最新2018年人教版初中数学七年级下册探究诊断全册单元试题

合集下载

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版2017—2018学年度第二学期七年级数学教学质量监测试题含答案

人教版2017—2018学年度第二学期七年级数学教学质量监测试题含答案

人教版2017—2018学年度第二学期七年级数学教学质量监测试题一、选择题(本大题共6小题,每小题3分,共18分) 1、下列实数是无理数的是( )A 、-1B 、0C 、3.14D 、 5 2、如图,能判断AB ∥CD 的条件是( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠3+∠4=180° 3、下列结论正确的是( )A 、-(-6)2 =-6B 、(- 3 )2=9C 、(-16)2 =±16D 、-(-1625 )2=16254、已知二元一次方程3x +y =0的一个解是⎩⎨⎧x =ay =b,其中a ≠0,那么( )A 、b a >0B 、b a =0C 、ba <0 D 、以上都不对5、下列说法错误的是( )A 、不等式x -3>2的解是x >5B 、不等式x <3的整数解有无数个C 、x =0是不等式2x <3的一个解D 、不等式x +3<3的整数解是0 6、如图,矩形BCDE 的各边分别平等于x 轴或y 轴,物体甲 和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边 作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动, 物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体 运动后第26次相遇地点的坐标是( )A 、(2,0)B 、(-1,-1)C 、(-2,1)D 、(-1,1) 二、填空题(本大题共8小题,每小题3分,共24分) 7、1的平方根是 。

8、一个二元一次方程的一个解是⎩⎨⎧x =2y =-1,则这个方程可以是 。

(只要求写出一个)9、如图,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC , 若∠1=155°,则的度数∠B 为 。

10、某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分。

某队踢了14场,其中负5场,共得19分。

若设胜了x 场,平了y 场, 则可列出方程组: 。

新课标人教版2017-2018学年七年级(下)期末质量调研数学试卷附答案

新课标人教版2017-2018学年七年级(下)期末质量调研数学试卷附答案

2017-2018学年七年级(下)期末质量调研数学试卷一、选择题(本题共有10个小题,每小题3分,共30分.每小题给出的四个选项中,只有个是正确的)1.(3分)的算术平方根是()A.±B.﹣C.D.2.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.(3分)下列各数是无理数的为()A.﹣9 B. C.4.121121112 D.4.(3分)如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)5.(3分)如图,现有图1所示的长方形纸板360张和正方形纸板140张,制作图2所示的A,B两种长方体形状的无盖纸盒,刚好全部用完.问能制作A型盒子、B型盒子各多少个?若设能做成x个A型盒子,y个B型盒子,则依题意可列出方程组.如果设做A型盒子用了正方形纸板x张,做B型盒子用了正方形纸板y张,则以下列出的方程组中正确的为()A.B.C.D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C. D.7.(3分)已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.12 B.﹣12 C.2 D.﹣28.(3分)甲、乙两人同求方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1,求得一个解为,则a,b的值分别为()A.B.C.D.9.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定10.(3分)如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(1,﹣1)B.(2,0)C.(﹣1,1)D.(﹣1,﹣1)二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)=.12.(3分)将一长方形纸条按如图所示折叠,∠2=55°,则∠1=.13.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.14.(3分)某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需要元.15.(3分)在平面直角坐标系中,对于不在坐标轴上的任意一点P (x,y),我们把点P′(,)称为点P的“倒影点”.若点A在x 轴的下方,且点A的“倒影点”A′与点A是同一个点,则点A的坐标为.16.(3分)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n.如:<0.48>=0,<3.5>=4.如果<2x﹣1>=3,则实数x的取值范围为,如果<x>=x,则x=.三、解答题(本题有9个小题,共72分)17.(6分)计算:+﹣(﹣1)2017.18.(6分)解方程组:.19.(6分)解不等式组:并把解集在数轴上表示出来.20.(8分)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数为;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数有名.21.(6分)如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(两直线平行,内错角相等)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(内错角相等,两直线平行)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行.22.(8分)如图,在平面直角坐标系中,已知点A(3,3),B(5,3).(1)在y轴的负方向上有一点C(如图),使得四边形AOCB的面积为18,求C点的坐标;(2)将△ABO先向上平移2个单位,再向左平移4个单位,得△A1B1O1①直接写出B1的坐标:B1()②求平移过程中线段OB扫过的面积.23.(8分)某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)问:改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市决定首批先向A、B两类共8所学校提供改造资金,资金由国家和地方共同承担.若国家投入的资金不超过770万元,地方投入的资金不少于210万元,且地方决定投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出各种可供选择的方案.24.(12分)问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.25.(12分)如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M 点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N 的大小是否变化?若不变,求出其值,若变化,说明理由.参考答案CBBBC CB8.解:把代入ax﹣by=7中得:a+b=7 ①,把代入ax﹣by=1中得:a﹣2b=1 ②,把①②组成方程组得:,解得:,选:B.9.解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.选:B.10.解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵2018÷3=672…2,∴两个物体运动后的第2018次相遇地点的是DE边相遇,且甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,此时相遇点的坐标为:(﹣1,﹣1),选:D.11.﹣4.12.70°.13.=3.14.512元.15.(1,﹣1),(﹣1,﹣1).16.≤x<,0,,.解:由<2x﹣1>=3可得.解不等式①,得:x≥,解不等式②,得:x<,∴≤x<;设x=k(k为非负整数),则x=k,根据题意可得:k﹣≤k<k+,即﹣2<k≤2,则k=0,1,2,x=0,,,答案为:≤x<;0,,.17.解:原式=3﹣4+1=0.18.解:②×3﹣①,得11y=22,解得y=2,将y=2代入①,得3x=3,解得x=1,原方程组的解为.19.解:∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是﹣2≤x<3,在数轴上表示为.20.(1)40(3)108°;(4)有300名.解:(1)20÷50%=40名;(2)C组人数为40×20%=8名;如图:(3)B组所占圆心角为:360°×(1﹣50%﹣20%)=108°.(4)1000×30%=300名.21.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.22.①B1((1,5))解:(1)设点C的坐标为(0,﹣a),∵S=S△BCD﹣S△AOD=18,四边形AOCB∴×5×(a+3)﹣×3×3=18,解得:a=6,所以点C的坐标为(0,﹣6);(2)①如图所示,△A1B1O1即为所求,B1(1,5 );②线段OB扫过的面积=2×5+4×3=22.答案为:(1,5 ).23.解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B 类学校的校舍所需资金y万元,则,解得;答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所,则,解得由①的a≤3,由②得a≥1,则1≤a≤3,即a=1,2,3.答:有3种改造方案.24.解:【应用】:(1)AB的长度为|﹣1﹣2|=3.答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).答案为:(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.答案为:2或﹣2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.答案为:4或8.25.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S=16.四边形AOBC∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°。

新人教版2017-2018学年五校七年级(下)期中质量调研数学试卷附答案

新人教版2017-2018学年五校七年级(下)期中质量调研数学试卷附答案

2017-2018学年五校七年级(下)期中质量调研数学试卷一.选择题(4*10=40分)1.(4分)下列语句是命题的是()A.画线段AB B.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(4分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(4分)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个5.(4分)下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动6.(4分)若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)7.(4分)估计的值在哪两个整数之间()A.75和77 B.6和7 C.7和8 D.8和98.(4分)在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A.B.C.D.9.(4分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.4810.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为()A.(3,1)B.(0,4)C.(﹣3,1)D.(0,﹣2)二.填空题(4*6=24分)11.(4分)的平方根是.12.(4分)已知3x+2y=1,用含x的代数式表示y:.13.(4分)已知,则ab=.14.(4分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(4分)已知是二元一次方程ax﹣by+3=0的解,则6a﹣4b+8的值为.16.(4分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共86分)17.(8分)计算:(1)+(2)|﹣2|﹣18.(10分)解方程(组):(1)9x2=16(2)19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)如图,已知AB∥CD,试再添加一个条件使∠1=∠2成立.(要求:不能添加新线或新字母,请写出至少两个满足∠1=∠2的条件并选择其中一种情况加以证明)21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D()∴DF∥()∴∠A=∠F().22.(8分)已知+2的小数部分为a,8﹣的小数部分为b,求a+b的平方根.23.(10分)已知:如图,∠DEF:∠EFH=3:2,∠1=∠B,∠2+∠3=180°,求∠DEF 的度数.24.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?25.(14分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.参考答案一.选择题(4*10=40分)DBBCB CDDDB11.±.12.y=.13.﹣4.14.15°或115°.15.2.16.20cm2.17.解:(1)原式=10+(﹣2 )=8;(2)原式=2﹣﹣2=﹣.18.解:(1)∵9x2=16,∴x2=,则;(2),①×2得:4x﹣2y=16 ③,②+③得:7x=21,x=3,把x=3代入①得:y=﹣2,∴原方程组的解为:.19.解:(1)如图.(2)△A′B′C′的面积是:7×8﹣×3×7﹣×5×2﹣×8×5=20.5.20.解:可添加的条件有:①CF和BE分别是∠DCB、∠ABC角平分线;②CF∥EB;③∠FCB=∠FEB;④∠E=∠F;选择:添加CF∥BE.证明:∵CF∥BE,∴∠FCB=∠EBC,∵AB∥CD,∴∠DCB=∠ABC,∴∠DCB﹣∠FCB=∠ABC﹣∠BEF,∴∠1=∠2.21.证明:∵∠AGB=∠EHF,∠AGB=∠DGF(对顶角相等),∴∠EHF=∠DGF,∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),又∵∠C=∠D,∴∠DBA=∠D,(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解:∵,∴,,∴,∴a+b=1∴a+b的平方根为±123.解:∵∠1=∠B,∴FG∥BC,∴∠AFG=∠C,∵∠2+∠3=180°,∠CDE+∠3=180°,∴∠2=∠CDE,∵∠CFH=180°﹣∠AFG﹣∠2,∠CED=180°﹣∠C﹣∠CDE,∴∠CFH=∠CED,∴DE∥FH,∴∠DEF+∠EFH=180°,∵∠DEF:∠EFH=3:2,∴∠DEF=×180°=108°.24.解:(1)设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得:x=8,12﹣x=4;答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱.25.解:(1)正确画出直角坐标系;当0<t≤4时P1(2t,0)当4<t≤7时P2(8,2t﹣8)当7<t≤10时P3(22﹣2t,6)(2)存在①如图1,当0<t≤4时,S△APE=×2t×6=20,解得t=(s);∴p(,0)②如图2,当4<t≤7时,S△APE=48﹣S△ADE﹣S△ABP﹣S△PCE,20=48﹣×6×2﹣×8×(2t﹣8)﹣×6×(14﹣2t)解得:t=6(s);∴p(8,4)③如图3,当7<t≤10时,S△APE=×6×(20﹣2t)=20,解得t=(s)<7,∴t=(应舍去综上所述:当p(,0)或p(8,4)时,△APE的面积等于20cm2。

2018年人教版七年级数学下册各单元测试题及答案汇总

2018年人教版七年级数学下册各单元测试题及答案汇总

123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

2017~2018学年第二学期人教版七年级下期末数学质量检测卷及答案

2017~2018学年第二学期人教版七年级下期末数学质量检测卷及答案

XX市XX中学2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图432-1 118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…A BECDF10题图12题图C′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2XX 市XX 中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.AM PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。

2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷

2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷

2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。

2017-2018学年人教版七年级数学下册1-6单元测试(含答案)

2017-2018学年人教版七年级数学下册1-6单元测试(含答案)

单元测试(一)相交线与平行线(时间:40分钟满分:100分)一、选择题(题号12345678910答案1.下列各组角中,∠1与∠2互为对顶角的是()2.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=()A.110°B.70°C.60°D.50°4.下面的每组图形中,左图平移后可以得到右图的是()5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.56°D.66°6.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角7.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠1=∠4C.∠2+∠3=180°D.∠3=∠58.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.3 B.2 C.1 D.09.如图所示,下列说法中错误的是()A.∵∠A+∠ADC=180°,∴AB∥CD B.∵AB∥CD,∴∠ABC+∠C=180°C.∵AD∥BC,∴∠3=∠4 D.∵∠1=∠2,∴AD∥BC10.如图,把一张长方形纸片ABCD沿EG折叠后,点A,B分别落在A′,B′的位置上,EA′与BC交于点F.已知∠1=130°,则∠2的度数是()A.50°B.80°C.65°D.40°二、填空题(本大题共6小题,每小题4分,共24分)11.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是________________________.它是________命题(填“真”或“假”).12.自来水公司为某小区A改造供水系统,如图,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是____________.13.如图,直线AB,CD,EF相交于点O,∠AOF=3∠BOF,∠AOC=90°,那么∠COE =____________.14.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=____________.15.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B 两岛的视角∠ACB=____________.16.如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是____________.三、解答题(共46分)17.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF =∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(________________________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(________________________________).∴∠A=∠EDF(________________________).18.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(8分)(1)如图,点M是三角形ABC中AB的中点,经平移后,点M落在M′处.请在正方形网格中画出三角形ABC平移后的图形三角形A′B′C′;(2)若图中每个小网格的边长为1,则三角形ABC的面积为________.20.(10分)如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)求证:AB∥CD;(2)求∠KOH的度数.21.(12分)(1)如图1,已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图1,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(3)如图2,求证:∠AGF=∠AEF+∠F;(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.单元测试(二) 实数(时间:40分钟 满分:100分)一、选择题(题号 1 2 3 4 5 6 7 8 9 10 答案1.9的平方根是()A .±3B .-3C .3D .± 32.下列说法不正确的是()A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5 3.下列运算中,正确的是()A .252-1=24B .914=312C .81=±9D .-(-13)2=-134.在实数3.141 59,364,2,1.010 010 001,4.21··,π,227中,无理数有()A .1个B .2个C .3个D .4个5.如图,点P 在数轴上表示的数可能是()A .-2.3B .- 3C . 3D .- 56.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有()A .0个B .1个C .2个D .3个 7.下列结论正确的是()A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.在0到20的自然数中,立方根是有理数的共有()A .1个B .2个C .3个D .4个 9.如果m =7-1,那么m 的取值范围是() A .0<m<1 B .1<m<2 C .2<m<3 D .3<m<410.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[-10+1]的值为()A .-4B .-3C .-2D .1 二、填空题(本大题共6小题,每小题4分,共24分)11.19的算术平方根是________. 12.下列四个实数:-5,0,π,3中,最大的是________.13.3-2的相反数是________,绝对值是________.14.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的大218 cm 3.”则小明做的盒子的棱长为________cm . 15.比较大小:5-12________58. 16.如图,已知直径为1个单位长度的圆形纸片上的点A 与数轴上表示-1的点重合.若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A′重合,则点A′表示的数为____________.三、解答题(共46分)17.(6分)求下列各式的值:(1)-1625; (2)±0.016 9; (3)0.09-3-8.18.(6分)将下列各数填入相应的集合内. -7,0.32,12,0,8,12,-364,π,0.303 003…. (1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)负实数集合:{ …}. 19.(12分)计算:(1)|-2|+(-3)2-4;(2)2+32-52;(3)6(16-6);(4)||3-2+||3-2-||2-1.20.(10分)已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?21.(12分)借助于计算器计算下列各题:(1)11-2; (2) 1 111-22;(3)111 111-222; (4)11 111 111-2 222. 仔细观察上面几道题及其计算结果,你能发现什么规律?并用发现的这一规律直接写出下面的结果:=__________________.单元测试(三)平面直角坐标系(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.在平面直角坐标系中,点(-5,0.1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系中,点M的坐标为()A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)3.在平面直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M 的坐标为()A.(6,-28) B.(-6,28) C.(28,-6) D.(-28,-6)4.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(-3,0) C.(0,3)或(0,-3) D.(0,3)6.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)7.如图,小明家相对于学校的位置,下列描述最正确的是()A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处8.如图是天安门周围的景点分布示意图.若以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标是()A.(1,0) B.(2,0) C.(1,-2) D.(1,-1)9.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是____________________.12.在平面直角坐标系中,将点A向右平移了3个单位长度得到点B(-2,1),则点A的坐标为____________.13.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____________.14.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为____________.15.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为____________.16.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.三、解答题(共46分)17.(6分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到了家里,写出路上她经过的地方.18.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D四个点的坐标,并分别指出它们所在的象限;(2)如图2是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对于小明家的位置;②如果学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?图1 图219.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把三角形ABO向下平移3个单位长度,再向右平移2个单位长度后得三角形DEF.(1)直接写出A,B,O三个对应点D,E,F的坐标;(2)求三角形DEF的面积.20.(10分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?21.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.单元测试(四) 二元一次方程组 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列不属于二元一次方程组的是()A .⎩⎪⎨⎪⎧x +y =3x -y =1B .⎩⎪⎨⎪⎧x =3x -y =1C .⎩⎪⎨⎪⎧x +y =3y =1D .⎩⎪⎨⎪⎧xy =3x -y =12.利用代入消元法解方程组⎩⎪⎨⎪⎧2x +3y =6,①5x -3y =2,②下列做法正确的是()A .由①得x =6+3y2B .由①得y =6-2x3C .由②得y =-2+3x5D .由②得y =5x +233.方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是()A .⎩⎪⎨⎪⎧x =1y =2 B .⎩⎪⎨⎪⎧x =3y =1C .⎩⎪⎨⎪⎧x =0y =-2D .⎩⎪⎨⎪⎧x =2y =04.若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则mn 的值是()A .2B .0C .-1D .15.以二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解为坐标的点(x ,y)在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限6.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可写出x 与y 的关系是()A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-47.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A .6种B .7种C .8种D .9种8.小亮解方程组⎩⎪⎨⎪⎧2x +y =●,2x -y =12的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A .⎩⎪⎨⎪⎧●=8★=2B .⎩⎪⎨⎪⎧●=8★=-2 C .⎩⎪⎨⎪⎧●=-8★=2 D .⎩⎪⎨⎪⎧●=-8★=-29.若方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的和为0,则m 的值为()A .-2B .0C .2D .410.内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是()A .⎩⎨⎧76x +76y =17076x -76y =20B .⎩⎪⎨⎪⎧x -y =2076x +76y =170C .⎩⎪⎨⎪⎧x +y =2076x -76y =170D .⎩⎪⎨⎪⎧x +y =2076x +76y =170二、填空题(本大题共6小题,每小题4分,共24分)11.若一个二元一次方程组的解为⎩⎪⎨⎪⎧x =18,y =-10,则这个方程组可以是______________________.12.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得______________.13.若x 3m -2-2y n -1=5是二元一次方程,则m +n =________.14.在代数式ax 2+bx +c 中,x 分别取0,1,-1时,其值分别为-5,-6,0,则a =________,b =________,c =________.15.若|x -2y +1|+(2x -y -5)2=0,则x +y 的值为________.16.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的人数为________.三、解答题(共46分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x -2y =1,3x -5y =8; (2)⎩⎪⎨⎪⎧x 2-y +23=-2,3x +5y =-1.18.(8分)已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,求a(a -1)的值.19.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.20.(10分)某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.单元测试(五) 不等式与不等式组 (时间:40分钟 满分:100分)一、选择题(1. 1.其中是不等式的有() A .2个 B .3个 C .4个 D .5个 2.不等式3x ≤2(x -1)的解集为()A .x ≤-2B .x ≥-2C .x ≤-1D .x ≥-13.若m>n ,则下列不等式不一定成立的是()A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 24.下列说法中正确的是()A .y =3是不等式y +4<5的解B .y =2是不等式3y ≥6的解C .不等式3y <11的解是y =3D .y =3是不等式3y <11的解集5.不等式组⎩⎪⎨⎪⎧2x -1<3,-x 2≤1的整数解有()A .1个B .2个C .3个D .4个6.若代数式14a 的值不大于12a +1的值,则a 应满足()A .a ≥-4B .a ≤-4C .a >4D .a ≤47.小丽同学准备用自己节省的零花钱购买一部手机,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x 个月后小丽至少有1 080元,则可列计算月数的不等式为()A .30x +750>1 080B .30x -750≥1 080C .30x -750≤1 080D .30x +750≥1 0808.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是()9.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是()A .a ≤3B .a<3C .a<2D .a ≤210.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A .7条B .6条C .5条D .4条 二、填空题(本大题共6小题,每小题4分,共24分)11.用不等式表示,比x 的5倍大1的数不小于x 的一半与4的差:________________. 12.数轴上实数b 的对应点的位置如图所示,比较大小:12b +1________0(用“<”或“>”填空).13.不等式组⎩⎪⎨⎪⎧1-x >0,3x >2x -4的非负整数解是____________.14.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,设这批手表有x 块,则根据题意可列不等式________________.15.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,那么a 的取值范围是____________.16.定义新运算,对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为____________. 三、解答题(共46分)17.(10分)(1)解不等式:5(x -2)+8<6(x -1)+7;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.18.(6分)若代数式3(2k +5)2的值不大于代数式5k +1的值,求k 的取值范围.19.(8分)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0,②并依据a 的取值情况写出其解集.20.(10分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.21.(12分)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?单元测试(六)数据的收集、整理与描述(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.下列调查适合作抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座位号是奇数号的观众进行调查3.某市2018年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析.在这个问题中,样本是指()A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生4.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以5.下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的时刻为16:006.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校七年级支持“分组合作学习”方式的学生数约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324第6题图7.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80 B.90 C.144 D.2008.对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为A等(80分以上,不含80分)的百分率为()A.24% B.40% C.42% D.50%第8题图9.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲、乙、丙10.小敏为了了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,以下结论错误的是()A.被抽取的天数为50天B.空气轻微污染的天数所占比例为10%C.扇形统计图中表示“优”的扇形的圆心角度数57.6°D.估计该市这一年(365天)达到优和良的总天数不多于290天二、填空题(本大题共6小题,每小题4分,共24分)11.如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是(请列举一条)____________________________.12.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是________.13.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组占全班总数的20%,则第六组的频数是________.14.学校为七年级学生订制校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:型号身高(x/cm) 频数小号145≤x<155 22中号155≤x<165 45大号165≤x<175 28特大号175≤x<185 5已知该校七年级学生有800名,那么中号校服应订制________套.15.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.16.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频数占被调查学生总人数的百分比之和为90%,最后一组的频数是15,则此次抽样调查的人数为________人.(注:横轴上每组数据包含最小值不包含最大值)三、解答题(共46分)17.(6分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)电视台为调查正在播出的某电视节目的收视率情况,调查全国各省所有用户.18.(8分)如图,该折线图是反映小明家在某一周内每天的购菜所需费用情况.(1)在星期________购菜金额最小;(2)小明家在这一个星期中平均每天购菜多少元?(精确到1元)19.(10分)2017年8月8日,九寨沟发生了里氏7.0级地震,某中学组织了献爱心捐款活动,该校数学兴趣小组对本校学生献爱心捐款额做了一次随机抽样调查,并绘制了不完整的频数分布表和频数分布直方图(每组含前一个边界值,不含后一个边界值).捐款额(元) 频数百分比5≤x<10 5 10%10≤x<15 a 20%15≤x<20 15 30%20≤x<25 14 b25≤x<30 6 12%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图;(3)该校共有1 600名学生,估计这次活动中爱心捐款额不低于20元的学生有多少人?20.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.21.(12分)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?单元测试(一) 相交线与平行线1.A 2.A 3.B 4.D 5.C 6.D 7.A 8.D 9.C 10.B11.如果同旁内角互补,那么这两条直线平行 真 12.垂线段最短 13.45° 14.46° 15.70° 16.55°17.两直线平行,同旁内角互补 两直线平行,同旁内角互补 同角的补角相等 18.(1)图略.(2)图略.(3)∠PQC =60°.理由如下:∵PQ ∥CD ,∴∠DCB +∠PQC =180°.∵∠DCB =120°,∴∠PQC =60°. 19.(1)略.(2)520.(1)证明:∵∠1+∠2=180°,∴AB ∥CD.(2)∵AB ∥CD ,∠3=100°,∴∠GOD =∠3=100°.∵∠GOD +∠DOH =180°,∴∠DOH =80°.又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =40°.21.(1)证明:∵DE ∥AB ,∴∠DCA =∠A.(2)证明:在三角形ABC 中,∵DE ∥AB ,∴∠A =∠ACD ,∠B =∠BCE(内错角相等).∵∠ACD +∠BCA +∠BCE =180°,∴∠A +∠B +∠ACB =180°,即三角形的内角和为180°.(3)证明:∵∠AGF +∠FGE =180°,由(2)知,∠GEF +∠EFG +∠FGE =180°,∴∠AGF =180°-∠EGF =∠AEF +∠F.(4)∵AB ∥CD ,∠CDE =119°,∴∠DEB =119°,∠AED =61°.∵GF 交∠DEB 的平分线EF 于点F ,∴∠DEF =59.5°.∴∠AEF =120.5°.∵∠AGF =150°,由(3)知,∠AGF =∠AEF +∠F ,∴∠F =150°-120.5°=29.5°.单元测试(二) 实数1.A 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.C 11.13 12.π 13.2-3 2-3 14.7 15.< 16.π-1 17.(1)-45.(2)±0.13.(3)2.3.18.(1)-7,0.32,12,0,-364 (2)8,12,π,0.303 003… (3)-7,-364 19.(1)原式=2+9-2=9. (2)原式=(1+3-5)2=- 2.(3)原式=6×16-(6)2=1-6=-5.(4)原式=3-2+2-3-2+1=3-2 2.20.设截得的每个小正方体的棱长为x cm .依题意,得1 000-8x 3=488.∴8x 3=512.∴x =4.答:截得的每个小正方体的棱长是4 cm .21.(1)11-2=3.(2) 1 111-22=33.(3)111 111-222=333;(4)11 111 111-2 222=3 333.用字母表示这些等式的规律:(n 为正整数),即发现规律:根号内被开方数是2n 个数字1和n 个数字2的差,结果为n 个数字3.单元测试(三) 平面直角坐标系1.B 2.C 3.A 4.B 5.C 6.D 7.D 8.D 9.C 10.A 11.3排4号 12.(-5,1) 13.(4,7) 14.(m +2,n -1) 15.(1,2)或(-7,2) 16.49 16.49 17.(1)汽车站(1,1),消防站(2,-2).(2)经过的地方:游乐场,公园,姥姥家,宠物店,邮局.18.(1)A(2,2),在第一象限;B(0,-4),在y 轴上;C(-4,3),在第二象限;D(-3,-4),在第三象限.(2)①商场:北偏西30°,2.5 cm ;学校:北偏东45°,2 cm ;公园:南偏东60°,2 cm ;停车场:南偏东60°,4 cm .②商场距离小明家500米,停车场距离小明家800米.19.(1)D(3,0),E(5,-2),F(2,-3).(2)三角形DEF 的面积=3×3-12×1×3-12×1×3-12×2×2=4. 20.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.21.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a +3=-2a ,4-b =-(2b -3).解得a =-1,b =-1.单元测试(四) 二元一次方程组1.D 2.B 3.D 4.B 5.A 6.A 7.A 8.B 9.C 10.A11.答案不唯一,如⎩⎪⎨⎪⎧x =18x +y =8 12.2x =-3 13.314.2 -3 -5 15.6 16.9617.(1)⎩⎪⎨⎪⎧x =11,y =5.(2)⎩⎪⎨⎪⎧x =-2,y =1.18.∵⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.19.由题意可将x +y =5与2x -y =1组成方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.解得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入4ax+5by =-22,得8a +15b =-22.① 把⎩⎪⎨⎪⎧x =2,y =3代入ax -by -8=0,得2a -3b -8=0.② ①与②组成方程组,得⎩⎪⎨⎪⎧8a +15b =-22,2a -3b -8=0.解得⎩⎪⎨⎪⎧a =1,b =-2.20.(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得⎩⎪⎨⎪⎧x +y =500,24x +36y =13 800.解得⎩⎪⎨⎪⎧x =350,y =150.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33-24)+150×(48-36)=3 150+1 800=4 950(元).答:该商场共获得利润4 950元. 21.(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元. (2)设甲、乙两所学校各有x 名、y 名学生准备参加演出,由题意,得⎩⎪⎨⎪⎧x +y =92,50x +60y =5 000.解得⎩⎪⎨⎪⎧x =52,y =40.答:甲、乙两校各有52名、40名学生准备参加演出. (3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元). 但如果两校联合购买91套服装,只需40×91=3 640(元), 此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装.(即比实际人数多购9套)单元测试(五) 不等式与不等式组1.C 2.A 3.D 4.B 5.D 6.A 7.D 8.C 9.B 10.A11.5x +1≥12x -4 12.> 13.0 14.550×60+500(x -60)>55 000 15.a ≤1 16.x >-117.(1)去括号,得5x -10+8<6x -6+7.移项,得5x -6x <10-8-6+7.合并同类项,得-x <3.系数化为1,得x>-3.(2)解不等式①,得x>-1.解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.解集在数轴上表示为:18.由题意,得3(2k +5)2≤5k +1.解得k ≥134.19.解不等式①,得x ≤3.解不等式②,得x<a.∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3;当a<3时,不等式组的解集为x<a.20.(1)设每辆小客车的乘客座位数是x 个,每辆大客车的乘客座位数是y 个,根据题意,得⎩⎪⎨⎪⎧y -x =17,6y +5x =300.解得⎩⎪⎨⎪⎧x =18,y =35.答:每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个.(2)设租用a 辆小客车,则由题意得18a +35(11-a)≥300+30,解得a ≤3417.∴符合条件的a 的最大整数值为3.。

最新-2018学年人教版七年级下数学整册综合检测卷含答案(精)

最新-2018学年人教版七年级下数学整册综合检测卷含答案(精)

整册综合检测卷一、选择题(共10小题,每题3分,共30分)1.在平面直角坐标系中,点A (-2, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】试题分析:利用平面直角坐标系知第一象限为(+,+),第二象限为(-,+)第三象限为(-,-)第四象限为(+,-).可知点A (-2, 3)在第二象限;故选B.2.已知点A (m-1,m+4)在y 轴上,则点A 的坐标是( )A .(0,3)B .(0,5)C .(5,0)D .(3,0)【答案】B3.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数【答案】D【解析】试题分析:数轴上的任意一点都可以表示一个实数,反之,任何一个实数都可以用数轴上的一个点表示,因此,数轴上的点与实数是一一对应的;故选D .4.在3.14,2917,,0.23,0.2020020002…这五个数中,既是正实数也是无理数的个数是( ) A .1 B .2 C .3 D .4【答案】A【解析】试题分析:根据实数的分类可得,正实数有:3.14,2917,0.23,0.2020020002…;无理数有:,0.2020020002….所以既是正实数也是无理数的是0.2020020002….故选A5.如图,AB ∥CD ,如果∠B =20°,那么∠C 为( )A .40°B .20°C .60°D .70°【答案】B6.如图所示,∠1=70°,有下列结论:①若∠2=70°,则AB∥CD;②若∠5=70°,则AB∥CD;③若∠3=110°,则AB∥CD;④若∠4=110°,则AB∥CD.其中正确的有()A.1个 B.2个 C.3个 D.4个【答案】B7.某县有近6千名考生参加中考,为了解本次中考的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本 B.近6千名考生是总体C.每位考生的数学成绩是个体 D.100名学生是样本容量【答案】C8.方程组的解是()A .B .C . D.【答案】C.【解析】试题分析:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩【答案】B10.不等式组5030xx-⎧⎨->⎩≤整数解的个数是()A.1个 B.2个 C.3个 D.4个【答案】C.二、填空题(共10小题,每题3分,共30分)1.点P(-5,1),到x轴距离为__________.【答案】1【解析】试题分析:点P(-5,1),到x轴距离为1.2.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是。

2017-2018学年度最新人教版初中数学七年级下册实数单元测试答案解析版-精品试卷

2017-2018学年度最新人教版初中数学七年级下册实数单元测试答案解析版-精品试卷

《第6章实数》一、选择题1.下列说法正确的是()A.(﹣1)2是1的算术平方根B.﹣1是1的算术平方根C.(﹣2)2的算术平方根是﹣2D.一个数的算术平方根等于它本身,这个数只能是02.m是81的算术平方根,则m的算术平方根是()A.9 B.3 C.D.±93.的算术平方根是()A.2 B.±2 C.4 D.±44.估算的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间二、填空题5.①16的算术平方根是;②的算术平方根是;⑧1.21的算术平方根是;④(﹣3)2的算术平方根是.6.①= ;②= ;③= ;④= .7.①5的算术平方根是;②是的算术平方根;③(﹣2)2是的算术平方根.8.若x﹣4是64的算术平方根,则x+4的算术平方根是.三、解答题9.一个正方形的面积为10m2,它的边长为多少?10.求下列各数的算术平方根.(1)196(2)(3)0.04(4)102.11.计算①﹣②⑧④⑤⑥.12.已知=3,求7x+7的算术平方根.13.(1)= ,= ,= ,= ,= ,对于任意实数0,猜想= .(2)()2 =,()2 =,()2 =,()2 =,对于任意非负数a,猜想()2 =.14.当x为何值时,下列各式有意义.①②③④⑤⑥.15.小明想用一块面积为16cm2的正方形纸片,沿边的方向裁出一块面积为12cm2的长方形纸片,使它的长宽之比为3:2,他能裁出吗?16.若|3x﹣y﹣1|和互为相反数,求x+4y的算术平方根.17.①利用计算器计算,将结果填入表中,你发现了什么规律?………②用计算器计算≈(精确到0.001),并用上述规律直接写出:≈,≈,≈.18.若5+的小数部分为a,5﹣的小数部分为b,求a、b的值.《第6章实数》参考答案与试题解析一、选择题(共4小题,每小题3分,满分12分)1.下列说法正确的是()A.(﹣1)2是1的算术平方根B.﹣1是1的算术平方根C.(﹣2)2的算术平方根是﹣2D.一个数的算术平方根等于它本身,这个数只能是0【考点】算术平方根.【专题】计算题.【分析】利用算术平方根的定义计算,即可做出判断.【解答】解:A、(﹣1)2=1,1的算术平方根为1,即(﹣1)2是1的算术平方根,本选项正确;B、1的算术平方根是1,本选项错误;C、(﹣2)2=4,4的算术平方根为2,本选项错误;D、一个数的算术平方根等于它本身,这个数是0和1,本选项错误,故选A【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.m是81的算术平方根,则m的算术平方根是()A.9 B.3 C.D.±9【考点】算术平方根.【分析】先求出m的值,再求m的算术平方根即可.【解答】解:81的算术平方根为9,9的算术平方根为3.故选B.【点评】本题考查了算术平方根的知识,属于基础题,注意一个正数的算术平方根为正数.3.的算术平方根是()A.2 B.±2 C.4 D.±4【考点】算术平方根.【分析】先计算出的值,然后再求其算术平方根.【解答】解:=4,4的算术平方根为2.故选A.【点评】本题考查了算术平方根的知识,属于基础题,注意一个正数的算术平方根只有一个,易错点在于求成16的算术平方根.4.估算的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【考点】估算无理数的大小.【分析】根据<<,推出4<<5,即可得出在4和5之间.【解答】解:∵<<,∴4<<5,即在4和5之间.故选C.【点评】本题考查了估算无理数的大小和二次根式的性质,关键是确定出<<.二、填空题(共4小题,每小题3分,满分12分)5.①16的算术平方根是 4 ;②的算术平方根是;⑧1.21的算术平方根是 1.1 ;④(﹣3)2的算术平方根是 3 .【考点】算术平方根.【分析】分别根据算术平方根的定义解答即可.【解答】解:①∵42=16,∴16的算术平方根是4;②∵()2=,∴的算术平方根是;③∵1.12=1.21,∴1.21的算术平方根是1.1;④∵(﹣3)2=32=9,∴(﹣3)2的算术平方根是3.故答案为:4;;1.1;3.【点评】本题考查了算术平方根,熟记概念是解题的关键.6.①= 3 ;②= ;③= 0.2 ;④= 2 .【考点】算术平方根.【分析】根据算术平方根的定义分别化简即可.【解答】解:①=3;②==;③=0.2;④==2.故答案为:3;;0.2;2.【点评】本题考查了算术平方根,熟记概念是解题的关键.7.①5的算术平方根是;②是7 的算术平方根;③(﹣2)2是16 的算术平方根.【考点】算术平方根.【分析】根据算术平方根的定义分别解答即可.【解答】解:①5的算术平方根是;②是7的算术平方根;③∵(﹣2)2=4,∴(﹣2)2是16的算术平方根.故答案为:,7,16.【点评】本题考查了算术平方根,熟记概念是解题的关键,③容易出错,要特别注意.8.若x﹣4是64的算术平方根,则x+4的算术平方根是 4 .【考点】算术平方根.【分析】根据算术平方根的定义列式求出x的值,然后求出x+4,再根据算术平方根的定义解答.【解答】解:∵x﹣4是64的算术平方根,∴x﹣4=8,∴x=12,x+4=12+4=16,∵42=16,∴x+4的算术平方根是4.故答案为:4.【点评】本题考查了算术平方根的定义,熟记概念并求出x的值是解题的关键.三、解答题9.一个正方形的面积为10m2,它的边长为多少?【考点】算术平方根.【专题】计算题.【分析】利用正方形的面积公式,根据算术平方根的定义求出边长即可.【解答】解:设边长为a,则有a2=10,解得:a=.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.求下列各数的算术平方根.(1)196(2)(3)0.04(4)102.【考点】算术平方根.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:(1)=14;(2)=;(3)=0.2;(4)=10.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.11.计算①﹣②⑧④⑤⑥.【考点】算术平方根.【分析】各项中算式利用二次根式的化简公式,以及算术平方根的定义计算即可得到结果.【解答】解:①原式=﹣|﹣0.4|=﹣0.4;②原式=0.3+0.6=0.9;③原式=13+5=18;④原式==;⑤原式=0.8×=1;⑥原式=8×(13﹣14)=﹣8.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.已知=3,求7x+7的算术平方根.【考点】算术平方根.【分析】利用算术平方根的定义求出x的值,确定出7x+7的值,求出算术平方根即可.【解答】解:根据题意得:x+3=9,即x=6,则7x+7=42+7=49,49的算术平方根为7.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.13.(1)= 2 ,= 3 ,= 5 ,= 6 ,= 0 ,对于任意实数0,猜想= |a| .(2)()2 = 4 ,()2 =9 ,()2 =25 ,()2 =36 ,对于任意非负数a,猜想()2 =|a| .【考点】算术平方根.【分析】(1)由=|a|进行解答;(2)由()2=•进行计算.【解答】解:(1)=|2|=2,=|﹣3|=3,=|5|=5,=|﹣6|=6,=6,对于任意实数0,猜想=|a|.(2)()2==|4|=4,同理()2=9,()2=25,()2=36,对于任意非负数a,猜想()2=|a|.故答案为:2,3,5,6,0,|a|;4,9,25,36.|a|.【点评】本题考查了算术平方根.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.14.当x为何值时,下列各式有意义.①②③④⑤⑥.【考点】算术平方根.【分析】①根据被开方数大于等于0列式计算即可得解;②根据分母不等于0列式计算即可得解;③根据被开方数大于等于0,分母不等于0列式计算即可得解;④根据被开方数大于等于0,分母不等于0列式计算即可得解;⑤根据被开方数大于等于0,分母不等于0列式计算即可得解;⑥根据被开方数大于等于0解答.【解答】解:①x﹣2≥0,解得x≥2;②x﹣1≠0,解得x≠1;③1﹣x>0,解得x<1;④x≥0且x﹣1≠0,解得x≥0且x≠1;⑤x﹣2≥0且x﹣1≠0,解得x≥2且x≠1,所以,x≥2;⑥∵x2≥0,∴x2+1≥1,∴x取全体实数.【点评】本题考查了算术平方根,主要利用了二次根式有意义,被开方数大于等于0,分式有意义,分母不等于0.15.小明想用一块面积为16cm2的正方形纸片,沿边的方向裁出一块面积为12cm2的长方形纸片,使它的长宽之比为3:2,他能裁出吗?【考点】算术平方根.【专题】计算题.【分析】设长方形的边长分别为3x与2x,根据已知面积求出x的值,比较即可做出判断.【解答】解:设长方形的长为3xcm,宽为2xcm,根据题意得:6x2=12,解得:x=,∵正方形的面积为16cm2,∴正方形的边长为4cm,∴长方形的长为3>4,则不能裁出这样的长方形.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.16.若|3x﹣y﹣1|和互为相反数,求x+4y的算术平方根.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;算术平方根;解二元一次方程组.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则x+4y=9,则算术平方根是:3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.①利用计算器计算,将结果填入表中,你发现了什么规律?………②用计算器计算≈ 2.236 (精确到0.001),并用上述规律直接写出:≈0.236 ,≈22.36 ,≈223.6 .【考点】算术平方根;计算器—数的开方.【专题】规律型.【分析】①利用计算器进行计算即可得解,然后根据小数点的移动写出变化规律;②用计算器求出,再根据变化规律解答.【解答】解:①依次填入:=0.25;≈0.791;=2.5;≈7.906;=25;≈79.057;=250;规律:被开方数小数点向右移动两位,算术平方根小数点向右移动一位;②≈2.236;≈0.2236,≈22.36,≈223.6.故答案为:2.236,0.2236,22.36,223.6.【点评】本题考查了算术平方根,主要考查了利用计算器进行数的开方,仔细观察小数点的移动位数的变化是解题的关键.18.若5+的小数部分为a,5﹣的小数部分为b,求a、b的值.【考点】估算无理数的大小.【分析】首先判断得出的取值范围,进而得出a,b的值.【解答】解:∵2<<3,∴5+的小数部分为:a=5+﹣7=﹣2+,5﹣的小数部分为b=5﹣﹣2=3﹣.【点评】此题主要考查了估计无理数大小,得出的取值范围是解题关键.。

数学学探诊七下人教版电子版

数学学探诊七下人教版电子版

数学学探诊七下人教版电子版1、22.若+3x+m=0的一个根为2,则m=()[单选题] *A.3B.10C.-10(正确答案)D.202、27.下列各函数中,奇函数的是()[单选题] *A. y=x^(-4)B. y=x^(-3)(正确答案)C .y=x^4D. y=x^(2/3)3、在0°~360°范围中,与-460°终边相同的角是()[单选题] * 200°(正确答案)560°-160°-320°4、已知二次函数f(x)=2x2-x+2,那么f(-2)的值为()。

[单选题] *12(正确答案)2835、要使多项式不含的一次项,则与的关系是()[单选题] *A. 相等(正确答案)B. 互为相反数C. 互为倒数D. 乘积为16、18.下列关系式正确的是(? ) [单选题] *A.-√3∈NB.-√3∈3C.-√3∈QD.-√3∈R(正确答案)7、50.式子(2+1)(22+1)(24+1)(28+1)…(21024+1)+1化简的结果为()[单选题] *A.21024B.21024+1C.22048(正确答案)D.22048+18、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-29、8.如图,在数轴上表示的点可能是()[单选题] *A.点PB.点Q(正确答案)C.点MD.点N10、下列各式计算正确的是( ) [单选题] *A. (x3)3=x?B. a?·a?=a2?C. [(-x)3]3=(-x)?(正确答案)D. -(a2)?=a1?11、下列计算正确的是()[单选题] *A. a2+a2=2a?B. 4x﹣9x+6x=1C. (﹣2x2y)3=﹣8x?y3(正确答案)D. a6÷a3=a212、下列说法错误的是[单选题] *A.+(-3)的相反数是3B.-(+3)的相反数是3C.-(-8)的相反数是-8(正确答案)C.-(+八分之一)的相反数是813、2、在轴上的点的纵坐标是()[单选题] * A.正数B.负数C.零(正确答案)D.实数14、22.如果|x|=2,那么x=()[单选题] *A.2B.﹣2C.2或﹣2(正确答案)D.2或15、5、若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()[单选题] *A、1B、-1(正确答案)C 、1或-1D、216、从3点到6点,时针旋转了多少度?[单选题] *60°-90°(正确答案)-60°90°17、2.比3大- 1的数是[单选题] *A.2(正确答案)B.4C. - 3D. - 218、下列函数是奇函数的是()[单选题] *A、f(x)=3x(正确答案)B、f(x)=4xC、f(x)= +2x-1D、f(x)=19、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B、33C、16D、420、7. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种.[单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)21、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数22、20、在平面直角坐标系中有点A,B,C,那么△ABC是()[单选题] *A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形23、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案)C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.24、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.225、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、426、下列各角中,与300°终边相同的角是()[单选题] *A、420°B、421°C、-650°D、-60°(正确答案)27、14.不等式|3-x|<2 的解集为()[单选题] *A. x>5或x<1B.1<x<5(正确答案)C. -5<x<-1D.x>128、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)29、7.已知集合A={-13,12},B={x|ax+1=0},且B?A,则实数a的值不可能为( ) [单选题] *A.-3(正确答案)B.-1/12C.0D.1/1330、35.若代数式x2﹣16x+k2是完全平方式,则k等于()[单选题] *A.6B.64C.±64D.±8(正确答案)。

新人教版2017-2018学年度七年级下期中调研数学试题附答案

新人教版2017-2018学年度七年级下期中调研数学试题附答案

新人教版2017-2018学年度七年级下期中调研数学试题附答案新人教版2017-2018学年度下第2学期期中调研试卷七年级数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给A. B. C. D.2.4的平方根是()A.2 B.±2 C.2D.±23.在下列所给出的坐标中,在第二象限的是()A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)4.在实数5,227,38-,0,-1.414,2π,36,0.1010010001中,无理数有()A.2个B.3个C.4个D.5个5.如图,点E在AC的延长线上,下列条件中不能判断AC∥BD的是()A. ∠1=∠2B. ∠3=∠4C. ∠D=∠DCED. ∠D+∠ACD=180°6.下列命题是假命题的是()A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7.如图,表示7的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)9.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上. 若∠1=35°,则∠2的度数为()A. 10°B. 15°D. 35°二、填空题(每题5分,共20分)11.若整数x满足|x|≤3,则使7−x为整数的x的值是(只需填一个).12.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG= .第12题图第14题图13.把9的平方根和立方根按从小到大的顺序排列为.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A(2,0),…,那么点A4n+1(n是自然数)的坐标为.三、解答题(共90分)15.(8分)计算:(1)100+38-(2)|3-2|-2)2(-16.(8分)求下列各式中x的值:(1)2x2=4;(2)64x3 + 27=017.(8分)如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.18.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D∴DF∥()∴∠A=∠F().19.(10分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.20.(10分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道。

人教版七年级数学下册几何综合探究专项练习

人教版七年级数学下册几何综合探究专项练习

人教版七年级数学下册几何综合探究专项练习一.阅读理解1.上小学时,我们已学过三角形三个内角的和为180°.定义:如果一个三角形的两个内角α与β满足2α+β=90°.那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=____;(2)若△ABC是直角三角形,∠ACB=90°.①如图,若AD是∠BAC的平分线,请你判断△ABD是否为“准互余三角形”?并说明理由.②点E是边BC上一点,△ABE是“准互余三角形”,若∠ABC=24°,则∠EAC=_________二.方程思想2.如图1,已知OB平分∠AOC.(1)若∠AOC的余角比∠BOC小30°.①求∠COB的度数;图1 图2②过点O作射线OD,使得∠AOC=4∠AOD,求∠BOD的度数.(2)如图2,∠COE与∠AOC互为补角,在∠COE的内部作射线OD,使得∠COE=4∠COD,请探究∠BOD与∠DOE之间的数量关系,写出你的结论并说明理由.三.折叠问题3. 如图1,将长方形笔记本活页纸片的一角对折,使角的顶点A 落在A ′处,BC 为折痕. (1)若∠ACB =35°.① 求∠A ′CD 的度数;② 如图2,若又将它的另一个角也斜折过去,并使 CD 边与CA ′重合,折痕为CE .求∠1和∠BCE 的度数;(2)在图2中,若改变∠ACB 的大小,则CA′的位置也随之改变,则∠BCE 的大小是否改变?请说明理由.四.旋转问题 图1 图24.如图,直线CD 与EF 相交于点O ,将一直角三角尺AOB 的直角顶点与点O 重合。

(1)如图1,若∠EOD=90°,试说明∠BOD=∠EOA ;(2)如图2,若∠EOD=60°,OB 平分∠EOD.将三角尺AOB 以每秒5°的速度绕点O 顺时针旋转,设运动时间为t 秒.①420≤≤t ,当t 为何值时,直线EF 平分∠AOB:②当1812<<t ,三角尺AOB 旋转到三角POQ(A 、B 分别对应P 、Q)的位置,若OM 平分∠COP,求EOPAOM∠∠的值。

【初中数学】2018七年级下册数学达标检测卷(8份) 人教版

【初中数学】2018七年级下册数学达标检测卷(8份) 人教版

第十章 数据的收集、整理与描述姓名 成绩一、精心选一选(共8小题,每题有一个答案,每小题4分,共32分) 1. 下列调查中最适合采用全面调查的是( ) A .调查某批次汽车的抗撞击能力B .端午节期间,食品安全检查部门调查市场上粽子的质量情况C .调查某班40名同学的视力情况D .调查某池塘中现有鱼的数量2.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况,已知来自甲地区的为180人,则下列说法不正确的是( )A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人 3.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,比较两校女生人数( ) (A ) 甲校女生人数多 (B )乙校女生人数多(C ) 甲校与乙校女生人数一样多 (D )以上说法都不对 4.南北朝著名的数学家祖冲之算出圆周率约为3.1415926,在3.1415926这个数中数字“1”出现的频数与频率分别为( )。

(A)2,20% (B)2,25% (C)3,25% (D)1,20% 5.某中学三个年级的人数比例如下图所示,已知三年级有620名学生,那么这个学校共有学生人数为( )。

0%(A )2000 (B )1900 (C )1800 (D )1700 6.某同学按照某种规律写了下面一串数字:122 122 122 122 122……,当写到第93个数字时,1出现的频数是( )。

(A )33 (B )32 (C )31 (D )307.在-(-3),(-3)2,(-3)3,︱-3︱中,负数出现的频率为( )。

(A )25% (B )50% (C )75% (D )100%8.在全班45人中进行了你最喜爱的电视节目的调查活动,喜爱的电视剧有人数为18人,喜爱动画片有人数为15人,喜爱体育节目有人数为10人,则下列说法正确的是( )。

最新2018年人教版初中数学七年级下册探究诊断全册单元试题

最新2018年人教版初中数学七年级下册探究诊断全册单元试题

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. () 12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.西城区七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个 (C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C′EF=32°(2)∠AEC=148°(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个二、填空题11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2B .0C .81 D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 10.要切一块面积为16cm 2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题 11.25111的平方根是______;0.0001算术平方根是______:0的平方根是______.。

2018年新人教版七年级下期数学半期检测试题带答案

2018年新人教版七年级下期数学半期检测试题带答案

12小刚小军小华七年级下期数学半期考试试题(考试内容:相交线与平行线、实数、平面直角坐标、二元一次方程组 满分150分 ) 一、选择题(每小题4分,共48分)1、下列图形中,∠1与∠2是对顶角的是()A B C D 2、下列各式中,正确的是( ) A.16=±4 B.9-4 =1 C.3-64 =-4 D.2(4)-= -43、点M (x ,y )的坐标满足xy >0,x +y <0,则点M 在( )A 第一象限B 第二象限C 第三象限 D第四象限4、下列方程组中,不是二元一次方程组的是( )A.123x y =⎧⎨+=⎩,.B.10x y x y +=⎧⎨-=⎩,.C.10x y xy +=⎧⎨=⎩,. D.21y x x y =⎧⎨-=⎩,.5、如图所示,直线DF//BC ,=47A ︒∠,=60B ∠︒,则AEF ∠的度数为( )A .117°B .107°C .120°D .132° 6、与无理数31-1最接近的整数是( )A. 4B. 5C. 6D. 77、如图,OB ⊥OD ,OC ⊥OA ,∠BOC=36°,那么∠AOD 等于( ) A.90° B.108° C.126 °D. 144°8、下列命题中是真命题的个数有( )(1)过一点有且只有一条直线与已知直线垂直(2)坐标平面内的点与有序实数对之间是一一对应的。

(3)立方根是它本身的数只有1和0(4)在同一平面内,两条直线的位置关系只有相交、平行两种。

(5)有公共顶点且有一条公共边的两个角互为邻补角。

(6)图形的平移是指把图形沿水平方向移动A. 1个B. 2个C. 3个D. 4个 9、若b=++1,则a ﹣3b+1的值为( ) A .0 B .1C .2D .310、课间操时,小华、小军、小刚的位置如图1,小华对小刚说, 如果我的位置用(•0,0)表示,小军的位置用(2,1)表示, 那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)11、一副三角板按如图方式摆放,且1∠的度数比2∠的度数大50,若设1∠的度数为x ,2∠的度数为y ,则得到的方程组为( )A .50180x y x y =-⎧⎨+=⎩,B .50180x y x y =+⎧⎨+=⎩,C .5090x y x y =-⎧⎨+=⎩,D .5090x y x y =+⎧⎨+=⎩,12、如图所示,AB//CD,BN 、FN 分别平分ABE ∠、EFD ∠.已知BNF α∠=,FEDCB A 第1题图第5题图第7题图第11题图第10题图BEF β∠=, FDC γ∠=, 则下列等式中成立的是( ) A .++=180αβγ︒ B .2180αβγ-++=︒ C. ++=360αβγ︒ D. 2360αβγ-++=︒ 二、填空题(每小题4分,共24分)13、最大的负整数的立方根是 ,最小的正整数的平方根是 。

最新-2018学年人教版七年级下数学前两章综合检测卷含答案(精)

最新-2018学年人教版七年级下数学前两章综合检测卷含答案(精)

前两章综合检测卷一、选择题(共10小题,每题3分,共30分)1.下列图形中,∠1与∠2是对顶角的是()【答案】C.2.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35° B.40° C.45° D.60°【答案】A.3.如图,能确定l1∥l2的α为()A.140°B.150°C.130°D.120°【答案】A4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数是()A.70° B.65° C.60° D.50°【答案】B.5.如图,AD平分∠BAC,DE∥AC交AB于点E,∠1=25°,则∠BED等于A .40°B .50°C .60°D .25° 【答案】B6.在6×6方格中,将图1中的图形N 平移后位置如图2所示,则图形N 的平移方法中,正确的是( )A .向下移动1格B .向上移动1格C .向上移动2格D .向下移动2格 【答案】D.7.4的平方根是( )A .4B .2C .2D .±2 【答案】D.8.在|﹣5|,0,﹣3,2四个数中,最小的数是( )A.|﹣5|B.0C.﹣3D.【答案】C9.下列说法不正确的是( )A 、51251±的平方根是 B 、3273-=-C 、4是16的平方根D 、-7是-49的平方根 【答案】D 【解析】 试题分析:A 、251的平方根是±51,正确;B 、﹣3是﹣27的立方根,正确;C 、16的算术平方根是4,正确;D 、﹣49没有平方根,错误; 故选D .10.下列计算正确的是A 、525±=B 、3)3(2-=-C 、51253±=D 、3273-=- 【答案】D. 【解析】试题分析:A 55=≠±,故错误; B |3|33=-=≠- ,故错误; C 55=≠±,故错误;D 、3273-=-,故正确.[] 故选D.二、填空题(共10小题,每题3分,共30分)11.如图,直线a 、b 相交于点O ,∠1=50°,则∠2= 度.【答案】50.12.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题: ①如果a//b ,a ⊥c ,那么b ⊥c ; ②如果b//a ,c//a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b//c .其中真命题的是 .(填写所有真命题的序号) 【答案】①②④. 【解析】试题分析:①如果a ∥b ,a ⊥c ,那么b ⊥c 是真命题,故①正确;②如果b ∥a ,c ∥a ,那么b ∥c 是真命题,故②正确;③如果b ⊥a ,c ⊥a ,那么b ⊥c 是假命题,故③错误;④如果b ⊥a ,c ⊥a ,那么b ∥c 是真命题,故④正确.故答案为:①②④.13.已知:如图,∠1=∠2=∠3=50°则∠4的度数是 .【答案】130°14.如图: AB ∥CD ,∠B=115°,∠C=45°,则∠BEC=_______.【答案】110°【解析】试题分析:延长AB和CE交于M,∵AB∥CD,∠C=45°,∴∠M=∠C=45°,∵∠B=115°,∴∠MBE=180°-115°=65°,∴∠BEC=∠M+∠MBE=45°+65°=110°15.如图,已知直线a∥b,∠1=120°,则∠2的度数是°.【答案】60°【解析】试题分析:如图,根据平行线的性质:两直线平行,同位角相等,由a∥b可得∠1=∠3=120°,再根据∠2+∠3=180°,可求得∠2=60°.16.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是 cm2.【答案】12.17.-8的立方根是,81的算术平方根是 .【答案】-2,3.【解析】试题分析:-8的立方根是-2,81的算术平方根,即9的算术平方根,所以81的算术平方根是3. 故答案为:-2;3. 18.的平方根是916__________, 64的立方根是__________ 【答案】±34,2 【解析】 试题分析:的平方根是91643=±,64的立方根即8的立方根是2. 19.请你写出一个无理数 【答案】π. 【解析】试题分析:由题意可得,π是无理数.20.如图,数轴上M 、N 两点表示的数分别为3和5.2,则M 、N 两点之间表示整数的点共有 个.【答案】4.三、解答题(共60分)21.(6分)计算:(-1)2-︱-5︱【答案】0 【解析】试题分析:先求平方,算术平方根,立方根,绝对值,最后再求和 试题解析:原式=1+2+2-5=0 22.(10分)计算:(1)已知:(x +2)2=25,求x ; (2【答案】(1)3,-7 (2)51223.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接: -2,25,0 ,38【答案】数轴见解析,-2<0<25 <38【解析】试题分析:先将38化简成2,然后比较大小,最后在数轴上表示. 试题解析:因为38=2,所以-2<0<25 <38,数轴上表示如图:24.(8分)已知:如图, AB ⊥CD 于点O ,∠1=∠2,OE 平分∠BOF ,∠EOB=55°,求∠DOG 的度数.【答案】70°. 【解析】试题分析:由OE 为角平分线,利用角平分线定义得到∠BOF=2∠EOB ,根据∠EOB 的度数求出∠BOF 的度数,再由AB 与CD 垂直,利用垂直的定义得到一对角为直角,根据∠1的度数求出∠2的度数,根据∠DOG 与∠2互余即可求出∠DOG 的度数.试题解析:∵OE 平分∠BOF ,∴∠BOF=2∠EOB ,∵∠EOB=55°,∴∠BOF=110°,∵AB ⊥CD ,∴∠AOD=∠BOC=90°,∴∠1=20°,又∵∠1=∠2,∴∠2=20°,∴∠DOG=70°25.(8分)如图,AB ∥CD,直线EF 交AB 、CD 于点G 、H.如果GM 平分∠BGF,HN 平分∠CHE ,那么,GM 与HN 平行吗?为什么?【答案】GM ∥HN ,理由略26.(6分)完成下面的解题过程,并在括号内填上依据. 如图,EF ∥AD,∠1=∠2,∠BAC=85°.求∠AGD 的度数ABCD EFGH MN解:∵EF∥AD,∴∠2=____( )又∵∠1=∠2∴∠1=∠3∴∥____( )∴∠BAC+____=180°∵∠BAC=85°∴∠AGD=950【答案】∠3;两直线平行,同位角相等;DG AB;内错角相等,两直线平行;∠AGD27.(8分)看图填空:已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.【答案】证明略28.(6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移7格后的图形.(不要求写作图步骤和过程)【答案】(1)16;(2)画图略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. () 12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.西城区七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个 (C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C′EF=32°(2)∠AEC=148°(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个二、填空题11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2B .0C .81 D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 10.要切一块面积为16cm 2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题 11.25111的平方根是______;0.0001算术平方根是______:0的平方根是______.。

相关文档
最新文档