尖晶石镍锰酸锂的共沉淀合成

合集下载

超重力反应共沉淀法制备纳米尖晶石锰酸锂

超重力反应共沉淀法制备纳米尖晶石锰酸锂

超重力反应共沉淀法制备纳米尖晶石锰酸锂黄新武;周继承;谢芝柏;廖晶晶;刘思维【摘要】分别以硝酸锂(LiNO3)和硝酸锰(Mn(NO3)2)为锂源和锰源,碳酸铵为沉淀剂,在螺旋通道型旋转床中进行共沉淀反应制备了尖晶石LiMn2O4前驱体,然后在微波马弗炉中750℃煅烧2h可得到纳米尖晶石LiMn2O4.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法对样品进行表征.结果表明,采用超重力反应共沉淀法可以获得结晶度高、粒径均匀、平均粒径约为60nm的纳米尖晶石LiMn2O4粉体.【期刊名称】《功能材料》【年(卷),期】2013(044)016【总页数】4页(P2437-2440)【关键词】螺旋通道型旋转床;超重力;共沉淀法;纳米;LiMn2O4【作者】黄新武;周继承;谢芝柏;廖晶晶;刘思维【作者单位】湘潭大学化工学院,湖南湘潭411105;湘潭大学化工学院,湖南湘潭411105;湘潭大学化工学院,湖南湘潭411105;湘潭大学化工学院,湖南湘潭411105;湘潭大学化工学院,湖南湘潭411105【正文语种】中文【中图分类】TM912.91 引言尖晶石Li Mn2 O4具有热稳定性高、耐过充性好、资源丰富、价格低廉、环境友好等优点,被认为是非常有潜力的锂离子动力电池正极材料[1-4]。

目前,国内外制备Li Mn2 O4 粉体的主要方法有高温固相法[5-7]、水热法[8,9]、溶胶-凝胶法[10-12]、喷雾热解法[13,14]、共沉淀法[15,16]等。

目前工业上主要采用高温固相法制备尖晶石Li Mn2 O4粉体,虽然该方法工艺简单,但是制备周期长、能耗大,且合成的产品粒径大、均匀性差。

水热法合成的产品物相均一、过程简单,但需要高温、高压的反应条件,对生产设备要求高,操作控制也较为复杂,工业化生产的难度较大。

溶胶-凝胶法可获得结构和性能较好的尖晶石锰酸锂,但在制备过程中使用有机物增加了成本并会对环境造成污染,而且生产周期过长,不利于工业化。

共沉淀法合成镍锰酸锂正极材料前驱体

共沉淀法合成镍锰酸锂正极材料前驱体
YANG Qiang⁃qiang 1 , CUI Ya⁃ru 1 , LI Qian 1 , WANG Juan 2 , DUAN Li⁃zhen 1 , HAO Yu 1
(1.School of Metallurgical Engineering, Xi′ an University of Architecture and Technology, Xi′ an 710055, Shaanxi,
crystallinity with the particle size around 150 nm. The electrochemical performance test of lithium nickel manganese
oxide shows that LiNi 0.5 Mn 1.5 O 4 exhibits the maximum specific discharge capacity of 124.8 mAh / g at 0.5C, with capacity
Abstract: The precursor of sphere⁃like LNMO cathode material was synthesized by using coprecipitation method, and
the impacts of reaction temperature, solution pH value, solvent compositions and addition amount of surfactant of
cetyltrimethylammonium bromide ( CTAB) on the morphology, particle size and phase compositions of the precuronate) were investigated. It is found from the result that under the following appropriate synthesis

用共沉淀法制备尖晶石型锰锌铁氧体粉体

用共沉淀法制备尖晶石型锰锌铁氧体粉体
31Changsha Environmental Monitoring Central Station , Changsha 410001 , China)
Abstract :The powders of Mn2Zn ferrite are prepared with coprecipitation method taking the solution of MnSO4 , ZnSO4 and FeSO4 as raw materials. The phase structure of Mn2Zn ferrite powders obtained is studied with XRD , IR and SEM technology. Effect of the ratio of metal salts , calcinations temperature and additives on the product is investigated. The results show that these elements affect the composition , crystallization and purity of the samples , and consequently affect the magnetic properties. When the mole ratio of metal salts n ( Zn2 + ) ∶n (Mn2 + ) ∶n ( Fe2 + ) is 1∶1. 5∶6 and dope addi2 tives , the sample obtained is monophase spinel Mn2Zn ferrite ,which is regular cubic crystalline grains. Key words :Mn2Zn ferrite ; powder ; coprecipitation ; characterization

溶胶凝胶法制备尖晶石锰酸锂的步骤

溶胶凝胶法制备尖晶石锰酸锂的步骤

溶胶凝胶法制备尖晶石锰酸锂的步骤及性能检测一、尖晶石镍锰酸锂范未峰等:5 V 正极材料镍锰酸锂的自蔓延燃烧合成及性能1.1 样品的合成采用硝酸锂、硝酸镍、乙酸锰为原料,以乙醇为溶剂,按硝酸锂∶硝酸镍∶乙酸锰=1∶0.5∶1.5 的计量比称取各原料,加乙醇搅拌并使温度保持在70 ℃蒸发至透明胶状,而后将胶体转移至蒸发皿中继续在500 W 功率的电炉上加热至300 ℃以上,待胶体被引燃后切断电源使其自行完成自蔓延燃烧过程,得到蓬松状的灰烬(ASH 样品),该灰烬经800 ℃热处理6 h后继续在600 ℃退火6 h 得到FWF300 样品。

1.2 样品的电化学性能测试以制备的样品为活性物质,将活性物质、CNTs 复合导电剂(中科时代纳米生产)以及LA132 粘结剂(成都茵地乐公司生产)按90∶5∶5 质量比混合均匀涂在铝箔上作为正极基片,以金属锂片为负极(对电极),在充满氩气的不锈钢干燥手套箱中完成CR2032 型纽扣电池组装。

美国Cellgard2400 的聚丙烯微孔膜为电池隔膜,电解液为深圳宙邦公司所生产的LBC-326 型号1.0 mol·L-1 的LiPF6产品。

电化学测试使用DC-5 全自动恒流充放电测试仪,分别以不同倍率进行充放电测试,充放电电压范围是3.5~5.2 V。

参考文献:[1] WU Yu-Ping(吴宇平), DAI Xiao-Bing(戴晓兵), MA Jun-Qi (马军旗), (锂离子电池应用和实践). Beijing: Chemical Industry Press,2004:206~209[2] LeeYS, SunYK, Ota S, et al. Electrochemistry Communications,2002,4:989~994[3] Yi T F, Hu X G. Journal of Power Sources, 2007,167:185~191[4] Liu G Q, Wang Y J, Qi L, et al. Electrochimica Acta, 2005,50:1965~1968[5] Fang H S, Li L P, Li G S. Journal of Power Sources, 2007,167:223~227[6] Kim J H, Myung S T, Sun Y K. Electrochimica Acta, 2004,49:219~227[7] Wen L, Qi L, Xu G X, et al. Electrochimica Acta, 2006,51:4388~4392[8] Park S H, Sun Y K. Electrochimica Acta, 2004,50:431 ~[9] Fang H S, Wang Z X, Li X H, et al. Materials Letters, 2006,60:1273~1275[10]Yoon Y K, Parka C W, Ahn H Y, et al. Journal of Physics andChemistry of Solids, 2007,68:780~784[11]Oh S H, Jeon S H, Cho W I, et al. Journal of Alloys andCompounds, 2008,452:389~396[12]Amarilla J M, Rojas R M, Pico F, et al. Journal of Power Sources, 2007,174:1212~1217[13]Myung S T, Komaba S, Kumagai N, et al. Electrochimica Acta, 2002,47:2543~2549[14]Arrebola J C, Caballero A, Hernan L, et al. Journal of PowerSources, 2006,162:606~613[15]Locati C, Lafont U, Simonin L, et al. Journal of Power Sources,2007,174:847~851[16]Caballero A, Cruz M, Hernan L, et al. Journal of Power Sources, 2005,150:192~201[17]LIU Yuan -Yuan ( 刘媛媛), DING Bin ( 丁斌), HUANG Yong-Quan ( 黄泳权), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006,22(8):1495~1498[18]XING Yong-Heng( 邢永恒), ZHANG Bao-Li( 张宝丽), BAIFeng-Ying ( 白凤英), et al. J. Jilin Ins. Chem. Tech.(JilinHuagong Xueyuan Xuebao), 2006,23(4):1~5[19]WEI Wen-Ying(魏文英), FANG Jian(方键), KONG Hai- Ning ( 孔海宁), et al. Progress in Chem. (Huaxue Jinzhan), 2005,17(6):1110~1115[20]LIU Xi(刘玺), GUO Jun-Huai(郭俊怀), ZHENG Wen-Jun ( 郑文君), et al. Chinese J. Struct. Chem. (Jiegou Huaxue),2002,21(4):347~351[21]WANG Xue-Bei(王雪蓓), WANG Ji-Ye(王继业), SONG Hui- Hua(宋会花). Chemistry(Huaxue Tongbao), 2005,68(W041): 1~7[22]ZHANG Bi-Song(张必松), YING Tao-Kai(应桃开). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(4):515~518[23]TIAN Li(田俐), CHEN Lin(陈琳), YI Lan-Hua(易兰花),et al. Chem. Research(Huaxue Yanjiu), 2005,16(1):9~11 [24]FANG Hai-Hong(方海红), HU Bing-Yuan(胡炳元), WANG Lin-Sheng( 王麟生), et al. J. East China Normal University (Natural Science) (Huadong Shifan Daxue Xuebao), 2007,2:52~57[25]CHAI Yu-Jun( 柴玉俊), SONG Xiu-Qin( 宋秀芹), JIA Mi- Ying ( 贾密英), et al. Journal of Hebei Normal University (NaturalScienceEdition)(HeibeiShifanDaxueXuebao(Natura lScience Edition)), 2002,26(3):272~274二、掺钴锰酸锂的合成陈联梅,夏楠,康泰然,文丰玉1. 1 样品的制备采用尿素辅助溶胶凝胶法制备尖晶石型LiMn2 - xCoxO4( 0≤x≤0. 3) 粉末[13].将分析纯的硝酸锂、硝酸锰和硝酸钴按LiMn2 -xCoxO4( 0≤x≤0. 3) 化学计量比称取后溶于含乙醇的水溶液中,并加入适量尿素( 尿素与金属离子总量的摩尔比为2∶ 1)于上述混合溶液中,在75℃的水浴中加热搅拌,直至形成凝胶.将所得凝胶于真空干燥箱中除去水分,然后放入马弗炉中缓慢升温到230 ℃,燃烧后得到黑色粉末状物质.将其研磨后于800 ℃烧结10 h,得到最终产物。

尖晶石LiMn2O4正极材料的研究进展

尖晶石LiMn2O4正极材料的研究进展

尖晶石LiMn 2 O 4正极材料的研究进展陈锐芳w,撒召遥w,苏长伟,郭俊明(1.云南民族大学云南省高校绿色化学材料重点实验室,云南昆明650500;2.云南民族大学生物材料绿色制备技术国家与地方联合工程研究中心,云南昆明650500 )摘要:分析尖晶石锰酸锂(LiMn 2O 4 )正极材料的结构和充放电机理,并对常见的制备方法,如高温固相法、溶胶-凝胶法、共沉淀法、熔盐燃烧法、水热合成法和液相无焰燃烧法等进行介绍。

分析尖晶石LiMn 2O 4的容量衰减机理,指出在循环过程 中,发生的Jahn-Teller 效应、锰溶解歧化反应、氧缺陷和有机电解液分解等现象是制约商品化应用的瓶颈。

对尖晶石LiMn 2O 4的改性策略进行总结归纳,元素掺杂、表面包覆、显微结构控制和合成工艺的优化,可提高整体循环性能。

关键词:锂离子电池;正极材料;尖晶石锰酸锂(LiMn 2O 4 );制备中图分类号:TM912. 9 文献标志码:A 文章编号:1001-1579(2020)05-0496-05Research progress in spinel LiM^O q cathode materialCHEN Rui-fang 1,2 ,SA Zhao-yao 1,2 ,SU Chang-wei 1,2 ,GUO Jun-ming 1,2(1. Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions , Yunnan Minzu University,Kunming , Yunnan 650500, China ; 2. Key Laboratory of Resource Clean Conversion in Ethnic Regions ,Education Department of Yunnan , Yunnan Minzu University , Kunming , Yunnan 650500, China )Abstract : The structure and charge -di s charge mechanism of spinel lithium manganate(LiMn 2O 4) cathode materials were analyzed ,the normal preparation methods , such as high temperature solid state method , sol-gel method , coprecipitation method , molten saltcombustion method , hydrothermal synthesis method and liquid phase flameless combustion method were described. The capacitydecay mechanism on spinel LiMn ^O 4 was analyzed , it was pointed out that the Jahn-Teller effect , manganese dissolutiondisproportionation reaction , oxygen defects and decomposition of organic electrolyte during cycling were the bottlenecks restricting itscommercial application. The modification strategies on spinel LiMn 2 O 4 was summarized , element doping , surface coating , microstructurecontrol and synthesis process optimization were considered as effective strategies to improve the overall cycle performance.Key words :Li-ion battery ; cathode material ; spinel lithium manganate ( LiMn 2O 4 ) ; prepration尖晶石锰酸锂(LiMn 2O 4)可弥补钻酸锂(LiCoO 2)的缺点, 深受广大研究者的青睐。

最新共沉淀法制备尖晶石NiFe2O4及其结构和形貌表征

最新共沉淀法制备尖晶石NiFe2O4及其结构和形貌表征

实验共沉淀法制备尖晶石NiFe2O4及其结构和形貌表征一、实验目的1.掌握共沉淀法制备NiFe2O4的原理和方法。

2.了解粉末X射线衍射分析的基本原理。

掌握粉末X射线衍射实验方法,利用粉末X射线衍射数据进行物相分析和计算粒径大小。

3.了解透射电子显微镜的测试原理。

掌握透射电子显微镜样品制备方法,利用透射电子显微照片观察样品形貌和粒径大小。

二、基本原理NiFe2O4是重要的软磁材料,也是丁烯氧化脱氢的催化剂和具有很高催化活性及对可见光敏感的半导体催化剂。

NiFe2O4还是性能优良的透明无机颜料,具有耐热、耐光、无毒和防锈等显著特点。

本实验采用化学共沉淀法制备前驱体,并加热处理得到NiFe2O4产物。

反应方程式如下:Ni2+ + 2OH- = Ni(OH)2 Ni(OH)2 = NiO + H2OFe3+ + 3OH- = Fe(OH)3 Fe(OH)3 = Fe2O3 + H2ONiO + Fe2O3 = NiFe2O4Ni(OH)2 + 2Fe(OH)3 = NiFe2O4 + 4H2O由于每种晶体物质都有特定的晶体结构和晶胞尺寸,而衍射峰的位置及衍射强度完全取决于该物质的内部结构特点,因此每一种结晶物质都有其独特的衍射花样,即“指纹”谱。

它们的特征可以用各个衍射面的面间距d和衍射线的相对强度I表征。

因此,根据晶体对X射线的衍射特征(衍射线的位置、强度及数量),可以鉴定晶体物质的物相。

其理论基础为布拉格(Bragg )方程:λθn =sin d 2式中:d 为衍射晶面的晶面间距, 为入射角度, 为X 射线波长,n 为正整数。

X 射线定性相分析是将所测得的未知物相的衍射图谱与粉末衍射卡片(PDF 卡片,powder diffraction files )中的已知晶体结构物相的标准数据相比较(可通过计算机自动检索或人工检索进行),以确定所测试样中所含物相。

透射电子显微镜采用高能电子束作为光源,穿透样品时根据厚度不同在荧光屏上形成明暗图像,可以对样品的相貌进行观察,并可直接判断其尺寸大小,适用于小颗粒或超薄样品。

尖晶石型锰酸锂的制备方法专利技术综述报告

尖晶石型锰酸锂的制备方法专利技术综述报告

尖晶石型锰酸锂的制备方法专利技术综述报告作者:陈丽琴来源:《科技视界》 2015年第29期尖晶石型锰酸锂的制备方法专利技术综述报告陈丽琴(国家知识产权局专利局专利审查协作江苏中心,江苏苏州 215000)[摘要]尖晶石型锰酸锂(LiMn2O4)能量密度高、成本低、无污染、安全性好、资源丰富,是最有发展潜力的锂离子电池正极材料之一。

尖晶石型锰酸锂的制备方法很多,主要有液相法和固相法,本文主要针对近年来涉及该产品的制备方法的中外专利技术进行收集和分析,梳理了尖晶石型锰酸锂制备方法的发展脉络。

[关键词]尖晶石;锰酸锂;固相;液相The Patent Technology Review Report of Preparation Method of Spinel Lithium ManganateCHEN Li-qin(Jiangsu Center for patent review of the Patent Office of the StateIntellectual Property Office, Sipo Suzhou Jiangsu 215000)[Abstract]Spinel lithium manganate (LiMn2O4) which has high energy density, low cost, no pollution, good safety, rich in resources, is one of the most development potential of lithium ion battery cathode material. The preparation methods ofspinel lithium manganate are many, mainly with liquid phase method and solid phase method, this article mainly aims at in recent years relating to the preparation of the product patent technology to collect and analyze both at home and abroad, combing the spinel lithium manganate’s preparation methods of development.[Key words]Spinel; Lithium manganate; Solid phase; Liquid phase0概述尖晶石LixMn2O4是具有Fd3m 空间群的立方晶系,其中氧原子面心立方密堆积(CCP) ,锂在CCP 堆积的四面体位置(8a) , 锰离子处于16晶格(16d) ,其中四面体晶格8a ,48f 和八面体晶格16c共面而构成互通的三维离子通道,锂离子能够在这种结构中自由脱出和嵌入。

一种锂二次电池镍锰尖晶石高电压正极材料的制备方法[发明专利]

一种锂二次电池镍锰尖晶石高电压正极材料的制备方法[发明专利]

专利名称:一种锂二次电池镍锰尖晶石高电压正极材料的制备方法
专利类型:发明专利
发明人:冯季军,王雪华,郭琳昱,李水华,刘永
申请号:CN201410764223.5
申请日:20141215
公开号:CN104466166A
公开日:
20150325
专利内容由知识产权出版社提供
摘要:本发明公开了一种锂二次电池镍锰尖晶石高电压正极材料LiNiMnO的有机共沉淀制备方法。

其特征在于所制备的方法包括以下步骤:按化学计量比称取锂源、镍源和锰源,溶于去离子水中得溶液A,将有机沉淀剂溶解得溶液B,将溶液A与溶液B滴加混合生成沉淀。

然后无需过滤和沉淀洗涤,直接蒸除溶剂得前驱体,再经热处理后即得目标产物LiNiMnO。

该方法在沉淀物形成过程中,Ni 和Mn离子通过配位键与有机沉淀剂结合,具有很高的离子选择性。

沉淀剂能够在烧结过程中分解除去,因此可不必洗涤沉淀,既简化了制备工艺,又可很好地控制产物化学计量比,过程控制和产品纯度、性能都有很好的重现性。

申请人:济南大学
地址:250022 山东省济南市市中区南辛庄西路336号
国籍:CN
更多信息请下载全文后查看。

共沉淀法制备镍锰酸锂烧结过程及其性能分析

共沉淀法制备镍锰酸锂烧结过程及其性能分析

碳酸钠,并采用超声波对沉淀剂进行彻底溶解。随 表明到达 600 ℃后,掺锂沉淀开始出现较为明显的
后将沉淀剂溶液以 1 mL·min-1 的速度缓慢滴入配好 特征峰,此处特征峰与镍锰酸锂、部分锂锰氧化物
的硫酸镍和硫酸锰溶液中,缓慢生成细小的颗粒。 和部分锂镍氧化物特征峰符合,这几种镍和锰的价
沉淀剂完全加入后,继续在磁力搅拌器上搅拌约 态相同,结合 XRD 中的信息,说明 600 ℃开始,
本文以氢氧化钠为沉淀剂,采用共沉淀法制备 镍锰酸锂,利用 TG-DTA 和 XRD 来分析讨论制备镍 锰酸锂中的煅烧反应历程及其煅烧反应动力学,并 对制备得到的镍锰酸锂进行了简单的表征和电化学 分析,结果表明煅烧过程对镍锰酸锂的性能有很大 影响,长时间高温煅烧对于镍锰酸锂正极材料的制 备是必要的。
1 实验部分
德国 Mbraun 有限公司;液压封口机,深圳市精科机 应当为产物的进一步分解,但是 XRD 中二价锰的峰
电设备有限公司;冲片机,深圳市铭锐祥自动化设 强度却进一步下降,并且此时为放热峰,原因可能
备有限公司;压片机,深圳市铭锐祥自动化设备有 是由于测试过程中部分分解产物再次同时发生氧化
限公司;扫描电子显微镜,捷克 Tescan 公司;充放 反应,所以只有一个明显的放热峰。在 750 ℃的
第 53 卷第 2 期 2024 年 2 月
辽宁化工 Liaoning Chemical Industry
Vol.53,No. 2 February,2024
共沉淀法制备镍锰酸锂烧结过程及其性能分析
杨鸿,李学田*
(沈阳理工大学 环境与化学工程学院,辽宁 沈阳 100159)

要: 镍锰酸锂是锂离子电池中具有更好未来的发展方向之一,其具有的高放电平台、低制备

尖晶石锰酸锂的制备与性能研究

尖晶石锰酸锂的制备与性能研究

尖晶石锰酸锂的制备与性能研究尖晶石锰酸锂的制备与性能研究导语:锂离子电池作为一种高性能的储能设备,已经广泛应用于电动汽车、智能手机、电子设备等领域。

而锂离子电池的性能很大程度上取决于正极材料的性能,其中尖晶石锰酸锂是一种备受关注的正极材料。

本文将介绍尖晶石锰酸锂的制备方法和其性能研究。

一、尖晶石锰酸锂的制备方法在尖晶石锰酸锂的制备方法中,主要包括固相法和溶液法两种常见的合成方法。

1. 固相法固相法是通过高温固相反应来制备尖晶石锰酸锂。

首先将锰盐和锂盐以一定的比例混合,在高温下进行反应,最后得到尖晶石锰酸锂。

常用的反应温度为800-1000摄氏度,反应时间一般为数小时。

2. 溶液法溶液法是通过将锰盐、锂盐和适当溶剂混合在一起,并在一定条件下反应生成尖晶石锰酸锂。

在溶液法中,常见的反应条件包括温度、反应时间、溶液浓度和pH值等。

通过调节这些条件,可以控制尖晶石锰酸锂的粒径、形貌和晶格结构等。

二、尖晶石锰酸锂的性能研究1. 循环性能循环性能是评价锂离子电池正极材料优劣的重要指标之一。

尖晶石锰酸锂通常在3-4V之间具有较好的电化学性能,能够提供较高的电荷/放电容量,并具有较好的循环稳定性。

研究表明,尖晶石锰酸锂具有较低的内阻和较好的电子和离子传导性能,可以提高锂离子电池的循环寿命。

2. 安全性能安全性是锂离子电池应用过程中的一项重要考虑因素。

尖晶石锰酸锂具有较高的热稳定性和较低的热失控风险,可有效提高锂离子电池的安全性。

研究人员通过热失控实验等方法,评估了尖晶石锰酸锂材料的热失控行为,并提出了相应的安全措施。

3. 改性与优化尖晶石锰酸锂的电化学性能可以通过合金化、表面涂层和杂质掺杂等方式进行改性和优化。

例如,通过在尖晶石锰酸锂的表面涂层一层导电性较好的材料,可以提高其电子传导性能;通过掺杂适当的杂质,可以提高其离子传输性能。

结语:尖晶石锰酸锂作为锂离子电池正极材料的重要代表之一,其制备方法和性能研究对于锂离子电池性能的提升具有重要意义。

尖晶石型锰酸锂的制备

尖晶石型锰酸锂的制备

尖晶石型锰酸锂的制备尖晶石型锰酸锂的制备方法很多,常见的有高温固相烧成法、熔融浸渍法、微波合成法、水热合成法、共沉淀法、溶胶凝胶法、乳化干燥法及Pechini法等。

添加无锡弘利鑫氧化镁或碳酸镁作为掺杂物,进行湿法高速混合包覆;1.高温固相法。

基本工艺流程为:混料→焙烧→研磨→筛分→产品。

2.熔融浸渍法。

其在固相法制备尖晶石型锰酸锂中是较好的一种方法,能够得到电化学性能优良的正极材料,但由于操作复杂,条件较为苛刻,因而不利于工业化。

3.微波合成法。

其用于材料的合成与传统的高温固相法明显不同。

利用该方法进行制备具有优良的电化学性能材料,可以大大缩短了合成反应时间。

4.水热合成法。

采用水热合成法合成的电池正极材料LiMn2O4,晶体结构稳定,晶态匀整,因此合成的物质具有优异的物理与电化学性能。

5.共沉淀法。

研究表明,与固相反应相比,共沉淀法制备的电池材料不仅电化学容量更高,循环寿命更长,而且该方法工艺简单,操作简便,反应速度快等优点。

6.溶胶凝胶法。

其实际上是共沉淀法的一个分支,制得的LiMn2O4具有优异的物理和电化学性能,但是由于成本高等问题,不利于工业化生产。

7.乳化干燥法。

其是一种制备均匀分散金属氧化物前驱体的好方法。

8.Pechini法。

该法是基于金属离子与有机酸形成螯合物,然后酯化进一步聚合形成固态高聚体制得前驱体,最后焙烧前驱体得到产品,即将有机化合物或无机化合物经过溶液、溶胶、凝胶等过程发生固化,然后进行热处理。

总体来说,固相合成操作简便,易于工业化,但其原料不易混和均匀,烧结时间长;而液相合成法合成温度低,混料均匀等方面都优于固相方法,但是其操作繁杂,工艺条件不易控制,其产业化的实现有待进一步深入研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Electrochimica Acta52(2007)1919–1924Electrochemical characteristics of LiNi0.5Mn1.5O4preparedby spray drying and post-annealingDecheng Li a,Atsushi Ito b,Koichi Kobayakawa b,Hideyuki Noguchi c,Yuichi Sato b,∗a High-Tech Research Center,Kanagawa University,1-1-40Suehiromachi,Tsurumi-ku,Yokohama230-0045,Japanb Department of Applied Chemistry,Faculty of Engineering,Kanagawa University,3-27-1Rokkakubashi,Kanagawa-ku,Yokohama221-8686,Japanc Department of Applied Chemistry,Saga University,Honjo-1,Saga840-8502,JapanReceived28May2006;received in revised form23July2006;accepted29July2006Available online20September2006AbstractLiNi0.5Mn1.5O4was prepared by a spray drying and post-annealing process.The re-annealing treatment in O2could not only decrease the Mn3+ content,but also increased the reversible capacity and significantly improve the rate capability compared to the untreated material.Moreover, the cyclic performance of the LiNi0.5Mn1.5O4depends on both the cycling rate and operating temperature,which was ascribed to the difference between the phase transition rates between cubic I↔cubic II and cubic II↔cubic III.©2006Published by Elsevier Ltd.Keywords:Li-ion battery;Cathode material;LiNi0.5Mn1.5O4;Electrochemical properties;Spray drying and post-annealing1.IntroductionLiNi0.5Mn1.5O4has been extensively studied as a promis-ing cathode material for lithium ion batteries[1–12].Although it was initially proposed as a3V cathode materials[1],much attention has been paid to the high-voltage region near5V [2–10].Because of the difficulty in the preparation by the tra-ditional solid state reaction[2],LiNi0.5Mn1.5O4was usually obtained through a solution process,such as sol–gel[2,13], co-precipitation[6,9],emulsion drying[10],and a molten salt method[14]in order to obtain a product with high purity. LiNi0.5Mn1.5O4has a cubic structure,and the valences of Ni and Mn are determined to be divalent and tetravalent,respec-tively.The Ni2+would be oxidized to Ni4+via Ni3+during lithium ion extraction from the lattice,while the valence of Mn remains at the same value[7].It was found that the cations distribution in the lattice is sensitive to the preparation condi-tions.LiNi0.5Mn1.5O4prepared at a high annealing temperature (≥850◦C)adopts a cubic spinel structure with a high symmetry (space group Fd¯3m)[15],whereas it adopts a primitive sim-∗Corresponding author.Tel.:+81454815661x3885;fax:+81454139770.E-mail addresses:Decheng.Li@(D.Li),satouy01@kanagawa-u.ac.jp(Y.Sato).ple cubic structure with a low symmetry(space group P4332) if it was annealed at a low temperature(≤700◦C).Moreover, different processes of the phase transformations were exhib-ited during the lithium extraction/insertion from/into the lattice, thereby resulting in different electrochemical behavior[14–17].The theoretical capacity of the LiNi0.5Mn1.5O4is about 148mA h g−1,the same as that of normal LiMn2O4.However, it could provide a higher power density than that of normal LiMn2O4due to its high working voltage(about4.7V).In addi-tion to these factors,it also has the same merits of low cost and toxicity as LiMn2O4;thus it is expected to be used for electric vehicles(EVs)in the future.Both the rate capability and cyclic performance at different temperatures and/or different current densities are concerns for a power supply for the EVs.Never-theless,the studies on them are not yet sufficient.In this work,LiNi0.5Mn1.5O4with a low symmetry was pre-pared by means of a spray drying and post-annealing treatment. Its electrochemical properties were also characterized.2.ExperimentalPrecursors were prepared by a spray drying method,and LiOH·H2O,Ni(NO3)2·6H2O,and Mn(CH3COO)2·4H2O were selected as the starting materials.In our initial preparation,we dissolved all starting materials,LiOH·H2O,Ni(NO3)2·6H2O,0013-4686/$–see front matter©2006Published by Elsevier Ltd. doi:10.1016/j.electacta.2006.07.0561920 D.Li et al./Electrochimica Acta52(2007)1919–1924Fig.1.XRD pattern of LiNi0.5Mn1.5O4prepared by one-step process. and Mn(CH3COO)2·4H2O,into citric solution and carried out the spray dry process.However,impurities,NiO and/or Li x Ni1−x O,were found in thefinal product as illustrated in Fig.1.These impurities commonly appear during the prepa-ration of the LiNi0.5Mn1.5O4[2,18].As well-known,NiO impurity was usually observed in LiNi0.5Mn0.5O2,which had been ascribed to the preferential formation of Li2MnO3to LiNiO2[19].We suspected that the mechanism for the appear-ance of NiO and/or Li x Ni1−x O is similar to the case in the LiNi0.5Mn0.5O2.In order to avoid this problem,wefirstly pre-pared the precursors without Li addition.The precisely weighed Ni(NO3)2·6H2O,and Mn(CH3COO)2·4H2O were initially dis-solved into a0.2M citric solution(Ni:Mn:citric acid is1:3:4in molar ratio.)The resulting solution was pumped into a spray dry instrument(B¨u chi Mini Spray Dryer B-290).The obtained precursor was pre-heated at900◦C for20h in air.The resulted precursors are Ni–Mn oxides with spinel structure,as illustrated in Fig.2.Then,LiOH·H2O was added into the obtained powder (7%in molar ratio of lithium is in excess in order to compensate for the possible loss),and the mixture was thoroughly ground,and then pressed into pellets.The pellets were sintered at700◦CFig.2.XRD profile of Ni–Mn–O precursor after sintered at900◦C.for24h in air.Half of them were ground into power and re-treated at500◦C for30h in O2.The XRD measurements were carried out using a Rigaku Rint1000diffractometer equipped with a monochromator and a Cu target tube.The specific surface area for each sample was analyzed by the Brunauer,Emmett,and Teller(BET)method using a Micromeritics Gemini2375in which N2gas adsorption was employed.Each sample was heated to120◦C for1h to remove adsorbed water before measurement.The Li,Ni and Mn contents in the samples were deter-mined by inductive coupled plasma spectroscopy(ICP)using SPS1500VR(SEIKO)spectrometer.Fourier transform infrared(FTIR)spectra were recorded by a KBr method using FT/IR-4100(JASCO)spectrometer.The charge/discharge tests were carried out using a CR2032 coin-type cell,which consists of a cathode and lithium metal anode separated by a Celgard2400porous polypropylenefilm. The cathode contains a mixture of20mg of accurately weighted active materials and12mg of teflonized acetylene black(TAB-2)as the conducting binder.The mixture was pressed onto a stainless steel mesh and dried at130◦C for4h.The cells were assembled in a glove boxfilled with dried argon gas.The elec-trolyte was1M LiPF6in ethylene carbonate/dimethyl carbonate (EC/DMC,1:2by volume).3.Results and discussionFig.3shows the FTIR spectra of the LiNi0.5Mn1.5O4with and without re-treatment in O2.Both samples show several absorp-tion bands in the range of400–700cm−1.However,the sample re-treated in O2shows well defined peaks compared to thoseof Fig.3.FTIR spectra of the LiNi0.5Mn1.5O4and the LiNi0.5Mn1.5O4re-treated in O2.D.Li et al./Electrochimica Acta52(2007)1919–19241921Fig.4.XRD patterns of LiNi0.5Mn1.5O4with and without the re-annealing treat-ment in O2.the untreated material,and several weak shoulder peaks appear. Although these peaks could not be precisely assigned yet,our results strongly suggested that both samples have a cubic struc-ture with the P4332space group,quite consistent with those reported[6,16,20].Fig.4shows the XRD patterns of the LiNi0.5Mn1.5O4with and without re-treatment in O2.Both samples have a high purity, and no impurities such as NiO were observed in their XRD pro-files.The elemental ratio of Li:Ni:Mn was determined to be 1.02:0.5:1.55and1.01:0.5:1.56for the untreated sample and re-treated sample,respectively.All peaks could be indexed on the basis of the primitive simple cubic structure with the P4332 space group.The lattice parameters were roughly calculated by the least squares method using10lines.The lattice parame-ters are8.1682and8.1697˚A for the re-treated sample and the untreated sample,respectively.These results are quite consistent with the reported values[13,14,16].It was found that the lattice parameters of the untreated sample are larger than those of the sample re-annealed in O2,implying that there is trivalent Mn3+ in the untreated sample.The initial charge and discharge curves of the LiNi0.5Mn1.5O4 and the LiNi0.5Mn1.5O4re-annealed in O2are illustrated in Fig.5.A small plateau near4V,which corresponds to the Mn3+/Mn4+redox,was observed in the initial charge and dis-charge curves of the sample without the re-annealing treatment. This result powerfully demonstrated our suspicion based the analysis of the lattice parameters and FTIR.On the other hand, this plateau was difficult to distinguish in the charge and dis-charge curves of the sample re-treated in O2,suggesting that the re-annealing treatment could effectively reduce the content of trivalent manganese in thefinal product,as reported by Idemoto et al.[13].Moreover,the initial charge and discharge capacities of the sample re-treated in O2are149and134mA h g−1,higher than those of the untreated material(139/123mA h g−1).The irreversible capacities of both samples are nearly the same.The initial charge capacity of the re-treated sample slightly exceeds its theoretical capacity,the origin of which is probably related to the electrolyte decomposition at a highvoltage.Fig.5.Initial charge and discharge curves of LiNi0.5Mn1.5O4with and without the re-annealing treatment.The rate performances of both samples are given in Fig.6. Both samples were initially operated for one cycle at a current density of0.2mA cm−2(20mA g−1).From the second cycle on,the charge current density was kept at a constant current density of0.2mA cm−2while the discharge capacities changed from0.2mA cm−2(about0.15C)to0.4,0.8,1.6,3.2,and 4.8mA cm−2(about3.5C)in subsequent cycles.As illustrated in Fig.4,the discharge capacity of the sample re-annealed in O2 decreased from134to128mA h g−1when the discharge rate increased from0.15to3.5C,with more than95%of the ini-tial discharge capacity being retained.The discharge capacity of the untreated sample was113mA h g−1at a rate of3.5C, about88%of its initial discharge capacity.This result suggests that the sample undergoing post-annealing in O2could effec-tively improve its rate capability.Although it was reported that ordered LiNi0.5Mn1.5O4with the P4332space group had poor rate capability[14,21],our results suggested that the rateperfor-Fig.6.Rate capabilities of LiNi0.5Mn1.5O4and LiNi0.5Mn1.5O4re-treated in O2.1922 D.Li et al./Electrochimica Acta52(2007)1919–1924Fig.7.SEM images of LiNi0.5Mn1.5O4and LiNi0.5Mn1.5O4re-treated in O2. mance of this ordered LiNi0.5Mn1.5O4is excellent.On the other hand,Wakihara[21]reported that there are two possible diffu-sion paths for lithium migration in the ordered LiNi0.5Mn1.5O4. One is8c–4a(vacancy)and the other is8c–12d(vacancy).The former has a lower coulomb potential value than that of the lat-ter,thereby resulting in a quick diffusion for lithium ions during cycling.Because of the excellent rate capabilities of our samples, we believed that lithium diffusion in the ordered LiNi0.5Mn1.5O4 is predominantly through the8c–4a(vacancy)path.Fig.7depicts the SEM images of LiNi0.5Mn1.5O4with and without the re-annealing treatment in O2.No significant change was observed before and after the re-annealing treatment.Both samples have polyhedral agglomerated morphologies,different from the typical octahedral shape as reported in the literature [6,22].A closer inspection reveals that the primary particle has a step–kink–terrace morphology and that the average size is about 1␮m for both samples.The specific surface area of the sample re-annealed treatment in O2is1.82m2g−1,while the specific surface area of the untreated one is1.48m2g−1.We believed that both the decrease in the remaining Mn3+and the increase inthe Fig.8.Cyclic performances of LiNi0.5Mn1.5O4and LiNi0.5Mn1.5O4re-treated in O2operated at different C rates at room temperature.specific surface area contribute to the significant improvement in the rate capability of the re-treated sample.Fig.8shows the cyclic performances of the LiNi0.5Mn1.5O4 and the LiNi0.5Mn1.5O4re-treated in O2operated at differ-ent C rates at room temperature.Both samples have excellent cyclic performances when the cells were cycled at0.15C.The reversible capacities are135and126mA h g−1after50cycles for the re-treated sample in O2and the untreated one,respec-tively.When the cells were operated at3.5C,a slowly fading capacity was observed for both samples.The reversible capaci-ties are115and108mA h g−1after50cycles for the re-treated one and the untreated one,respectively.Fig.9shows the cyclic performances of the LiNi0.5Mn1.5O4 and the LiNi0.5Mn1.5O4re-treated in O2operated at different C rates at50◦C.Both samples exhibit excellent cyclic per-formances at0.15C.The reversible capacities are130and Fig.9.Cyclic performances of LiNi0.5Mn1.5O4and LiNi0.5Mn1.5O4re-treated in O2operated at different C rates at50◦C.D.Li et al./Electrochimica Acta52(2007)1919–19241923Fig.10.Variation in the charge and discharge curves of re-treated LiNi0.5Mn1.5O4operated at3.5C at50◦C.121mA h g−1after50cycles for the re-treated sample in O2 and the untreated one,respectively.These results are nearly the same as those values after cycling at room temperature,implying that the cyclic performances of both samples are almost unaf-fected by the operating temperature at a low rate.However,when the cells were cycled at a rate of3.5C,an obvious capacity fad-ing was observed for both samples compared to those at room temperature.The reversible capacities are102and80mA h g−1 for the re-treated one and the untreated one,respectively.These results suggest that the cycleablity of the LiNi0.5Mn1.5O4at high temperature is dependent on the charge–discharge rate.In order to elucidate the mechanism of this phenomenon,we did com-parative studies on the change in the charge–discharge curves after cycling,which are shown in Fig.10.As demonstrated in Fig.10,two plateaus are observed in the charge curves.One is centered at about4.73V and the other at about4.76V.As the cycle number increases,the length of the plateau at4.73V shortens and its voltage is also slightly depressed,while no significant change is observed in the plateau at4.76V.Regarding the discharge curves,the discharge volt-age of the cell increases slightly compared to that in thefirst discharge.These results suggest that the cell polarization is slightly reduced after being cycled.On the other hand,these variations also imply that structural change probably occur after cycling.Fig.11shows the ex-situ XRD patterns of the LiNi0.5Mn1.5O4re-treated in O2at different charge–discharge states at50◦C.Cells were operated at a rate of3.5C.In the initial charge state,the structure gradually transforms from cubic I to cubic III via cubic II as lithium ions continuously de-intercalate,quite consistent with those reported[15–17]. However,when the cell was initially discharged to3V,the diffraction peaks of an additional phase,whose pattern is quite similar to that of the cubic II phase,were observed in its XRD pattern,and the intensities of these peaks were enhanced after 50cycles,suggesting that the content of the additional phase has increased.These results imply that the capacity fadingof Fig.11.Ex situ XRD patterns of re-treated LiNi0.5Mn1.5O4operated at different charge–discharge states at50◦C.The cells were operated at a rate of3.5C. the LiNi0.5Mn1.5O4at high rate and high temperature should be closely related to this additional phase.Sun and co-workers [14]also observed the two phase coexistence in the ex-situ XRD patterns of LiNi0.5Mn1.5O4after50cycles at a rate of 3C at30and55◦C and attributed the newly formed phase to the unreacted cubic II phase.They also noted that the content of the new phase is higher than the initial phase when cell was operated at high temperature.Our results as well as Sun’s report bring out a new question:why does this phenomenon occur easily at high temperature and high rate?In order to give an answer to this question,we initially tested if the lost capacity at the high rate could be recovered when the cell was recycled at the low rate,and the results were illustrated in Fig.12.Fig.12shows the cyclic performance of the LiNi0.5Mn1.5O4 re-treated in O2operated at50◦C.The cell was initially cycled at a rate of3.5C for15cycles,and then the charge and dis-charge rate was down to0.15C for the following15cycles.The discharge capacity decreases from131to117mA h g−1after 15cycles.When the charge and discharge rate shifts to0.15C, the discharge capacities at16th cycle increases to138mA h g−1 and the discharge capacity is136mA h g−1at30th cycle,same with the values given in Fig.7.All these results suggest that all lost capacity is recovered.This cycled cell wasdisassembled Fig.12.Cyclic performance of the LiNi0.5Mn1.5O4re-treated in O2operated at50◦C.Cell was initially cycled at a rate of3.5C for15cycles,and then the charge and discharge rate was down to0.15C for the next15cycles.1924 D.Li et al./Electrochimica Acta52(2007)1919–1924Fig.13.Ex situ XRD pattern of the electrode operated at varied charge and discharge rates at50◦C.and the electrode was characterized by XRD,whose pattern was illustrated in Fig.13.Fig.13shows the ex situ XRD pattern of the electrode oper-ated at varied charge and discharge rates at50◦pared with the XRD patterns that have been provided in Fig.9,the diffraction peaks of the remained cubic II after cycled at3.5C completely disappear after the cell was recycled at0.15C.These results strongly suggest that the capacity fading observed at the high rate and at high temperature is not originated from the structural exfoliation.In other words,the capacity loss should be resulted from the kinetic factors such as the phase transfor-mation rate.Furthermore,we believed that the phase transition rates between cubic I↔cubic II and cubic II↔cubic III are different.Given that the remained cubic II phase was observed at the end of the initial charge and at50th cycle,we suspect that the transformation rate from cubic II to cubic III is slow.As to why this phenomenon occurs easily at high temperature and high rate,we believed that since these two-phase transition processes have different energy barriers,they have different temperature correlations.When cell was operated at a high temperature,the discrepancy between the phase transition rates becomes large, thereby resulting in the incomplete transformation from cubic II to cubic III,and further in capacity fading.More studies are necessary to verify the kinetic characterizations during the phase transition among cubics I–III.4.ConclusionsLiNi0.5Mn1.5O4was prepared by a spray drying and post-annealing process.Samples obtained by this new route have polyhedral agglomerated morphologies with the presence of many step–kink–terraces on the surface of the primary parti-cles.The re-annealing treatment in O2could not only decrease the Mn3+content,but also increased the reversible capacity and significantly improve the rate capability compared to the untreated material.Moreover,the cyclic performance of the LiNi0.5Mn1.5O4depends on both the cycling rate and operat-ing temperature,which have been ascribed to the difference of the phase transition rates between cubic I↔cubic II and cubic II↔cubic III.AcknowledgementThis work wasfinancially supported by the High-Tech Research Center Project for Private University:matching fund subsidy from the Ministry of Education,Culture,Sports,Science and Technology(MEXT)from2001to2005.References[1]K.Amine,H.Tukamoto,H.Yasuda,Y.Fujita,J.Electrochem.Soc.143(1996)1607.[2]Q.Zhong,A.Bonakdarpour,M.Zhang,Y.Gao,J.Dahn,J.Electrochem.Soc.144(1997)205.[3]Y.Gao,K.Myrtle,M.Zhang,J.N.Reimer,J.R.Dahn,Phys.Rev.B54(1996)16671.[4]T.Zheng,J.R.Dahn,Phys.Rev.B56(1997)3801.[5]T.Ohzuku,S.Takeda,M.Iwanaga,J.Power Sources81–82(1999)90.[6]T.Ohzuku,K.Ariyoshi,S.Yamamoto,Y.Makimura,Chem.Lett.(2001)1270.[7]Y.Terada,K.Yasaka,F.Nishikawa,T.Konishi,M.Yoshio,I.Nakai,J.Solid State Chem.156(2001)286.[8]R.Alc´a ndara,M.Jaraba,vera,J.Tirado,Electrochim.Acta47(2002)1829.[9]Y.S.Lee,Y.K.Sun,S.Ota,T.Miyashita,M.Yoshio,-mun.4(2002)989.[10]S.T.Myung,S.Komaba,N.Kumakai,H.Yashiro,H.T.Chung,T.H.Cho,Electrochim.Acta47(2002)2543.[11]T.Ohzuku,K.Ariyoshi,S.Yamamoto,J.Ceram.Soc.Jpn.110(2002)501.[12]K.Dokko,M.Mohamedi,N.Anzue,T.Itoh,I.Uchida,J.Mater.Chem.12(2002)3688.[13]Y.Idemoto,H.Narai,N.Koura,J.Power Sources119–121(2003)125.[14]J.H.Kim,S.T.Myung,C.S.Yoon,S.G.Kang,Y.K.Sun,Chem.Mater.16(2004)906.[15]J.H.Kim,C.S.Yoon,S.T.Myung,J.Prakashi,Y.K.Sun,Electrochem.Solid-State Lett.7(2004)A216.[16]K.Ariyoshi,Y.Iwakoshi,N.Nakayama,T.Ohzuku,J.Electrochem.Soc.151(2004)A296.[17]Y.Idemoto,H.Sekine,K.Ui,N.Koura,Solid State Ionics176(2005)299.[18]J.C.Arrebola,A.Caballero,L.Hern´a n,J.Morales,Electrochem.Solid-State Lett.8(2005)A641.[19]M.Yoshio,Y.Todorov,K.Yamato,H.Noguchi,J.Itoh,M.Okada,T.Mouri,J.Power Sources74(1998)46.[20]D.Gryffroy,R.E.Vandenberghe,J.Phys.Chem.Solid53(1992)777.[21]M.Wakihara,Electrochemistry73(2005)328.[22]S.H.Park,S.W.Oh,C.S.Yoon,S.T.Myung,Y.K.Sun,Electrochem.Solid-State Lett.8(2005)A163.。

相关文档
最新文档