自动控制原理胡寿松版考研复习指导大纲
自动控制原理(胡寿松)第五版(总复习)
2-1 控制系统的时域数学模型
(2)齐次性 当系统的输入量增大或缩小若干倍时,系统 输出量也按同一倍数增大或缩小。
若r(t) a时r1(,t)为实数a ,则方程解为
这就是齐次性。
c(t) ac1(t)
在线性系统中,根据叠加原理,如果有几个不同的外作用同 时作用于系统,则可将它们分别处理,求出在各个外作用单 独作用时系统的响应,然后将它们叠加。
14
1-4 对自动控制系统的基本要求
1.基本要求的提法
稳定性、快速性、准确性,即稳、快、准。 • 稳定性
稳定性是指系统重新恢复平衡状态的能力,任何一 个正常工作的系统首先必须是稳定的。
▪稳:指动态过程的平稳性
控制系统动态过程曲线
如左图所示,系统在外力 作用下,输出逐渐与期望 值一致,则系统是稳定的, 如曲线①所示;反之,输 出如曲线②所示,则系统 是不稳定的。
测量元件—用以测量被控的物理量,并将其转换成与输 入量同一物理量后,再反馈到输入端以作比较。如果这 个物理量是非电量,一般转换为电量。 给定元件— 其职能是给出与期望的被控量相对应的系统 输入量。 比较元件—其职能是把测量元件检测的被控量实际值与 给定元件给出的输入量进行比较,求出它们的偏差。 放大元件—其职能是将比较元件给出的偏差信号进行放 大,用来推动执行元件去控制被控对象。 执行元件— 其职能是直接推动被控对象,使其被控量发 生变化。 校正元件— 也叫补偿元件,它是结构或参数便于调整的 元部件,用串联或反馈的方式连接在系统中,以改善系 统的性能。
7
1-1 自动控制的基本原理与方式
反馈控制系统的基本组成
比较
r(t) 元件 + e(t)
串联
+
输入 偏差 校正元件
《自动控制原理》考研复习大纲
《自动控制原理》考研复习大纲1. 考试方法和考试时间硕士研究生入学控制原理考试为笔试,总分150,考试时间为3小时。
2. 参考书《自动控制原理》胡寿松主编(第四版)科学出版社《自动控制原理》晁勤等编重庆大学出版社3. 各部分内容及分值第一部分基本概念(10分)熟悉自动控制系统的概念;熟悉反馈控制系统的基本工作原理及基本构成;掌握根据系统工艺图绘制控制系统方框图。
第二部分自动控制系统的数学模型(30分)熟悉控制系统微分方程的建立方法,了解非线性微分方程的线性化方法;了解传递函数的特点,熟悉传递函数的求法和典型环节传递函数的表达形式与意义;了解反馈控制系统的典型结构,系统开环传递函数、闭环传递函数及误差传递函数的概念;掌握基本的拉氏变换与拉氏反变换方法,并列写控制系统的传递函数;掌握控制系统方框图的建立方法和方框土简化方法;掌握信号流图绘制及其等效变换方法,梅逊公式的应用。
第三部分自动控制系统的时域分析(30分)了解常用典型输入信号及其拉氏变换,单位阶跃响应曲线时域性能指标的意义;熟悉一阶系统单位阶跃响应、斜坡响应、脉冲响应特性及时间常数的求法;掌握欠阻尼二阶系统时域指标计算;了解高阶系统的时域特性和主导极点分析法,系统型别与稳态误差的关系;熟悉线性系统的稳定条件,掌握劳斯稳定判据及其各种应用;掌握稳态误差、稳态误差系数的概念及计算。
第四部分根轨迹分析法(20分)了解根轨迹法的基本概念和根轨迹的特点;熟悉闭环零、极点与开环零、极点的关系,熟悉根轨迹方程和绘制根轨迹的基本法则;了解参数根轨迹(广义根轨迹)的绘制方法;了解正反馈回路根轨迹(零度根轨迹)和迟后系统根轨迹的绘制特点;掌握控制系统一般根轨迹的绘制方法;掌握利用根轨迹法分析系统特性。
第五部分频率特性分析法(35分)了解频率特性的基本概念,熟悉频率特性的几种图示方法;熟悉典型环节的幅相频率特性和对数频率特性;掌握不同型别系统概略开环幅相特性的特点,掌握已知开环传递函数绘制开环对数频率特性曲线的方法;掌握已知系统开环频率特性确定开环传递函数的方法;掌握Nyquist稳定判据及其应用;掌握稳定裕量的概念及其计算方法;了解频域指标与时域指标的关系。
自动控制原理(胡寿松)1-30(新)
控制( 控制(Control)是指为了改善系统的性能或达到特定的目 ) 通过信息的采集和加工而施加到系统的作用。 的,通过信息的采集和加工而施加到系统的作用。 (7) 反馈 反馈( 反馈(Feedback)是指将系统的实际输出和期望输出进行 ) 比较,形成误差,从而为确定下一步的控制行为提供依据。 比较,形成误差,从而为确定下一步的控制行为提供依据。
自动化专业概论
西安交通大学 系统工程研究所 万百五制
1
莘莘学子的问题? 莘莘学子的问题?
进入“自动化”各类专业的每个莘莘学子, 进入“自动化”各类专业的每个莘莘学子,都渴望了 解自己所学的专业: 解自己所学的专业: 性质, ( 1)自动化专业的 性质 , 它在我国社会主义建设中的作用 ) 自动化专业的性质 和地位,自动化技术的当前概貌和它的未来发展; 和地位,自动化技术的当前概貌和它的未来发展; (2)学校将通过哪些途径把自己培养成有什么样素质的自 素质的自 )学校将通过哪些途径把自己培养成有什么样素质 动化技术人才? 动化技术人才? 知识, 技能, (3)自己在学校环境里将学到哪些知识,获得哪些技能, )自己在学校环境里将学到哪些知识 获得哪些技能 培养哪些能力 能力? 培养哪些能力? 区别, (4)在大学接受高等教育和在中学接受中等教育有何区别, )在大学接受高等教育和在中学接受中等教育有何区别 怎样适应大学的学习生活, 怎样适应大学的学习生活,怎样最大限度地调动自己的学习 潜力,发挥自己学习上的主动性 发展自己的特长和才华, 主动性, 特长和才华 潜力,发挥自己学习上的主动性,发展自己的特长和才华, 创造性地进行学习? 创造性地进行学习?
18
(8) 调节 调节( 调节(Regulation)是指通过系统的反馈信息自动校正系统 ) 的误差,使诸如温度、速度、 的误差,使诸如温度、速度、压力或位置等参量保持恒定或 在给定范围之内的过程。 在给定范围之内的过程。 (9) 管理 管理( 管理(Management)是指为了充分利用各种资源来达到 ) 一定的目标而对社会或其组成部分施加的一种控制。 一定的目标而对社会或其组成部分施加的一种控制。 (10) 决策 决策( 决策(Decision Making)是指为最优地达到目标,对若干 )是指为最优地达到目标, 准备行动的方案进行选择。 准备行动的方案进行选择。 自动化( ),指机器或装置在无人干预的 自动化(Automation),指机器或装置在无人干预的 ), 情况下按规定的程序或指令自动地进行操作或运行。 情况下按规定的程序或指令自动地进行操作或运行。自动 控制是关于受控系统的分析 设计和运行的理论和技术。 是关于受控系统的分析、 控制是关于受控系统的分析、设计和运行的理论和技术。 19
自动控制原理考研大纲
《自动控制原理》考研大纲科目名称:控制理论适用专业:仿生装备与控制工程参考书目:《自动控制原理》第六版,胡寿松编,科学出版社;《自动控制理论》第二版,邹伯敏编,机械工业出版社;《现代控制理论基础》第二版,王孝武主编,机械工业出版社考试时间:3小时考试方式:笔试总分:150分考试范围:包括经典控制理论(不包含非线性部分)与现代控制理论两部分,经典控制理论内容占70%,现代控制理论内容占30%。
经典控制理论部分第一章绪论1. 掌握自动控制系统的工作原理、自动控制系统的组成与几种不同分类。
2. 重点掌握反馈的概念、基本控制方式、对控制系统的基本要求。
第二章线性系统的数学模型控制理论的两大任务是系统分析与系统设计,系统分析和设计中首先要建立被研究系统的数学模型。
本章主要给出古典控制理论使用的系统数学模型——传递函数的建立。
本章要求:1.掌握的概念:传递函数;极点、零点;开环传递函数、闭环传递函数、误差传递函数;典型环节的传递函数。
2.重点掌握建立电气系统、机械系统的微分方程和传递函数模型的方法。
3.重点掌握方框图化简或信号流图梅森增益公式获得系统传递函数的建模方法。
第三章控制系统时域分析根据研究系统采用的不同数学模型,分析方法是不同的,本章给出利用系统传递函数数学模型求取时间响应的系统时域分析法。
主要是分析系统的三大基本性能,即系统的稳(稳定性)、准(准确性)、快(快速性)。
稳定性是系统工作的必要条件;快速性和相对稳定程度(振荡幅度)是评价系统动态响应的性能指标;准确性是指系统稳态响应的稳态精度,用稳态误差来衡量,需注意:讨论的稳态误差是指由输入信号和系统结构引起的系统稳态时的误差。
本章要求:1.掌握的概念:稳定性;动态(或暂态)性能指标(最大超调量、上升时间、峰值时间、调整时间);稳态(静态)性能指标(稳态误差);一阶、二阶系统的主要特征参量;欠阻尼、临界阻尼、过阻尼系统特点;主导极点。
2.重点掌握系统稳定性判别(Routh判据);稳态误差终值计算(包括三个稳态误差系数的计算);二阶系统动态性能指标计算。
自动控制原理胡寿松第三版第1章
群时延
系统对信号的延迟时间随频率的变化, 反映了系统对信号速度的影响。
稳定性
通过判断系统的极点和零点分布,分 析系统的稳定性,即系统在受到扰动 后恢复平衡状态的能力。
开环频率特性的绘制和分析
开环系统的频率特性
开环系统是指没有反馈控制的系统,其频率特性由系统的开环传 递函数决定。
开环频率特性的绘制方法
自动控制系统的基本要求
总结词
自动控制系统的基本要求包括稳定性、快速性和准确 性。
详细描述
稳定性是自动控制系统的基本要求之一,它是指系统 在受到扰动或输入信号变化时,能够恢复到原来的平 衡状态或达到新的平衡状态的性能。快速性则是指系 统能够快速地响应输入信号的变化,减小调节时间和 超调量。准确性则是指系统能够准确地跟踪输入信号 的变化,减小误差和提高控制精度。这些基本要求相 互关联,在实际应用中需要根据具体情况进行权衡和 优化。
构建方法
通过将系统各部分表示为方框, 并使用信号线连接,构建出整个 系统的动态结构图。
应用
动态结构图便于对控制系统进行 直观分析和设计,可以用于模拟 系统的动态行为和输出响应。
梅森公式
定义
梅森公式是控制系统分析中的一种重要公式,用 于计算系统的传递函数。
公式形式
梅森公式以级数展开的形式表示传递函数,可以 用于分析系统的稳定性、频率响应等特性。
自动控制原理胡寿松第三版 第1章
• 自动控制系统的基本概念 • 自动控制系统的数学模型 • 控制系统的时域分析法 • 控制系统的频率分析法
01
自动控制系统的基本概念
自动控制系统的定义与组成
总结词
自动控制系统是由控制器、受控对象和反馈通路组成,通过自动调节输入信号,使输出 信号按照预定规律变化。
《自动控制理论》考试大纲
《自动控制理论》考试大纲一、考试题型1、简答题2、计算题3、综合分析题二、考试参考用书《自动控制原理》,胡寿松著,科学出版社,2007 年6月 第五版三、考试内容第一章 自动控制的一般概念了解:自动控制的基本原理与方式,自动控制系统的分类,自动控制系统的基本要求。
熟悉:自动控制系统的构成,自动控制系统的方块图。
掌握:自动控制系统的一般概念,自动控制系统的基本要求和系统的组成。
第二章 控制系统的数学模型了解:线性系统理论的局限性与实际物理系统的复杂性之间的矛盾,明确非线性运动方程线性化的条件。
熟悉:各种数学模型的建立方法(包括运动方程,传递函数,结构图,信号流图)。
掌握:各种数学模型之间的变换方法,系统结构图和信号流图的化简方法,怎样由一个系统的方框图求系统的闭环传递函数以及由梅逊公式求系统的传递函数。
第三章 线性系统的时域分析法了解:闭环零、极点对系统暂态响应的影响,建立主导极点的概念,一阶、二阶系统的特征参数、单位阶跃响应及其性能指标,劳斯—赫尔维茨稳定判据,稳态误差的定义及计算方法。
熟悉:一阶、二阶系统的时域分析以及稳态误差的计算掌握:时域上描述系统动态性能的特性指标%,,s p t t s ,根据相应动态曲线求取特性指标参数%,,s p t t s 以及相对应的传递函数,劳斯判据判断系统的稳定性和稳定误差计算。
第四章 线性系统的根轨迹法了解: 控制系统根轨迹的概念,根轨迹的基本法则,闭环零、极点对系统的时域性能的影响,零度以及广义根轨迹的绘制方法。
熟悉:各种根轨迹的作图法。
掌握:绘制根轨迹的两个基本条件—相角条件及幅值条件,常规根轨迹以及广义根轨迹的作图法,根据根轨迹分析系统的性能。
第五章 线性系统的频域分析法了解:从傅立叶变换的角度说明系统的稳态频率特性和暂态时域响应的对应关系,各种典型环节及开环系统频率特性的绘制方法,了解闭环频率特性的几种绘制方法以及高阶系统频域指标与时域指标的关系。
自动控制原理胡寿松版考研复习指导大纲
自动控制原理复习指导2010-2011第一学期第一章:知识点1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。
2 典型闭环系统的功能框图。
一些重要的概念与名词自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量在控制系统中.按规定的任务需要加以控制的物理量。
控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成闭环负反馈控制系统的典型结构如图1.2所示。
组成一个自动控制系统通常包括以下基本元件1.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
给定元件通常不在闭环回路中。
2.测量元件测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号被控制量成比例或与其导数成比例的信号。
胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(动态系统的最优控制方法)【圣才出品】
1 / 32
圣才电子书
(2)变分和变分法
十万种考研考证电子书、题库视频学习平台
t
tx t dt
试求:
(1)δJ 的表达式;
(2)当 x(t)=t2,δx=0.1t 和 δx=0.2t 时的变分 δJ 的值。
解:(1)由泛函变分规则可知:
4 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)由(1)可知,δx=0.1t 时:
δx=0.2t 时:
10-6 试求下列性能指标的变分 δJ。
J tf t2 x2 x&2 dt t0
解:由泛函变分规则,求得:
10-7 已知性能指标为: 求 J 在约束条件 t2+x12=R2 和边界条件 x1(0)=-R,x2(0)=0,x1(R)=0,x2 (R)=π 下的极值。 解:构造广义泛函为:
5 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 10 章 动态系统的最优控制方法
10.1 复习笔记
考研初试一般不考查本章内容,下文为最优控制问题的基础理论部分。
一、最优控制的基本概念 (1)最优控制 概念:在系统状态方程和约束条件给定的情况下,寻找最优控制律,使衡量系统的某一 性能指标达到最优(最小或最大)。 (2)最优控制问题 任何一个最优控制问题均应包含四方面内容:①系统数学模型;②边界条件与目标集; ③容许控制;④性能指标。 (3)最优控制的研究方法 包括:解析法;数值计算法;梯度型法。
829自动控制原理大纲
《自动控制原理》考试大纲第一部分考试说明一.考试性质《自动控制原理》是为我校招收控制科学与工程专业硕士研究生设置的考试科目。
它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。
考试对象为符合参加2009年全国硕士研究生入学条件的报考我校控制科学与工程系及工科相关专业的考生。
二.考试形式与试卷结构(一)答卷方式:闭卷,笔试;(二)答题时间:180分钟。
(三)题型:计算题、简答题、选择题(四)参考书目:1. 自动控制原理胡寿松编国防工业出版社2.自动控制原理孙德宝主编化学工业出版社第二部分考查要点(一)自动控制的一般概念1.自动控制和自动控制系统的基本概念,负反馈控制的原理;2.控制系统的组成与分类;3.根据实际系统的工作原理画控制系统的方块图。
(二)控制系统的数学模型1.控制系统微分方程的建立,拉氏变换求解微分方程。
2.传递函数的概念、定义和性质。
3.控制系统的结构图,结构图的等效变换。
4.控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
(三)线性系统的时域分析1.稳定性的概念,系统稳定的充要条件,Routh稳定判据。
2.稳态性能分析(1)稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差;(2)静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。
3.动态性能分析(1)一阶系统特征参数与动态性能指标间的关系;(2)典型二阶系统的特征参数与性能指标的关系;(3)附加闭环零极点对系统动态性能的影响;(4)主导极点的概念,用此概念分析高阶系统。
(四)线性系统的根轨迹法1.根轨迹的概念,根轨迹方程,幅值条件和相角条件。
2.绘制根轨迹的基本规则。
3.0o根轨迹。
非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。
4.等效开环传递函数的概念,参数根轨迹。
5.用根轨迹分析系统的性能。
(五)线性系统的频域分析1. 频率特性的定义,幅频特性与相频特性。
胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(线性系统的状态空间分析与综合)【圣才】
具有非正(负或零)实部,且具有零实部的特征值为 A 的最小多项式单根。
(2)系统的唯一平衡状态 xe=0 是渐近稳定的充分必要条件:A 的所有特征根均具有
3.线性定常连续系统状态方程的解 (1)齐次方程求解方法:幂级数法;拉普拉斯变换法。 (2)非齐次方程求解方法:积分法;拉普拉斯变换法。
4.传递函数矩阵 表达式:G(s)=C(sI-A)-1B+D
二、线性系统的可控性与可观测性 1.可控性 如果系统的每一个状态变量的运动都可由输入来影响和控制,而由任意的始点达到原点, 则该系统是完全可控系统,简称为系统可控。 (1)可控标准形
5 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台
的任意初始态 x0 出发的运动轨迹 x(t;x0,t0),在 t→∞都满足:||x(t;x0,t0)-xe||≤ε,
t≥t0,则称 xe 是李雅普诺夫意义下稳定的。
(3)渐近稳定
系统不仅满足李氏意义下的稳定,且
(2)可观测性判据
3 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台
胡寿松《自动控制原理》(第6版)笔记和课后习题(含考研真题)详解2
6-2 设单位反馈 统 开环 函 为
试设计 联 前校正装置, 统满
(1) 角裕度r≥45°;
(2) 单位
入下 态 差
下 标:
(3)截止频率ωc≥7.5rad/s。
解: 开环
取
则开环 函 为:
令
,解得校正前
rad/s
则校正前 角裕度为:
不 合题 要求,
前校正。
取
rad/s,可得:
,可得:
则 前校正环节 校正后 统开环 其 角裕度为
统性能得:
3.某 反馈 统开环 函
合要求。
(1)求 统 角裕度 幅 裕度。
(2) 角裕度
联 前校正 联滞后校正 主要特点。为 统
,试分 统应
联 前校正还 联滞后校正?
[
技 2009 ]
解:(1)求截止频率与
裕度:
求幅 裕度:
(2)要 节 校正。
统 角裕度
,
前校正,则需要校正环
不合
前校正,可以
联滞后
为 习重点, 此,本 分也就没
考 题。
第二部分 课后习题
第6章 线性系统的校正方法
6-1 设 单位反馈 火炮
统,其开环 函 为
若要求 统最 2°,试求:
出速度为12°/s, 出位置
许 差小
(1) 满 上 幅 裕度;
标 最小K ,计 该K 下 统
角裕度
(2) 前
前校正网络
计 校正后 统 能影。
角裕度 幅 裕度,
解:(1) 题可
则 统 特征表 式为
统特征 为:
令
,则
则
可得:
所以 统 状态 应为
(2)求 统 出范 最小 刻t
武汉工程大学831《自动控制原理》 2020年考研专业课大纲
武汉工程大学2020年硕士研究生入学考试《自动控制原理》考试大纲一、参考教材1、胡寿松主编. 《自动控制原理》(第六版). 北京:科学出版社,2013.2、胥布工主编. 《自动控制原理》. 北京:电子工业出版社,2011.3、刘豹,唐万生主编. 《现代控制理论》(第3版). 北京:机械工业出版社,2011.(备注:以1为主,2、3为辅。
)二、考试形式与试题类型1、答卷方式:闭卷,笔试;2、答题时间:180分钟;3、满分:150分;4、题型:填空题、判断题、选择题、简答题、计算题。
三、考试内容及要求考试范围包括经典控制理论和现代控制理论两个部分。
考生须掌握如下内容:1、自动控制的一般概念1)自动控制系统的基本概念,负反馈控制的原理;2)控制系统的组成与分类;3)根据实际系统的工作原理画控制系统的方块图。
2、控制系统的数学模型1)控制系统的建模;2)传递函数的概念、定义和性质;3)控制系统的结构图,结构图的等效变换;4)控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
3、线性系统的时域分析1)稳定性的概念,系统稳定的充要条件,Routh稳定判据;2)稳态性能分析稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差,包括给定误差和扰动误差的分析与计算;系统型别与静态误差系数,影响稳态误差的因素;3)动态性能分析一阶系统特征参数与动态性能指标间的关系;典型二阶系统的特征参数与性能指标的关系;附加闭环零极点对系统动态性能的影响;闭环主导极点的概念,用此概念分析高阶系统。
4、线性系统的根轨迹法1)根轨迹的概念,根轨迹方程,幅值条件和相角条件;2)绘制根轨迹的基本规则;3)零度根轨迹:非最小相位系统的根轨迹及正反馈系统的根轨迹的绘制;4)等效开环传递函数的概念,参数根轨迹;5)用根轨迹分析系统的性能。
5、线性系统的频域分析1)频率特性的定义,幅频特性与相频特性;2)用频率特性的概念分析系统的稳态响应;3)频率特性的几何表示方法典型环节及开环系统幅相频率特性曲线(又称奈氏曲线或极坐标图)的绘制;典型环节及开环系统对数频率特性曲线(Bode图)的绘制;由对数幅频特性求最小相位系统的开环传递函数;4)奈奎斯特稳定性判据根据奈氏曲线判断系统的稳定性;由对数频率特性曲线判断系统的稳定性;5)稳定裕量当系统稳定时,系统相对稳定性的概念;幅值裕量和相角裕量的定义及计算。
《自动控制原理》胡寿松——总结与复习
三、绘制常规根轨迹的基本规则
根轨迹的分支数、对称性、 起点和终点、实轴上的根轨迹、 渐近线(倾角,与实轴的交点)、 分离点和会合点、与虚轴的交点、 出射角和入射角、 特征方程的根之和=开环极点之和(n-m≥2)
分析与设计:
确定主导极点→根轨迹增益→其他闭环极点→闭环传递函数
第五章 频域分析法
一、频率特性的定义 输出的稳态分量与输入正弦信号之间的关系; 幅频特性,相频特性
(参数的稳定域) ➢ 分析系统的相对稳定性。
5. 控制系统的稳态误差
• 稳态误差的定义和分类 跟踪稳态误差、扰动稳态误差。
• 利 用 终 值 定 理 求 稳 态 误差
前 提 :E(s) 除 原 点 外 , 其 余 极 点 均在 左 半 平 面 。
• 不 能 利 用 终 值 定 理 时 如何 求 稳 态 误 差
串联校正的两种常用思路
1. 根据性能要求确定希望的开环频率特性的 Bode图,再由Bode图求开环传递函数, 最后得到校正装置的传递函数。
2. 限定校正装置为简单结构,通过改变其参 数来获得尽可能好的开环频率特性。
思路2的常用校正方式: 超前校正,滞后校正,滞后超前校正
R(s) E(s)
-
Gc (s)
• 稳定性的基本概念 • 稳定性的两种常用定义
运动稳定性 有界输入有界输出稳定性( BIBO 稳定) • 线性定常系统的稳定条件 系统极点均具有负实部 • 反馈控制系统稳定的充要条件 特征方程的根(闭环极点)均具有负实部
•劳斯-赫尔维茨稳定判据
劳斯表的计算规律
劳斯判据的应用:
➢ 判断系统是否稳定; ➢ 判断不稳定极点的个数; ➢ 求出保证系统稳定的参数取值范围;
二、频率特性的几何表示 幅相频率特性图(极坐标图,Nyquist图); 对数幅频特性和对数相频特性(伯德图);
胡寿松版自动控制原理考研、期末复习重点笔记
*3.求法
①由系统的微分方程 经拉氏变换,按传递函数定义
环节 由系统的元部件的微分方程组
经过拉氏变换,消除中间变量,按传函定义传递函数
简化 ②由工作原理图 结构图
梅逊公式
③由系统响应解析表达式 经拉氏变换,按传函与响应之间关系
胡寿松版自动控制原理考研、期末复习重点笔记 *4.几个基本传函
*注意,传函不能叠加
三、动态结构图
1.特点
动态结构图中,信号只能沿箭头方向单向传播,只能反映动态性能, 不反映物理结构(是力学系统还是电动机系统)。结构图不唯一 (对同一个输入、输出),但是遵循等效变换原则,得到相同传函。
*2.画法 *3.简化规则 *4.Mason 公式 【知识图解】
胡寿松版自动控制原理考研、期末复习重点笔记
)
S (T1 1
S) T2
k1 k2s S 2 T1S T2
S(T1 S)
令 R(s)=0
胡寿松版自动控制原理考研、期末复习重点笔记
C(s) S(S T1 1) N (s) S 2 T1S T2
【要点提示】
若不要求使用简化方法,直接计算
C(s)
k1
1 S
T1
1
S
R(s)
1
1 S
1 G1(s)G2 (s)H (s) 只和系统结构有关,与输入信号的位置、形式无关。
特征方程1 G1(s)G2 (s)H (s) 0 ③误差传函:
令N (s) 0, (s) E(s)
1
ER
R(s) 1 G1(s)G2 (s)H (s)
令R(s) 0, (s) E(s) G2 (s)H (s)
T1
1
S
T2
自动控制原理第一章胡寿松
第一章 控制系统导论
※ 20世纪40年代,频率响应法为闭环控制系统提供了一种可 ※ 行方法,Evans提出并完善了根轨迹法。 ※ 20世纪50年代末,控制系统设计问题的重点从设计许多可 ※ 行系统中的一种系统,转到设计在某种意义上的最佳系统。 ※ 20世纪60年代,数字计算机的出现为复杂系统的基于时域分 ※ 析的现代控制理论提供了可能。 ※ 从1960年到1980,确定性系统、随机系统的最佳控制,及复 ※ 杂系统的自适应和学习控制,都得到充分的研究。 ※ 从1980年到现在,现代控制理论进展集中于鲁棒控制、H∞ ※ 控制及其相关课题。
• 3. 准确性
– 稳态性能:稳态误差 – 在参考输入信号作用下,当系统达到稳态后,其稳态
输出与参考输入所要求的期望输出之差叫做给定稳态 误差。显然,这种误差越小,表示系统的输出跟随参 考输入的精度越高。
第一章 控制系统导论
二、典型外作用
为了便于用统一的方法研究和比较控制系统 的性能,通常选用几种确定性函数作为典型外作 用,选择外作用的标准是: (1)这种函数在现场或实验室容易得到。
(2) 对随动系统,被控制量始终跟踪参据量的 变化。
稳定性是对系统的基本要求,不稳定的系统不 能实现预定任务。线性系统的稳定性,通常由系 统的结构决定,与外界因素无关。
第一章 控制系统导论
• 2.快速性
– 动态性能:调节时间、上升时间 – 对过渡过程的形式和快慢提出要求,一般称为动态性
能。
– 稳定高射炮射角随动系统,虽然炮身最终能跟踪目标, 但如果目标变动迅速,而炮身行动迟缓,仍然抓不住 目标。
一、对控制系统的基本要求可以归纳为三个字:
稳 准快
1.4
1.2
1
0.8
自动控制原理 胡寿松
第六版前言第一章自动控制的一般概念1-1 自动控制的基本原理与方式1-2 自动控制系统示例1-3 自动控制系统的分类1-4 对自动控制系统的基本要求1-5 自动控制系统的分析与设计工具习题第二章控制系统的数学模型2-1 控制系统的时域数学模型2-2 控制系统的复数域数学模型2-3 控制系统的结构图与信号流图2-4 控制系统建模实例习题第三章线性系统的时域分析法3-1 系统时间响应的性能指标3-2 一阶系统的时域分析3-3 二阶系统的时域分析3-4 高阶系统的时域分析3-5 线性系统的稳定性分析3-6 线性系统的稳态误差计算3-7 控制系统时域设计习题第四章线性系统的根轨迹法4-1 根轨迹法的基本概念4-2 根轨迹绘制的基本法则4-3 广义根轨迹4-4 系统性能的分析4-5 控制系统复域设计习题第五章线性系统的频域分析法5-1 频率特性5-2 典型环节与开环系统的频率特性5-3 频率域稳定判据5-4 稳定裕度5-5 闭环系统的频域性能指标5-6 控制系统频域设计习题第六章线性系统的校正方法6-1 系统的设计与校正问题6-2 常用校正装置及其特性6-3 串联校正6-4 前馈校正6-5 复合校正6-6 控制系统校正设计习题第七章线性离散系统的分析与校正7-1 离散系统的基本概念7-2 信号的采样与保持7-3 z变换理论7-4 离散系统的数学模型7-5 离散系统的稳定性与稳态误差7-6 离散系统的动态性能分析7-7 离散系统的数字校正7-8 离散控制系统设计习题第八章非线性控制系统分析8-1 非线性控制系统概述8-2 常见非线性特性及其对系统运动的影响8-3 相平面法8-4 描述函数法8-5 非线性控制的逆系统方法8-6 非线性控制系统设计习题第九章线性系统的状态空间分析与综合9-1 线性系统的状态空间描述9-2 线性系统的可控性与可观测性9-3 线性定常系统的反馈结构及状态观测器9-4 李雅普诺夫稳定性分析9-5 控制系统状态空间设计习题第十章动态系统的最优控制方法10-1 最优控制的一般概念10-2 最优控制中的变分法10-3 极小值原理及其应用10-4 线性二次型问题的最优控制10-5 控制系统优化设计。
自动控制原理教学大纲胡寿松
自动控制原理课程教学大纲◆层次:☑本科☐专科◆课程英文名称:Automatical control principle◆课程类别:本科选☐通识必修☐通识选修☑专业必修☐专业选修专科选☐公共必修☐公共选修☐职业技术必修☐职业技术选修◆适用专业:自动化◆配套教学计划:2011级教学计划◆开课系部:自动化系◆学分:5◆学时:80 其中:实验(实践)学时:10 ;课外学时:0◆执笔人:张海燕教研室审核人:张海燕系部审核人:一、课程性质和教学目标《自动控制原理》是自动化专业的一门必修课,通过本课程的学习,使学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分析,计算,实验的初步能力,为专业课的学习和参加控制工程实践提供必要的理论基础。
通过对本课程的学习,要求学生掌握自动控制的基本理论和基本分析方法,能应用控制理论对自动控制系统进行性能分析,能对系统进行校正和提出改善系统性能的途径和方法,具体要求如下:1.掌握常规控制器和自动控制系统的组成及其相互关系。
2.了解对自动控制系统的性能要求及分析系统性能的方法。
3.掌握用传递函数,方框图,信号流图及状态空间描述建立系统数学模型的方法。
4.掌握常规控制器的基本控制规律、动态特性和对控制系统的作用。
5.掌握对控制系统进行分析和综合的方法:时域分析法、频域分析法、根轨迹法及状态空间分析法。
6.初步掌握控制系统的校正和设计方法,为解决实际问题打好基础。
7.掌握脉冲传递函数的概念,了解离散控制系统的一般分析方法。
8.初步了解非线性系统的基本知识。
二、本课程与其他课程的联系与分工本课程在自动化专业教学计划中被列为专业基础课,本课程以工程数学、电路、电机拖动等为前序课程,也是过程控制系统等课程必需的理论基础,因此本课程的学习对全面掌握各门专业课程起着重要的作用。
本课程的重点是第三、第四、第五章章,次重点是第一、第二章,一般章节为六章。
三、教学内容和教学方式第一章自动控制的一般概念(4学时)(一)教学要求(1)明确什么是自动控制;正确理解被控对象、被控量、控制装置和自控系统等概念;(2)正确理解三种控制方式,特别是闭环控制;(3)初步掌握由系统工作原理画方框图的方法,并能正确判别系统的控制方式;(4)明确系统常用的分类方式,掌握各类别的含义和信息特征,特别是按数学模型分类的方式;(5)明确对自控系统的基本要求,正确理解三大性能指标的含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理复习指导2010-2011第一学期第一章:知识点1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。
2 典型闭环系统的功能框图。
一些重要的概念与名词自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量在控制系统中.按规定的任务需要加以控制的物理量。
控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成闭环负反馈控制系统的典型结构如图1.2所示。
组成一个自动控制系统通常包括以下基本元件1.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
给定元件通常不在闭环回路中。
2.测量元件测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号被控制量成比例或与其导数成比例的信号。
测量元件的精度直接影响控制系统的精度应使测量元件的精度高于系统的精度,还要有足够宽的频带。
3.比较无件用于比较控制量和反馈量并产生偏差信号。
电桥、运算放大器可作为电信号的比较元件。
有些比较元件与测量元件是结合在一起的,如测角位移的旋转变压器和自整角机等。
4.放大元件对信号进行幅值或功率的放大,以及信号形式的变换.如交流变直流的相敏整流或直流变交流的相敏调制。
5.执行元件用于操纵被控对象,如机械位移系统中的电动机、液压伺服马达、温度控制系统中的加热装置。
执行元件的选择应具有足够大的功率和足够宽的频带。
6.校正元件用于改善系统的动态和稳态性能。
根据被控对象特点和性能指标的要求而设计。
校正元件串联在由偏差信号到被控制信号间的前向通道中的称为串联校正;校正元件在反馈回路中的称为反馈校正。
7.被控对象控制系统所要控制的对象,例如水箱水位控制系统中的水箱、房间温度控制系统中的房间、火炮随动系统中的火炮、电动机转速控制系统中电机所带的负载等。
设计控制系统时,认为被控对象是不可改变的,它的输出即为控制系统的被控制量。
8.能源元件为控制系统提供能源的元件,在方框图中通常不画出。
对控制系统的基本要求1.稳定性稳定性是系统正常工作的必要条件。
2.准确性要求过渡过程结束后,系统的稳态精度比较高,稳态误差比较小.或者对某种典型输入信号的稳态误差为零。
3.快速性系统的响应速度快、过渡过程时间短、超调量小。
系统的稳定性足够好、频带足够宽,才可能实现快速性的要求。
第二章:知识点1、建立系统的微分方程,绘制动态框图并求传递函数。
3、传递函数在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比称为传递函数。
传递函数的概念适用于线性定常单输入、单输出系统。
求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。
对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时,变换前后该环节的输人量、输出量及其相互关系应保持不变。
化简方框图的主要方法就是将串联环节、并联环节和基本反馈环节用一个等效环节代替。
化简方框图的关键是解除交叉结构,即移动分支点或相加点,使被简化的环节中不存在与外部直接相连的分支点和相加点。
5、利用梅森(Mason)公式求传递函数。
∑∆∆=ii i s s Q s H )()(1)()(s Q i 第i 条前向通路传递函数的乘积∆ 流图的特征式= 1 - 所有回路传递函数乘积之和+每两个互不接触回路传递函数乘积之和-每三个….=1-∑∑∑-+bccbaaLL L ..........条前向通路接触的回路中处除去与第从余子式i ,∆∆i第三章:知识点1、一阶系统对典型输入信号的输出响应。
(单位)阶跃函数(Step function ) 0,)(1≥t t (单位)斜坡函数(Ramp function ) 速度 0,≥t t (单位)加速度函数(Acceleration function )抛物线0,212≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。
2、动态性能指标:tMp 超调量允许误差10.90.50.1t rt pt s图3-2表示性能指标td,tr,tp,Mp 和ts 的单位阶跃响应曲线t dh(t)0.02或0.05)(∞h )(∞h )(∞h )(∞h① 延迟时间d t :(Delay Time )响应曲线第一次达到稳态值的一半所需的时间,叫延迟时间。
② 上升时间:r t (Rise Time )响应曲线从稳态值的10%上升到90%,所需的时间。
〔5%上升到95%,或从0上升到100%,对于欠阻尼二阶系统,通常采用0~100%的上升时间,对于过阻尼系统,通常采用10~90%的上升时间〕,上升时间越短,响应速度越快。
③ 峰值时间p t (Peak Time ):响应曲线达到过调量的第一个峰值所需要的时间。
④ 调节时间:s t (Settling Time ):在响应曲线的稳态线上,用稳态值的百分数(通常取5%或2%)作一个允许误差范围,响应曲线达到并永远保持在这一允许误差范围内,所需的时间。
⑤ 最大超调量:p M (Maximum Overshoot ):指响应的最大偏离量h(tp)于终值)(∞h 之差的百分比,即%σ%100)()()(%⨯∞∞-=h h t h p σ 13-r t 或p t 评价系统的响应速度;s t 同时反映响应速度和阻尼程度的综合性指标。
%σ评价系统的阻尼程度。
3、一阶系统的时域分析 单位阶跃响应单位阶跃函数的拉氏变换为Ss R 1)(=, 则系统的输出由式为 111111)()()(+-=⋅+==TS S S TS s R s s C φ 对上式取拉氏反变换,得Tt et c --=1)( 0≥t (3-4)图3-4指数响应曲线163.2%86.5%95%98.2%99.3%T2T 3T4T5T0.632tc (t)=1-ec (t)注:R(s)的极点形成系统响应的稳态分量。
响应曲线在0≥t 时的斜率为T 1,如果系统输出响应的速度恒为T1,则只要t=T 时,输出c(t)就能达到其终值。
如图3-4所示。
由于c(t)的终值为1,因而系统阶跃输入时的稳态误差为零。
动态性能指标:T t d 69.0=T t r 20.2= 误差带)%5(3Tt s = %不存在和σp t4、二阶系统时间响应及其动态性能指标计算。
典型传递函数 2222)(nn nw s w s w s ++=ξφ二阶系统的单位阶跃响应0<ξ 两个正实部的特征根 不稳定系统10<<ξ,闭环极点为共扼复根,位于右半S 平面,这时的系统叫做欠阻尼系统1=ξ ,为两个相等的根,临界阻尼系统 1>ξ ,两个不相等的根,过阻尼系统0=ξ ,虚轴上,瞬态响应变为等幅振荡,无阻尼系统·欠阻尼情况二阶系统一般取7.0,8.0~4.0=ξ 。
其它的动态性能指标,有的可用n ωξ和精确表示,如p p r M t t ,,,有的很难用n ωξ和准确表示,如s d t t ,,可采用近似算法。
当01<<ξ时,特征根s 1.2=21ξξ-±-n n jw w , 221,1arctan ξξξθ-=-=n d w w⑴ d tnd t ωξξ22.06.01++=10<<ξ时,亦可用nd t ωξ7.01+=⑵r t (上升时间)dr t ωβπ-=ξ 一定,即β一定,↓↑→→r t n ω ,响应速度越快 ⑶)(峰值时间p tdp t ωπ=↓→↑p t 距离越远)(闭环极点力负实轴的一定时,n ωξ⑷ 的计算,超调量p M or %σ超调量在峰值时间发生,故)(p t h 即为最大输出%100%100)()()(%21⨯=⨯∞∞-=--ξπξσe h h t h p⑸调节时间S t 的计算 选取误差带nS nS t t ξωξω5.35.305.0=≤=∆nS nS t t ξωξω5.45.402.0=≤=∆当ξ较小 4.0≤ξ)02.0(4)05.0(3=∆==∆=nS n S t t ξωξω系统的单位阶跃响应为C(t)=1-)sin(112θξξ+--t w e d t w n动态性能指标计算公式为 上升时间 21ξθπθπ--=-=n dr w w t峰值时间 d n dp T w w t 2112=--==ξθππ其中T d 是有阻尼振荡周期,且T d =d dd f w f ,21π=是有阻尼振荡频率。
超调量 %10021⨯=--ξξπδe p调整时间 )02.0(4)05.0(3=∆==∆=ns n s w t w t ξξ或 振荡次数 N=pd s T t δπξξln 5.115.12-=-= (∆=0.05)或 N=pd s T t δπξξln 2122-=-= (∆=0.02) 5、系统稳定性分析特征根必须全部分布在S 平面的左半部,即具有负实部。
已知系统的特征方程时,可采用Routh 稳定判据或Hurwitz 稳定判据判定系统的稳定性。
特征多项式各项系数均大于零(或同符号)是系统稳定的必要条件。
Routh 判据:由特征方程各项系数列出Routh 表,如果表中第一列各项严格为正,则系统稳定;第一列出现负数,则系统不稳定,且第一列各项数值符号改变的次数就是正实部特征根的数目。