新人教版数学八年级上册——分式练习题

合集下载

人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)

人教版 初中数学八年级上册 第十五章 分式 复习习题 (含答案解析)

人教版初中数学八年级上册第十五章分式复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>32.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3C.π是有理数D.是有理数3.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠24.分式方程的解为()A.B.C.D.无解5.已知,则的值是A.60B.64C.66D.72在实数范围内有意义,则x的取值范围是( )6.若-A.x<B.x≤C.x≠D.x>7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A.B.C.D.8.若分式的值为0,则x的值为()A.-2B.0C.2D.±29.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=10.若代数式在实数范围内有意义,则x的取值范围为()A . x >0B . x ≥0C . x ≠0D . x ≥0且x ≠1 11.关于x 的分式方程的解为非负数,且使关于x 的不等式组有解的所有整数k 的和为( )A . ﹣1B . 0C . 1D . 212.若x 取整数,则使分式的值为整数的x 值有 A . 3个 B . 4个 C . 6个 D . 8个13.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是 A . 2 B . 3 C . 4 D . 5 14.下列等式正确的是 ( ) ①0.000126=1.26×10-4②3.10×104=31000③1.1×10-5=0.000011 ④12600000=1.26×106A . ①②B . ②④C . ①②③D . ①③④15.若数a 使关于x 的不等式组无解,且使关于x 的分式方程有正整数解,则满足条件的a 的值之积为( ) A . 28 B . ﹣4 C . 4 D . ﹣2 16.若关于x 的方程无解,则m 的值为A .B .C .D . 17.如果成立,那么下列各式一定成立的是( )A .B .C .D .18.关于x 则实数m 的取值范围是( ) A . m<-6且m≠2 B . m >6且m≠2 C . m<6且m≠-2 D . m<6且m≠2 19.下列运算正确的是( ) A .11x y x y xy--= B .=-1b aa b b a +-- C . 21111a a a --=--+ D . 2111·1a a a a a--=-+20.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子的最小值是”.其推导方法如下:在面积是的矩形中设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是.模仿张华的推导,你求得式子的最小值是().A.B.C.D.二、填空题21.如果a+b=2,那么代数式(a﹣)÷的值是______.22.已知x为正整数,当时x=________时,分式的值为负整数.23.计算:=__.24.分式方程的解为__________.25.一个铁原子的质量是,将这个数据用科学记数法表示为__________.26.已知,则=_____.27.已知2n+2-n=k(n为正整数),则4n+4-n=____________.(用含k的代数式表示)28.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.29.请观察一列分式:﹣,,﹣,,…则第11个分式为_____.30.分式和的最简公分母是____________.31.若关于x的方程有增根,则a的值为________.32.对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.33.要使关于x a的取值范围是___..34.当x 取_____时,分式有意义.35.已知a 1=,a 2=,a 3=,…,a n +1=(n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示). 36.对于正数x ,规定 f (x )=,例如:f (4)== ,f ( )==,则f (2017)+f (2016)+…+f (2)+f (1)+f ()+f ()+…+f ()+f ()= .37.如果关于x 的不等式组(){2432x mx x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D . 15-38.已知(x+3)2 - x =1,则x 的值可能是___________;39.若关于x 的方程=3的解是非负数,则b 的取值范围是_____. 40.若分式方程1x aa x -=+无解,则a =________.三、解答题41.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.) 42.解分式方程:2311xx x x +=--. 43.计算:.44.先化简,再求值:,其中 是不等式组的整数解.45.先化简,再求值:,其中m= +1.46.先化简,再求值:,其中 .47.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?48.计算:(1)3a5÷(6a3)•(﹣2a)2;(2)(3.14﹣π)0+0.254×44﹣()﹣149.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?50.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?51.先化简,再求值:(-其中52.已知,,求()的值.53.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?54.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|55.(1)计算:;(2)化简并求值:,其中,.56.解方程:57.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A ,B 两种机械设备,每台B 种设备的成本是A 种设备的1.5倍,公司若投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题: (1)A 、B 两种设备每台的成本分别是多少万元?(2)若A ,B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A 种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A 种设备,航空运输每次运2台B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数. 58.计算:﹣12018﹣|1﹣ |+()﹣1+(3.14﹣π)0+ .59.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元? 60.计算:(2b ax )2÷(﹣3ax b)×38ab .61.(2017云南省,第18题,6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和. 62.解方程(1)﹣1=.(2).63.某校计划在暑假两个月内对现有的教学楼进行加固改造,经调查发现,甲、乙两个工程队都有能力承包这个项目,已知甲队单独完成工程所需要的时间是乙队的2倍,甲、乙两队合作12天可以完成工程的;甲队每天的工作费用为4500元,乙队每天的工作费用为10000元,根据以上信息,从按期完工和节约资金的角度考虑,学校应选择哪个工程队?应付工程队费用多少元?64.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?65.先化简,再求值:,其中.66.先化简,再求值:,其中x的值从不等式组的整数解中选取.67.解方程:68.先化简,再求值:,其中x满足x2-2x-2=0.69.某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.70.若关于的方程的解为正数,求的取值范围.71.计算题(1)先化简,再求值:÷(1+),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 72.已知关于x 的分式方程.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 73.已知关于x 的方程4433x mm x x---=--无解,求m 的值. 74.计算:(1)a (a +2b )﹣(a ﹣2b )(a +b )(2 75.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131xx --表示成部分分式?设分式=将等式的右边通分得: =得: 3{ 1m n m n +=--=,解得: 1{ 2m n =-=-,(1m = ,n = ;(276.某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完. (1)商厦第一批和第二批各购进休闲衫多少件? (2)请问在这两笔生意中,商厦共盈利多少元? 77.先化简,再求值:,其中x=﹣3.78.A ,B 两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A ,B 两地同时出发匀速前往B ,A 45分钟. (1)求甲车速度;(2)乙车到达A 地停留半小时后以来A 地时的速度匀速返回B 地,甲车到达B 地后立即提速匀速返回A 地,若乙车返回到B 地时甲车距A 地不多于30千米,求甲车至少提速多少千米/时?79.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成; (B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工. 为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由. 80.已知关于x 的分式方程2=+4m x x 与分式方程3121x x =-的解相同,求m 2-2m 的值.81.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?82,其中A 、B 为常数,求42A B -的值. 83.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.84.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?85.化简:.86.化简(+a﹣2)÷.87.先化简,再求值:,其中88.先化简再求值:÷(x﹣1﹣),其中x=(1)2017×(﹣)2018.89.先化简,再求值:﹣÷,其中x=2.90.已知,,,求的值.91.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则;等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.任何一个假分式都可以化成整式与真分式的和;(1)下列分式中,属于真分式的是:________(填序号);(2)________+________;(3)__________________. 92.先化简,再计算: 其中.93.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.94.阅读思考:数学课上老师出了一道分式化简求值题目.题目:÷(x+1)·-,其中x=-.“勤奋”小组的杨明同学展示了他的解法:解:原式=- ..................第一步=-................ ..第二步 =..........................第三步=..................................第四步 当x =-时,原式=.......................第五步请你认真阅读上述解题过程,并回答问题:你认为该同学的解法正确吗?如有错误,请指出错误在第几步,并写出完整、正确的解答过程.95.湖州市在2017年被评为“全国文明城市”,在评选过程中,湖州市环卫处每天需负责市区范围420千米城市道路的清扫工作,现有环卫工人直接清扫和道路清扫车两种马路清扫方式.已知20名环卫工人和1辆道路清扫车每小时可以清扫20千米马路,30名环卫工人和3辆道路清扫车每小时可以清扫42千米的马路. (1)1名环卫工人和1辆道路清扫车每小时各能清扫多长的马路?(2)已知2017年环卫处安排了50名环卫工人参与了直接清扫工作,为保证顺利完成每日的420千米清扫工作,需派出多少辆道路清扫车参与工作(已知2017年环卫工人与清扫车每天工作时间为6小时)?(3)为了巩固文明城市创建成果,从2018年5月开始,环卫处新增了一辆清扫车参与工作,同时又增加了若干个环卫工人参与直接清扫,使得每日能够较早的完成清扫工作。

人教版初中数学八年级上册第十五章《分式》测试题(含答案)

人教版初中数学八年级上册第十五章《分式》测试题(含答案)
24.解:(1) + + +…+
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版八年级上册数学《分式》计算题专项练习(含答案)

人教版八年级上册数学《分式》计算题专项练习(含答案)

人教版八年级上册数学《分式》计算题专项练习(含答案)1.计算:求÷(﹣1)的值。

2.化简:将[﹣()]÷化简。

3.化简:将•化简。

4.化简:将(1﹣)•化简。

5.化简:将÷﹣化简。

6.化简:将÷(1﹣)化简。

7.化简:将化简。

8.计算:求÷()的值。

9.化简:将1+÷化简。

10.先化简,再求值:将•﹣化简,其中x=2.11.先化简,再求值:将•+化简,其中x=1,y=2.12.先化简,再求值:将化简,其中x=2.13.先化简,再求值:将(+)÷化简,其中x=﹣。

14.先化简,再求值:将(x﹣)÷化简,其中x=。

15.先化简,再求值:将(1+)÷化简,其中x=3.16.化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值。

17.先化简,再求值:将÷(﹣x﹣2)化简,其中|x|=2,代入一个合适的数求值。

18.先化简,再求值:将(+)÷化简,且x为满足﹣3<x <2的整数,代入一个合适的数求值。

19.先化简,再求值:将÷(a﹣1﹣)化简,从﹣1.1,2四个数中,选认为合适的数作为x的值代入求值。

20.先化简(﹣)÷,再从﹣2,﹣1.1,2中选一个你认为合适的数作为x的值代入求值。

21.先化简,再求值:将﹣÷化简,其中a=﹣1.22.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值。

17.解:原式=(a+3)÷(a²-1)=(a+3)÷(a+1)(a-1)因为a≠-1且a≠1且a≠2,所以a=4。

则原式=7;当a=5时,原式=8.18.解:(|x|+2)÷(-x-2)=(x+2)÷(-x-2)因为|x|=2,x-2≠0,解得,x=-2。

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

2022年八年级数学上册第十五章分式测试卷1新版新人教版

2022年八年级数学上册第十五章分式测试卷1新版新人教版

第15章分式一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤12.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=23.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠15.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣36.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠07.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.分式方程=1的解为()A.1 B.2 C.D.010.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠011.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠312.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣113.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4二、填空题14.若分式方程=a无解,则a的值为.15.关于x的分式方程﹣=0无解,则m= .16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= .17.已知关于x的方程的解是负数,则n的取值范围为.18.分式方程=的解是.19.方程=的解是.20.方程﹣=1的解是.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是.22.计算:20130﹣2﹣1= .23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.25.若关于x的方程无解,则m= .26.若关于x的分式方程的解为正数,那么字母a的取值范围是.27.关于x的方程=﹣1的解是正数,则a的取值范围是.28.已知关于x的方程的解是正数,则m的取值范围是.29.若关于x的方程=+1无解,则a的值是.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.参考答案与试题解析一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a 的取值范围.【解答】解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选:B.【点评】本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.2.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=2【考点】负整数指数幂;有理数的乘方;算术平方根;零指数幂.【分析】根据有理数乘方的法则、算术平方根的定义以及负整数指数幂为正整数指数的倒数,任何非0数的0次幂等于1,分别进行计算,即可得出答案.【解答】解:A、﹣2﹣1=﹣,故本选项错误;B、(﹣2)2=4,故本选项错误;C、20=1,故本选项错误;D、=2,故本选项正确;故选D.【点评】此题考查了负整数指数幂、有理数的乘方、算术平方根以及零指数幂,注意:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关【考点】列代数式(分式).【分析】设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A 地到B地所用时间,然后比较大小即可判定选择项.【解答】解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.【点评】此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.5.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣3【考点】分式方程的解.【分析】首先根据题意,把x=3代入分式方程﹣=0,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】解:∵x=3是分式方程﹣=0的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.【点评】(1)此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.(2)此题还考查了一元一次方程的求解方法,要熟练掌握.6.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.分式方程=1的解为()A.1 B.2 C.D.0【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x﹣2,解得:x=1,经检验x=1是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的范围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.12.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【考点】分式方程的解.【专题】计算题.【分析】将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.【解答】解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.【点评】本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.13.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4【考点】分式方程的解;一元一次不等式组的整数解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4.故选:D【点评】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(共16小题)14.若分式方程=a无解,则a的值为1或﹣1 .【考点】分式方程的解.【专题】计算题.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣1【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.15.关于x的分式方程﹣=0无解,则m= 0或﹣4 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.【点评】本题考查了分式方程无解的条件,是需要识记的内容.16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= 1 .【考点】分式方程的解;解一元二次方程-因式分解法.【分析】利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x的方程=,并求得a的值.【解答】解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.【点评】本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.18.分式方程=的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.方程=的解是x=9 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.方程﹣=1的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.【考点】分式方程的解.【分析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得:x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.故答案为:a且a.【点评】此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x﹣1≠0这个隐含条件.22.计算:20130﹣2﹣1= .【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1=1﹣=.故答案为:.【点评】本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.【考点】列代数式(分式).【专题】计算题.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.故答案为:(+1).【点评】注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.25.若关于x的方程无解,则m= ﹣8 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.27.关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案.【解答】解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.【点评】本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.28.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.29.若关于x的方程=+1无解,则a的值是2或1 .【考点】分式方程的解.【专题】压轴题.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【专题】图表型.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

人教版八年级数学上册分式方程练习题(附答案)

人教版八年级数学上册分式方程练习题(附答案)

人教版八年级数学上册分式方程练习题一、单选题1.下列各式中,是关于x 的分式方程的是( )A.230x y -=B.12327x x +-=C. 352x x =-D.132x x ++- 2.分式方程5211x x x -+=-的解为( ) A.1x =-B.1x =C.2x =D.2x =- 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A.112(2)x x -+=---B.112(2)x x -=--C.112(2)x x -+=+-D.112(2)x x -=--- 4.把分式方程214x x =+转化为整式方程时,方程两边需同乘以( ) A.x B.2x C.4x + D.(4)x x +5.下列方程中,是分式方程的有( ) ①352123x x +-=;②3212x x -=-;③2133193x x x +=--;④2335x x x-+=. A.①②③ B.②③④ C.①③④ D.①②④6.下列关于x 的方程中,是分式方程的是( ) A.132x =B.2354x x ++=C.12x =D.321x y -= 7.方程2131x x =+-的解是( ) A.53x = B.5x = C.4x = D.5x =-8.解分式方程14322x x-=--时,去分母可得( ) A.()1324x --=B.()1324x --=-C.()1324x --=-D.()1324x --= 9.分式方程1112x x x ++=-的解是( ) A.1x = B.1x =- C.3x = D.3x =-10.下列方程不是分式方程的是( ) A.31x x-=B.1111x x x +=+- C.342x y+= D.1223x x --= 11.在方程573x +=,22x -=,112x π+=,11423x x --=+,391x x+=中,分式方程有( ) A.1个 B.2个C.3个D.4个二、计算题12.解方程: 1.311221x x =-++; 2.21212339x x x -=+--.13.解下列方程: 1.21133xx x -+=--; 2.2121xx x =++-14.解分式方程: (1)22311x x x +=--; (2)222273711x x x x x x --=++--.15.解方程:21122x x x =---.16.解分式方程:2321212141x x x x +-=+--.17.化简227101a a a a ++⋅-+32144a a a +++12a a +÷+18.化简225616x x x -+-22544x x x ++⋅-34x x -÷-参考答案1.答案:C解析:230x y -=是整式方程,故A 错误;1237x x x +-=是整式方程,故B 错误;352x x =-是分式方程,且未知数为x ,故C 正确;132x x ++-不是方程故D 错误故选C 2.答案:A 解析:方程两边乘(1)x x -,得(5)2(1)(1)x x x x x -+-=-,解得1x =-.经检验,1x =-是原分式方程的解.故选A.3.答案:D解析:方程两边乘(2)x -,得112(2)x x -=---.故选D.4.答案:D解析:5.答案:B解析:方程①的分母中不含未知数,所以不是分式方程,方程②③④的分母中都含有未知数,所以是分式方程.故选B.6.答案:C解析:分母中含未知数的方程叫做分式方程,由此可知C 项是分式方程,A,B,D 项是整式方程.故选C.7.答案:B解析:方程的两边都乘()()31x x +-得223x x -=+,解方程得5x =.经检验,5x =是原分式方程的解,所以原方程的解是5x =.故选B.8.答案:B 解析:原方程可变形为14322x x -=---,方程两边同时乘()2x -,得()1324x --=-.故选B 9.答案:A 解析:111,2x x x ++=-去分母,方程两边同时乘(2)x x -得(1)(2)(2),x x x x x +-+=- 2222,1,x x x x x x --+=-=经检验,1x =是原分式方程的解.故选A.10.答案:D解析: A,B,C 选项中的方程分母中都含未知数,是分式方程;D 选项的方程分母中不含未知数,不是分式方程,故选D.11.答案:B解析:2392,1x x x+-==是分式方程,故选B. 12.答案:1.方程两边同乘()21x +,得3222x =+-, 解得32x =,检验:当32x =时,()210x +≠, 所以原分式方程的解为32x =. 2.方程两边同乘()()33x x +-,得32612x x -++=,解得3x =,检验:当3x =时,()()330x x +-=,所以3x =不是原分式方程的解,所以原分式方程无解.解析:13.答案:1.整理得21133x x x --=--,两边同乘()3x -,得213x x --=-,移项、合并同类项,得24x -=-,解得2x =,检验:当2x =时,30x -≠,∴原分式方程的解为2x =. 2.两边同乘()()12x x -+,得()()()()12212x x x x x -=++-+,去括号,得22242x x x x x -=+++-,移项、合并同类项,得42x -=,解得12x =-,检验:当12x =-时,()()120x x -+≠,∴原分式方程的解为12x =-. 解析:14.答案:(1)去分母得223x x +=+,解得1x =.经检验,1x =是增根,此分式方程无解.(2)去分母得3377337x x x x x x -++=-+-,移项,合并同类项得44x =,解得1x =.经检验,1x =是增根.此分式方程无解.解析:15.答案:去分母得221x x =-+,移项合并得1x =-.经检验,1x =-是原分式方程的解.解析:16.答案:去分母得63421x x x ---=+,解得6x =,经检验6x =是分式方程的解. 解析:17.答案:原式=2(2)(5)1a a a a ++⋅-+22(1)(1)(2)a a a a +-++21a a +⋅+ 5a =+解析:18.答案:原式=(2)(3)(4)(4)x x x x --⋅+-(1)(4)(2)(2)x x x x ++⋅+-43x x -- 12x x +=+ 解析:。

人教版八年级数学上分式题及答案

人教版八年级数学上分式题及答案

八年级上册数学分式综合题人教版一、单选题(共9道,每道11分)1.在下列各式,,,,,,中,分式的个数为()A.2个B.3个C.4个D.5个答案:C试题难度:三颗星知识点:分式定义2.分式有意义的条件为()A.x≠0且x≠1B.x≠1且x≠3C.x≠0,x≠1且x≠3D.x≠1,x≠2且x≠3答案:D试题难度:三颗星知识点:分式有意义的条件3.如果把分式中的、都扩大2倍,那么分式的值()A.缩小2倍B.扩大2倍C.扩大4倍D.不变答案:B试题难度:三颗星知识点:分式的基本性质4.若分式的值为整数,则整数x有()个。

A.1B.2C.3D.4答案:D试题难度:三颗星知识点:分式的值5.当分式的值为正时,x的范围为()A.B.C.D.答案:B试题难度:三颗星知识点:分式与不等式6.已知,则代数式的值为()A.B.C.4D.-2答案:C试题难度:三颗星知识点:整体代入7.如果,则A,B的值分别为()A.-1,1B.1,-1C.0,2D.2,0答案:A试题难度:三颗星知识点:分式加减逆运算8.先化简,然后从不等式组的解集中,从下面选项中选取你认为合适的一个整数x代入求值,那么应该选择,最后的结果为.()A.5,10B.-5,0C.4,9D.6,11答案:C试题难度:三颗星知识点:选取合适的值代入9.计算的值为()A.B.C.D.答案:B试题难度:三颗星知识点:有一分式分母为1。

人教版八年级数学上册第十五章 分式练习(含答案)

人教版八年级数学上册第十五章 分式练习(含答案)

第十五章 分式一、单选题1.下列各式中,2x π-,23a x -,5a b ,2x y +,13x y -,3112x x =+-,分式的个数为( )A .2个B .3个C .4个D .5个2.下列分式中一定有意义的是( )A .21x x+ B .21x x - C .211x x -+ D .21x x + 3.把分式2a a b-中的a 、b 都扩大3倍,则分式的值( ) A .扩大3倍B .扩大6倍C .不变D .缩小3倍 4.计算225(2)4x y y x x y -⋅--的结果为( ) A .52x y x y -+ B .52x y x y --+ C .52x y x y -- D .52x y x y--- 5.若234a b c ==,则3223a b c a b c++--的值是( ) A .169 B .169- C .16- D .19- 6.若13,x x+=则221x x +的值是( ) A .7-B .7C .7±D .07.如图,若x =2211(1)x x x x-+÷-的值的点落在( )A .段①B .段②C .段③D .段④ 8.将分式方程4322x x x+=--化为整式方程,正确的是( ) A .43x -=B .43x +=C .()432x x -=-D .()432x x +=- 9.若关于x 的分式方程4122ax x x =+--无解,则a 的值为( ) A .1 B .2C .1或2D .0或1或2 10.某商店出售A ,B 两种型号的钢笔,已知A 型号的钢笔比B 型号的钢笔贵5元,小红用50元买了A 型号的钢笔,用若干元买了相同数量B 型号的钢笔,小红手机微信里的余钱共有83元,扫码付完款后发现余钱剩3元,设A 型号的钢笔每支售价为x 元,根据题意可列出的方程为( )A .50305x x =- B .50335x x =- C .30505x x =- D .50305x x =+二、填空题11.若分式11x x --的值为0,则x 的值是________ 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________.13.已知5,3+==a b ab ,则11a b+=______. 14.为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.三、解答题15.计算下列各题:(1)0.25×(-2)-2÷16-1-(π-3)0(2)22225103621x y yy x x ÷16.计算:(1)23111aaab b b +-+++;(2)2222324424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.17.先化简,再求值:(12a+﹣12a-)÷12a-,其中a=﹣6.18.解分式方程:(1)532x x= -(2)411 11xx x-= --19.某服装店到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,已知用2000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)若A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总利润不少于1200元,则最少购进A品牌的服装多少套?答案1.B 2.C 3.C 4.B 5.B 6.B 7.C 8.C 9.C 10.A11.x=-112.6243a b a b+- 13.5314.12000120001001.2x x =+ 15.(1)0;(2)3276x y 16.(1)0;(2)262x x x --- 17.42a -+,1 18.(1)3x =-;(2)23x =-19.(1)A 、B 两种品牌服装的进价分别为100元和75元;(2)最最最最A最最最最最16最。

2022学年人教版八年级数学上册第十五章《分式》试题卷三附答案解析

2022学年人教版八年级数学上册第十五章《分式》试题卷三附答案解析

2022学年八年级数学上册第十五章《分式》试题卷三(满分120分)一.选择题(共8小题,满分32分)1.下列各式中:﹣3x,,,,,分式的个数是()A.2B.3C.4D.52.无论a取何值,下列分式中,总有意义的是()A.B.C.D.3.把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大6倍C.缩小为原来的D.不变4.下列运算正确的是()A.B.C.D.5.化简的结果是()A.a+b B.a﹣b C.D.6.方程的解为()A.x=﹣1B.x=1C.x=0D.x=﹣37.照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v表示胶片(像)到镜头的距离.用f,v表示物体到镜头的距离u,正确的是()A.B.C.D.8.为了改善生态环境,某社区计划在荒坡上种植600棵树,由于学生志愿者的加入,每日比原计划多种20%,结果提前1天完成任务.设原计划每天种树x棵,可列方程()A.=1B.=1C.=1D.=1二.填空题(共8小题,满分32分)9.如果分式的值为0,那么x的值为.10.已知x为整数,且分式的值为正整数,则x可取的值有.11.若,则的值是.12.计算:3xy2÷(﹣)3()2=.13.若关于x的分式方程=4有增根,则k=.14.关于x的分式方程无解,则m的值15.定义一种运算☆,规则为a☆b=+,根据这个规则,若x☆(x+1)=,则x=.16.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则a=.三.解答题(共7小题,满分56分)17.化简:(x﹣1﹣)÷.18.化简求值:,其中a=2022.19.解下列方程:(1)=;(2)﹣=8.20.关于x的分式方程.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.21.请仿照例子解题:+=恒成立,求M、N的值.解:∵+=∴=则=即=,故,解得:请你按照上面的方法解题:若+=恒成立,求M、N的值.22.现有甲、乙、丙三种糖混合而成的什锦糖50千克,其中各种糖的千克数和单价如表所示,且商店以糖的平均价作为什锦糖的单价.请问:甲种糖乙种糖丙种糖千克数102020单价(元/千克)252015(1)这50千克什锦糖的单价是多少?(2)若要是什锦糖的单价每千克提高2元,问需加入甲种什锦糖多少千克?23.某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的,下坡的平均速度是平路上跑步的平均速度的,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?参考答案一.选择题(共8小题,满分32分)1.解:分式的个数是,,共2个.故选:A.2.解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.3.解:由题意得:==,∴把分式中的x、y都扩大3倍,则分式的值扩大3倍,故选:A.4.解:A.==﹣,因此选项A不符合题意;B.==,因此选项B不符合题意;C.===﹣,因此选项C符合题意;D.是最简分式,不能约分,因此选项D不符合题意;故选:C.5.解:====a﹣b.故选:B.6.解:,x+5=6x,5x=5,x=1,经检验x=1是原方程的解,则方程的解为x=1.故选:B.7.解:∵=+,∴=﹣=,∴u=,故选:B.8.解:设原计划每天种x棵树,实际每天种树(1+20%)x棵树,由题意得:﹣=1.故选:D.二.填空题(共8小题,满分32分)9.解:如果分式的值为0,则,解得:x=1.故答案为:1.10.解:==2+,∵x为整数,且分式的值为正整数,∴=5或±1,∴x﹣1=1或5或﹣5,∴x=2或6或﹣4,∴满足条件的x可取的有2,6,﹣4.故答案为:2,6,﹣4.11.解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.12.解:原式=3xy2÷(﹣)•=﹣3xy2••=﹣x2,故答案为:﹣x2.13.解:去分母,得x﹣k=4(x﹣3),将增根x=3代入x﹣k=4(x﹣3),得3﹣k=0,解得k=3,故答案为:3.14.解:将方程化简为,m+2=x﹣3,可得m=x﹣5,当x=3时,m=x﹣5=3﹣5=﹣2,∴当m=﹣2时,方程无解.故答案为:﹣2.15.解:根据给定的定义,得x☆(x+1)=,∴=,去分母,得2(x+1)+2x=3(x+1),解得x=1,经检验,x=1是原方程的根,故答案为:1.16.解:解方程得,x=,∵分式方程有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得a>4,综上,a=5.故答案为:5.三.解答题(共7小题,满分56分)17.解:原式=•=•=.18.解:原式=•=•=•=,当a=2022时,原式=.19.解:(1)=,9(m﹣1)=8m,解得:m=9,检验:当m=9时,m(m﹣1)≠0,∴m=9是原方程的根;(2)﹣=8,x﹣8+1=8(x﹣7),解得:x=7,检验:当x=7时,x﹣7=0,∴x=7是原方程的增根,∴原方程无解.20.解:去分母,得:2(x+1)+mx=3(x﹣2),(1﹣m)x=8,(1)当方程的增根为x=2时,(1﹣m)×2=8,所以m=﹣3;(2)若原分式方程有增根,则(x+1)(x﹣2)=0,∴x=2或x=﹣1,当x=2时,(1﹣m)×2=8,所以m=﹣3;当x=﹣1时,(1﹣m)×(﹣1)=8,所以m=9,所以m的值为﹣3或9时,方程有增根;(3)当方程无解时,即当1﹣m=0时,(1﹣m)x=8无解,所以m=1;当方程有增根时,原方程也无解,即m=﹣3或m=9时,方程无解所以,当m=﹣3或m=9或m=1时方程无解.21.解:∵+==,∴M(x﹣2)+N(x+2)=x+8,∴(M+N)x﹣2M+2N=x﹣8,∴,解得:.22.解:(1)这50千克什锦糖的单价==19(元);(2)设加入甲种糖x千克,则什锦糖的总量为:(10+x+20+20)千克,根据题意得:=19+2,解得:x=25,经检验:x=25是原方程的解,答:需加入甲种糖25千克.23.解:(1)设小伟在平路上跑步的平均速度是x米/分钟,则小伟在平路上步行的平均速度是x米/分钟,依题意得:+=50,解得:x=280,经检验,x=280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y米,则上坡路程是y米,下坡路程是y米,依题意得:+=9,解得:y=2100.答:这段坡路的总路程是2100米.。

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
15.3 第3课时 分式方程的应用
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)

人教版八年级上册数学分式方程专项练习题(含答案解析)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则解,得x=5经检验:x=5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。

人教版八年级数学上册第十五章分式-测试题带答案

人教版八年级数学上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案

人教版八年级数学上册《分式方程实际应用》专项练习题-附含答案 类型一、销售利润问题例1.某公司推出一款桔子味饮料和一款荔枝味饮料 桔子味饮料每瓶售价是荔枝味饮料每瓶售价的54倍.4月份桔子味饮料和荔枝味饮料总销售60000瓶 桔子味饮科销售额为250000元 荔枝味饮料销售额为280000元.(1)求每瓶桔子味饮料和每瓶荔枝味饮料的售价?(2)五一期间 该公司提供这两款饮料12000瓶促销活动 考虑荔枝味饮料比较受欢迎 因此要求荔枝味饮料的销量不少于桔子味饮料销量的32;不多于枯子味饮料的2倍.桔子味饮料每瓶7折销售 荔枝味饮料每瓶降价2元销售 问:该公司销售多少瓶荔枝味饮料使得总销售额最大?最大销售额是多少元?【答案】(1)每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元;(2)当m =7200时 销售额最大 w 最大值是76800元【解析】(1)解:设每瓶荔枝味饮料的售价为x 元 则每瓶桔子味饮料的售价为54x 元 依题意 得:2500002800006000054x x += 解得:x =8 经检验 x =8是原方程的解 且符合题意 ∴54x =10(元) 答:每瓶桔子味饮料的售价为10元 每瓶荔枝味饮料的售价为8元.(2)解:设销售荔枝味饮料m 瓶则销售桔子味饮料(12000﹣m )瓶 依题意 得:3(12000)22(1200)m m m m ⎧≥-⎪⎨⎪≤-⎩ 解得:7200≤m ≤8000 设总销售额w 元 则100.7(12000)684000w m m m ⨯⨯-+-+== ∴w 是m 的一次函数 且k =﹣1<0 ∴当m =7200时 销售额最大 w 最大值是76800元【变式训练1】某超市销售A 、B 两款保温杯 已知B 款保温杯的销售单价比A 款保温杯多10元 用600元购买B 款保温杯的数量与用480元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯销售单价各是多少元?(2)由于需求量大 A B 两款保温杯很快售完 该超市计划再次购进这两款保温杯共120个 且A 款保温杯的数量不少于B 款保温杯数量的一半 若两款保温杯的销售单价均不变 进价均为30元/个 应如何进货才使这批保温杯的销售利润最大 最大利润是多少元?【答案】(1)A 款保温杯销售单价为40元 B 款保温杯销售单价为50元(2)购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【解析】(1)解:设A 款销售单价为x 元 则B 款销售单价为(10x +)元 根据题意得:60048010x x=+ 解得40x = 经检验 40x =是原方程的解且符合题意 ∴10401050x +=+=答:A 款保温杯销售单价为40元 B 款保温杯销售单价为50元;(2)解:设购进A 款保温杯m 个 则购进B 款保温杯(120-m )个 总利润为W 元 ∴1201202m m -≤≤ ∴40120m ≤≤ 根据题意得:()()()40305030120102400W m m m =-+--=-+∴100-<∴W 随m 的增大而减小∴40m =时 W 最大 且2000W =最大值 此时1201204080m -=-=答:购进A 款40个 B 款80个能使销售利润最大 最大利润2000元【变式训练2】国家推行“节能减排 低碳经济”政策后 低排量的汽车比较畅销 某汽车经销商购进A B 两种型号的低排量汽车 其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台 设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润 求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时 每周销售这两种汽车的总利润最大?最大利润是多少万元?【答案】(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台 ②A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元【解析】(1)解:设B 型汽车的进货单价为x 万元 根据题意 得:502x +=40x 解得x =8 经检验x =8是原分式方程的根 8+2=10(万元)答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台 则A 型汽车的售价为(t +1)万元/台①根据题意 得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14) 解得:t ≥414 ∴t 的最小值为414 即B 型汽车的最低售价为414万元/台 答:B 型汽车的最低售价为414万元/台; ②根据题意 得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23∴﹣2<0 当t =12时 w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时 每周销售这两种汽车的总利润最大 最大利润是23万元.【变式训练3】某家电销售商城电冰箱的销售价为每台2100元 空调的销售价为每台1750元 每台电冰箱的进价比每台空调的进价多400元 商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台 设购进电冰箱x 台 这100台家电的销售总利润y 元 要求购进空调数量不超过电冰箱数量的2倍 且购进电冰箱不多于40台 请确定获利最大的方案以及最大利润.(3)实际进货时 厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变 请你根据以上信息及(2)中条件 设计出使这100台家电销售总利润最大的进货方案.【答案】(1)每台空调的进价为1600元 则每台电冰箱的进价为2000元;(2)当购进电冰箱34台 空调66台获利最大 最大利润为13300元;(3)当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大【解析】解:()1设每台空调的进价为x 元 则每台电冰箱的进价为()400x +元 根据题意得:8000064000400x x=+ 解得:1600x = 经检验 1600x =是原方程的解 且符合题意 40016004002000x +=+=答:每台空调的进价为1600元 则每台电冰箱的进价为2000元.()2设购进电冰箱x 台 这100台家电的销售总利润为y 元则()()()21002000175016001005015000y x x x =-+--=-+根据题意得:100240x x x -≤⎧⎨≤⎩ 解得:133403x ≤≤ x 为正整数 34x ∴= 35 36 37 38 39 40 ∴合理的方案共有7种即①电冰箱34台 空调66台;②电冰箱35台 空调65台;③电冰箱36台 空调64台; ④电冰箱37台 空调63台;⑤电冰箱38台 空调62台;⑥电冰箱39台 空调61台;⑦电冰箱40台 空调60台;5015000y x =-+ 500k =-< y ∴随x 的增大而减小∴当34x =时 y 有最大值 最大值为:50341500013300(-⨯+=元)答:当购进电冰箱34台 空调66台获利最大 最大利润为13300元.()3当厂家对电冰箱出厂价下调(0100)k k <<元 若商店保持这两种家电的售价不变则利润()()()()21002000175016001005015000y k x x k x =-++--=-+当500k -> 即50100k <<时 y 随x 的增大而增大 133403x ≤≤ ∴当40x =时 这100台家电销售总利润最大 即购进电冰箱40台 空调60台; 当50k =时 15000y = 各种方案利润相同;当500k -< 即050k <<时 y 随x 的增大而减小 133403x ≤≤ ∴当34x =时 这100台家电销售总利润最大 即购进电冰箱34台 空调66台; 答:当50100k <<时 购进电冰箱40台 空调60台销售总利润最大;当50k =时 15000y = 各种方案利润相同;当050k <<时 购进电冰箱34台 空调66台销售总利润最大.【变式训练4】为迎接“五一”小长假购物高潮 某品牌专卖店准备购进甲、乙两种衬衫 其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元 且不超过34700元 问该专卖店有几种进货方案;(3)在(2)的条件下 专卖店准备对甲种衬衫进行优惠促销活动 决定对甲种衬衫每件优惠a 元(6080)a <<出售 乙种衬衫售价不变 那么该专卖店要获得最大利润应如何进货?【答案】(1)甲种衬衫每件进价100元 乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.【详解】解:(1)依题意得:3000270010m m =- 整理 得:3000(10)2700m m -= 解得:100m = 经检验 100m =是原方程的根 答:甲种衬衫每件进价100元 乙种衬衫每件进价90元; (2)设购进甲种衬衫x 件 乙种衬衫(300)x -件根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩ 解得:100110x x 为整数 110100111-+= 答:共有11种进货方案;(3)设总利润为w 则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+①当6070a <<时 700a -> w 随x 的增大而增大 ∴当110x =时 w 最大此时应购进甲种衬衫110件 乙种衬衫190件;②当70a =时 700a -= 27000w =(2)中所有方案获利都一样;③当7080a <<时 700a -< w 随x 的增大而减小 ∴当100x =时 w 最大此时应购进甲种衬衫100件 乙种衬衫200件.综上:当6070a <<时 应购进甲种衬衫110件 乙种衬衫190件;当70a =时 (2)中所有方案获利都一样;当7080a <<时 购进甲种衬衫100件 乙种衬衫200件.类型二、方案问题例.某商店决定购进A 、B 两种纪念品.已知每件A 种纪念品的价格比每件B 种纪念品的价格多5元 用800元购进A 种纪念品的数量与用400元购进B 种纪念品的数量相同.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件 考虑市场需求和资金周转 用于购买这100件纪念品的资金不少于800元 且不超过850元 那么该商店共有几种进货方案?(3)已知商家出售一件A 种纪念品可获利m 元 出售一件B 种纪念品可获利(6﹣m )元 试问在(2)的条件下 商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)【答案】(1)购进A 种纪念品每件需要10元 B 种纪念品每件需要5元;(2)共有11种进货方案;(3)当3m ≥;A 种70件 B 种30件时可获利最多;当03m << A 种60件 B 种40件时可获利最多【详解】解:(1)设购进A 种纪念品每件价格为m 元 B 种纪念币每件价格为5m -元 根据题意可知: 8004005m m =- 解得:10m = 55m -=. 答:购进A 种纪念品每件需要10元 B 种纪念品每件需要5元.(2)设购进A 种纪念品x 件 则购进B 种纪念品100x -件 根据题意可得:800105(100)850x x ≤+⨯-≤ 解得:6070≤≤x x 只能取正整数 60,61,,70x ∴=⋅⋅⋅ 共有11种情况故该商店共有11种进货方案分别为:A 种70件 B 种30件;A 种69件 B 种31件;A 种68件 B 种32件;A 种67件 B 种33件;A 种66件 B 种34件;A 种65件 B 种35件;A 种64件 B 种36件;A 种63件 B 种37件;A 种62件 B 种38件;A 种61件 B 种39件;A 种60件 B 种40件. (3)销售总利润为(100)(6)(26)600100W mx x m m x m =+--=-+-商家出售的纪念品均不低于成本价 0m ∴>根据一次函数的性质 当260m -≥时 即3m ≥W 随着x 增大而增大当70x =时 W 取到最大值;即方案为:A 种70件 B 种30件时可获利最多;当260m -<时 即03m << W 随着x 增大而减小当60x =时 W 取到最大值;即方案为:A 种60件 B 种40件时可获利最多.【变式训练1】为切实做好疫情防控工作 开学前夕 我县某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只 每盒水银体温计有10支 每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计 且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数) 则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后 超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买 共支付总费用w 元;①当总费用不超过1800元时 求m 的取值范围;并求w 关于m 的函数关系式.②若该校有900名学生 按(2)中的配套方案购买 求所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元、50元;(2)购买水银体温计5m 盒能和口罩刚好配套;(3)①w =450(4)360360(4)m m m m ≤⎧⎨+>⎩;②购买口罩和水银体温计各18盒、90盒 所需总费用为6840元【解析】解:(1)设每盒口罩和每盒水银体温计的价格分别是x 元 (150)x -元根据题意 得1200300150x x =- 解得200x = 经检验 200x =是原方程的解15050x ∴-= 答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y 盒能和口罩刚好配套根据题意 得100210m y =⨯ 则5y m =答:购买水银体温计5m 盒能和口罩刚好配套;(3)①由题意得:2005051800m m +⨯4501800m ∴ 4m ∴ 此时 450w m =;若4m > 则1800(4501800)0.8360360w m m =+-⨯=+ 综上所述:450(4)360360(4)m m w m m ⎧=⎨+>⎩; ②若该校九年级有900名学生 需要购买口罩:90021800⨯=(支)水银体温计:9001900⨯=(支)此时180010018m =÷=(盒) 51890y =⨯=(盒) 则360183606840w =⨯+=(元).答:购买口罩和水银体温计各18盒、90盒 所需总费用为6840元.【变式训练2】某超市准备购进甲、乙两种牛奶进行销售 若甲种牛奶的进价比乙种牛奶的进价每件少5元 其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件 两种牛奶的总数不超过95件 该商场甲种牛奶的销售价格为49元 乙种牛奶的销售价格为每件55元 则购进的甲、乙两种牛奶全部售出后 可使销售的总利润(利润=售价﹣进价)超过371元 请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【答案】(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件;【详解】(1)设甲种牛奶进价为x 元 则乙种牛奶进价为:()5+x 元根据题意 得:901005x x =+ ∴45x = 当45x =时 0x ≠ 且50x +≠∴45x =是方程901005x x =+的解 ∴550x += ∴甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m 件 则该商场购进甲种牛奶数量为()35m -件∴两种牛奶的总数不超过95件 ∴3595m m -+≤ ∴25m ≤∴销售的总利润(利润=售价﹣进价)超过371元 ∴()()()3549455550371m m --+-≥∴17391m ≥ ∴23m ≥ ∴2325m ≤≤∴商场购进甲种牛奶64件 乙种牛奶23件;或商场购进甲种牛奶67件 乙种牛奶24件;或商场购进甲种牛奶70件 乙种牛奶25件.【变式训练3】某公司经销甲种产品 受国际经济形势的影响 价格不断下降.预计今年的售价比去年同期每件降价1000元 如果售出相同数量的产品 去年销售额为10万元 今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入 公司决定再经销另一种类似产品乙 已知产品甲每件进价为3500元;产品乙每件进价为3000元 售价3600元 公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件 分别列出具体方案 并说明哪种方案获利更高.【答案】(1)今年这种产品每件售价为4000元;(2)有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件;方案①的利润更高.【详解】解:()1设今年这种产品每件售价为x 元 依题意得:10000080000x 1000x=+ 解得:x 4000=. 经检验:x 4000=是原分式方程的解.答:今年这种产品每件售价为4000元.()2设甲产品进货a 件 则乙产品进货()15a -件.依题意得:()()3500a 300015a 500003500a 300015a 49000⎧+-≤⎪⎨+-≥⎪⎩解得:8a 10≤≤因此有三种方案:方案①:甲产品进货8件 乙产品进货7件;方案②:甲产品进货9件 乙产品进货6件;方案③:甲产品进货10件 乙产品进货5件.方案①利润:()()4000350083600300078200-⨯+-⨯=方案②利润:()()4000350093600300068100-⨯+-⨯=方案③利润:()()40003500103600300058000-⨯+-⨯=820081008000>>∴方案①的利润更高.类型三、工程问题例.为稳步推进5G 网络建设 深化共建共享 现有甲、乙两个工程队参与5G 基站建设工程.(1)已知乙队的工作效率是甲队的1.5倍 如果两队单独施工完成该项工程 甲队比乙队多用20天 求乙队单独施工 需要多少天才能完成该项工程?(2)当甲队施工20天完成5G 基站建设工程的13时 乙队加入该工程 结果比甲队单独施工提前25天完成了剩余的工程.①求乙队单独施工 需要多少天才能完成该项工程?②若乙队参与该项工程施工的时间不超过12天 求甲队从开始施工到完成该工程至少需要多少天?【答案】(1)乙队单独施工 需要40天才能完成该项工程.(2)①36天 ②至少40天【详解】解:(1)设乙队单独施工 需要x 天才能完成该项工程 题意 得1.5120x x=+ 解方程 得40x = 经检验 40x =是原分式方程的解 且符合题意.答:乙队单独施工 需要40天才能完成该项工程.(2)①由题意得 甲队单独施工20天完成该项工程的13 所以甲队单独施工60天完成该项工程. 甲队单独施工完成剩余23的工程的时间为602040-=(天) 于是甲、乙两队共同施工的时间为402515-=(天).设乙队单独施工需要y 天才能完成该项工程则11215603y ⎛⎫+⨯= ⎪⎝⎭解方程 得36y . 经检验 36y 是原分式方程的解 且符合题意.答:若乙队单独施工 需要36天才能完成该项工程.②设甲队从开始施工到完成该工程需要z 天依题意列不等式 得1216036z -≤ 解得:40.z ≥【变式训练1】某工程公司承包了修筑一段塌方道路的工程 并派旗下第五、六两个施工队前去修筑 要求在规定时间内完成.(1)已知第五施工队单独完成这项工程所需时间比规定时间多32天 第六施工队单独完成这项工程所需时间比规定时间多12天 如果第五、六施工队先合作20天 剩下的由第五施工队单独施工 则要误期2天完成那么规定时间是多少天?(2)实际上 在第五、六施工队合作完成这项工程的56时 公司又承包了更大的工程 需要调走一个施工队.你认为留下哪个施工队继续施工能按时完成剩下的工程?【答案】(1)规定的时间是28天;(2)留下第六施工队继续施工能在规定的时间内完成剩下的工程 见解析.【详解】解:(1)设规定的时间是x 天 根据题意 得22013212x x x ++=++ 解得28x = 经检验 28x =是原分式方程的解且符合实际意义.答:规定的时间是28天;(2)设第五、六施工队合作完成这项工程的56用了y 天 根据题意 得115283228126y ⎛⎫+= ⎪++⎝⎭ 解得20y = 由第五、六施工队单独完成剩下的工程 所需的时间分别为:5111062832⎛⎫-÷= ⎪+⎝⎭(天) 51216628123⎛⎫-÷= ⎪+⎝⎭(天) 因为2220103028,206262833+=>+=< 所以留下第六施工队继续施工能在规定的时间内完成剩下的工程.答:留下第六施工队继续施工能在规定的时间内完成剩下的工程.【变式训练1】某校利用暑假进行田径场的改造维修 项目承包单位派遣一号施工队进场施工 计划用30天时间完成整个工程.当一号施工队工作10天后 承包单位接到通知 有一大型活动要在该田径场举行 要求比原计划提前8天完成整个工程 于是承包单位派遣二号与一号施工队共同完成剩余工程 结果按通知要求如期完成整个工程.(1)若二号施工队单独施工 完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工 完成整个工程需要多少天?【答案】(1)若由二号施工队单独施工 完成整个工期需要45天;(2)若由一、二号施工队同时进场施工 完成整个工程需要18天【详解】(1)设二号施工队单独施工需要x 天 根据题意得:30830810130x---+= 解得:45x = 经检验 45x =是原分式方程的解∴若由二号施工队单独施工 完成整个工期需要45天;(2)一号、二号施工队同时进场施工需要的天数为x 天 根据题意得:1113045x ⎛⎫+= ⎪⎝⎭∴18x =∴若由一、二号施工队同时进场施工 完成整个工程需要18天.【变式训练2】2019年 在新泰市美丽乡村建设中 甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米 其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工 甲工程队比乙工程队平均每天多施工10米.由于工期需要 甲工程队在完成所承担的13施工任务后 通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a 米 若甲、乙两队同时完成施工任务 求乙工程队平均每天施工的米数a 和施工的天数.【答案】(1)道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米 施工的天数为160天【详解】解:(1)设道路拓宽里程数为x 千米 则道路硬化里程数为(21)x -千米依题意 得:(21)8.6x x +-= 解得: 3.2x =21 5.4x -=∴.答:道路硬化里程数为5.4千米 道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工a 米 则甲工程队技术改进前每天施工(10)a +米 技术改进后每天施工点6(10)5a +米 依题意 得:乙工程队施工天数为3200a 天 甲工程队技术改造前施工天数为:15400180031010a a ⨯=++天 技术改造后施工天数为:15400(1)30003610(10)5a a ⨯-=++天. 依题意 得:3200180030001010a a a =+++ 解得:20a = 经检验 20a =是原方程的解 且符合题意3200a∴160=. 答:乙工程队平均每天施工20米 施工的天数为160天.【变式训练3】某市为了做好“全国文明城市”验收工作 计划对市区S 米长的道路进行改造 现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米 求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路 乙工程队每天可以改造b 米道路 (其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造 后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造 后一半时间由乙工程队改造.根据上述描述 请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)方案二所用的时间少【详解】(1)设乙工程队每天道路的长度为x 米 则甲工程队每天道路的长度为()30x +米根据题意 得:36030030x x=+ 解得:150x = 检验 当150x =时 ()300x x +≠ ∴原分式方程的解为:150x = 30180x +=答:甲工程队每天道路的长度为180米 乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+= 方案二所用时间为2t 则221122t a t b s += 22s t a b =+ ∴22()22()a b a b S S S ab a b ab a b +--=++ ∴a b 00a b >>,∴()20a b -> ∴202a b S S ab a b+->+ 即:12t t > ∴方案二所用的时间少.【变式训练4】2008年5月12日 四川省发生8.0级地震 某市派出两个抢险救灾工程队赶到汶川支援 甲工程队承担了2400米道路抢修任务 乙工程队比甲工程队多承担了600米的道路抢修任务 甲工程队施工速度比乙工程队每小时少修40米 结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米.(1)设乙工程队每小时抢修道路x 米 则用含x 的式子表示:甲工程队每小时抢修道路 米 甲工程队完成承担的抢修任务所需时间为 小时 乙工程队完成承担的抢修任务所需时间为 小时. (2)列出方程 完成本题解答.【答案】(1)(x ﹣40);240040x -;3000x ;(2)甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米【详解】(1)设乙工程队每小时抢修道路x 米 则甲工程队每小时抢修道路(x ﹣40)米 甲工程队完成承担的抢修任务所需时间为240040x -小时 乙工程队完成承担的抢修任务所需时间为2400600x =3000x 小时. 故答案为:(x ﹣40);240040x -;3000x . (2)依题意 得:240040x -=3000x 解得:x =200经检验 x =200是原方程的解 且符合题意∴x ﹣40=160.答:甲工程队每小时抢修道路160米 乙工程队每小时抢修道路200米.。

八年级数学上册《分式》专项测试卷及答案-人教版

八年级数学上册《分式》专项测试卷及答案-人教版

八年级数学上册《分式》专项测试卷及答案-人教版(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.若分式 1x 2−9 有意义,则 x 满足的条件是 ( ) A . x ≠3 B . x ≠−3C . x ≠±3D . x 为任意实数2.已知关于 x 的分式方程 1x+1=3k x无解,则 k 的值为 ( )A . 0B . 0 或 −1C . −1D . 0 或 133.下列各式从左到右的变形,一定正确的是 ( ) A .−b+c a =−b+c aB . a−0.3b a+0.2b =a−3ba+2bC . ba=b+1a+1D . a 2−9(a+3)2=a−3a+34.下列各式中,是分式的是 ( ) A . x2B . 13x 2C .2x+1x−3D . 15(x −y )5.若n 为整数,则能使 n+1n−1也为整数的n 的个数有( )A .1个B .2个C .3个D .4个6.a 、 b 为实数,且 ab =1 ,设 P =a a+1+b b+1,Q =1a+1+1b+1则 P 和 Q 的大小关系是( ) A .P >Q B .P <QC .P =QD .不能确定7.下列变形不是根据等式性质的是( ) A .0.3x 0.5y =3x5yB .若﹣a=x ,则x+a=0C .若x ﹣3=2﹣2x ,则x+2x=2+3D .若﹣12x=1,则x=﹣28.计算20-1的结果是( )A.-1B.0C.1D.19二、填空题(共5题,共15分)9.写出一个分式,并保证无论字母取何值分式均有意义.10.若1y −1x=5,则x+4xy−y2x−3xy−2y的值为.11.若关于x的不等式(a﹣2)x>a﹣2解集为x<1,化简|a﹣3|= .12.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程.13.分式1xy ,2x2y,3xyz的最简公分母为.三、解答题(共3题,共45分)14.先化简代数式:11−x +x−2x−1×3x2−4然后再从−2≤x≤2的范围内选取一个合适的整数代入求值.15.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.16.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1) 甲、乙两种款型的T恤衫各购进多少件?(2) 若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?参考答案1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】C5.【答案】D6.【答案】C7.【答案】A8.【答案】B9. 【答案】1a2+1(答案不唯一)10. 【答案】9711. 【答案】120x −120x+35=11212. 【答案】m<313. 【答案】k<6且k≠314. 【答案】原式=11−x +3(x−1)(x+2)=−(x+2)+3(x−1)(x+2) =−(x−1)(x−1)(x+2) =−1x+2.当x=0时,原式=−12.15. 【答案】设小鹏的速度为x米/分,爸爸的速度为2x米/分由题意得1600x −16002x=10解得:x=80经检验x=80是原分式方程的解,且符合题意.答:小鹏的速度为80米/分.16. 【答案】(1) 设购进乙x件,则购进甲1.5x件78001.5x =6000x−8解得x=100.经检验x=100是原方程的解∴1.5x=1.5×100=150答:甲购进150件,乙购进100件.(2) 设甲每件售价m元则150m+100(m+10)−7800−6000≥6700.解得:m≥78.答:甲每件售价至少78元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式练习题
一、选择题:
1、下列式子:,,1,1,32,32π
n m b a a b a x x --++ 中是分式的有( )个 A 、5 B 、4 C 、3 D 、2
2、下列等式从左到右的变形正确的是( )
A 、11++=a b a b
B 、22
a
b a b = C 、b a b ab =2 D 、am bm a b = 3、下列分式中是最简分式的是( )
A 、a 24
B 、1
12+-m m C 、122+m D 、m m --11 4、下列计算正确的是( )
A 、m n n m =∙
÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n
n m n 1=∙÷ 5、计算32)32()23(m
n n m ∙-的结果是( ) A 、m n 3 B 、m n 3- C 、m n 32 D 、m n 32- 6、计算y
x y y x x ---的结果是( ) A 、1 B 、0 C 、
y x xy - D 、y x y x -+ 7、化简n
m m n m --+2
的结果是( ) A 、n m B 、n m m --2 C 、n
m n --2
D 、m n - 8、下列计算正确的是( )
A 、1)1(0-=-
B 、1)
1(1=-- C 、2233a a =- D 、235)()(a a a =-÷-- 9、如果关于x 的方程8778=----x
k x x 无解,那么k 的值应为( ) A 、1 B 、-1 C 、1± D 、9
10、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )
A 、61511=++x x
B 、61511=-+x x
C 、61511=--x x
D 、6
1511=+-x x 二、填空题:
11、分式a a
-2,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义 12、()22y x -x
y x -=. 13、96,91,39222+----a a a a a a 的最简公分母是_____________. 14、
=-÷-b a ab a 11_____________. 15、=-+-a
b b b a a _____________. 16、=--2)21(_____________. 17、把0000000358.0-用科学记数法表示为______________ 18、如果方程3)
1(2=-x m 的解是5,则m=________ 19、如果51=+-x x ,则=+-22x x ___________ 20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________
三、解答题
21、计算:
(1)
21)2(11+-∙+÷-x x x x (2)32232)()2(b a c ab ---÷ (3)2323()2()a a a ÷-
(4)0142)3()101()2()
21(-++-----π (5)222)()()(b a a b ab ab b a b a b -∙-+-÷-
(6)(3103124π--⎛⎫⎛⎫-⋅-÷- ⎪ ⎪⎝⎭⎝⎭ (7)2211y x xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++-
22、先化简,再求值)1121(1
222+---÷--x x x x x x ,其中31-=x 分式方程
一. 选择题
1.分式方程13
21=-x 的解为( ) (A )2=x (B )1=x (C )1-=x (D )2-=x
2.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h 。

已知北京到上海的铁路全长为1462km 。

设火车原来的速度为xkm /h ,则下面所列方程正确的是( )。

A 、2)251(x 1462x 1462=+-%
B 、2x
1462)251(x 1462=--% C 、
2x 1462x 251462=-% D 、2251462x 1462=-% 3.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是
( )
A .
66602x x =- B .66602x x =- C .66602x x =+ D .66602x x =+ 二. 填空题
1.若方程322x m x x -=--无解,则m =
2.南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤xm ,则得方程为 。

三. 解答题
1、3386x x +-=
2、8633
x x =+- 两边同时乘以最小公倍数 得: 两边同时乘以最简公分母 得:
( )3386
x x +-= ( ) ()()8633x x =+-
(3)12112-=-x x ()()
12
1x =- ()()()()121x =-
解这个整式方程得: x=
检验:
思考:解分式方程的一般步骤是:
四、解方程:
1、(1)3513+=+x x ; (2) 11322x x x
-+=--- (4)512552x x x =--- (5) 25231
x x x x +=++.
(6) (7)
2、当x 为何值时,代数式 的值等于2?
3、若使 互为倒数,求x 的值。

1211422+=+--x x x x x 233321122--=++-x x x x 23223+---x x x x 与x x x x 2
31392-
--++
4、若分式方程3234=++x m mx 的解为1=x ,求m 的值。

相关文档
最新文档