TCD2905D中文资料
C-D开头集成电路
C-D开头的集成电路开头的集成电路CA 红外遥控电子选台集成电路C1490HA红外遥控信号接收集成电路C187 分配、十进制计数集成电路C301译码BCD-10段集成电路C68639Y 微处理集成电路C75P036 微处理集成电路CA0002 调幅模拟声解调集成电路CA2004 音频功率放大集成电路CA2006 音频功率放大集成电路CA270AW视频检波放大集成电路CA3075 调频中频放大集成电路CA3089 调频中频放大集成电路CA3120E视频信号处理集成电路CA3140 运算放大集成电路CA810 音频功率放大集成电路CA920 行扫描信号处理集成电路CAS126天线开关集成电路CAT24C16电可改写编程只读存储集成电路CAT35C104HP存储集成电路CC4000 或非门双3输入集成电路CC4008 计数4 位二进制集成电路CC40107与非双2输入缓冲、驱动集成电路CC40174六D触发集成电路CC40194移位寄存集成电路CC4025 或非门3输入集成电路CC4026 译码、驱动、十进制计数集成电路CC4027 上升沿J-K 触发集成电路CC4029 可预置4位可逆计数集成电路CC4033 译码、驱动、十进制计数集成电路CC4040 二进制计数、分频、振荡集成电路CC4047 单稳态触发集成电路CC4049 非门触发集成电路CC4051 模拟电子开关切换集成电路CC4053 电子开关切换集成电路CC4060 二进制计数、分频、振荡集成电路CC4067 模拟电子开关切换16选1集成电路CC4068 与非门8 输入集成电路CC4069 六非门集成电路CC4098 双单稳态触发集成电路CC4099 寄位锁存8 位集成电路CC4504 六非门集成电路CC4508 双四位锁存集成电路CC4518双BCD同步加法计数集成电路CC4520 双四位二进制同步加法计数集成电路CC4543锁存、译码、驱动BCD-7段集成电路CCST5007图文电视汉字存储集成电路CCU2OO0微处理集成电路CCU2O30微处理集成电路CCU-FBTV02微处理集成电路CCU-FDTV06微处理集成电路CD1130 调频/ 调谐及中频放大集成电路CD1140 调频/ 调谐及中频放大集成电路CD1452 双声道前置放大集成电路CD1514 音频功率放大集成电路CD1518 双声道音频功率放大集成电路CD2002 音频功率放大集成电路CD2611GS音频功率放大集成电路CD3161CS双声道前置放大集成电路CD3210 音频前置放大集成电路CD3220 音频前置放大集成电路CD4021BCM移位寄存并入、串出集成电路CD4160 单片录、放音集成电路CD4511 液晶显示驱动集成电路CD5132 图像中频放大、视频检波集成电路CD5435 行、场扫描信号处理集成电路CD5511 直流电机转速控制集成电路CD5522 电机稳速控制集成电路CD7243 伴音信号处理集成电路CD7366 发光二极管五位显示驱动集成电路CD74202CS音频功率放大集成电路CD74212CS音频功率放大集成电路CD7629 杜比降噪处理集成电路CD7630 双声道音调、音量、平衡控制集成电路CD7640CP调频/调幅中频放大集成电路CD7642 单片调幅收音集成电路CD7668AP双声道前置放大集成电路CD7784GP双声道前置放大集成电路CD810 场扫描输出集成电路CD8403CS场扫描输出集成电路CD9608CS双声道前置放大集成电路CDVS11C数据传输控制集成电路CF70200 字符信号处理集成电路CF723C6 制式切换集成电路CHC5CC2微处理集成电路CH2C8 数码显示驱动集成电路CH4C78 或非门集成电路CH5C81 主轴相位伺服控制集成电路CH52C1C荧光屏显控制集成电路CH52C11微处理集成电路CH52C12视频编码集成电路CH7001C视频编码集成电路CH7201 视频编码集成电路CHT0406微处理集成电路CHT0606微处理集成电路CHT0803微处理集成电路CHT0807微处理集成电路CHT0808微处理集成电路CHT0818微处理集成电路CIC1240A 电子振铃集成电路CIC9106 振铃集成电路CIC9145 音频、脉冲拨号集成电路CKP1001S微处理集成电路CKP1003S微处理集成电路CKP1004S微处理集成电路CKP1006S微处理集成电路CKP1008S微处理集成电路CKP1009S微处理集成电路CKP1101S微处理集成电路CKP1103S微处理集成电路CKP1105S微处理集成电路CKP1602S微处理集成电路CKP1603S微处理集成电路CL480 音频、视频解码集成电路CL482 音频、视频解码集成电路CL484 音频、视频解码集成电路CL680 音频、视频解码集成电路CL8820 音频、视频解码集成电路CL8830A 系统控制处理、编码、解码集成电路CM006CF数字会聚校正集成电路CM46745微处理集成电路CMS80D80解压集成电路CN9832 语言录、放音处理集成电路CNX82光电耦合集成电路CNY17-2 光电耦合集成电路CNY 71光电耦合集成电路CR3700 音频解码集成电路CRFU3-BF射频模块集成电路CS4338K音频数/模转换集成电路CS5339-KS 数/模转换集成电路CSC1032脉冲拨号集成电路CSC1062通话集成电路CSC2560缓冲拨号集成电路CSC91215A双音频、脉冲拨号集成电路CSC91215D双音频、脉冲拨号集成电路CSC91260双音频、脉冲拨号集成电路CSC95088双音频、脉冲拨号集成电路CT54136 异或门四2输入集电极开路输出集成电路CT54145译码、驱动BCD-10段集成电路CT54148 优先编码8-3 线集成电路CT54150 数据选择16-1 集成电路CT54154 多路解调4-16 集成电路CT54155 多路解调双2-4 集成电路CT54160同步可预置BCD计数集成电路CT54161同步可预置BCD计数集成电路CT54170寄存4X4集成电路CT54175双向正沿4D触发集成电路CT54181 算术逻辑单元集成电路CT54182 进位发生处理集成电路CT54192同步可逆递增、减BCD计数集成电路CT54193 可预置同步升、降二进制计数集成电路CT54198 双向移位寄存集成电路CT54251 数据选择8 输入集成电路CT54283 计数4位二进制集成电路CT5430 与非门8 输入集成电路CT5440 与非门双4 输入缓冲集成电路CT5442 译码4-10 线集成电路CT54H00与非门四2输入集成电路CT54H01与非门四2输入集成电路CT7420 与非门双4输入集成电路CTS774 微处理集成电路CTV222SPRC微处理集成电路CTV222SV1-3微处理集成电路CTV225SPRC微处理集成电路CTV322S微处理集成电路CTV360S微处理集成电路CVD-1 音频、视频解码集成电路CVPU2234梳状滤波视频信号处理集成电路CW117三端电源稳压0.5A集成电路CW117M E端电源稳压0.75A集成电路CW137L三端电源稳压0.5A集成电路CW317K三端电源稳压1.5A集成电路CW317L三端电源稳压0.1A集成电路CW337K三端电源负稳压集成电路CW723多端可调正稳压集成电路CX095C伴音信号处理集成电路CX099 本振与混频集成电路CX100D图像中频放大、视频放大集成电路CX108 色度、亮度信号处理集成电路CX109 色度信号处理集成电路CX1279S环绕声处理集成电路CX131 亮度信号调制集成电路CX134 磁头信号放大集成电路CX135 亮度信号处理集成电路CX136 色度信号处理集成电路CX158 行振荡集成电路CX177 图像中频放大、检波、视频放大集成电路CX187 亮度信号解调集成电路CX188 频率转换集成电路CX20014A图像、伴音中频放大集成电路CX20023 双声道记录、重放前置放大集成电路CX20029 调频/调幅收音集成电路CX20089A双声道音频功率放大集成电路CX20100 三基色接口集成电路CX20107 双声道音频功率放大集成电路CX20111 调频/调幅收音集成电路CX20125 黑电平扩展集成电路CX20155 电视调谐集成电路CX2016A红外遥控信号接收集成电路CX20172 双声道音频功率放大集成电路CX20197 射频放大集成电路CX22017 视频信号处理集成电路CX519-004P 微处理集成电路CX522-032 微处理集成电路CX522-054 微处理集成电路CX523-110P 微处理集成电路CX531-512P 微处理集成电路CX7925B调频/调幅电视锁相环频率合成集成电路CX7958 屏幕显示集成电路CX7959 存储集成电路CX857L 调频立体声解码集成电路CX864A视频信号调制、解调集成电路CX869B色度信号自动控制集成电路CXA1001AP色度、亮度信号处理集成电路CXA1005P双声道音频功率放大集成电路CXA1011M/P杜比降噪处理集成电路CXA1015M调幅收音集成电路CXA1017M调频收音集成电路CXA1019M调频/调幅收音集成电路CXA1030P调频/调幅收音集成电路CXA1033P调幅收音集成电路CXA1081M射频放大、伺服信号产生集成电路CXA1102杜比降噪处理集成电路CXA1110BS图像、伴音中频放大集成电路CXA1111调频/调幅收音集成电路CXA1114P开关切换集成电路CXA1145M双制式编码集成电路CXA1163M杜比降噪处理集成电路CXA1179AS选择控制集成电路CXA1191P调频/调幅收音集成电路CXA1213BS色度、亮度信号处理集成电路CXA1214P色度解码集成电路CXA1228S双制式解码集成电路CXA1229P双制式编码集成电路CXA1238M调频/调幅收音集成电路CXA1244S伺服控制集成电路CXA1249M数字环绕声处理集成电路CXA1262N单片录、放音集成电路CXA1278N单片录、放音集成电路CXA1279BS&频信号处理集成电路CXA1315M数/模转换集成电路CXA1315P辅助控制集成电路CXA1353画中画信号处理集成电路CXA1372S M频放大、伺服处理集成电路CXA1387S青晰度控制集成电路CXA1405AM键控指令比较集成电路CXA1420P亮度信号处理集成电路CXA1464AS色度、亮度及行场扫描信号处理集成电路CXA1526P字符地址、偏转及变换集成电路CXA1571S射频聚焦伺服信号处理集成电路CXA1587S色度、同步及行场扫描信号处理集成电路CXA1622音频功率放大集成电路CXA1644P回声效果发生集成电路CXA1645M E基色编码集成电路CXA1649M低音提升集成电路CXA1686M寸钟信号发生集成电路CXA1688M寸钟信号发生集成电路CXA1726AM动态会聚、聚焦信号控制集成电路CXA1735S环绕声处理集成电路CXA1779P基色信号处理集成电路CXA1782BD司服处理集成电路CXA1791M射频放大集成电路CXA1821射频放大集成电路CXA1855S视频信号选择集成电路CXA1875数/模转换集成电路CXA2016S同步信号识别集成电路CXA2021S音频信号处理集成电路CXA2050S视频信号处理、行场扫描信号处理集成电路CXA2055P视频前置放大集成电路CXA2066S视频前置放大集成电路CXA2067AS视频前置放大集成电路CXA2079Q切换TV/AV集成电路CXA2089Q视频切换集成电路CXA2093S清晰度控制集成电路CXA2130S色度、行场扫描信号处理集成电路CXA2549M司服处理集成电路CXA2555Q-T4射频放大集成电路CXA8008P单片放音集成电路CXA8020Q视频处理集成电路CXA8055M音频数/模转换集成电路CXD1053S画中画控制集成电路CXD1054S画中画控制集成电路CXD1135QZ^字信号处理集成电路CXD1167Q数字信号处理集成电路CXD1178Q数/模转换集成电路CXD1186CQ!可改写编程只读存储集成电路CXD1807Q视频解码集成电路CXD1850Q视频解码集成电路CXD1851C视频解码显示集成电路CXD1853G视频降噪集成电路CXD1865数字信号处理集成电路CXD1900A(视频解码集成电路CXD1904C解密集成电路CXD1914Q视频编码集成电路CXD2018Q场激励信号校正集成电路CXD25OOQ-140司服处理集成电路CXD2515数字信号、伺服信号处理集成电路CXD2517Q数字信号处理集成电路CXD2518Q司服驱动集成电路CXD2545Q数字信号处理集成电路CXD2560M数字滤波集成电路CXD2561BM数/模转换集成电路CXD2565AM数字滤波与数/模转换集成电路CXD2585Q数字、伺服信号处理集成电路CXD2586F数字、伺服信号处理集成电路CXD2741Q音频解码集成电路CXD8404Q数字时基校正集成电路CXD8505B徽字滤波集成电路CXD853Q ffl频降噪集成电路CXD8598R缓存集成电路CXD8599Q射频处理集成电路CXD8600R子画面图像集成电路CXD8602Q数据处理集成电路CXD8603R音频控制集成电路CXD8663数据处理集成电路CXD8664Q视频均衡处理集成电路CXD8669AQ军密集成电路CXD8696A-T2锁相环集成电路CXD8728QJ阵列集成电路CXD8730R数字信号处理集成电路CXD8747QJ阵列集成电路CXD8750N-T2数/模转换集成电路CXK1004L存储集成电路CXK1011P存储集成电路CXK1206MI视频信号存储集成电路CXK5864BSP静态随机存储集成电路CXL5005P延迟集成电路CXN82A光电耦合集成电路CXP1031Q系统控制集成电路CXP50116微处理集成电路CXP50116-409Q微处理集成电路CXP50116-702Q微处理集成电路CXP50116-713Q微处理集成电路CXP5058H系统控制处理集成电路CXP80420-139 微处理集成电路CXP80420-X133SP微处理集成电路CXP80424微处理集成电路CXP80424-146 微处理集成电路CXP80424-165S系统控制处理集成电路CXP82224-038Q系统控制处理集成电路CXP82224-044Q系统控制、显示驱动集成电路CXP82324-067Q系统控制处理集成电路CXP82612-007Q系统控制处理集成电路CXP84120微处理集成电路CXP84412微处理集成电路CXP85116B-636S微处理集成电路CXP85220A-047S系统控制处理集成电路CXP85220A-057S系统控制处理集成电路CXP85224A-037S系统控制处理集成电路CXP85332微处理集成电路CXP85332A-237S微处理集成电路CXP85340A微处理集成电路CXP853P40AQ-3微处理集成电路CXP85452-090S微处理集成电路CXP85460微处理集成电路CXP87852-061Q系统控制处理集成电路CY2292 时钟信号发生集成电路d开头的集成电路D1263C2双声道音频功率放大集成电路D1313HA音频前置放大集成电路D1362 音频前置放大集成电路D1470H 电机稳速控制集成电路D16F78B微处理集成电路D2010 磁头信号放大集成电路D2024 双声道音频功率放大集成电路D2283B 音频功率放大集成电路D260 调频/ 调幅收音集成电路D2822M双声道音频功率放大集成电路D3803 调频/ 调幅高、中频信号处理集成电路D3804 调频/ 调幅高、中频信号处理集成电路D4227ALE存储集成电路D5132 中频放大集成电路D54573 频段转换控制集成电路D5522 电机稳速控制集成电路D5622 色度解码集成电路D6121 红外遥控信号发射集成电路D6122G红外遥控信号发射集成电路D61245 红外遥控信号发射集成电路D6326C 微处理功能扩展集成电路D6336C 微处理功能扩展集成电路D6375A 数码录音电话处理集成电路D65640GD122门阵列集成电路D6600AA31红外遥控信号发射集成电路D7114 音频功率放大集成电路D7137 音频前置放大集成电路D7176AP伴音中频放大、鉴频及前置放大集成电路D7243P 音频信号处理集成电路D7315BP电子调谐频段转换集成电路D7325GS音频功率放大集成电路D7341GS自动选曲集成电路D7342P 调频立体声解码集成电路D7421 音频功率放大集成电路D7609AP行、场扫描信号处理集成电路D7628HP音频功率放大集成电路D7641 调幅收音集成电路D7666P 发光二极管五位显示驱动集成电路DBL2044 频段转换控制集成电路DF1700 数字滤波集成电路DM74LS164r移位寄存集成电路DMA2270视频、色度、亮度处理集成电路DMC73C167-003微处理集成电路DPU2553行、场扫描信号处理集成电路DSP56009音频解码集成电路DTI2222 数字瞬态改善集成电路DTI2251 数字瞬态改善集成电路DTI2260 数字瞬态改善集成电路DTVS888微处理集成电路DX0118CE桥式整流集成电路DY0689 电源厚膜集成电路。
D51中文资料
C-Message ResponseTelephone Message &Circuit Noise MeasurementDescriptionThe D51 is designed specifically to provide the C-message weighting frequency response specified in Bell System Technical Reference 41009 for tele-phone message circuit noise measurement. Thetheoretical C-message characteristic simulates the perceived response of the human ear to telephone noise.The D51 filter provides a close, ±1db approximation to the theoretical C-message weighting function from 60 Hz to 5.0 kHz.Applications•Telephone Message Circuit Noise Measurement •Test EquipmentFrequency Response CurveTheoretical Frequency Response FrequencyAttenuationTolerance HzdB±dB6055.7110042.5120025.0130016.5140011.415007.51600 4.71700 2.71800 1.519000.6110000.00.112000.2113000.511500 1.011800 1.312000 1.312500 1.412800 1.913000 2.513300 5.2135007.61400014.51450021.51500028.51Pin-Out and Package DataOrdering InformationSpecifications(25°C and Vs ±15 Vdc)We hope the information given here will be helpful. The information is based on data and our best knowledge, and we consider the information to be true and accurate. Please read all statements,recommendations or suggestions herein in conjunction with our conditions of sale which apply to all goods supplied by us. We assume no responsibility for the use of these statements, recommendations or suggestions, nor do we intend them as a recommendation for any use which would infringe any patent or copyright.PR-00D51-02Analog Input Characteristics Impedance 10 k W min.Source Impedance1600 W max. Bias Current 20 Voltage Range ±10 V peak Maximum Safe Voltage ±Vs Analog Output CharacteristicsImpedance (Closed Loop)< 1 W typ.10 W max.Linear Operating Range ±10 VMaximum Current 3±2 mA Offset Voltage ±5 mV Offset Temp. Coeff.50 m V / °CNoise 450 m V RMS Gain (non-inverting)0 ±0.1 dB @ 1 kHzPower Supply (±Vs)Rated Voltage ±15 VdcOperating Range±5 to ±18 Vdc Maximum Safe Voltage ±18 Vdc Quiescent Current ±1.5 mA typ.±2.0 mA max.Temperature Operating 0 to + 70 °C Storage- 25 to + 85 °CNotes:1.Maximum allowable series input resistance if gain accuracy's are to be maintained.2.Capacitor coupled.3.Output is short circuit protected to common.DO NOT CONNECT TO ±Vs.4.DC to 50 kHz excluding DC offset with input grounded.0.00.10.40.51.51.61.8All dimensions are in inches All case dimensions ± 0.01"。
6890-TCD的介绍
60
50 参比气 流量 40 (mL/min)
30
氢气
氦气 氮气
20
10 0 压力 (psig) 10 (kPa) 69.0
20
30
40
50
60
137.9 206.8 275.8 344.7 413.7
20 18 16 14 尾吹气 12 流量 10 (mL/min)9 6 4
2 压力 (0psig)
图 80.
TCD 控制表
选择合适的气体
557
操作 TCD
热导检测器 TCD 的操作
操作步骤 有 EPC 的 TCD 的操作
此操作确保检测器的气路已连接 系统无漏气及柱已安装完好 在使用检测器 之前要设定柱箱温度 进样口温度和进样口 / 柱流量
1. 按 [Front Det] 或 [Back Det], 打开检测器控制表
出口 比例阀
压力 传感器
PS
压力 控制回路
限流器
PS
参比 切换阀 尾吹气流量
热导检测器 TCD 的气路
出口
图 77.
TCD 气路
检测器不能工作的状态
• 温度设定低于 150 • 热丝断开或短路 • 参比气流设定为 0
552
概述
热导检测器 热丝的钝化
热丝的钝化
为了防止氧气损害热丝 TCD 检测器的钨 铼热丝已经进行了化学钝化处理 可是 像酸和卤代化合物等化学活泼物质仍可以腐蚀热丝 直接的后果就是 由于热丝阻值的变化导致检测器灵敏度发生永久的变化
558
测试条件及色谱图
热导检测器 TCD 的测试条件
测试条件及色谱图
本节列出了一个测试样品色谱图的典型示例 它可以用作仪器性能的一般性指 南
欧能达横版新说明书
1
更多信息登陆:; ;
6、探伤数据的保存和探伤报告的打印-------------------------------------25-34
6-1 U 盘探伤文件的打开 6-2 如何修改或填写报告内容 6-3 仪器和计算机的通讯步骤 6-4 录像文件的打开 (部分仪器具有此功能,参考型号说明) 6-5 如何将修改之后的新的探伤报告格式上传到仪器
3、探伤菜单----------------------------------------------------------------------8-14
3-1 开机显示 3-2 探伤调节 3-3 DAC 曲线 3-4 AVG 曲线 3-5 功能参数 3-6 数据处理 3-7 系统调试
4、快速调试举例----------------------------------------------------------------15-18
4-1 纵波直探头调校 4-2 横波斜探头调校与应用 4-3 锻件探伤实际操作 4-4 钢板探伤应用 4-5 焊缝探伤实际操作
5、常见缺陷的波形特征-------------------------------------------------------19-24
版权所有:南通欧能达 TEL:400-1066-168;0513-68551166;83557376;值班手机: (0)13901480148
【电源】键/开机:
按住“电源”键一秒种后,仪器显示有关您单位和生产厂家以及该仪器的详细信息。 此时按超声探伤即进入探伤画面。 其余功能为针对特别用户使用,也许您无法使用。
软关机:
该仪器为高度数字集成化产品,所以建议您正常使用时用“软关机”来关闭仪器,这样可以确保您已保存 的参数在任何状态下都不会丢失。 “软关机”在“数据处理”菜单下选择“关闭电源”即可。
L6599D中文资料
L6599D中⽂资料May 2006 Rev 11/36L6599High-voltage resonant controllerFeatures■50% duty cycle, variable frequency control of resonant half-bridge ■High-accuracy oscillator■Up to 500kHz operating frequency■Two-level OCP: frequency-shift and latched shutdown■Interface with PFC controller ■Latched disable input■Burst-mode operation at light load ■Input for power-ON/OFF sequencing or brownout protection■Non-linear soft-start for monotonic output voltage rise■600V-rail compatible high-side gate driver with integrated bootstrap diode and high dV/dt immunity■-300/800mA high-side and low-side gate drivers with UVLO pull-down ■DIP-16, SO-16N packagesApplications■LCD & PDP TV■Desktop PC, entry-level server ■Telecom SMPS■AC-DC adapter, open frame SMPSOrder codePart number Package Packaging L6599D SO-16N T ube L6599TR SO-16N Tape and reelL6599NDIP-16T ube/doc/128b95b11a37f111f1855bea.htmlContents L6599Contents1Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Pin Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3Typical system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.1Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.2Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6Typical electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.1Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167.2Operation at no load or very light load . . . . . . . . . . . . . . . . . . . . . . . . . . . 187.3Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217.4Current sense, OCP and OLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237.5Latched shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277.6Line sensing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277.7Bootstrap section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297.8Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352/36L6599Device description3/361 Device descriptionThe L6599 is a double-ended controller specific for the resonant half-bridge topology. Itprovides 50% complementary duty cycle: the high-side switch and the low-side switch are driven ON 180° out-of-phase for exactly the same time.Output voltage regulation is obtained by modulating the operating frequency. A fixed dead-time inserted between the turn-OFF of one switch and the turn-ON of the other one guarantees soft-switching and enables high-frequency operation.To drive the high-side switch with the bootstrap approach, the IC incorporates a high-voltage floating structure able to withstand more than 600V with a synchronous-driven high-voltage DMOS that replaces the external fast-recovery bootstrap diode.The IC enables the designer to set the operating frequency range of the converter by means of an externally programmable oscillator.At start-up, to prevent uncontrolled inrush current, the switching frequency starts from a programmable maximum value and progressively decays until it reaches the steady-state value determined by the control loop. This frequency shift is non linear to minimize output voltage overshoots; its duration is programmable as well.The IC can be forced to enter a controlled burst-mode operation at light load, so as to keep converter's input consumption to a minimum.IC's functions include a not-latched active-low disable input with current hysteresis useful for power sequencing or for brownout protection, a current sense input for OCP with frequency shift and delayed shutdown with automatic restart.A higher level OCP latches off the IC if the first-level protection is not sufficient to control the primary current. Their combination offers complete protection against overload and short circuits. An additional latched disable input (DIS) allows easy implementation of OTP and/or OVP .An interface with the PFC controller is provided that enables to switch off the pre-regulator during fault conditions, such as OCP shutdown and DIS high, or during burst-mode operation.Pin Settings L65994/362 Pin Settings2.1 Connection2.2 FunctionsTable 1.Pin functionsN.NameFunction1C SSSoft start. This pin connects an external capacitor to GND and a resistor to RFmin (pin 4)that set both the maximum oscillator frequency and the time constant for the frequency shift that occurs as the chip starts up (soft-start). An internal switch discharges this capacitor every time the chip turns OFF (V CC < UVLO, LINE < 1.25V or > 6V , DIS > 1.85V , ISEN > 1.5V , DELAY > 3.5V) to make sure it will be soft-started next, and when the voltage on the current sense pin (ISEN) exceeds 0.8V , as long as it stays above 0.75V .2DELAYDelayed shutdown upon overcurrent. A capacitor and a resistor are connected from this pin to GND to set both the maximum duration of an overcurrent condition before the IC stops switching and the delay after which the IC restarts switching. Every time the voltage on the ISEN pin exceeds 0.8V the capacitor is charged by an internal 150µA current generator and is slowly discharged by the external resistor. If the voltage on the pin reaches 2V , the soft start capacitor is completely discharged so that the switching frequency is pushed to its maximum value and the 150µA is kept always on. As the voltage on the pin exceeds 3.5V the IC stops switching and the internal generator is turned OFF , so that the voltage on the pin will decay because of the external resistor. The IC will be soft-restarted as the voltage drops below 0.3V . In this way, under short circuit conditions, the converter will work intermittently with very low input average power.3CFTiming capacitor. A capacitor connected from this pin to GND is charged and discharged by internal current generators programmed by the external network connected to pin 4 (RFmin) and determines the switching frequency of the converter.L6599Pin Settings5/364RFminMinimum oscillator frequency setting. This pin provides a precise 2V reference and a resistor connected from this pin to GND defines a current that is used to set the minimum oscillator frequency. T o close the feedback loop that regulates the converter output voltage bymodulating the oscillator frequency, the phototransistor of an optocoupler will be connected to this pin through a resistor. The value of this resistor will set the maximum operatingfrequency. An R-C series connected from this pin to GND sets frequency shift at start-up to prevent excessive energy inrush (soft-start).5STBYBurst-mode operation threshold. The pin senses some voltage related to the feedbackcontrol, which is compared to an internal reference (1.25V). If the voltage on the pin is lower than the reference, the IC entersan idle state and its quiescent current is reduced. The chip restarts switching as the voltage exceeds the reference by 50mV . Soft-start is not invoked. This function realizes burst-mode operation when the load falls below a level that can be programmed by properly choosing the resistor connecting the optocoupler to pin RFmin (see block diagram). Tie the pin to RFmin if burst-mode is not used.6ISENCurrent sense input. The pin senses the primary current though a sense resistor or acapacitive divider for lossless sensing. This input is not intended for a cycle-by-cycle control; hence the voltage signal must be filtered to get average current information. As the voltage exceeds a 0.8V threshold (with 50mV hysteresis), the soft-start capacitor connected to pin 1 is internally discharged: the frequency increases hence limiting the power throughput. Under output short circuit, this normally results in a nearly constant peak primary current. This condition is allowed for a maximum time set at pin 2. If the current keeps on building up despite this frequency increase, a second comparator referenced at 1.5V latches the device off and brings its consumption almost to a “before start-up” level. The information is latched and it is necessary to recycle the supply voltage of the IC to enable it to restart: the latch is removed as the voltage on the Vcc pin goes below the UVLO threshold. Tie the pin to GND if the function is not used.7LINELine sensing input. The pin is to be connected to the high-voltage input bus with a resistor divider to perform either AC or DC (in systems with PFC) brownout protection. A voltage below 1.25V shuts down (not latched) the IC, lowers its consumption and discharges the soft-start capacitor. IC’s operation is re-enabled (soft-started) as the voltage exceeds 1.25V . The comparator is provided with current hysteresis: an internal 15µA current generator is ON as long as the voltage applied at the pin is below 1.25V and is OFF if this value is exceeded. Bypass the pin with a capacitor to GND to reduce noise pick-up. The voltage on the pin is top-limited by an internal zener. Activating the zener causes the IC to shut down (not latched). Bias the pin between 1.25 and 6V if the function is not used.8DISLatched device shutdown. Internally the pin connects a comparator that, when the voltage on the pin exceeds 1.85V , shuts the IC down and brings its consumption almost to a “before start-up” level. The information is latched and it is necessary to recycle the supply voltage of the IC to enable it to restart: the latch is removed as the voltage on the V CC pin goes below the UVLO threshold. Tie the pin to GND if the function is not used.9PFC_STOPOpen-drain ON/OFF control of PFC controller. This pin, normally open, is intended forstopping the PFC controller, for protection purpose or during burst-mode operation. It goes low when the IC is shut down by DIS > 1.85V , ISEN > 1.5V , LINE > 6V and STBY < 1.25V .The pin is pulled low also when the voltage on pin DELAY exceeds 2V and goes back open as the voltage falls below 0.3V . During UVLO, it is open. Leave the pin unconnected if not used.10GNDChip ground. Current return for both the low-side gate-drive current and the bias current of the IC. All of the ground connections of the bias components should be tied to a track going to this pin and kept separate from any pulsed current return.Table 1.Pin functionsTypical system block diagram L65996/363 Typical system block diagramTypical system block diagram11LVGLow-side gate-drive output. The driver is capable of 0.3A min. source and 0.8A min. sink peak current to drive the lower MOSFET of the half-bridge leg. The pin is actively pulled to GND during UVLO.12V CC Supply Voltage of both the signal part of the IC and the low-side gate driver. Sometimes a small bypass capacitor (0.1µF typ.) to GND might be useful to get a clean bias voltage for the signal part of the IC.13N.C.High-voltage spacer. The pin is not internally connected to isolate the high-voltage pin and ease compliance with safety regulations (creepage distance) on the PCB.14OUTHigh-side gate-drive floating ground. Current return for the high-side gate-drive current. Layout carefully the connection of this pin to avoid too large spikes below ground.15HVGHigh-side floating gate-drive output. The driver is capable of 0.3A min. source and 0.8A min. sink peak current to drive the upper MOSFET of the half-bridge leg. A resistor internally connected to pin 14 (OUT) ensures that the pin is not floating during UVLO.16VBOOTHigh-side gate-drive floating supply Voltage. The bootstrap capacitor connected between this pin and pin 14 (OUT) is fed by an internal synchronous bootstrap diode driven in-phase with the low-side gate-drive. This patented structure replaces the normally used external diode.Table 1.Pin functionsL6599Electrical data7/364 Electrical data4.1 Maximum ratingsNote:ESD immunity for pins 14, 15 and 16 is guaranteed up to 900V4.2 Thermal dataTable 2.Absolute maximum ratingsSymbol Pin ParameterValue Unit V BOOT 16 Floating supply voltage -1 to 618 V V OUT 14 Floating ground voltage -3 to V BOOT -18V dV OUT /dt 14 Floating ground max. slew rate 50V/nsV CC 12 IC Supply voltage (I CC ≤ 25 mA) Self-limited V V PFC_STOP 9 Maximum voltage (pin open) -0.3 to V CC V I PFC_STOP 9 Maximum sink current (pin low)AV LINEmax 7Maximum pin voltage (Ipin ≤ 1mA) Self-limited VI RFmin4 Maximum source current 2 mA 1 to 6, 8 Analog inputs & outputs-0.3 to 5VTable 3.Thermal dataSymbol DescriptionValue Unit R thJA Max. thermal resistance junction to ambient (DIP16)80°C/W Max. thermal resistance junction to ambient (SO16)120T STG Storage temperature range-55 to 150°C T J Junction operating temperature range-40 to 150°C P TOTRecommended max. power dissipation @T A = 70°C (DIP16) 1 WRecommended max. power dissipation @T A = 50°C (SO16)0.835 ElectricalcharacteristicsT J = 0 to 105°C, V CC = 15V, V BOOT = 15V, C HVG = C LVG = 1nF; C F = 470pF;R RFmin = 12k?; unless otherwise specified.Table 4.Electrical characteristicsSymbol Parameter TestconditionMin Typ Max Unit IC supply voltageV CC Operating range After device turn-on8.85 16 VV CC(ON)Turn-ON threshold Voltage rising10 10.7 11.4 VV CC(OFF)Turn-OFF threshold Voltagefalling 7.45 8.15 8.85 V Hys Hysteresis 2.55 VV Z V CC clamp voltage Iclamp = 10mA 16 17 17.9 V Supply currentI start-up Start-up current Before device turn-ONV CC = V CC(ON) - 0.2V200 250 µAI q Quiescent current Device ON, V STBY = 1V 1.5 2 mAI op Operating current Device ON,V STBY = V RFmin 3.5 5 mAI q Residual consumption V DIS> 1.85V or V DELAY> 3.5V or V LINE < 1.25 Vor V LINE = V clamp300 400 µAHigh-side floating gate-drive supplyI LKBOOT V BOOT pin leakagecurrentV BOOT= 580V 5 µAI LKOUT OUT pin leakage current VOUT= 562V 5 µAr DS(on)Synchronous bootstrapdiode ON-resistanceV LVG= High 150 ?Overcurrent comparatorI ISEN Input bias current V ISEN = 0 to V ISENdis-1 µAt LEB Leading edge blanking After V HVG and V LVGlow-to-high transition250 nsV ISENx Frequency shiftthreshold Voltage rising(1)0.76 0.8 0.84 VHysteresis Voltagefalling 50 mV V ISENdis Latch OFF threshold Voltage rising (1) 1.44 1.5 1.56 V td(H-L)Delay to output 300400 ns8/369/36Symbol Parameter Test condition Min Typ Max UnitLine sensing V th Threshold voltage Voltage rising or falling(1)1.2 1.25 1.3 V I Hyst Current hysteresis V CC > 5V , V LINE = 0.3V 12 15 18 µA V clamp Clamp levelI LINE = 1mA6 8 VDIS functionI DIS Input bias current V DIS = 0 to V th -1 µAV th Disable thresholdVoltage rising (1)1.77 1.85 1.93 VOscillatorDOutput duty cycleBoth HVG and LVG4850 52 %f oscOscillation frequency58.2 60 61.8kHzR RFmin = 2.7 k ?240 250 260Maximumrecommended500kHz T D Dead-time Between HVG and LVG0.20.3 0.4µs V CFp Peak value 3.9 V V CFv Valley value 0.9 VV REF Voltage reference at pin 4(1)1.92 22.08 VK M Current mirroring ratio 1A/A RF MINTiming resistor range1100k ?PFC_STOP functionI leak High level leakage currentV PFC_STOP = V CC ,V DIS = 0V 1 µAV LLow saturation levelI PFC_STOP =1mA,V DIS = 2V0.2 VSoft-start functionI leakOpen-state currentV(Css) = 2V0.5µA R Discharge resistance V ISEN > V ISENx 120Standby functionI DIS Input Bias Current V DIS = 0 to V th -1 µAV thDisable thresholdVoltage falling (1) 1.2 1.25 1.3 VHys HysteresisVoltage rising50mVTable 4.Electrical characteristics10/36Symbol Parameter Test condition Min TypMax UnitDelayed shutdown functionI leak Open-state current V(DELAY) = 0 0.5 µAI CHARGE Charge current V DELAY = 1V , V ISEN = 0.85V 100 150 200 µA Vth 1 Threshold for forcedoperation at max. frequencyVoltage rising (1)1.92 22.08 VVth 2Shutdown threshold Voltage rising (1) 3.3 3.5 3.7 V Vth 3Restart thresholdVoltage falling (1)0.25 0.3 0.35 VLow - side gate driver (voltages referred to GND)V LVGL Output low voltage I sink = 200mA 1.5 VV LVGH Output high voltage I source = 5mA12.8 13.3 V I sourcepk Peak source current -0.3 A I sinkpk Peak sink current 0.8A t f Fall time 30 ns t rRise time 60nsUVLO saturationV CC = 0 to V CC(ON),I sink = 2mA 1.1 VHigh-side gate driver (voltages referred to OUT)V HVGL Output low voltage I sink = 200 mA 1.5 V V HVGH Output high voltage I source = 5 mA12.8 13.3 V I sourcepk Peak source current -0.3 A I sinkpk Peak sink current 0.8A t f Fall time 30 ns t rRise time60 ns HVG-OUT pull-down25k ?1.Values traking each otherTable 4.Electrical characteristics11/366 Typical electrical performanceFigure 3.Device consumption vssupply voltageFigure 4.IC consumption vs junction temperatureV CC clamp voltage vs junction temperatureFigure 6.UVLO thresholds vs junction temperature12/36Figure 7.Oscillator frequency vsjunction temperature Figure 8.Dead-time vsjunction temperatureFigure 9.Oscillator frequency vstiming components Figure 10.Oscillator ramp vs junction temperature13/36Figure 11.Reference voltage vsjunction temperatureFigure 12.Current mirroring ratio vsjunction temperatureFigure 13.OCP delay source current vsjunction temperature Figure 14.OCP delay thresholds vs junction temperatureFigure 15.Standby thresholds vsjunction temperatureFigure 16.Current sense thresholds vsjunction temperatureFigure 17.Line thresholds vsjunction temperatureFigure 18.Line source current vsjunction temperatureFigure /doc/128b95b11a37f111f1855bea.html tched disable threshold vs junction temperature7 ApplicationinformationThe L6599 is an advanced double-ended controller specific for resonant half-bridge topology. In these converters the switches (MOSFETs) of the half-bridge leg are alternately switched on and OFF (180° out-of-phase) for exactly the same time. This is commonly referred to as operation at "50% duty cycle", although the real duty cycle, that is the ratio of the ON-time of either switch to the switching period, is actually less than 50%. The reason is that there is an internally fixed dead-time T D, inserted between the turn-OFF of either MOSFET and the turn-ON of the other one, where both MOSFETs are OFF. This dead- time is essential in order for the converter to work correctly: it will ensure soft-switching and enable high-frequency operation with high efficiency and low EMI emissions.To perform converter's output voltage regulation the device is able to operate in different modes (Figure20), depending on the load conditions:1.Variable frequency at heavy and medium/light load. A relaxation oscillator (see "Oscillator" section for more details) generates a symmetrical triangular waveform,which MOSFETs' switching is locked to. The frequency of this waveform is related to a current that will be modulated by the feedback circuitry. As a result, the tank circuitdriven by the half-bridge will be stimulated at a frequency dictated by the feedback loopto keep the output voltage regulated, thus exploiting its frequency-dependent transfer characteristics.2. Burst-mode control with no or very light load. When the load falls below a value, the converter will enter a controlled intermittent operation, where a series of a fewswitching cycles at a nearly fixed frequency are spaced out by long idle periods whereboth MOSFETs are in OFF-state. A further load decrease will be translated into longeridle periods and then in a reduction of the average switching frequency. When theconverter is completely unloaded, the average switching frequency can go down evento few hundred Hz, thus minimizing magnetizing current losses as well as all frequency-related losses and making it easier to comply with energy saving recommendations.Figure 20.Multi-mode operation15/3616/367.1 OscillatorThe oscillator is programmed externally by means of a capacitor (CF), connected from pin 3 (CF) to ground, that will be alternately charged and discharged by the current defined with the network connected to pin 4 (RF min ). The pin provides an accurate 2V reference with about 2mA source capability and the higher the current sourced by the pin is, the higher the oscillator frequency will be. The block diagram of Figure 21 shows a simplified internal circuit that explains the operation. The network that loads the RFmin pin generally comprises three branches:1. A resistor RF min connected between the pin and ground that determines the minimum operating frequency;2.A resistor RF max connected between the pin and the collector of the (emitter-grounded) phototransistor that transfers the feedback signal from the secondary side back to the primary side; while in operation, the phototransistor will modulate the current through this branch - hence modulating the oscillator frequency - to perform output voltage regulation; the value of RF max determines the maximum frequency the half-bridge will be operated at when the phototransistor is fully saturated;3.An R-C series circuit (C SS + R SS ) connected between the pin and ground that enables to set up a frequency shift at start-up (see Chapter 7.3: Soft-start ). Note that the contribution of this branch is zero during steady-state operation.The following approximate relationships hold for the minimum and the maximum oscillatorfrequency respectively:f min 13CF RF min------------------------------------------=f max 13CF RF min RF max ||()--------------------------------------------------------------------------=17/36After fixing CF in the hundred pF or in the nF (consistently with the maximum sourcecapability of the RF min pin and trading this off against the total consumption of the device), the value of RF min and RF max will be selected so that the oscillator frequency is able to cover the entire range needed for regulation, from the minimum value f min (at minimum input voltage and maximum load) to the maximum value f max (at maximum input voltage and minimum load):A different selection criterion will be given for RF max in case burst-mode operation at no-load will be used (see "Operation at no load or very light load" section).In Figure 22 the timing relationship between the oscillator waveform and the gate-drive signals, as well as the swinging node of the half-bridge leg (HB) is shown. Note that the low-side gate-drive is turned on while the oscillator's triangle is ramping upand the high-side gate-drive is turned on while the triangle is ramping down. In this way, at start-up, or as the IC resumes switching during burst-mode operation, the low-side MOSFET will be switched on first to charge the bootstrap capacitor. As a result, the bootstrap capacitor will always be charged and ready to supply the high-side floating driver.RF min 13CF f min-----------------------------------=RF max RF minf maxf min----------1–--------------------=7.2 Operation at no load or very light loadWhen the resonant half-bridge is lightly loaded or unloaded at all, its switching frequency willbe at its maximum value. T o keep the output voltage under control in these conditions and toavoid losing soft-switching, there must be some significant residual current flowing throughthe transformer's magnetizing inductance. This current, however, produces someassociated losses that prevent converter's no-load consumption from achieving very lowvalues.To overcome this issue, the L6599 enables the designer to make the converter operateintermittently (burst-mode operation), with a series of a few switching cycles spaced out bylong idle periods where both MOSFETs are in OFF-state, so that the average switchingfrequency can be substantially reduced. As a result, the average value of the residualmagnetizing current and the associated losses will be considerably cut down, thusfacilitating the converter to comply with energy saving recommendations.The device can be operated in burst-mode by using pin 5 (STBY): if the voltage applied tothis pin falls below 1.25V the IC will enter an idle state where both gate-drive outputs arelow, the oscillator is stopped, the soft-start capacitor C SS keeps its charge and only the 2Vreference at RF min pin stays alive to minimize IC's consumption and V CC capacitor'sdischarge. The IC will resume normal operation as the voltage on the pin exceeds 1.25V by50mV.To implement burst-mode operation the voltage applied to the STBY pin needs to be relatedto the feedback loop. Figure23 shows the simplest implementation, suitable with a narrowinput voltage range (e.g. when there is a PFC front-end).18/3619/36Essentially, RF max will define the switching frequency f max above which the L6599 will enter burst-mode operation. Once fixed f max , RF max will be found from the relationship:Note that, unlike the f max considered in the previous section ("Chapter 7.1: Oscillator "), here f max is associated to some load Pout B greater than the minimum one. Pout B will be such that the transformer's peak currents are low enough not to cause audible noise.Resonant converter's switching frequency, however, depends also on the input voltage; hence, in case there is quite a large input voltage range with the circuit of Figure 23 the value of Pout B would change considerably. In this case it is recommended to use thearrangement shown in Figure 24 where the information on the converter's input voltage is added to the voltage applied to the STBY pin. Due to the strongly non-linear relationship between switching frequency and input voltage, it is more practical to find empirically the right amount of correction R A / (R A + R B ) needed to minimize the change of Pout B . Just be careful in choosing the total value R A + R B much greater than R C to minimize the effect on the LINE pin voltage (see Chapter 7.6: Line sensing function ).Whichever circuit is in use, its operation can be described as follows. As the load falls below the value Pout B the frequency will try to exceed the maximum programmed value f max and the voltage on the STBY pin (V STBY ) will go below 1.25V . The IC will then stop with both gate-drive outputs low, so that both MOSFETs of the half-bridge leg are in OFF-state. The voltage V STBY will now increase as a result of the feedback reaction to the energy delivery stop and, as it exceeds 1.3V, the IC will restart switching. After a while, V STBY will go down again in response to the energy burst and stop the IC. In this way the converter will work in a burst-mode fashion with a nearly constant switching frequency. A further load decrease will then cause a frequency reduction, which can go down even to few hundred hertz. The timing diagram of Figure 25 illustrates this kind of operation, showing the most significant signals. A small capacitor (typically in the hundred pF) from the STBY pin to ground, placed as close to the IC as possible to reduce switching noise pick-up, will help get clean operation. To help the designer meet energy saving requirements even in power-factor-correctedsystems, where a PFC pre-regulator precedes the DC-DC converter, the device allows that the PFC pre-regulator can be turned off during burst-mode operation, hence eliminating the no-load consumption of this stage (0.5 ÷ 1W). There is no compliance issue in that because EMC regulations on low-frequency harmonic emissions refer to nominal load, no limit is envisaged when the converter operates with light or no load.To do so, the device provides pin 9 (PFC_STOP): it is an open collector output, normally open, that is asserted low when the IC is idle during burst-mode operation. This signal will be externally used for switching off the PFC controller and the pre-regulator as shown in Figure 26 When the L6599 is in UVLO the pin is kept open, to let the PFC controller start first.RF max 38--RF min f maxf min----------1–--------------------?=。
D2型气体涡轮流量计使用说明书
本公司将对气体涡轮流量计产品不断进行研究与改进,本使用说明书的内容有时可能与 用户所购产品和细节有所不同,用户对所购产品或使用说明书的内容如有疑问,敬请向本公 司垂询。 警告 为了您的安全,请在使用仪表前认真阅读以下安全警告。 1.流体不会腐蚀仪表表体和接气部件材质。 2.当测量易燃气体,注意防范火灾或爆炸。 3.处理有害气体时,须遵循生产厂商的安全操作规范。 4.在危险的环境中工作时,须遵循正确操作步骤。 5.不要用压缩空气吹扫涡轮流量计。 6.注意流量计内部的涡轮叶片,即使是很小的划痕或缺口都会影响精度。 7.为了达到最佳效果,仪表校准周期最长不超过 1 年。
2Leabharlann 目录一、 概述.....................................................................................................................................1 1.1 应用场合..............................................................................................................................1 1.2 工作原理..............................................................................................................................1 1.3 产品结构..............................................................................................................................1
中文版MP2905
TA=85 C o TA=25 C
o
42.5 60
57.5 100
Ω Ω ns ns ns ns
oC
说明: 5) 当输入供给电压小于 5V 时,电路能保持工作但效率较低 6) 由设计保证
MP2905 Rev. 1.0 9/18/2015
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2015. All Rights Reserved.
特性
3V-28V 宽广的操作输入范围 输出电压可在 0.6V-0.9*Vin 可调 开关频率在 200kHz-500kHz 可编程软启动 打嗝模式限流 无损峰值电流传感 MSOP-10 封装 主板电源供应 AGP 和 PCI-Express 电源供应 Graphic-Card 电源供应 机顶盒 负载点电源供应
1
FB
2
SS
6
BST
7 8 9
SW HG IN
10
ILIM
MP2905 Rev. 1.0 9/18/2015
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2015. All Rights Reserved.
1
MP2905- 3V to 28V INPUT, HYSTERETIC SYNCHRONOUS STEP-DOWN CONTROLLER
订购须知
零件号码* MP2905EK 封装 MSOP10 上部标记 2905E 温度 –40C to +85C
热导检测器(TCD)
热导检测器(TCD)一.概述0.TCD是第一个用于气相色谱仪的检测器,在没有用于气相色谱分析之前称卡它计。
0.随着气相色谱分析技术的发展,后来又出现了许多灵敏度高,选择性强的检测器,虽然在很多方面胜过TCD,可是并不能取代TCD。
0.在长期实践中,人们不断改造完善它,特别是通过选用新热丝材料、减少了池容积、改进气路形式、提高控温精度,采用新的桥路供电和加前置放大电路等,使现代的TCD已非昔日可比。
1.TCD和其它检测器相比,具有结构简单,对所有物质都有信号,性能稳定可靠、定量准确、不破坏样品和最小检测浓度可达0.1×10-6ml/ml,目前已能和大口径毛细管分析相配用等,在气相色谱仪配置中仅次于FID。
0.目前商品GC配备的TCD,有常规TCD和单臂热丝调制TCD,前者占了绝大部分。
2.配置单臂热丝调制TCD目前仅有安捷伦公司。
其简单的工作原理是单热丝为电桥的一个臂,组成恒热丝温度检测电路,它用时域差,从一个臂热丝上分别获得测量和参考信号,采集速率为80 H Z,最后用电子器件将这种脉冲式的色谱信号解调为一般的色谱信号峰,再作数据处理。
二.TCD工作原理气体具有热传导作用,而不同的物质有不同的热传导系数。
热导检测器就是根据不同物质热传导系数的差别而设计的。
但是要直接测量这种绝对值的差异是非常困难的,一般都采用间接测量法即热导池电桥法。
根据热学和电学原理以及实验验证,单臂热导池的桥路输出信号E0服从下列关系:In(r0/r f) ɑER0I2 1 1E0=[-------------]·[------------]·[X S(------- - -----------)]2πL 4J λSλq式中:r0——池孔内经r f——热丝直径L——热丝长度R0——在0℃时,热丝元件的电阻值J——热的功当量E——加在电桥上的电压I——通过热丝的电流α——热丝的电阻温度系数X s ———组分在载气中的克分子数λs——组分的热导率λg——载气的热导率从式中清楚地看出,影响输出信号的各参数可归纳为三部分:第一池槽结构——几何因子;第二电路参数——电学因子;第三热量参数——热传导性因子;要提高TCD的灵敏度,即增大E0,可有以下途径:2.从几何因子分析采用细的金属热丝做热丝元件、增大池孔内经和缩短热丝长度。
TCD2901D
TOSHIBA CCD IMAGE SENSOR CCD (Charge Coupled Device)TCD2901DThe TCD2901D is a high sensitive and low dark current 10550 elements×3 line CCD color image sensor which includes CCD drive circuit and clamp circuit. The sensor is designed for scanner.The device contains a row of 10550 elements×3 line photodiodes which provide a 48 lines / mm (1200DPI) across a A4 size paper. The device is operated by 5 V pulse, and 12 V power supply.FEATURESl Number of Image Sensing Elements: 10550 elements×3 line l Image Sensing Element Size: 4µm by 4µm on 4µm centers l Photo Sensing Region: High sensitive and low dark current PN photodiode l Distance Between Photodiode Array : 48µm (12 lines) l Clock : 2 phase (5 V)l Power Supply : 12 V Power Supply Voltage l Internal Circuit : Clamp circuitl Package : 22 pin CERDIP package l Color Filter : Red, Green, BlueMAXIMUM RATINGS (Note 1)UNITNote 1: All voltage are with respect to SS terminals (Ground).Weight: 5.2g (Typ.)(TOP VIEW)PIN CONNECTION· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in generalcan malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..· The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk.000707EBA2CIRCUIT DIAGRAMPIN NAMES· The products described in this document are subject to the foreign exchange and foreign trade laws.· The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.· The information contained herein is subject to change without notice.000707EBA2OPTICAL / ELECTRICAL CHARACTERISTICS(Ta = 25°C, V OD = 12 V, V φ = V SH = V RS = V CP = 5 V (PULSE), f φ = 0.5MHz, f RS = 1 MHz, t INT = 11 ms, LIGHT SOURCE = A LIGHT SOURCE+CM500S FILTER (t = 1 mm), LOAD RESISTANCE = 100 k Ω)CHARACTERISTIC SYMBOL MIN TYP. MAX UNIT NOTERed R (R)1.72.53.3 Green R (G) 1.6 2.4 3.2 SensitivityBlue R (B)0.9 1.4 1.9V / (lx·s)(Note 2)PRNU (1) ― 15 20 % (Note 3)Photo Response Non Uniformity PRNU (3)― 3 12 mV (Note 4)Register Imbalance RI― 1 ―% (Note 5)Saturation Output Voltage V SAT 2.9 3.5 ― V (Note 6)Saturation Exposure SE 0.911.46― lx·s (Note 7)Dark Signal Voltage V DRK ― 0.5 2.0 mV (Note 8)Dark Signal Non Uniformity DSNU ― 2.0 7.0 mV (Note 8)DC Power Dissipation P D ― 260 450 mW Total Transfer Efficiency TTE 92 98―%Output ImpedanceZ O ―0.3 1.0 k ΩDC Compensation Output Voltage V OS 4.0 5.0 6.0 V (Note 9)Random Noise N D I ― 0.8 ― mV (Note 10)Reset Noise V RSN ― 0.3 1.0 V (Note 9)Masking NoiseV MS―0.2 1.0 V (Note 9)Note 2: Sensitivity is defined for each color of signal outputs average when the photosensitive surface is applied withthe light of uniform illumination and uniform color temperature. Note 3: PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitivesurface is applied with the light of uniform illumination and uniform color temperature.%100)1(PRNU ´c D =Where ?is average of total signal output and ?,is the maximum deviation from ?. The amount of incidentlight is shown below. Red = 1 / 2 · SE Green = 1 / 2 · SE Bule = 1 / 4 · SENote 4: PRNU (3) is defined as maximum voltage with next pixels, where measured at 5 of SE (Typ.). Note 5: Register imbalance is defined as follows.%10010549105491n 1n n RI **å=+c -c =Note 6: V SAT is defined as minimum saturation output of all effective pixels. Note 7: Definition of SEs ·lx GR SAT VSE =Note 8: V DRK is defined as average dark signal voltage of all effective pixels.DSNU is defined as different voltage between V DRK and V MDK when V MDK is maximum dark signal voltage.Note 9: DC signal output voltage is defined as follows.Reset Noise Voltage is defined as follows.Note 10: Random noise is defined as the standard deviation (sigma) of the output level difference between twoadjacent effective pixels under no illumination (i.e. dark conditions) calculated by the following procedure.1) Two adjacent pixels (pixel n and n+1) in one reading are fixed as measurement points.2) Each of the output level at video output periods averaged over 200ns period to get V (n) and V (n+1). 3) V (n+1) is subtracted from V (n) to get ∆V.∆V = V (n)−V (n+1)4) The standard deviation of ∆V is calculated after procedure 2) and 3) are repeated 30 times (30 readings).å=D -D =s å=D =D 301i 2V Vi 301301i Vi 301V5) Procedure 2), 3) and 4) are repeated 10 times to get sigma value. 6) 10 sigma values are averaged.å=s =s 301j j 1017) I value calculated using the above procedure is observed 2times larger than that measured relativeto the ground level. So we specify random noise as follows.s =s 21NDOPERATING CONDITIONNote 11: VφA “H” means the high level voltage of VφA when SH pulse is high level. CLOCK CHARACTERISTICS (Ta = 25°C)Note 12: V OD = 12 VT I M I N G C H A R TTIMING REQUIREMENTSTIMING REQUIREMENTS (Cont’d)Note 13: TYP. is the case of f RS=1.0 MHz.Note 14: Load resistance is 100 kΩ.Note 15: In line clamp operation, t9 is 70 ns (MIN.).TYPICAL SPECTRAL RESPONSETYPICAL DRIVE CIRCUITCAUTION1. Window GlassThe dust and stain on the glass window of the package degrade optical performance of CCD sensor.Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N2.Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.2. Electrostatic BreakdownStore in shorting clip or in conductive foam to avoid electrostatic breakdown.3. Incident LightCCD sensor is sensitive to infrared light.Note that infrared light component degrades resolution and PRNU of CCD sensor.4. Lead Frame FormingSince this package is not strong against mechanical stress, you should not reform the lead frame.We recommend to use a IC−inserter when you assemble to PCB.PACKAGE DIMENSIONSNote 1: TOP OF CHIP TO BOTTOM OF PACKAGENote 2: GLASS THICKNESS (n = 1.5)Note 3: No.1 SENSOR ELEMENT (S1) TO CENTER OF No.1 PIN. Weight: 5.2g (Typ.)。
D2088资料
P R O D U C T
D A T A S H E E T
4VA LOW PROFILE ENCAPSULATED TRANSFORMER
Independantly Approved to EN60950 UL506 cUL506 & CSA 22.2 CE Marked Dual 115V Primaries Comprehensive choice of secondary voltages 5KV Isolation between primary and secondary windings. UL94-V0 Vacuum Encapsulated Construction Suitable for flow soldering Identical footprint from 2VA to 9VA
6V 0.66A
6V 0v 6v 0.33A
6V 0.33A
6V 0.33A
Connection Diagrams for D2088 - 115V supply 115V
Pri Sec Pri Sec Pri Sec
115V
Pri Sec Pri Sec
115V
Pri Sec Pri Sec
115V
Pri Sec
12V 0.33A
6V 0.66A
6V 0v 6v 0.33A
6V 0.33A
6V 0.33A
THIS DOCUMENT IS THE PROPERTY OF DAGNALL ELECTRONICS LIMITED WHICH HOLDS THE COPYRIGHT IN THE DRAWING AND ALL THE DESIGN RIGHTS IN THE PRODUCT OR COMPONENTS DESCRIBED. ANY INFORMATION SHALL NOT BE COPIED, REPRODUCED OR DIVULGED TO A THIRD PARTY NOR SHALL THE PRODUCT OR COMPONENTS BE MADE, COPIED OR REPRODUCED OR ITS EXISTENCE DISCLOSED TO A THIRD PARTY WITHOUT THE PRIOR CONSENT IN WRITING OF DAGNALL ELECTRONICS LIMITED. IN THE INTEREST OF TECHNICAL IMPROVEMENTS AND/OR CUSTOMER SERVICE DAGNALL ELECTRONICS RESERVES THE RIGHT TO INTRODUCE MODIFIED SPECIFICATIONS TO ANY OF THE PRODUCTS ILLUSTRATED OR DESCRIBED IN THIS DATASHEET. E&OE.
TCD1209D_中文说明书
东芝 CCD 线性图像传感器 CCD (电荷耦合器件)TCD1 2 0 9 DTCD1 2 0 9 D 是一种高速,低暗电流,2 0 4 8 像元的 CCD 图象传感器。
传感器可用于传真,图象扫描和 OCR 。
该器件包含一列 2 0 4 8 像元光电二极管,当扫描一张 B4 图纸时可达到 8 线/毫米(2 0 0 DPI )的精度。
该设 备使用 5 V (脉冲),1 2 V 电源。
特性:·像敏单元数目:2 0 4 8 像元·像敏单元大小:1 4 µm ×1 4 µm ,中心距为 1 4 µm·光敏区域:采用高灵敏度和低电压的暗信号 PN 光电二极管 ·时钟:二相(5 V ) ·封装:采用 2 2 脚 DIP 封装 电路图: 最大额定值:(①)管脚连接图示特性描述 符 号 数 值单 位时钟脉冲电压 Vφ- 0 .3 ~8V转移脉冲电压 VS H 复位脉冲电压 VRS 钳位脉冲电压 VCP 电源电压 Ts tg − 0 .3 ~ 1 5°C工作温度Ts tg− 2 5 ~ 6 0贮藏温度Ts tg− 4 0 ~ 1 0 0①:所有电压是以 S S 终端(地)为参考的。
·东芝公司长期致力于改善其产品的质量和可靠性。
但是,一般的半导体器件所 固有的电子敏感及物理损坏特性可能会造成器件产生故障。
因此,消费者有责任 依照安全标准使用东芝公司的产品,并且避免由于东芝公司产品的故障所造成的 人身伤害或财产损失。
·您在设计开发时,请确保东芝产品的使用范围参考东芝最新产品的规格。
另外, 也请注意记录在“处理半导体器件指南”或“东芝半导体可靠性手册”中的注意 事项和规定条件等内容。
·在这个文件中列出的东芝产品适用于一般的电子应用产品(计算机,个人设备,办公设备,测量设备,工业机器人,家用电器等)。
超声经颅多普勒血流分析仪产品技术要求悦奇
超声经颅多普勒血流分析仪适用范围:适用于成人颅内、颈部血管血流测量。
1.1 型号表1 各型号功能差异1.2 产品组成本产品由主机、电源适配器、探头、软件光盘和监护头架(选配)组成。
1.3 软件信息a) 名称:TCD-2000A彩色经颅多普勒诊断系统软件TCD-2000B彩色经颅多普勒诊断系统软件TCD-2000C彩色经颅多普勒诊断系统软件TCD-2000D彩色经颅多普勒诊断系统软件TCD-2000E彩色经颅多普勒诊断系统软件TCD-2000F彩色经颅多普勒诊断系统软件TCD-2000H彩色经颅多普勒诊断系统软件TCD-2000M彩色经颅多普勒诊断系统软件TCD-2000P彩色经颅多普勒诊断系统软件TCD-2000S彩色经颅多普勒诊断系统软件TCD-2000T彩色经颅多普勒诊断系统软件;b) 版本号:V1.1;c) 日期:2016-02-17。
2.1超声工作频率a)脉冲波(PW)工作频率:标称频率见表2,超声工作频率偏差不大于±10%。
b)连续波(CW)工作频率:标称频率见表3,超声工作频率偏差不大于±10%。
2.2流速测量范围及误差2.2.1流速测量范围a)脉冲波(PW)模式:当超声工作频率为1.0MHz时,50mm深度时,6mm取样容积,流速测量范围不窄于20cm/s~1000cm/s。
当超声工作频率为1.6MHz时,50mm深度时,6mm取样容积,流速测量范围不窄于20cm/s~625cm/s。
当超声工作频率为2.0MHz时,50mm深度时,6mm取样容积,流速测量范围不窄于20cm/s~500cm/s。
b)连续波(CW)模式:当超声工作频率为4.0MHz时,流速测量范围不窄于10cm/s~400cm/s。
当超声工作频率为8.0MHz时,流速测量范围不窄于10cm/s~400cm/s。
2.2.2流速测量误差a)脉冲波(PW)模式,当超声工作频率为1.0MHz(KP010LN、KP010MN)、1.6MHz(KP016LN、KP016MN)、2.0MHz(KP020LN、KP020MN、KP020LL、KP020LR、KP020ML、KP020MR)时,误差不得超过±20%。
全部最新电梯故障代码
文档
B2
A1
3/79
Rank 别 E E E A2 A2 A2 A2 A2 B1 A2 B2 C1 C1 A2
Hold
○ ○ ○ ○ ○ ○ ○
E E
C2 C2 E C2 E
A1 A1
实用标准文案
内容表示 50B ON 故障 10T ON 故障 15B ON 故障 SDC 运转异常 从 MICON 当机 SDA 当机 主从并列通信异常 SDA, SDC 串行通信异常 50BC 故障或 E.Stop 开开被切掉 99G 故障 双重入力 BUFFER 故障 过电流检出(IPM FAULT) 过电压检出 SDC 保守开关异常 从 MICON DRAM ERROR 从 MICON EEPROM ERROR DSP SUM ERROR 多发故障检出 P15V 电压异常 主 MICON EEPROM ERROR 主 MICON NVSRAM ERROR DSP DRAM ERROR 抑制回路异常检出 BDCC 电压异常 不足电压检出 40G, 40D ON 故障
复归方式 故障排除,FFB 切 OFF-ON 后,操作 MODE 2 清除 TCD,方能恢复运转。
文档
实用标准文案
调查项目: 1.入力Buffer有无ON故障Check:
主MX50B($CA01)、从SX50B($CD21)其Data是否随着50B Relay之ON-OFF同步动作。 ※MX50B($CA01)、SX50B($CD21)皆操作 MODE 22 观察。 2.50B Relay的LED Check: (1)50B Relay ON 时,50B LED亮。 (2)50B Relay OFF 时,50B LED灭。 3.50B Relay状态Check: 50B Relay卡住,接点曲折、熔着,配线短路等确认。 4.SMPU PCB与FIOR PCB之间排线;MUD及FOD Connect有无接触不良Check。 5.SFIOR PCB更换 第1项或第2项有状况,而第4项良好时,表示SFIOR出力Buffer不良,更换SFIOR PCB。 6.SMPU PCB 更换 更换 SFIOR PCB 后,仍有异常发生,表示 SMPU PCB 不良,更换 SMPU PCB。
2EZ7.5D5中文资料
VZ
@
IZT
ZZT @ IZT
ZZK
@
IZK
IR
@
VR
IZM
IZSM
VOLTS mA OHMS OHMS mA VOLTS mA A μA 4.6 504 1.0 80 1.0 400 5.0 139 3.6 2EZ3.6D5 4.4 468 1.0 30 1.0 400 5.0 128 3.9 2EZ3.9D5 4.1 434 1.0 20 1.0 400 4.5 116 4.3 2EZ4.3D5 3.3 386 1.0 5.0 1.0 550 4.5 106 4.7 2EZ4.7D5 3.5 356 1.0 5.0 1.0 600 3.5 98 5.1 2EZ5.1D5 3.3 324 2.0 5.0 1.0 500 2.5 89.5 5.6 2EZ5.6D5 3.1 292 3.0 5.0 1.0 700 1.5 80.5 6.2 2EZ6.2D5 2.9 266 4.0 5.0 1.0 700 2.0 73.5 6.8 2EZ6.8D5 2.66 242 5.0 5.0 0.5 700 2.0 66.5 7.5 2EZ7.5D5 2.44 220 6.0 5.0 0.5 700 2.3 61 8.2 2EZ8.2D5 2.2 200 7.0 3.0 0.5 700 2.5 55 9.1 2EZ9.1D5 2.0 182 7.6 3.0 0.25 700 3.5 50 10 2EZ10D5 1.82 166 8.4 1.0 0.25 700 4.0 45.5 11 2EZ11D5 1.66 152 9.1 1.0 0.25 700 4.5 41.5 12 2EZ12D5 1.54 138 9.9 0.5 0.25 700 5.0 38.5 13 2EZ13D5 1.43 130 10.6 0.5 0.25 700 5.5 35.7 14 2EZ14D5 1.33 122 11.4 0.5 0.25 700 7.0 33.4 15 2EZ15D5 1.25 114 12.2 0.5 0.25 700 8.0 31.2 16 2EZ16D5 1.18 107 13.0 0.5 0.25 750 9.0 29.4 17 2EZ17D5 1.11 100 13.7 0.5 0.25 750 10 27.8 18 2EZ18D5 1.05 95 14.4 0.5 0.25 750 11 26.3 19 2EZ19D5 1.0 90 15.2 0.5 0.25 750 11 25 20 2EZ20D5 0.91 82 16.7 0.5 0.25 750 12 22.8 22 2EZ22D5 0.83 76 18.2 0.5 0.25 750 13 20.8 24 2EZ24D5 0.74 68 20.6 0.5 0.25 750 18 18.5 27 2EZ27D5 0.67 60 22.5 0.5 0.25 1000 20 16.6 30 2EZ30D5 0.61 55 25.1 0.5 0.25 1000 23 15.1 33 2EZ33D5 0.56 50 27.4 0.5 0.25 1000 25 13.9 36 2EZ36D5 0.51 47 29.7 0.5 0.25 1000 30 12.8 39 2EZ39D5 0.45 43 32.7 0.5 0.25 1500 35 11.6 43 2EZ43D5 0.42 39 35.8 0.5 0.25 1500 40 10.6 47 2EZ47D5 0.39 36 38.8 0.5 0.25 1500 48 9.8 51 2EZ51D5 0.36 32 42.6 0.5 0.25 2000 55 9.0 56 2EZ56D5 0.32 29 47.1 0.5 0.25 2000 60 8.1 62 2EZ62D5 0.29 27 51.7 0.5 0.25 2000 75 7.4 68 2EZ68D5 0.27 24 56 0.5 0.25 2000 90 6.7 75 2EZ75D5 0.24 22 62.2 0.5 0.25 3000 100 6.1 82 2EZ82D5 0.22 20 69.2 0.5 0.25 3000 125 5.5 91 2EZ91D5 0.20 18 76.0 0.5 0.25 3000 175 5.0 100 2EZ100D5 0.18 17 83.6 0.5 0.25 4000 250 4.5 110 2EZ110D5 0.16 15 91.2 0.5 0.25 4500 325 4.2 120 2EZ120D5 0.15 14 98.8 0.5 0.25 5000 400 3.8 130 2EZ130D5 0.14 13 106.4 0.5 0.25 5500 500 3.6 140 2EZ140D5 0.13 12 114 0.5 0.25 6000 575 3.3 150 2EZ150D5 0.12 11 121.6 0.5 0.25 6500 650 3.1 160 2EZ160D5 0.12 11 130.4 0.5 0.25 7000 675 2.9 170 2EZ170D5 0.11 10 136.8 0.5 0.25 7000 725 2.8 180 2EZ180D5 0.10 10 144.8 0.5 0.25 8000 825 2.6 190 2EZ190D5 0.10 9 152 0.5 0.25 8000 900 2.5 200 2EZ200D5 NOTES: 1. Suffix 1 indicates +/-1% tolerance, suffix 2 indicates +/-2% tolerance, suffix 5 indicates +/-5% tolerance. Suffix 10 indicates +/-10%, no suffix indicates +/-20%. 2. The VZ is measured after allowing a 90 second stabilization period when mounted with a 3/8” minimum lead length from body. o o o Ambient temperature, TA = 25 C (+8 C/-2 C). 3. The Zener impedance is derived from 60 cycle ac voltage resulting from an ac current having an rms value equal to 10% of the dc Zener current (IZT or IZK ) is superimposed on IZT or IZK. 4. Maximum Surge Current IZSM is a non-recurrent maximum peak reverse surge with a pulse width of 8.3 ms. Copyright © 2008 11-06-2008 REV C
热导检测器(TCD)原理及操作注意事项
【资料】—热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD )是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或 Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
图3-?」TCD工件原譚便]j多右池曲二at样肚3 测址池腔当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E 流出之电流I在A点分成二路i1、i2至B点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温 Tf,池体处于一定的池温 Tw。
一般要求Tf与Tw差应大于100 C以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3= R2?R4,或写成R1/R4 = R2/R3 。
M、N二点电位相等,土£电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为 0.1〜1.0mm 的小珠,密圭寸在玻壳内。
TCD1304AP中文数据手册
移位脉冲电容 CSH―600―PF ICG 脉冲电容机构客户部―250―PF 时钟的特点(TA = 25°C)(4.0V > VAD = VDD≥3.0V) 特征符号分型。最大单位 主时钟频率 fφM 0.8 2 2.4 兆 数据速率 fdata 0.2 0.5 0.6 兆赫 TCD1304AP 6 2001-10-15 时序图 TCD1304AP−6 TCD1304AP 7 2001-10-15 TCD1304AP−7 时序图(使用电子快门功能) TCD1304AP 8 2001-10-15 时间要求 特征符号分型。最大单位 ICG 脉冲延迟 T1 1000 5000―NS ICG 脉冲定时和 S H T2 100 500 1000 ns SH 脉冲宽度 1000 ns――T3 ICG 和 φM T4 0 20×ns 脉冲定时 *:你 φ 米“高水平” 注意:如果你使用电子快门功能。色彩(分钟)= 10μ TCD1304AP 9 2001-10-15 使用电子快门 SH 和 ICG 脉冲定时 SH 周期=色彩 色彩(分钟)= 10μ 你总是相同的 SH 脉冲宽度(T3)。 TCD1304AP 10 2001-10-15 典型的性能曲线 TCD1304AP 11 2001-10-15 典型的性能曲线 TCD1304AP 12 2001-10-15 典型的驱动电路 TCD1304AP 13 2001-10-15 注意安全 1。窗玻璃
TCD1304AP 4 2001-10-15 注 6:定义:博士、博士 VMDK VSAT VMDK 是成正比的色调(积分时间)。 所以短色条件使更广泛的 DR 值。 注 7:定义硒:硒= LX·的 R VSAT 注 8:直流信号输出电压的定义如下: 。 TCD1304AP 5 2001-10-15 操作条件 特征符号分型。最大单位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TOSHIBA CCD Image Sensor CCD (charge coupled device)TCD2905DThe TCD2905D is a high sensitive and low dark current 5400 elements × 6 line CCD color image sensor which includes CCD drive circuit and clamp circuit. The sensor is designed for scanner.The device contains a row of 5400 elements × 6 line staggered photodiodes which provide a 48 lines/mm (1200 dpi) across a A4 size paper. The device is operated by 5 V pulse and 12 V power supply.Features· Number of Image Sensing Elements: 5400 elements × 6 line · Image Sensing Element Size: 5.25 µm by 5.25 µm on 5.25 µm· Photo Sensing Region: High sensitive and low dark current PN photodiode · Distanced Between Photodiode Array: 63 µm (12 lines) · Clock: 2 phase (5 V)· Power Supply:12 V Power Supply Voltage · Internal Circuit: Clamp Circuit · Package: 22 pin CERDIP Package · Color Filter: Red, Green, BlueMaximum Ratings (Note1)Note 1: All voltage are with respect to SS terminals (ground).Weight: 4.5 g (typ.)OS222 OS1OD21 20 19 OS31234SSRSf 2A1f 1A1SH115 1413 12891011f 2A2f 1A2SH3SS SH2Pin Connections (top view)SWCPNC 1817 16 567NC NC NC NC NCBlock Diagramf 2A1f 1A1 f 2A2f 1A2OD SWRSCPPin NamesOptical/Electrical Characteristics(Ta = 25°C, V OD= 12 V, V SW= 5 V, V B=V SH=V RS=V CP= 5 V (pulse), f B= 1 MHz,f= 2 MHz, t INT= 11 ms, light source = a light source + CM500S filter (t = 1 mm),load resistance = 100 k W)NoteMin Typ.Max Unit Characteristics Symbol6.24.7(R)3.2Red RSensitivityV/lx・s (Note2)8.46.44.4Green R(G)3.74.92.5(B)Blue RPRNU (1) ¾ 10 20 % (Note3) Photo response non uniformityPRNU (3) ¾ 3 12 mV (Note4) Register imbalance RI ¾ 1 ¾ % (Note5)¾ V (Note6)2.5Saturation output voltage V SAT 2.0Saturation exposure SE 0.240.39lx・s (Note7)Dark signal voltage V DRK¾ 0.5 2.0 mV (Note8)Dark signal non uniformity DSNU ¾ 2.0 7.0 mV (Note8)DC power dissipation PD ¾ 480650mWTotal transfer efficiency TTE 92 98 ¾ %Output impedance Z O- 0.3 1.0 k WV(Note9)6.07.0DC output voltage V OS 5.0Reset noise V RSN¾ 0.3 ¾ V (Note9)Random noise N D I¾ 0.9 ¾ mV (Note10)Note 2: Sensitivity is defined for each color of signal outputs average when the photosensitive surface is appliedwith the light of uniform illumination and uniform color temperature. Note 3: PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitivesurface is applied with the light of uniform illumination and uniform color temperature.D XPRNU (1) = X ´ 100 (%)Where X is average of total signal output and D X is the maximum deviation from X . The amount of incident light is shown below. Red = 1/2・SE Green = 1/2・SE Blue = 1/4・SENote 4: PRNU (3) is defined as maximum voltage with next pixel, where measured at 5% of SE (typ.) Note 5: Register imbalance is defined as follows.(%) 100X10799107991 n 1) (n x xn RI **=+-=åNote 6: V SAT is defined as minimum saturation output of all effective pixels. Note 7: Definition of SEV SATSE =R G(lx ・s)Note 8: V DRK is defined as average dark signal voltage of all effective pixels.DSNU is defined as different voltage between V DRK and V MDK when V MDK is maximum dark signal voltage.Note 9: DC signal output voltage is defined as follows.Reset Noise Voltage is defined as follows.V MDK DRKSSOSNote 10: Random noise is defined as the standard deviation (sigma) of the output level difference between twoadjacent effective pixels under no illumination (i.e. dark conditions) calculated by the following procedure.(1)Two adjacent pixels (pixel n and n + 1) after reference level clamp in one reading are fixed as measurement points.(2) Each of the output level at video output periods averaged over 200 ns period to get V (n) and V (n + 1). (3) V (n + 1) is subtracted from V (n) to get D V . D V = V (n) - V (n + 1)(4) The standard deviation of D V is calculated after procedure (2) and (3) are repeated 30 times (30readings).å=D =D 301i Vi 301Vå=D D =s 301i 2)V V (301i -(5) Procedure (2), (3) and (4) are repeated 10 times to get sigma value. (6) 10 sigma values are averaged.å=s =s 101j j 101(7)I value calculated using the above procedure is observed 2 times larger than that measured relative to the ground level. So we specify random noise as follows.s =s 21N DOutput waveform(effective pixels under dark condition)Operating ConditionClock Characteristics (Ta = 25°C)Note 11: V OD= 12 V2002-7m i n g C h a r t (b i t c l a m p m o d e )S f 1f 2R SC PS W (“H ”)O2002-8m i n g C h a r t (l i n e c l a m p m o d e )S f 1Af 2AR SP = S HS W (“H ”)O STiming RequirementsRSCPf 1f 2f 1SHf 2 GNDf 1AOSOSRSCPNote 12: Typ. is the case of f f= 1.0 MHz. Note 13: Load resistance is 100 k W.Typical Spectral ResponseSpectral ResponseWavelength l (nm)R e l a t i v e r e s p o n s eTypical Drive CircuitIC1, 2: TC74HC04APTR1, 2, 3: 2SC1815-YR1: 150 WR2: 1500 WCaution1. Window GlassThe dust and stain on the glass window of the package degrade optical performance of CCD sensor.Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N2.Care should be taken to avoid mechanical or thermal shock because the glass window is easily todamage.2. Electrostatic BreakdownStore in shorting clip or in conductive foam to avoid electrostatic breakdown.CCD Image Sensor is protected against static electricity, but inferior puncture mode device due to static electricity is sometimes detected. In handing the device, it is necessary to execute the following staticelectricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.a. Prevent the generation of static electricity due to friction by making the work with barehands or by putting on cotton gloves and non-charging working clothes.b. Discharge the static electricity by providing earth plate or earth wire on the floor, door orstand of the work room.c. Ground the tools such as soldering iron, radio cutting pliers of or pincer.It is not necessarily required to execute all precaution items for static electricity.It is all right to mitigate the precautions by confirming that the trouble rate within theprescribed range.3. Incident LightCCD sensor is sensitive to infrared light.Note that infrared light component degrades resolution and PRNU of CCD sensor.4. Lead Frame FormingSince this package is not strong against mechanical stress, you should not reform the lead frame.We recommend to use a IC-inserter when you assemble to PCB.5. SolderingSoldering by the solder flow method cannot be guaranteed because this method may have deleteriouseffects on prevention of window glass soiling and heat resistance.Using a soldering iron, complete soldering within ten seconds for lead temperatures of up to 260°C, or within three seconds for lead temperatures of up to 350°C.Application NoteThe TCD2905D can be operated in two modes: Normal Readout Mode and Even Line Readout Mode.Each mode is selected by SW terminal.Normal Readout ModeIn Normal Readout Mode, the dummy and signal outputs in odd and even lines are read out. This mode provides 1200 DPI/A4 resolution. The timing for this mode is shown in page 8/21, 9/21 and 10/21.Even Line Readout ModeIn Even Line Readout Mode, the dummy and signal outputs in even lines are read out. The dummy and signal outputs in odd lines cannot be read out in this mode. This mode provides 600 DPI/A4 resolution. Timing examples for 600 DPI/A4 reading using this mode are shown in page 15/21, 16/21 and 19/21 for reference.In this mode, signal charges of adjacent pixels in even line can be merged at an output stage capacitor using intermittent reset drive. Timing examples for 300 DPI/A4 reading using this mode are shown in page 17/21, 18/21 and 20/21 for reference.2002-15m i n g C h a r t (600 d p i m o d e )S f 1Af 2AR SC PS W (“L ”O S2002-16m i n g C h a r t (600 d p i /l i n e c l a m p m o d e )S f 1Af 2AR SP = S HS W (“L ”O S2002-17m i n g C h a r t (300 d p i m o d e )S f 1Af 2AR SC PS W (“L ”O S2002-18m i n g C h a r t (300 d p i /l i n e c l a m p m o d e )S f 1Af 2AR SP = S HS W (“L ”O STiming ExampleTiming Example (600 dpi mode: SW = “L”)SHf 1ASW SW f 1RSf 2CPOSOSTiming Example (300 dpi mode: SW= “L”)f1f2RSCPOSOSPackage DimensionsWeight: 4.5 g (typ.)· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..· The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk.· The products described in this document are subject to the foreign exchange and foreign trade laws.· The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.· The information contained herein is subject to change without notice.000707EBA RESTRICTIONS ON PRODUCT USEThis datasheet has been download from: Datasheets for electronics components.。