运动,加速度大小为2m/s 2
例3:如图所示,轻弹簧上端固定,下端连接着重物(质量为m ).
先由托板M 托住m ,使弹簧比自然长度缩短L ,然后由静止开始使M
以加速度a 匀加速向下运动。

已知
a<g ,弹簧劲度系数为k ,求经过多长时
间托板M 将与m 分开?
例4:如图所示,竖直放置的劲度系数k=800N/m 的轻弹簧上有一
质量不计的轻盘,盘内放着一个质量m=12kg 的物体,开始时m 处于静
止状态,现给物体施加一个竖直向上的力F ,使其从静止开始向上做匀
加速直线运动,已知开始0.2S 内F 是变力,在0.2S 后F 是恒力,取g=10m/s 2,
则F 的最小值是 N ,最大值是 N.
例5.如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,
箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧
再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持
力为:( )
A B C a
A
D.
拓展1、如图,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加
一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F
的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( )
A 、加速度为0,作用力为mg 。

B 、加速度为F/2m ,作用力为mg+F/2
C 、加速度为F/m ,作用力为mg+F
D 、加速度为F/2m ,作用力为(mg+F )/2
拓展2、原来作匀速运动的升降机内,有一被伸长的弹簧拉住的,
具有一定质量的物体A 静止在地板上,如图所示,现在A 突然被弹簧
拉向右方,由此可判断,此时升降机的运动可能是( )
A.加速上升
B.减速上升
C.加速下降
D.减速下降
例6 如图,光滑水平面上有质量相等的两物体A 和B ,B 上装有轻质弹簧,B 原
来静止,A 以速度v 正对B 滑行,当弹簧压缩到最大时:( )
A 、A 的速度减小到零
B 、A 和B 具有相同的速度
C 、此刻B 刚开始运动
D 、此刻B 达到最大速度
例7.将金属块用压缩的轻弹簧卡在一个矩形的箱中,轻弹簧与金属块及箱下
底板相连,如图所示。

在箱的上顶板和下底板安有压力传感器,箱可以沿竖直轨道
运动。

当箱以a=2.0m/s 2的加速度作竖直向上的加速运动,上顶板的
传感器显示的压力为6.0N ,下底板的传感器显示的压力为10.0N 。


g=10m/s 2。

(1)若上顶板传感器的示数下底板传感器示数的一半,试判
断箱的运动情况。

(2)使上顶板传感器的示数为零,箱沿竖直方向的
运动可能是怎样的?
参考答案 1C 2BC 3 4 90N 210N
5 A 拓展1 B 拓展2 BC
6 B
7 (1)以加速度a=5m/s 2向上的匀加速运动或者向下的匀减速运动。

(2)箱以a ≥20m/s 2的加速度向上作匀加速运动或向下作匀减速运动.。

相关文档
最新文档