自动控制实验三

合集下载

华南农业大学自动控制实验三典型三阶系统动态性能和稳定性分析

华南农业大学自动控制实验三典型三阶系统动态性能和稳定性分析

题 目实验三 典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期实验三 典型三阶系统动态性能和稳定性分析一、实验目的1.学习和掌握三阶系统动态性能指标的测试方法。

2.观察不同参数下典型三阶系统的阶跃响应曲线。

3. 研究典型系统参数对系统动态性能和稳定性的影响。

二、实验内容观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方框图连接起来,就得到控制系统的模拟电路图。

典型三阶系统的结构图如图25所示:图25 典型三阶系统的结构图其开环传递函数为23()(1)(1)K G s S T s T s =++,其中1234K K KK T =,三阶系统的模拟电路如图26所示:题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期图26三阶闭环系统模拟电路图模拟电路的各环节参数代入G(s)中,该电路的开环传递函数为:SSSKSSSKSG++=++=236.005.0)15.0)(11.0()(该电路的闭环传递函数为:KSSSKKSSSKS+++=+++=236.005.0)15.0)(11.0()(φ闭环系统的特征方程为:06.005.0,0)(123=+++⇒=+KSSSSG特征方程标准式:032213=+++aSaSaSa根据特征方程的系数,建立得Routh行列表为:6.005.06.06.0105.012331321131223KSKSKSSaSaaaaaSaaSaaS-⇒-为了保证系统稳定,劳斯表中的第一列的系数的符号都应相同,所以由ROUTH 稳定判据判断,得系统的临界稳定增益K=12。

⎪⎩⎪⎨⎧>>-6.005.06.0KK题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期即:⎪⎩⎪⎨⎧<⇒>=⇒=Ω>⇒<<系统不稳定系统临界稳定系统稳定41.7KΩR12K41.7KΩR12K7.4112KKR三、实验步骤1、按照实验原理图接线,设计三阶系统的模拟电路2、改变RX的取值,利用上位机软件仿真功能,获取三阶系统各种工况阶跃响应曲线。

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理 实验三SIMULINK环境下典型环节阶跃响应仿真及分析

自动控制原理 实验三SIMULINK环境下典型环节阶跃响应仿真及分析

课程名称自动控制原理实验序号实验三实验项目SIMULINK环境下典型环节阶跃响应仿真及分析实验地点实验学时实验类型操作性指导教师实验员专业 _______ 班级学号姓名年月日教师评语一、实验目的及要求1、初步了解MATLAB中SIMULINK的使用方法;2、了解SIMULINK下实现典型环节阶跃响应方法;3、定性了解各参数变化对典型环节动态特性的影响。

二、实验原理与内容三、实验软硬件环境装有MATLA软件的电脑四、实验过程(实验步骤、记录、数据、分析)1、按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

(1)比例环节G1(s)=1和G2(s)=2;比例环节G1(s)=1的实验结果:比例环节G2(s)=2的实验结果:结果分析:由以上阶跃响应波形图知,比例环节的输出量与输入量成正比,比例系数越大,输出量越大。

(2) 惯性环节G1(s)=1/(s+1)和G2(s)=1/(0.5s+1)惯性环节G1(s)=1/(s+1)的实验结果:惯性环节G1(s)=1/(0.5s+1)的实验结果:结果分析:由以上单位阶跃响应波形图知,惯性环节使输出波形在开始的时候以指数曲线上升,上升速度与时间常数有关,时间常数越小响应越快。

(3)积分环节G(s)=1/s(4)微分环节G(s)=s(5)比例+微分(PD)G1(s)=s+2和G2(s)=s+1G1(s)=s+2的实验结果:G2(s)=s+1的实验结果:结果分析:由以上单位阶跃响应波形图知,比例作用与微分作用一起构成导前环节,输出反映了输入信号的变化趋势,波形也与时间常数有关。

(6)比例+积分(PD)G1(s)=1+1/s和G2(s)=1+1/2sG1(s)=1+1/s的实验结果:G2(s)=1+1/2s的实验结果:结果分析:由以上单位阶跃响应波形图知,积分环节的输出量反映了输入量随时间的积累,时间常数越大,积累速度越快。

实验结果:结果分析:由以上单位阶跃波形知,当ξ=0时,系统的单位阶跃响应为不衰减;随着阻尼ξ的减小,其振荡特性表现的愈加强烈,当ξ的值在0.2-0.7之间时,过渡过程时间较短,振荡不太严重;当ξ=1时,响应慢。

自动控制原理实验报告

自动控制原理实验报告

北京航空航天大学自动控制原理实验报告学院能源与动力工程学院专业方向飞行器动力工程班级 140416学号 ********学生姓名蓝健文实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的阶跃响应曲线,并测定其过渡过程时间,即调节时间 t s。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间 t s。

三、实验原理1、一阶系统系统传递函数为:ϕ(s)=C(s)R(s)=KTs+1模拟运算电路如图1所示:图 1 由图 1 得U0(s) U i(s)=(R2/R1)R2Cs+1=KTs+1实验当中始终取R2=R1,则K=1,T=R2C,取不同的时间常数T,T=0.25s、T=0.5s、T=1s,记录阶跃响应曲线,测量过渡过程时间 t s。

将参数及指标填在后面数据分析部分的表1中。

2、二阶系统其传递函数为:ϕ(s)=C(s)R(s)=ωn2s+2ζωn2s+ωn2令ωn=1 rad/s,则系统结构如图2所示:图 2根据结构图,建立的二阶系统模拟线路如图3所示:图 3取R2 C1=1 ,R3 C2 =1,则R4 R3=R4C2=12ζ及ζ=1 2R4C2ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 ,观察并记录阶跃响应曲线,测量超调量σ% ,计算过渡过程时间 t s。

将参数及各项指标填入数据分析部分的表2中。

以上实验,配置参数时可供选择的电阻R值有100kΩ,470kΩ(可调),2.2MΩ(可调),电容C值有1μF,10μF。

四、实验设备1.数字计算机2.电子模拟机3.万用表4.测试导线五、实验步骤1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。

自动控制原理实验指导书

自动控制原理实验指导书

实验三线性系统的频率响应分析在经典控制理论中,采用时域分析法研究系统的性能,是一种比较准确和直观的分析法。

但是,在应用中也常会遇到一些困难。

其一,对于高阶系统,其性能指标不易确定;其二,难于研究参数和结构变化对系统性能的影响。

而频率响应法是应用频率特性研究自动控制系统的一种经典方法,它弥补了时域分析分析法的某些不足。

一、实验目的1、掌握波特图的绘制方法及由波特图来确定系统开环传递函数。

2、掌握实验方法测量系统的波特图。

二、实验设备PC机一台、TD-ACC教学实验系统一套三、实验原理及内容(一)实验原理1、频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(w由0变至∞)而变化的特性。

根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2、频率特性的表达方式(1)对数频率特性:又称波特图,它包含对数幅频和对数相频两条曲线。

(2)极坐标图(又称为乃奎斯特图)(3)对数幅相图(又称为尼克尔斯图)本次实验采用对数频率特性图来进行频率响应分析的研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

(二)实验内容1、间接频率特性测量方法用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

①对象为积分环节:1/0.1S由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

②将积分环节构成单位负反馈,模拟电路构成如图3.1-1图3.1-1③理论依据图3.1-1所示的开环频率特性为:采用对数幅频特性和相频特性表示,则上式表示为:其中G(jw)为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④测量方式:实验采用间接测量方式,只须用两路表笔CHI和CH2来测量图3.1-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

自动控制原理实验3

自动控制原理实验3
实验 三
经典三阶系统旳稳定性 研究
一、试验目旳
1、 熟悉反馈控制系统旳构造和工作原理; 2、了解开环放大系数对系统稳定性旳影 响。
二、试验要求:
观察开环增益对三阶系统稳定性 旳影响。
三、试验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.TDS1000B-SC 系列数字存储示波 器1台; 3.万用表
由劳斯判据懂得,当:
11.9619.6 19.6k 0
19.6k 0
得到系统稳定范围:0 k 11.96
当:
11.96 19.6 19.6k 0
得到系统临界稳定时:
k 11.96
当:
11.96 19.6 19.6k 0
得到系统不稳定范围:k 11.96
将K=510/R代入(3-6)~(3-8)得: R>42.6KΩ 系统稳定 R=42.6KΩ 系统临界稳定 R<42.6KΩ 系统不稳定
G(S)H (S)
510 / R
S(0.1S 1)(0.51S 1)
系统旳特征方程为:
S 3 11.96S 2 19.6S 19.6K 0
用劳斯判据求出系统稳定、临界稳定、 不稳定时旳开环增益:
S3
1
19.6
S2
11.96
19.6K
11.96 19.6 19.6K
S1
11.96
S0
19.6K
四、试验原理和内容:
利用自控系统教学模拟机来模拟 给定三阶系统。
经典三阶系统原理方块图如下图 所示。
G(S )H (S )
K1K 2
T0S (T1S 1)(T2S 1)
K
S(T1S 1)(T2S 1)
给定三阶系统电模拟图

自动控制原理实验报告-西南交通大学课程与资源中心

自动控制原理实验报告-西南交通大学课程与资源中心

西南交通大学自动控制原理课程实验报告册
《自动控制原理》课程实验报告(一)
《自动控制原理》课程实验报告(二)
《自动控制原理》课程实验报告(三)
《自动控制原理》课程实验报告(四)
三、思考题
1. 参数在一定范围内取值才能使闭环系统稳定的系统称为条件稳定系统。

对于这类系
统可以通过根轨迹法来确定使系统稳定的参数取值范围,也可以适当调整系统参数或增加校正网络以消除条件稳定性问题。

对于下图所示条件稳定系统:
试问能否通过增加开环零极点消除系统条件稳定性问题,即对于所有根轨迹增益,根轨迹全部位于s左半平面,闭环系统稳定。

《自动控制原理》课程实验报告(五)
《自动控制原理》课程实验报告(六)
《自动控制原理》课程实验报告(七)
《自动控制原理》课程实验报告(八)
《自动控制原理》课程实验报告(九)。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。

三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。

222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。

自动控制实验报告

自动控制实验报告

自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。

二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。

2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。

5×100%=0.28%E2=|3.318—3。

3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。

自动控制实验指导书-北京精仪达盛3

自动控制实验指导书-北京精仪达盛3

实验一 典型环节及其阶跃响应一、实验目的1.掌握控制模拟实验的基本原理和一般方法。

2.掌握控制系统时域性能指标的测量方法。

二、实验仪器1.EL-AT-III 型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运输放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法: 超调量σ%:1) 启动计算机,在桌面双击图标[自动控制实验系统]运行软件。

2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3) 连接被测量典型环节的模拟电路。

电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。

检查无误后接通电源。

4) 在实验项目的下拉列表中选择实验一[典型环节及其阶越响应]。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:%100%max ⨯-=∞∞Y Y Y σ T P 与T S利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶越响应: 1.比例环节的模拟电路及传递函数如图1-1图1-1 图 1-2 2.惯性环节的模拟电路及传递函数如图1-2。

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。

改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。

① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。

(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。

机电控制工程基础实验报告自控实验三

机电控制工程基础实验报告自控实验三

机电控制工程基础实验报告自控实验三实验三控制系统串联校正实验时间实验编号同组同学一、实验目的1.了解和掌握串联校正的分析^p 和设计方法。

2.研究串联校正环节对系统稳定性及过渡过程的影响。

二、实验内容1.设计串联超前校正,并验证。

2.设计串联滞后校正,并验证。

三、实验原理1.系统结构如下图所示:图 SEQ 图 \ARAB 1 控制系统结构图其中Gc(S)作为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机实现。

2.系统模拟电路如下图所示:图 SEQ 图 \ARAB 2 控制系统模拟电路图取。

3.未加校正时时GC4.加串联超前校正时GCs=aTs+1Ts+15.加串联滞后校正时GCs四、实验设备?1.数字计算机2,电子模拟机3,万用表4,测试导线五、实验步骤?1.?熟悉HHMN-1电子模拟机的使用方法。

将各运算放大器接成比例器,通电调零。

断开电,按照系统结构图和传递函数计算电阻和电容的取值,并按照模拟线路图搭接线路。

2.?将D/A1与系统输入端Ui连接,将A/D1与系统输出端Uo连接(此处连接必须谨慎,不可接错)。

线路接好后,经教师检查后再通电;3.?在桌面用鼠标双击“MATLAB”图标后进?入在命令行处键入“autolab”进入实验软件系统;4.?在系统菜单中选择实验项目,选择“实验三”?,在窗口左侧选择“实验模型”?;?5.?分别完成不加校正,加入超前校正,加入滞后校正的实验。

在系统模型上的“Manual?Switch”处可?设置系统是否加入校正环节,在“GC6.?绘制以上三种情况时系统的波特图;7.?采用示波器(Scope)观察阶跃响应曲线。

观测实验结果记录实验数据,绘制实验结果图形,完成?实验报告。

六、实验结果原系统原系统阶跃响应曲线如下图 SEQ 图 \ARAB 3原系统时域阶跃响应曲线其阶跃响应性能参数如下σTT46.55170.62135.4670表格 1 原系统阶跃响应性能参数原系统Bode图如下图 SEQ 图 \ARAB 4原系统Bode图超前校正系统超前校正系统阶跃响应曲线如下图 SEQ 图 \ARAB 5超前校正系统时域阶跃响应曲线超前校正后,系统阶跃响应性能参数如下σTT22.98290.51041.8955表格 2 超前校正系统阶跃响应曲线超前校正系统Bode图如下图 SEQ 图 \ARAB 6超前校正系统Bode图滞后校正系统滞后校正系统阶跃响应曲线如下图 SEQ 图 \ARAB 7滞后校正系统时域阶跃响应曲线滞后校正后,系统阶跃响应性能参数如下σTT18.59902.654012.9330表格 3 滞后校正系统阶跃响应性能参数滞后校正后系统Bode图如下图 SEQ 图 \ARAB 8滞后校正系统Bode图截止频率和稳定裕度计算在命令窗口输入相关命令,在得到的图形中读出系统的相角裕度γ、截止频率ωc项目系统项目系统γ/°ω原系统281.88超前校正47.42.38滞后校正54.80.449结果分析^p超前校正实验结果分析^p首先从系统频率特性曲线Bode图可以看出,经过超前校正后的系统在校正点处的性能有所改善。

北京信息科技大学 自动化专业 实验三 系统解耦控制

北京信息科技大学 自动化专业 实验三  系统解耦控制

实验三 系统解耦控制一、实验目的1、 掌握解耦控制的基本原理和实现方法。

2、 学习利用模拟电路实现解耦控制及实验分析。

二、实验仪器1、 TDN —AC/ACS 型自动控制系统实验箱一台2、 示波器3、 万用表三、实验原理与内容一般多输入多输出系统的矩阵不是对角阵,每一个输入量将影响所有输出量,而每一个输出量同样受到所有输入量的影响,这种系统称为耦合系统。

系统中引入适当的校正环节使传递矩阵对角化,实现某一输出量仅受某一输入量的控制,这种控制方式为解耦控制,其相应的系统称为解耦系统。

解耦系统输入量与输出量的维数必相同,传递矩阵为对角阵且非奇异。

1、 串联控制器()c G s 实现解耦。

图3-1用串联控制器实现解耦耦合系统引入控制器后的闭环传递矩阵为1()[()()()]()()p c p c s I G s G s H s G s G s -Φ=+ (3-1)左乘[()()()]p c I G s G s H s +,整理得1()()()[()()]p c G s G s s I H s s -=Φ-Φ (3-2)式中()s Φ为所希望的对角阵,阵中各元素与性能指标要求有关,在()H s 为对角阵的条件下,1[()()]I H s s --Φ仍为对角阵, 11()()()[()()]c p G s G s s I H s s --=Φ-Φ (3-3)设计串联控制器()c G s 可使系统解耦。

2、 用前馈补偿器实现解耦。

解耦系统如图3-2,图3-2 用前馈控制器实现解耦解耦控制器的作用是对输入进行适当变换实现解耦。

解耦系统的闭环传递函数1()[()]()()p p d s I G s G s G s -Φ=+ (3-4) 式中()s Φ为所希望的闭环对角阵,经变换得前馈控制器传递矩阵1()()[()]()d p p G s G s I G s s -=+Φ (3-5)3、 实验题目双输入双输出单位反馈耦合系统结构图如图。

自动控制原理试验3_线性系统校正

自动控制原理试验3_线性系统校正

实验三线性系统校正一、实验目的1.利用Z-N临界增益法则,初步调节PID控制器参数。

2.设计串联校正环节,使整个系统指标满足要求(附加题)。

二、实验内容与步骤1. 已知阀控缸电液位置伺服系统开环传递函数为用Z-N临界增益法则,设计串联PID控制器参数,对比校正前后闭环系统阶跃响应指标及幅频特性的变化。

试验步骤:(1)利用simulink构建闭环系统模型。

(2)构建P控制器(见图1),找出系统的临界稳定增益Kc,记录Kc值,并根据示波器Scope的图形求得系统临界稳定时的振荡周期Tc(见图2)。

图1 带有P控制器的系统模型(3)依据Z-N临界增益法(见图3),确定PID控制器参数图2 临界振荡阶跃响应曲线图3 Z-N临界增益法(4)构建PID控制器,测试校正后系统的阶跃响应。

2. 已知单位负反馈系统开环传递函数为设计串联校正环节,使系统的相角裕度不小于30度,wc不低于30rad/s。

试验步骤:(1) 写出校正后整个系统的传递函数()ysxs s s s G +++='1115.0100)(。

(2) 令30)(180,1)(=+=='c c G ωϕγω,用solve 函数解二元一次方程组。

(3) 校验:将得出的x 、y 值代入)(s G '中,验证相角裕度及幅值裕度是否满足要求。

sqrt 函数举例:21x + matlab: sqrt(1+x^2)atan 函数举例:u arctg matlab: atan(u)solve 函数举例:求()()()ys s xs G +++=111100剪切频率为20rad/s ,相角裕度为20º时的x 、y 值。

[x y]=solve(‘方程1’,’方程2’)方程1:()()1201201201100)20(222=+++=y x j G .matlab :100*sqrt(1+(x*20)^2)/(sqrt(1+20^2)*sqrt(1+(y*20)^2))=1方程2:20)20()20()20(18020)(180=--+⇒=+=y arctg arctg x arctg c ωϕγmatlab :180+atan(x*20)*180/3.1416-atan(20)*180/3.1416-atan(y*20)*180/3.1416=20 运行后,结果为x=0.005, y=0.246.验证:()()()s s s G 246.011005.01100+++= matlab: num=[100*0.005 100];den=conv([1 1],[0.246 1]);sys=tf(num,den);margin(sys); 可知,此时系统剪切频率为20rad/s ,相角裕度为20.1º。

自动控制原理高阶系统的瞬态响应和稳定性分析

自动控制原理高阶系统的瞬态响应和稳定性分析

实验三高阶系统的瞬态响应和稳定性分析一、实验目的1. 通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,它与外作用及初始条件均无关的特性;2. 研究系统的开环增益K或其它参数的变化对闭环系统稳定性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

三、实验内容1、观测三阶系统的开环增益K为不同数值时的阶跃响应曲线;2、观测三阶系统时间常数T(极点)不同数值时的阶跃响应曲线。

四、实验原理三阶系统及三阶以上的系统统称为高阶系统。

一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。

控制系统能投入实际应用必须首先满足稳定的要求。

线性系统稳定的充要条件是其特征方程式的根全部位于S平面的左方。

应用劳斯判断就可以判别闭环特征方程式的根在S平面上的具体分布,从而确定系统是否稳定。

本实验是研究一个三阶系统的稳定性与其参数K和T对系统性能的关系。

三阶系统的方框图如图3-1所示。

图3-1 三阶系统的方框图三阶系统模拟电路图如图3-2所示。

图3-2 三阶系统的模拟电路图图3-1的开环传递函数为)1)(1)(1(2)(321+++=S T S T S T K S G (XR K 100=) (3-1) 式中K 值可调节R X 的值来改变。

当取C 1=1μF ,C 2=1μF ,C 3=1μF ,时,三阶系统对应的闭环传递函数特征方程为:0.001S 3+0.03S 2+0.3S+1+2K=0根据劳斯稳定判据,欲使系统稳定,则K应满足:0<K<4。

即当K=4时,系统处于临界状态;K>4时,系统处于发散状态。

五、实验步骤1、根据图3-2所示的三阶系统的模拟电路图,设计并组建该系统的模拟电路(取C 1= C 2= C 3=1μF)。

当系统输入一阶跃信号时,在下列几种情况下,用上位软件观测并记录不同K 值时的实验曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3-2 被测系统
四、实验步骤



1、将Ul SG单元的ST和S端及“+5V”断 开,用排线将ST端接至示波器单元中的 “SL”。 2、将SIN信号接到对象的输入端。 3、直接测量时(用CH1测闭环频率特 性),间接测量时(用CH1测输出,用 CH2测偏差),用虚拟仪器读出数据。
五、实验思考题


1.理论计算不同ω值时的L(ω)和ф(ω), 并与实验结果进行比较; 2.能否根据实验所得Bode图确定一个二 阶系统的闭环传递函数?
六、实验报告要求


1、被测系统或环节的传递函数、模拟线 路图、计算出ξ、T的值; 2、将实验记录数据整理列表;根据实验 数据,用半对数坐标纸画出被测系统或 环节的理论图及实测图,并与理论曲线 相比较,分析造成误差的原因。
实验三
控制系统的频率特性
一、实验目的



1.根据实验室现有的设备,了解频率特 性的测试方法及原理; 2. 熟悉二阶系统的频率特性;了解二 阶系统的频域指标与时域指标的对应关 系; 3. 熟悉模拟装置的组成及工作原理,掌 握电子模拟线路的设计方法。
二、实验内容

利用ACC+系统提供频率和幅值均可调 的基准正弦信号源,作为被测对象的输 入信号,选择不同角频率及幅值的正弦 信号源作为对象的输入,可测得相应的 系统输出,并在PC机屏幕上显示,根据 所测得的数据正确描述对象的幅频和相 频特性图。
三、实验原理
1.被测系统的方块图及原理:见图3-1
图3-1 被测系统方块图

ቤተ መጻሕፍቲ ባይዱ
将频率特性测试仪内信号发生器产生的 超低频正弦信号的频率从低到高变化, 并施加于被测系统的输入端[r(t)],分别 进行直接测量(用CH1测闭环频率特性) 和间接测量(用CH1测输出,用CH2测偏 差)。
2.被测系统的模拟电路图:见图3-2
相关文档
最新文档