初中数学七年级下册知识点
七年级下数学第一章知识点
七年级下数学第一章知识点数学是一门需要认真学习的学科,对于初中生来说,七年级下数学第一章是非常重要的,因此我们需要认真学习掌握。
在本篇文章中,我们将全面介绍七年级下数学第一章的知识点,并给出相关的例子和题目。
一、有理数及其表示法1.有理数的概念:有理数是指可以用两个整数的比表示出来的数,包括整数和分数。
因为它们可以在数轴上表示出来,所以也被称为数轴上的点。
例如,-2,0.5和3/4都是有理数。
2.有理数的表示法:通常表示有理数的方法有三种:分数表示法、小数表示法和百分数表示法。
在这里,我们主要介绍分数表示法和小数表示法。
分数表示法:a/b(a和b都是整数,b不等于0),其中a被称为分子,b被称为分母。
同一个有理数可以有不同的分数表示法,例如2/4和1/2是同一个有理数。
小数表示法:例如,3/4可以表示为0.75,或者0.750000。
在小数表示法中,我们将数字按照一定的方法排列,例如,0.75是3/4的小数表示法,小数点后面的数字表示分数的十分位和百分位。
二、有理数的比较在比较有理数大小时,我们需要将它们转化成同样的形式。
例如,我们可以将分数化简,或者将小数补零。
以下是一些比较有理数大小的示例:1.将小数补零:例如,将0.25和0.2比较大小。
我们将0.25乘以10,得到2.5,将0.2乘以10,得到2。
因此,0.25>0.2。
2.将分数化简:例如,比较1/3和2/5的大小。
我们将1/3化简为5/15,将2/5化简为6/15。
因此,1/3<2/5。
三、有理数的加减法有理数的加减法可以用数轴,或者数表等方式表示出来。
举例来说,如果我们要计算-3+5,我们可以用数轴表示出来:首先,我们在数轴上找到-3的位置,并标记出来。
然后,在它的右侧找到5的位置,并标记出来。
最后,从-3的位置开始,向右移动5个单位,我们可以得到答案2。
四、有理数的乘除法有理数的乘法和除法很容易理解,但需要记住一些规律。
七年级下册整式知识点
七年级下册整式知识点整式是初中数学中不可或缺的一部分,也是后续数学学习的重要基础。
本篇文章将为大家详细介绍七年级下册整式的相关知识点,希望能对大家的学习和掌握有所帮助。
一、基础概念整式是由常数、未知数及其积的项按照一定顺序排列、相加或相减后所得到的一种多项式。
其中,常数是没有未知数的项,也就是只有数字的项,例:6;未知数是指变量,常用字母表示,例:x、y、z;多项式中各项的次数称为它的次数,多项式次数最高的一项称为“首项”,其相应的系数称为“首项系数”。
二、整式的加减整式的加减就是把同类项的系数相加或者相减得到的结果,也就是说只有同类项才可以进行加减运算。
同类项是指变量的指数相同的项,如下例:3x² + 5x² = 8x²- 2x³ + 4x³ = 2x³当两个整式相加或相减时,我们需要把它们按照相同的项进行配对,再进行加减运算,如下例:(3x² + 4x - 5)+(-x² + 5x + 7)=2x² + 9x + 2三、整式的乘法整式的乘法就是把每一项的系数相乘,并把各项乘积相加得到的结果。
如下例:(3x+2)(4x+5)=12x² + 23x + 10需要注意的是,乘法运算中,变量间的乘积不可合并,如下例:3x × 4y = 12xy四、整式的因式分解整式的因式分解是指把一个多项式分解成几个乘积的形式。
目的是为了简化计算或寻找性质,需要注意的是得出的单项式应该是多项式的因数之一。
如下例:2x²+4x=2x(x+2)5xy-10x²y=5xy(1-2x)五、整式的综合运用整式的应用涉及到很多数学问题,如线性方程组、等比数列、三角函数等。
本部分简述整式在代数、几何和物理中的应用:1.代数中的应用代数运用了整式的相关知识来处理各种计算问题,例如解方程、代数表达式的化简、多项式函数的图象等。
七年级下册数学知识点归纳
七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
初一下数学知识点
初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。
学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。
2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。
学生需要学会整式的合并同类项和去括号等基本运算。
3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。
5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。
以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
初一下册几何知识点总结归纳
初一下册几何知识点总结归纳一、初中数学几何知识点1、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合6、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8、直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b二、数学知识点总结热冰时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序平行线与相交线部分1过两点有且只有一条直线(强调唯一性和存在性)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补尺规作图(这是重难点)作线段等于已知线段和作角等于已知角(1)理解尺规作图的含义①只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.②基本作图:a.用尺规作一条线段等于已知线段;b.用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差.(2)熟练掌握尺规作图题的规范语言Ⅰ.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;Ⅱ.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.(3)尺规作图题的步骤:①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°(掌握证明此定理的两种方法)附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高.(易错点)注意:(1)三角形的高是线段,垂线段.(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心.三角形的三条中线交于三角形内部,这一点叫做三角形的重心.三角形三条角平分线交于三角形内部,这一点叫做三角形的内心.四边形内容部分18定理四边形的内角和等于360°19四边形的外角和等于360°20多边形内角和定理 n边形的内角的和等于(n-2)×180°21推论任意多边的外角和等于360°22多边形对角线公式n (n-3)/21点、线、面、体知识点三、几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
七年级下册知识点思维导图
七年级下册知识点思维导图在初中学习中,七年级下册学习知识点非常重要,随着学习深入,同学们需要掌握更多的知识,为以后的学习打下坚实的基础。
为了更好地帮助同学们掌握这些知识,本文将通过思维导图的形式介绍七年级下册的重要知识点。
一、数学在七年级下册数学学习中,同学们需要掌握的知识点非常多。
思维导图可以帮助同学们更好地掌握这些知识点,同时也可以帮助同学们更好地理解数学知识。
1.平面几何在平面几何的学习中,同学们需要掌握的知识点包括图形的认识、图形的性质、图形的面积与周长计算等。
其中,图形的认识是最为重要的知识点之一。
2.代数在代数学习中,同学们需要掌握的知识点包括方程的解法、因式分解等。
思维导图可以帮助同学们更好地理解这些知识点,从而更好地解题。
3.函数函数在七年级下册的数学学习中也是非常重要的一个知识点。
同学们需要掌握函数的概念、函数图像的绘制、函数的性质等。
二、英语英语在现代社会中扮演着非常重要的角色,因此对于七年级下册英语学习而言,同学们更需要掌握英语知识点。
下面是思维导图中介绍的英语知识点:1.基础词汇英语学习中,词汇是非常重要的。
同学们需要掌握英语词汇的意思,同时也需要掌握单词的拼写。
思维导图可以帮助同学们记住常用的单词。
2.语法英语语法对于同学们而言也是非常重要的。
同学们需要掌握句子的结构、时态、语态等。
思维导图可以帮助同学们记住常用的语法规则。
3.阅读技巧在英语学习中,阅读技巧也是非常重要的。
同学们需要掌握阅读技巧,从而更好地理解英文文章,同时也可以提高自己的阅读速度。
三、物理在物理学习中,同学们需要掌握许多知识点,同时也需要掌握物理实验的方法。
思维导图可以帮助同学们更好地掌握这些知识点,同时也可以帮助同学们更好地了解物理实验的方法。
四、化学在化学学习中,同学们需要掌握许多知识点,包括物质的分类、物质的组成等。
思维导图可以帮助同学们更好地掌握这些知识点,同时也可以帮助同学们更好地理解化学实验的方法。
苏教版初一数学下册知识点总结
苏教版初一数学下册知识点总结七年级数学公式大全1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式 1 正方形C周长 S面积 a边长周长=边长×4 C=4a面积=边长×边长S=a×a 2 正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3 长方形C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高面积=底×高 s=ah 7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷2 8 圆形S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏ 9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题七年级数学知识点总结统计科学记数法:一个大于10的数可以表示成A.10N的形式,其中1小于等于A小于10,N是正整数。
七年级下册数学知识点1-4单元(湘教版)
七年级数学下册知识点归纳【湘教版】第一章 二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:已知二元一次方程组当a 1/a 2 ≠ b 1/b 2 时,有唯一解; 当a 1/a 2 = b 1/b 2 ≠ c 1/c 2时,无解; 当a 1/a 2 = b 1/b 2 = c 1/c 2时,有无数解。
例如:对应方程组:① ② ③例:判断下列方程组是否为二元一次方程组:① ② ③ ④3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。
例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。
4、根据二元一次方程的定义求字母系数的值:要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。
七年级下册数学一二三单元知识点
七年级下册数学一二三单元知识点作为初中的关键学科,数学一直是学生们最需要投入大量精力学习的学科之一。
七年级下册数学的一二三单元,重点介绍了初中数学中的基本概念和基础知识。
本篇文章将通过以下几个方面,为您详细介绍七年级下册数学一二三单元知识点。
一、有理数有理数是数学中最基础的概念之一。
在七年级下册数学一单元中,我们主要学习了正数、负数和零等基本概念,以及加、减、乘、除有理数的运算法则。
有理数的加减法:同号的有理数加减:同号的有理数相加,绝对值不变,符号不变。
异号的有理数加减:异号的有理数相加,绝对值相减,符号由绝对值大的那个数的符号决定。
有理数的乘法:同号的有理数相乘,结果为正数;异号的有理数相乘,结果为负数。
有理数的除法:两个非零有理数的商,约分后的形式唯一。
除数不为零,被除数为零时,商为0;除数为零,被除数不为零时,无法得到商。
二、代数式代数式是数学中一个重要的概念,一般表示成由字母、数和符号组成的式子。
在七年级下册数学二单元中,我们主要学习了代数式中字母的含义和代数式的运算。
代数式的字母和含义:一个代数式中,字母代表一个数或未知数。
一般用小写字母表示,比如a,b等等。
代数式的基本运算:1.同类项之间可以进行加减运算2.同类项之间的加减运算不改变式子的值;3.代数式中的加减乘除法运算与数的运算一致代数式的因式分解:因式分解是将多项式表示成乘积的形式,其中乘积的因数均为一次式或多次式。
我们通常可以使用分配律、结合律、交换律、同项合并等方法来进行因式分解。
三、方程式方程式是数学中一个重要的概念,代表着未知数和已知数之间的关系。
在七年级下册数学三单元中,我们主要学习了方程式的基本定义、性质和解法。
方程式的基本概念:方程式是一个等式,其中含有未知数和已知数等量关系。
方程式的解就是未知数的值。
方程式的基本运算:可以将一个方程式同时加上或减去等量的数,或者将两个方程式相减,保证方程式等号两边等量。
方程式的解法:1.直接求解法2.化为一次方程求解法3.分离变量法4.代数方法总结:七年级下册数学一二三单元在初中数学中扮演了重要的基础角色,涉及了诸多数学基本概念和基本知识,如有理数、代数式和方程式等。
初一数学下册知识点汇总
初一数学下册知识点汇总初一数学下册知识点1.已知面积和底边长求高回想三角形的面积公式。
三角形的面积公式是A=1/2bh。
A=三角形的面积b=三角形底边长h=三角形底边的高看一下你的三角形,确定哪些变量是已知的。
在本例中,你已经知道了面积,可以将面积的数值代入公式中的A。
你也已知底边长的大小,可以将数值代入公式中的"'b'"。
如果你不知道面积或底边长,那么你只能尝试其它的方法了。
无论三角形是如何绘制的,三角形的任意一边都可以作为底边。
为了更形象地展示它,你可以想象把三角形进行旋转,直到已知边长位于底部。
例如,如果已知三角形面积是20,一边长为4,那么带入得A=20,b=4。
将数值代入公式A=1/2bh,然后进行计算。
首先将底边长(b)乘以1/2,然后用面积(A)除以它。
运算得到的结果应该就是三角形的高!本例中:20=1/2(4)h20=2h10=h2.求等边三角形的高回忆等边三角形的特征。
等边三角形有三条相等大小的侧边,每个夹角都是60度。
如果你将等边三角形分成两半,就会得到两个相同的直角三角形。
在本例中,我们使用边长为8的等边三角形。
回忆勾股定理。
勾股定理将两个直角边描述为a和b、斜边为c:a2+b2=c2。
我们可以使用这个定理求出等边三角形的高!将等边三角形对半切开,并将数值代入变量a、b和c。
斜边c等于原始的斜边长。
直角边a的长度就变成了边长的1/2,直角边b就是所求的三角形的高。
以边长为8的等边三角形为例,其中c=8,a=4。
将数值代入勾股定理的公式,求出b2。
边长c和a分别乘以自身求平方值。
然后用c2减去a2。
42+b2=8216+b2=64b2=48求出b2的开方值就得到三角形的高了!使用计算机的开根号计算求得Sqrt(2)。
得到的结果就是等边三角形的高!b=Sqrt(48)=6.933.已知边长和角求高确定你已知的变量。
如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。
七年级数学下册第一章《代数式》知识点整理
七年级数学下册第一章《代数式》知识点整理七年级数学下册第一章《代数式》知识点整理第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、初中数学复习提纲重要概念分类:代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式。
(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如,初中数学复习提纲 =x, 初中数学复习提纲=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:初中数学复习提纲、初中数学复习提纲是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的平方根(初中数学复习提纲[a≥0—与“平方根”的区别]);⑵算术平方根与绝对值① 联系:都是非负数,初中数学复习提纲=│a│②区别:│a│中,a为一切实数; 初中数学复习提纲中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初中数学复习提纲9.指数⑴ ( 初中数学复习提纲—幂,乘方运算)① a>0时,初中数学复习提纲>0;②a<0时,初中数学复习提纲>0(n是偶数),初中数学复习提纲<0(n是奇数)⑵零指数:初中数学复习提纲 =1(a≠0)负整指数:初中数学复习提纲 =1/ 初中数学复习提纲(a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:初中数学复习提纲 = 初中数学复习提纲(m≠0)⑵符号法则:初中数学复习提纲⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:① 初中数学复习提纲· 初中数学复习提纲 = 初中数学复习提纲;② 初中数学复习提纲÷ 初中数学复习提纲 = 初中数学复习提纲;③ 初中数学复习提纲 = 初中数学复习提纲;④ 初中数学复习提纲 = 初中数学复习提纲初中数学复习提纲;⑤ 初中数学复习提纲技巧:初中数学复习提纲5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
人教版初中数学七年级下 相交线和平行线知识点总结
人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。
重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。
线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。
⑶直相交形成的四角中,每一角的角有,而角只有一。
两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。
条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。
:垂段最短。
连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。
过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。
线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。
七年级上下册数学课本知识点归纳
七年级上下册数学课本知识点归纳数学作为一门基础学科,是学生必修的科目之一。
在初中阶段,七年级数学课本是数学学科的入门教材,是学生掌握基本知识的基石。
本文将对七年级上下册数学课本的知识点进行归纳,帮助初学者快速掌握数学基础知识。
一、整数与小数(上册)整数与小数是数学学科中最基本的概念,也是其他知识点的基础。
在七年级上册中,主要包括整数的基本概念、运算及应用;小数的基本概念、运算及比较大小等。
二、代数式(上册)代数式是数学中非常重要的概念,是我们后续学习的基础。
在七年级上册中,主要包括代数式的基本概念、加减乘除及应用等。
三、几何图形(上册)几何图形是数学学科中非常重要的知识点之一,涉及到平面和立体图形。
在七年级上册中,主要包括多边形的基本概念、分类及性质;圆的基本概念、周长与面积等。
四、分数(下册)分数是数学学科中较难的知识点之一,但是对于我们日常生活中相当常见。
在七年级下册中,主要包括分数的基本概念、运算、化简及应用等。
五、比例与相似(下册)比例是数学中重要的概念之一,涉及到相似、变化等。
在七年级下册中,主要包括比例的基本概念、比例的性质及应用;相似的基本概念、相似三角形的性质及应用等。
六、函数(下册)函数是数学中非常重要的概念,也是高中数学学科的重要基础。
在七年级下册中,主要包括函数的基本概念、函数的图像、定义域与值域、函数的四则运算及应用等。
总结:以上是七年级上下册数学课本的知识点归纳,内容包括整数与小数、代数式、几何图形、分数、比例与相似以及函数等。
初学者可以根据此归纳快速掌握七年级数学的基础知识,为后续学习打下坚实的基础。
七年级数学下册知识点归纳
七年级数学下册知识点归纳第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
初一下册数学《三角形》知识点复习总结
初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
初一数学下册基本知识点总结(通用8篇)
初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。
5、移项:叫做移项。
(切记:移项必须)。
二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。
设,②。
列,③。
解,④。
检,⑤。
答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。
二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2、加减消元的条件:两个方程中,其中一未知数的系数或。
(当两个方程中,其中一未知数系数成倍数关系时,最适合)。
三、解三元一次方程组的一般步骤:①。
先用代入法或加减法消去系数较简单的一个未知数,转化为;②。
然后再解,得到两个未知数的值;③。
最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。
第八章一元一次不等式一、几个概念1、不等式:叫做不等式。
2、不等式的解:叫做不等式的解。
3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。
,②。
,③。
,④。
,⑤。
2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。
②再画范围:小于号向画;大于号向画。
3、一元一次不等式组的解法:先分别求;再求4、注意:①。
在不等式两边同时乘或除以负数时,不等号必须②。
求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学七年级下册知识点 姓名第一章 整式的运算一. 整式 ※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数. ※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数. ※3.整式:单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧有字母叫做分式)其他代数式(若分母含多项式单项式整式代数式 二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 三. 同底数幂的乘法 ※同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字或字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加(即合并同类项);④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方 ※1. 幂的乘方法则:mn nm a a =)((m,n 都是正整数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2.),()()(都为正整数n m a a a m n m n n m ==.※3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n nb a ab =)((n 为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正整数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10≠=a a,如1100=,(-2.5)0=1,则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即ppa a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆; ②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; ②多项式相乘的结果应注意合并同类项;③nb na mb ma b m +++=++)a )(n (七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即22))((b ab a b a -=-+。
¤2..其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, ¤即2222)(b ab a b a +±=±; 口决:首平方,尾平方,2倍乘积在中央;¤2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。
九.整式的除法¤1.单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第二章 平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角; 如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角 ※1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据¤1.科学记数法:对任意一个正数可能写成a ×10n 的形式,其中1≤a <10,n 是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P (必然事件)=1;不可能事件发生的概率为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P(A)<112必然发生不可能发生※4.了解几何概率这类问题的计算方法事件发生概率=图形面积所有可能结果所组成的成的图形面积事件所有可能结果所组第五章 三角形一.认识三角形1.关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a 、b 、c 则:①一般地,对于三角形的某一条边a 来说,一定有|b-c|<a <b+c 成立;反之,只有|b-c|<a <b+c 成立,a 、b 、c 三条线段才能构成三角形; ②特殊地,如果已知线段a 最大,只要满足b+c >a ,那么a 、b 、c 三条线段就能构成三角形;如果已知线段a 最小,只要满足|b-c|<a ,那么这三条线段就能构成三角形。
3.关于三角形的内角和:三角形三个内角的和为180°。
推论:三角形的一个外角等于不相邻的两个内角的和。
①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线; ②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。