matlab经典习题及解答
MATLAB编程练习(含答案很好的)
001双峰曲线图:z=peaks(40);mesh(z);surf(z)002解方程:A=[3,4,-2;6,2,-3;45,5,4];>> B=[14;4;23];>> root=inv(A)*B003傅里叶变换load mtlb ;subplot(2,1,1);plot(mtlb);>> title('原始语音信息');>> y=fft(mtlb);>> subplot(2,1,2);>> yy=abs(y);>> plot(yy);>> title('傅里叶变换')004输入函数:a=input('How many apples\n','s')005输出函数a=[1 2 3 4 ;5 6 7 8;12 23 34 45;34 435 23 34]a =1 2 3 45 6 7 812 23 34 4534 435 23 34disp(a)a =1 2 3 45 6 7 812 23 34 4534 435 23 34b=input('how many people\n' ,'s')how many peopletwo peopleb =two people>> disp(b)two people>>006求一元二次方程的根a=1;b=2;c=3;d=sqrt(b^2-4*a*c);x1=(-b+d)/(2*a)x1 =-1.0000 + 1.4142i>> x2=(-b-d)/(2*a)x2 =-1.0000 - 1.4142i007求矩阵的相乘、转置、存盘、读入数据A=[1 3 5 ;2 4 6;-1 0 -2;-3 0 0];>> B=[-1 3;-2 2;2 1];>> C=A*BC =3 142 20-3 -53 -9>> C=C'C =3 2 -3 314 20 -5 -9>> save mydat C>> clear>> load mydat C008编写数学计算公式:A=2.1;B=-4.5;C=6;D=3.5;E=-5;K=atan(((2*pi*A)+E/(2*pi*B*C))/D) K =1.3121009A=[1 0 -1;2 4 1;-2 0 5];>> B=[0 -1 0;2 1 3;1 1 2];>> H=2*A+BH =2 -1 -26 9 5-3 1 12>> M=A^2-3*BM =3 3 -62 13 -2-15 -3 21>> Y=A*BY =-1 -2 -29 3 145 7 10>> R=B*AR =-2 -4 -1-2 4 14-1 4 10>> E=A.*BE =0 0 04 4 3-2 0 10>> W=A\BW =0.3333 -1.3333 0.66670.2500 1.0000 0.25000.3333 -0.3333 0.6667 >> P=A/BP =-2.0000 3.0000 -5.0000-5.0000 3.0000 -4.00007.0000 -9.0000 16.0000>> Z=A.\BWarning: Divide by zero.Z =0 -Inf 01.0000 0.2500 3.0000-0.5000 Inf 0.4000>> D=A./BWarning: Divide by zero.D =Inf 0 -Inf1.0000 4.0000 0.3333-2.0000 0 2.5000010a=4.96;b=8.11;>> M=exp(a+b)/log10(a+b)M =4.2507e+005011求三角形面积:a=9.6;b=13.7;c=19.4;>> s=(a+b+c)/2;>> area=sqrt(s*(s-a)*(s-b)*(s-c))area =61.1739012逻辑运算A=[-1 0 -6 8;-9 4 0 12.3;0 0 -5.1 -2;0 -23 0 -7]; >> B=A(:,1:2)B =-1 0-9 40 00 -23>> C=A(1:2,:)C =-1.0000 0 -6.0000 8.0000 -9.0000 4.0000 0 12.3000>> D=B'D =-1 -9 0 00 4 0 -23>> A*Bans =1.0000 -184.0000-27.0000 -266.90000 46.0000 207.0000 69.0000>> C<Dans =0 0 1 01 0 0 0>> C&Dans =1 0 0 00 1 0 1>> C|Dans =1 1 1 11 1 0 1>> ~C|~Dans =0 1 1 11 0 1 0013矩阵运算练习:A=[8 9 5;36 -7 11;21 -8 5]A =8 9 536 -7 1121 -8 5>> BB =-1 3 -22 0 3-3 1 9>> RT=A*BRT =-5 29 56-83 119 6-52 68 -21>> QW=A.*BQW =-8 27 -1072 0 33-63 -8 45>> ER=A^3ER =6272 3342 294415714 -856 52608142 -1906 2390 >> BF=A.^3BF =512 729 12546656 -343 13319261 -512 125 >> A/Bans =3.13414.9634 -0.4024-1.2561 12.5244 -3.2317-1.9878 6.4512 -2.0366>> EKV=B\AEKV =10.7195 -1.2683 3.52449.4756 1.5854 3.71954.8537 -1.4878 1.3171>> KDK=[A,B]KDK =8 9 5 -1 3 -236 -7 11 2 0 321 -8 5 -3 1 9 >> ERI=[A;B]ERI =8 9 536 -7 1121 -8 5-1 3 -22 0 3-3 1 9014一般函数的调用:A=[2 34 88 390 848 939];>> S=sum(A)S =2301>> min(A)ans =2>> EE=mean(A)EE =383.5000>> QQ=std(A)QQ =419.3794>> AO=sort(A)AO =2 34 88 390 848 939 >> yr=norm(A)yr =1.3273e+003>> RT=prod(A)RT =1.8583e+012>> gradient(A)ans =32.0000 43.0000 178.0000 380.0000 274.5000 91.0000 >> max(A)ans =939>> median(A)ans =239>> diff(A)ans =32 54 302 458 91>> length(A)ans =6>> sum(A)ans =2301>> cov(A)ans =1.7588e+005>>015矩阵变换:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> tril(A)ans =34 0 08 34 034 55 2>> triu(A)ans =34 44 230 34 230 0 2>> diag(A)ans =34342norm(A)ans =94.5106>> rank(A)ans =3>> det(A)ans =-23462>> trace(A)ans =70>> null(A)ans =Empty matrix: 3-by-0>> eig(A)ans =80.158712.7671-22.9257>> poly(A)ans =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> logm(A)Warning: Principal matrix logarithm is not defined for A with nonpositive real eigenvalues. A non-principal matrixlogarithm is returned.> In funm at 153In logm at 27ans =3.1909 + 0.1314i 1.2707 + 0.1437i 0.5011 - 0.2538i0.4648 + 0.4974i 3.3955 + 0.5438i 0.1504 - 0.9608i0.2935 - 1.2769i 0.8069 - 1.3960i 3.4768 + 2.4663i>> fumn(A)Undefined command/function 'fumn'.>> inv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> cond(A)ans =8.5072>> chol(A)Error using ==> cholMatrix must be positive definite.>> lu(A)ans =34.0000 44.0000 23.00000.2353 23.6471 17.58821.0000 0.4652 -29.1816>> pinv(A)ans =0.0510 -0.0502 -0.0098-0.0326 0.0304 0.02550.0305 0.0159 -0.0343>> svd(A)ans =94.510622.345611.1095>> expm(A)ans =1.0e+034 *2.1897 4.3968 1.93821.31542.6412 1.16431.8782 3.7712 1.6625>> sqrtm(A)ans =5.2379 + 0.2003i 3.4795 + 0.2190i 1.8946 - 0.3869i0.5241 + 0.7581i 5.1429 + 0.8288i 2.0575 - 1.4644i3.0084 - 1.9461i4.7123 - 2.1276i 2.1454 + 3.7589i >>016多项式的计算:A=[34 44 23;8 34 23;34 55 2]A =34 44 238 34 2334 55 2>> P=poly(A)P =1.0e+004 *0.0001 -0.0070 -0.1107 2.3462>> PPA=poly2str(P,'X')PPA =X^3 - 70 X^2 - 1107 X + 23462017多项式的运算:p=[2 6 8 3];w=[32 56 0 2];>> m=conv(p,w)m =64 304 592 548 180 16 6 >> [q,r]=deconv(w,p)q =16r =0 -40 -128 -46>> dp=polyder(w)dp =96 112 0>> [num,den]=polyder(w,p)num =80 512 724 312 -16den =4 24 68 108 100 48 9>> b=polyfit(p,w,4)Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 74b =-0.6704 9.2037 -32.2593 0 98.1333>> r=roots(p)r =-1.2119 + 1.0652i-1.2119 - 1.0652i-0.5761018求多项式的商和余p=conv([1 0 2],conv([1 4],[1 1]))p =1 5 6 10 8>> q=[1 0 1 1]q =1 0 1 1>> [w,m]=deconv(p,q)w =1 5m =0 0 5 4 3>> cq=w;cr=m;>> disp([cr,poly2str(m,'x')])5 x^2 + 4 x + 3>> disp([cq,poly2str(w,'x')])x + 5019将分式分解a=[1 5 6];b=[1];>> [r,p,k]=residue(b,a)r =-1.00001.0000p =-3.0000-2.0000k =[]020计算多项式:a=[1 2 3;4 5 6;7 8 9];>> p=[3 0 2 3];>> q=[2 3];>> x=2;>> r=roots(p)r =0.3911 + 1.0609i0.3911 - 1.0609i-0.7822>> p1=conv(p,q)p1 =6 9 4 12 9>> p2=poly(a)p2 =1.0000 -15.0000 -18.0000 -0.0000 >> p3=polyder(p)p3 =9 0 2>> p4=polyval(p,x)p4 =31021求除式和余项:[q,r]=deconv(conv([1 0 2],[1 4]),[1 1 1])022字符串的书写格式:s='student's =student>> name='mary';>> s1=[name s]s1 =marystudent>> s3=[name blanks(3);s]s3 =marystudent>>023交换两个数:clearclca=[1 2 3 4 5];b=[6 7 8 9 10];c=a;a=b;b=c;ab24If语句n=input('enter a number,n=');if n<10nend025 if 双分支结构a=input('enter a number ,a=');b=input('enter a number ,b=');if a>bmax=a;elsemax=b;endmax026三个数按照由大到小的顺序排列:A=15;B=24;C=45;if A<BT=A;A=B;B=T;elseif A<CT=A;A=C;C=T;elseif B<CT=B;B=C;C=T;endABC027建立一个收费优惠系统:price=input('please jinput the price : price=') switch fix(price/100)case[0,1]rate =0;case[2,3,4]rate =3/100;case num2cell(5:9)rate=5/100;case num2cell(10:24)rate=8/100;case num2cell(25:49)rate=10/100;otherwiserate=14/100;endprice=price*(1-rate)028:while循环语句i=0;s=0;while i<=1212s=s+i;i=i+1;ends029,用for循环体语句:sum=0;for i=1:1.5:100;sum=sum+i;endsum030循环的嵌套s=0;for i=1:1:6;for j=1:1:8;s=s+i^j;end;end;s031continue 语句的使用:for i=100:120;if rem(i,7)~=0;continue;end;iend032x=input ('输入X的值x=')if x<1y=x^2;elseif x>1&x<2y=x^2-1;elsey=x^2-2*x+1;endy033求阶乘的累加和sum=0;temp=1;for n=1:10;temp=temp*n;sum=sum+temp;endsum034对角线元素之和sum=0;a=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]; for i=1:4;sum=sum+a(i,i);endsum035用拟合点绘图A=[12 15.3 16 18 25];B=[50 80 118 125 150.8];plot(A,B)036绘制正玄曲线:x=0:0.05:4*pi;y=sin(x);plot(x,y)037绘制向量x=[1 2 3 4 5 6;7 8 9 10 11 12;13 14 15 16 17 18] plot(x)x=[0 0.2 0.5 0.7 0.6 0.7 1.2 1.5 1.6 1.9 2.3]plot(x)x=0:0.2:2*piy=sin(x)plot(x,y,'m:p')038在正弦函数上加标注:t=0:0.05:2*pi;plot(t,sin(t))set(gca,'xtick',[0 1.4 3.14 56.28])xlabel('t(deg)')ylabel('magnitude(v)')title('this is a example ()\rightarrow 2\pi')text(3.14,sin(3.14),'\leftarrow this zero for\pi')039添加线条标注x=0:0.2:12;plot(x,sin(x),'-',x,1.5*cos(x),':');legend('First','Second',1)040使用hold on 函数x=0:0.2:12;plot(x,sin(x),'-');hold onplot(x,1.5*cos(x),':');041一界面多幅图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)')subplot(222);plot(x,y2);title('cos(x)')subplot(223);plot(x,y3);title('sin(2x)')subplot(224);plot(x,y4);title('cos(2x)')042染色效果图x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(221);plot(x,y1);title('sin(x)');fill(x,y1,'r') subplot(222);plot(x,y2);title('cos(x)');fill(x,y2,'b') subplot(223);plot(x,y3);title('sin(2x)');fill(x,y3,'k') subplot(224);plot(x,y4);title('cos(2x)');fill(x,y4,'g')043特殊坐标图clcy=[0,0.55,2.5,6.1,8.5,12.1,14.6,17,20,22,22.1] subplot(221);plot(y);title('线性坐标图');subplot(222);semilogx(y);title('x轴对数坐标图');subplot(223);semilogx(y);title('y轴对数坐标图');subplot(224);loglog(y);title('双对数坐标图')t=0:0.01:2*pi;r=2*cos(2*(t-pi/8));polar(t,r)044特殊函数绘图:fplot('cos(tan(pi*x))',[-0.4,1.4])fplot('sin(exp(pi*x))',[-0.4,1.4])045饼形图与条形图:x=[8 20 36 24 12];subplot(221);pie(x,[1 0 0 0 1]);title('饼图');subplot(222);bar(x,'group');title('垂直条形图');subplot(223);bar(x,'stack');title('累加值为纵坐标的垂直条形图'); subplot(224);barh(x,'group');title('水平条形图');046梯形图与正弦函数x=0:0.1:10;y=sin(x);subplot(121);stairs(x);subplot(122);stairs(x,y);047概率图x=randn(1,1000);y=-2:0.1:2;hist(x,y)048向量图:x=[-2+3j,3+4j,1-7j];subplot(121);compass(x);rea=[-2 3 1];imag=[3 4 -7];subplot(122);feather(rea,imag);049绘制三维曲线图:z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)x=-10:0.5:10;y=-8:0.5:8;[x,y]=meshgrid(x,y);z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2); subplot(221);mesh(x,y,z);title('普通一维网格曲面');subplot(222);meshc(x,y,z);title('带等高线的三维网格曲面'); subplot(223);meshz(x,y,z);title('带底座的三维网格曲面'); subplot(224);surf(x,y,z);title('充填颜色的三维网格面')050 带网格二维图x=0:pi/10:2*pi;y1=sin(x);y2=cos(x);plot(x,y1,'r+-',x,y2,'k*:')grid onxlabel('Independent Variable x') ylabel('Dependent Variable y1&y2') text(1.5,0.5,'cos(x)')051各种统计图y=[18 5 28 17;24 12 36 14;15 6 30 9]; subplot(221);bar(y)x=[4,6,8];subplot(222);bar3(x,y)subplot(223);bar(x,y,'grouped') subplot(224);bar(x,y,'stack')052曲面图x=-2:0.4:2;y=-1:0.2:1;[x,y]=meshgrid(x,y);z=sqrt(4-x.^2/9-y.^2/4); surf(x,y,z)grid on053创建符号矩阵e=[1 3 5;2 4 6;7 9 11];m=sym(e)符号表达式的计算问题因式分解:syms xf=factor(x^3-1)s=sym('sin(a+b)'); expand(s)syms x tf=x*(x*(x-8)+6)*t; collect(f)syms xf=sin(x)^2+cos(x)^2; simplify(f)syms xs=(4*x^2+8*x+3)/(2*x+1); simplify(s)通分syms x yf=x/y-y/x;[m,n]=numden(f)嵌套重写syms xf=x^4+3*x^3-7*x^2+12; horner(f)054求极限syms x a;limit(exp(-x),x,0,'left')求导数syms xdiff(x^9+x^6)diff(x^9+x^6,4)055求不定积分与定积分syms x ys=(4-3*x^2)^2;int(s)int(x/(x+y),x)int(x^2/(x+2),x,1,3) double(ans)056函数的变换:syms x ty=exp(-x^2);Ft=fourier(y,x,t)fx=ifourier(Ft,t,x)057求解方程syms a b c xs=a*x^2+b*x+c;solve(s)syms x y zs1=2*x^2+y^2-3*z-4;s2=y+z-3;s3=x-2*y-3*z;[x,y,z]=solve(s1,s2,s3)058求微分方程:y=dsolve('Dy-(t^2+y^2)/t^2/2','t')059求级数和syms x ksymsum(k)symsum(k^2-3,0,10)symsum(x^k/k,k,1,inf)060泰勒展开式syms xs=(1-x+x^2)/(1+x+x^2);taylor(s)taylor(s,9)taylor(s,x,12)taylor(s,x,12,5)061练习syms x a;s1=sin(2*x)/sin(5*x);limit(s1,x,0)s2=(1+1/x)^(2*x);limit(s2,x,inf)syms xs=x*cos(x);diff(s)diff(s,2)diff(s,12)syms xs1=x^4/(1+x^2);int(s1)s2=3*x^2-x+1int(s2,0,2)syms x y zs1=5*x+6*y+7*z-16;s2=4*x-5*y+z-7;s3=x+y+2*z-2;[x,y,z]=solve(s1,s2,s3)syms x yy=dsolve('Dy=exp(2*x-y)','x')y=dsolve('Dy=exp(2*x-y)','y(0)=0','x')n=sym('n');s=symsum(1/n^2,n,1,inf)x=sym('x');f=sqrt(1-2*x+x^3)-(1-3*x+x^2)^(1/3);taylor(f,6)062求于矩阵相关的值a=[2 2 -1 1;4 3 -1 2;8 5 -3 4;3 3 -2 2]adet=det(a)atrace=trace(a)anorm=norm(a)acond=cond(a)arank=rank(a)eiga=eig(a)063矩阵计算A=[0.1389 0.6038 0.0153 0.9318;0.2028 0.2772 0.7468 0.4660;0.1987 0.1988 0.4451 0.4186]B=var(A)C=std(A)D=range(A)E=cov(A)F=corrcoef(A)064求根及求代数式的值P=[4 -3 2 5];x=roots(P)x=[3 3.6];F=polyval(P,x)065多项式的和差积商运算:f=[1 2 -4 3 -1]g=[1 0 1]g1=[0 0 1 0 1]f+g1f-g1conv(f,g)[q,r]=deconv(f,g)polyder(f)066各种插值运算:X=0:0.1:pi/2;Y=sin(X);interp1(X,Y,pi/4)interp1(X,Y,pi/4,'nearest')interp1(X,Y,pi/4,'spline')interp1(X,Y,pi/4,'cubic')067曲线的拟合:X=0:0.1:2*pi;Y=cos(X);[p,s]=polyfit(X,Y,4)plot(X,Y,'K*',X,polyval(p,X),'r-')068求函数的最值与0点x=2:0.1:2;[x,y]=fminbnd('x.^3-2*x+1',-1,1) [x,y]=fzero('x.^3-2*x+1',1)069求多项式的表达式、值、及图像y=[1 3 5 7 19]t=poly(y)x=-4:0.5:8yx=polyval(t,x)plot(x,yx)070数据的拟合与绘图x=0:0.1:2*pi;y=sin(x);p=polyfit(x,y,5);y1=polyval(p,x)plot(x,y,'b',x,y1,'r')071求代数式的极限:syms xf=sym('log(1+2*x)/sin(3*x)');b=limit(f,x,0)072求导数与微分syms xf=sym('x/(cos(x))^2');y1=diff(f)y2=int(f,0,1)078划分网格函数[x,y]=meshgrid(-2:0.01:2,-3:0.01:5); t=x.*exp(-x.^2-y.^2);[px,py]=gradient(t,0.05,0.1);td=sqrt(px.^2+py.^2);subplot(221)imagesc(t)subplot(222)imagesc(td)colormap('gray')079求多次多项方程组的解:syms x1 x2 a ;eq1=sym('x1^2+x2=a')eq2=sym('x1-a*x2=0')[x1 x2]=solve(eq1,eq2,x1,x2)v=solve(eq1,eq2)v.x1v.x2an1=x1(1),an2=x1(2)an3=x2(1),an4=x2(2)080求解微分方程:[y]=dsolve('Dy=-y^2+6*y','y(0)=1','x')s=dsolve('Dy=-y^2+6*y','y(0)=1','x')[u]=dsolve('Du=-u^2+6*u','u(0)=1')w=dsolve('Du=-u^2+6*u','z')[u,w]=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z') v=dsolve('Du=-w^2+6*w,Dw=sin(z)','u(0)=1,w(0)=0','z')081各种显现隐含函数绘图:f=sym('x^2+1')subplot(221)ezplot(f,[-2,2])subplot(222)ezplot('y^2-x^6-1',[-2,2],[0,10])x=sym('cos(t)')y=sym('sin(t)')subplot(223)ezplot(x,y)z=sym('t^2')subplot(224)ezplot3(x,y,z,[0,8*pi])082极坐标图:r=sym('4*sin(3*x)')ezpolar(r,[0,6*pi])083多函数在一个坐标系内:x=0:0.1:8;y1=sin(x);subplot(221)plot(x,y1)subplot(222)plot(x,y1,x,y2)w=[2 3;3 1;4 6]subplot(223)plot(w)q=[4 6:3 5:1 2]subplot(224)plot(w,q)084调整刻度图像:x=0:0.1:10;y1=sin(x);y2=exp(x);y3=exp(x).*sin(x);subplot(221)plot(x,y2)subplot(222)loglog(x,y2)subplot(223)plotyy(x,y1,x,y2)085等高线等图形,三维图:t=0:pi/50:10*pi;subplot(2,3,1)plot3(t.*sin(t),t.*cos(t),t.^2) grid on[x,y]=meshgrid([-2:0.1:2])z=x.*exp(-x.^2-y.^2)subplot(2,3,2)plot3(x,y,z)box offsubplot(2,3,3)meshz(x,y,z)subplot(2,3,4)surf(x,y,z)contour(x,y,z)subplot(2,3,6)surf(x,y,z)subplot(2,3,5)contour(x,y,z)box offsubplot(2,3,6)contour3(x,y,z)axis off086统计图Y=[5 2 1;8 7 3;9 8 6;5 5 5;4 3 2]subplot(221)bar(Y)box offsubplot(222)bar3(Y)subplot(223)barh(Y)subplot(224)bar3h(Y)087面积图Y=[5 1 2;8 3 7;9 6 8;5 5 5;4 2 3];subplot(221)area(Y)grid onset(gca,'Layer','top','XTick',1:5)sales=[51.6 82.4 90.8 59.1 47.0];x=90:94;profits=[19.3 34.2 61.4 50.5 29.4];subplot(222)area(x,sales,'facecolor',[0.5 0.9 0.6], 'edgecolor','b','linewidth',2) hold onarea(x,profits,'facecolor',[0.9 0.85 0.7], 'edgecolor','y','linewidth',2) hold offset(gca,'Xtick',[90:94])set(gca,'layer','top')gtext('\leftarrow 销售量') gtext('利润')gtext('费用')xlabel('年','fontsize',14)088函数的插值:x=0:2*pi;y=sin(x);xi=0:0.1:8;yi1=interp1(x,y,xi,'linear')yi2=interp1(x,y,xi,'nearest') yi3=interp1(x,y,xi,'spline')yi4=interp1(x,y,xi,'cublic')p=polyfit(x,y,3)yy=polyval(p,xi)subplot(3,2,1)plot(x,y,'o')subplot(3,2,2)plot(x,y,'o',xi,yy)subplot(3,2,3)plot(x,y,'o',xi,yi1)subplot(3,2,4)plot(x,y,'o',xi,yi2)subplot(3,2,5)plot(x,y,'o',xi,yi3)subplot(3,2,6)plot(x,y,'o',xi,yi4)089二维插值计算:[x,y]=meshgrid(-3:0.5:3);z=peaks(x,y);[xi,yi]=meshgrid(-3:0.1:3); zi=interp2(x,y,z,xi,yi,'spline') plot3(x,y,z)hold onmesh(xi,yi,zi+15)hold offaxis tight090函数表达式;function f=exlin(x)if x<0f=-1;elseif x<1f=x;elseif x<2f=2-x;elsef=0;end091:硬循环语句:n=5;for i=1:nfor j=1:nif i==ja(i,j)=2;elsea(i,j)=0;endendendwhile 循环语句:n=1;while prod(1:n)<99^99;n=n+1endn:092 switch开关语句a=input('a=?')switch acase 1disp('It is raning') case 0disp('It do not know')case -1disp('It is not ranging')otherwisedisp('It is raning ?')end093画曲面函数:x1=linspace(-3,3,30)y1=linspace(-3,13,34)[x,y]=meshgrid(x1,y1);z=x.^4+3*x.^2-2*x+6-2*y.*x.^2+y.^2-2*y; surf(x,y,z)。
大学matlab考试题及答案
大学matlab考试题及答案大学MATLAB考试题及答案一、选择题1. MATLAB的全称是什么?A. Matrix LaboratoryB. Microprocessor Application Tool SetC. Microsoft Advanced Tool SetD. Microprocessor Application Test System答案:A2. 在MATLAB中,以下哪个命令用于绘制三维图形?A. plotB. scatterC. surfD. bar答案:C3. MATLAB中用于求解线性方程组的函数是?A. solveB. linsolveC. linprogD. fsolve答案:A二、简答题1. 简述MATLAB的基本数据类型有哪些,并给出至少两个每种类型的示例。
答案:MATLAB的基本数据类型包括数值数组、字符数组和单元数组。
数值数组可以是向量、矩阵或多维数组。
例如,向量 `v = [1 2 3]`,矩阵 `M = [1 2; 3 4]`。
字符数组是由单引号或双引号括起来的字符序列,如 `C = 'Hello'`。
单元数组可以包含不同类型的数据,如`{1, 'text', [1; 2; 3]}`。
2. 描述如何在MATLAB中实现矩阵的转置和翻转。
答案:矩阵的转置可以通过 `'T'` 来实现,例如 `A'` 表示矩阵A 的转置。
矩阵的翻转可以通过 `flip` 函数实现,例如 `flip(A)` 可以翻转矩阵A的所有行和列,`flipud(A)` 仅翻转矩阵A的行,而`fliplr(A)` 仅翻转矩阵A的列。
三、编程题1. 编写一个MATLAB函数,该函数接受一个向量作为输入,并返回向量中所有元素的和以及平均值。
```matlabfunction [sumVal, avgVal] = calculateSumAndAverage(V)sumVal = sum(V);avgVal = mean(V);end```2. 设计一个MATLAB脚本来解决以下问题:给定一个3x3的矩阵,找出其中最大的元素,并显示其位置。
(完整版)matlab基础练习题(带答案)
Matlab 基础练习题常量、变量、表达式1、 MATLAB 中,下面哪些变量名是合法的?( )(A )_num (B )num_ (C )num- (D )-num 2、 在MA TLAB 中,要给出一个复数z 的模,应该使用( )函数。
(A )mod(z) (B )abs(z) (C )double(z) (D )angle(z) 3、 下面属于MATLAB 的预定义特殊变量的是?( )(A )eps (B )none (C )zero (D )exp4、 判断:在MA TLAB 的内存工作区中,存放一个英文字符 'a' 需要占用1个字节,存放一个中文字符‘啊’需要占用2个字节。
( 错,都是2个字节 )5、 判断:MA TLAB 中,i 和j ( 对 )6、 判断:MA TLAB 中,pi 代表圆周率,它等于3.14。
( 错,后面还有很多位小数 )7、 在MA TLAB 中,若想计算的51)3.0sin(21+=πy 值,那么应该在MA TLAB 的指令窗中输入的MA TLAB 指令是__y1=2*sin(0.3*pi)/(1+sqrt(5))_。
8、 在MA TLAB 中,a = 1,b = i ,则a 占_8__个字节,b 占_16_个字节,c 占________字节。
9、 在MA TLAB 中,inf 的含义是__无穷大__,nan 的含义是__非数(结果不定)___。
数组1、 在MA TLAB 中,X 是一个一维数值数组,现在要把数组X 中的所有元素按原来次序的逆序排列输出,应该使用下面的( )指令。
(A )X[end:1] (B )X[end:-1:1] (C )X (end:-1:1) (D )X(end:1) 2、 在MA TLAB 中,A 是一个字二维数组,要获取A 的行数和列数,应该使用的MATLAB的命令是( )。
(A )class(A) (B )sizeof(A) (C )size(A) (D )isa(A)3、 在MATLAB 中,用指令x=1:9生成数组x 。
matlab习题及答案
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
MATLAB习题及参考答案经典.doc
习题:1, 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
2, 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
3, 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
4, 角度[]604530=x ,求x 的正弦、余弦、正切和余切。
(应用sin,cos,tan.cot)5, 将矩阵⎥⎦⎤⎢⎣⎡=7524a 、⎥⎦⎤⎢⎣⎡=3817b 和⎥⎦⎤⎢⎣⎡=2695c 组合成两个新矩阵: (1)组合成一个4⨯3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡237912685574(2)按照a 、b 、c 的列顺序组合成一个行矢量,即 []2965318772546, 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
(应用poly,polyvalm)7, 求解多项式x 3-7x 2+2x +40的根。
(应用roots)8, 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
(应用poly,polyvalm)9, 计算多项式9514124234++--x x x x 的微分和积分。
(应用polyder,polyint ,poly2sym)10, 解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡66136221143092x 。
(应用x=a\b)11, 求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解。
(应用pinv) 12, 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=943457624a ,计算a 的行列式和逆矩阵。
(应用det,inv)13, y =sin(x ),x 从0到2π,∆x =0.02π,求y 的最大值、最小值、均值和标准差。
(完整word版)matlab经典习题及解答
第1章 MATLAB概论1.1与其他计算机语言相比较,MATLAB语言突出的特点是什么?MATLAB具有功能强大、使用方便、输入简捷、库函数丰富、开放性强等特点.1.2 MATLAB系统由那些部分组成?MATLAB系统主要由开发环境、MATLAB数学函数库、MATLAB语言、图形功能和应用程序接口五个部分组成。
1.4 MATLAB操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?在MATLAB操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close按钮,一个是可以使窗口成为独立窗口的Undock按钮,点击Undock按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view菜单中选择Dock ……菜单项就可以将独立的窗口重新防止的桌面上。
1.5 如何启动M文件编辑/调试器?在操作桌面上选择“建立新文件”或“打开文件"操作时,M文件编辑/调试器将被启动.在命令窗口中键入edit命令时也可以启动M文件编辑/调试器.1.6 存储在工作空间中的数组能编辑吗?如何操作?存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1。
7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途?命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中。
1。
8 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file菜单中的Set Path 菜单项来完成。
在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被MATLAB运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。
MATLAB习题与答案详解
A 类1.矩阵20112494031221234341322321444423324151345363425161453735261786462927189747382819101483930=m ,求矩阵的秩,特征值,特征向量,相似矩阵,对角化,二次型及其标准型。
2.画出如图所示的图形y=sin(x)x 轴y 轴y=cos(x)x 轴y轴2468010203040y=x 2x 轴y 轴2468-30-20-10010y=5-4*xx 轴y轴3要求:1) 对每列进行[0,1]区间化 '(min())/(max()min())x x x x x =--;2) 把区间化后的表的右边3列,连接在左边3列下边,构成16行3列的表;3) 把16行3列进行转置,得到3行16列的表。
然后对列进行操作,把3行16列的表变成一列,后转置成一行,得到最终的结果。
4、下表为81)2) 把任意两点距离的表中,自己到自己的距离,转变成无穷大5.附件1给出了100个学生的学号和五门课程成绩。
1)求五门课总分最高分和最低分及相应学生的学号。
2)设计一个成绩查询系统,要求输入某学生的学号能够返回该学生各科成绩,总分以及在100个人中的名次。
B类(三选二)6.假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。
条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?7、模拟猫跑一条轨迹,轨迹为倒“8”字,轨迹如下:(条件自行拟定)8.当一个球从h米自由下落后,被地面弹起h1,再一次下落,直至平衡,如图所示,请模拟这个过程。
1 2 3 4 5 6 7 8x 4.22 7.92 6.56 8.49 6.79 7.43 6.55 7.06y 9.16 9.59 0.36 9.34 7.58 3.92 1.71 0.32。
matlab试题及答案
matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。
答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。
矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。
矩阵的转置使用单引号`'`,例如`A'`。
矩阵的求逆使用`inv`函数,例如`inv(A)`。
2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。
`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。
A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。
答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。
matlab期末考试题目及答案
matlab期末考试题目及答案1. 题目:编写一个MATLAB函数,实现矩阵的转置操作。
答案:可以使用`transpose`函数或`.'`操作符来实现矩阵的转置。
例如,对于一个矩阵`A`,其转置可以通过`A'`或`transpose(A)`来获得。
2. 题目:使用MATLAB求解线性方程组Ax=b,其中A是一个3x3的矩阵,b是一个3x1的向量。
答案:可以使用MATLAB内置的`\`操作符来求解线性方程组。
例如,如果`A`和`b`已经定义,求解方程组的代码为`x = A\b`。
3. 题目:编写MATLAB代码,计算并绘制函数f(x) = sin(x)在区间[0, 2π]上的图像。
答案:首先定义x的范围,然后计算对应的函数值,并使用`plot`函数绘制图像。
代码示例如下:```matlabx = linspace(0, 2*pi, 100); % 定义x的范围y = sin(x); % 计算函数值plot(x, y); % 绘制图像xlabel('x'); % x轴标签ylabel('sin(x)'); % y轴标签title('Plot of sin(x)'); % 图像标题```4. 题目:使用MATLAB编写一个脚本,实现对一个给定的二维数组进行排序,并输出排序后的结果。
答案:可以使用`sort`函数对数组进行排序。
如果需要对整个数组进行排序,可以使用`sort`函数的两个输出参数来获取排序后的索引和值。
代码示例如下:```matlabA = [3, 1, 4; 1, 5, 9; 2, 6, 5]; % 给定的二维数组[sortedValues, sortedIndices] = sort(A(:)); % 对数组进行排序sortedMatrix = reshape(sortedValues, size(A)); % 将排序后的值重新构造成矩阵disp(sortedMatrix); % 显示排序后的结果```5. 题目:编写MATLAB代码,实现对一个字符串进行加密,加密规则为将每个字符的ASCII码值增加3。
matlab习题及答案
matlab习题及答案Matlab习题及答案Matlab是一种强大的数学计算软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习和使用Matlab的过程中,习题是一种非常有效的学习方式。
本文将给出一些常见的Matlab习题及其答案,帮助读者更好地掌握Matlab的使用技巧。
一、基础习题1. 计算1到100之间所有奇数的和。
解答:```matlabsum = 0;for i = 1:2:100sum = sum + i;enddisp(sum);```2. 编写一个函数,计算任意两个数的最大公约数。
解答:```matlabfunction gcd = computeGCD(a, b)while b ~= 0temp = b;a = temp;endgcd = a;end```3. 编写一个程序,生成一个5×5的随机矩阵,并计算矩阵的行和列的平均值。
解答:```matlabmatrix = rand(5);row_average = mean(matrix, 2);col_average = mean(matrix);disp(row_average);disp(col_average);```二、进阶习题1. 编写一个程序,实现插入排序算法。
解答:```matlabfunction sorted_array = insertionSort(array)n = length(array);for i = 2:nj = i - 1;while j > 0 && array(j) > keyarray(j+1) = array(j);j = j - 1;endarray(j+1) = key;endsorted_array = array;end```2. 编写一个程序,实现矩阵的转置。
解答:```matlabfunction transposed_matrix = transposeMatrix(matrix) [m, n] = size(matrix);transposed_matrix = zeros(n, m);for i = 1:mfor j = 1:ntransposed_matrix(j, i) = matrix(i, j);endendend```3. 编写一个程序,实现二分查找算法。
matlab习题与解答
matlab习题与解答MATLAB 习题与解答习题1:利用if 语句根据不同的输入a 值,获取响应的计算因子,()()()[]()0.01,560.03,80.05,0,40.00,a or a a Lfactor a else==??>?=?∈ MatLab 代码:a=input('请输入a :');if a==5||a==6Lfactor=0.01elseif a>8Lfactor=0.03elseif a>=0&&a<=4Lfactor=0.05elseLfactor=0end运行结果:习题2:了解max 函数,执行v=[12 3.4 32 12 43]; [a n]=max(v),其中a 返回v 的最大值,n 返回v 中最大值a 的位置。
独立编制一段程序,实现matlab 内部函数max 的功能。
MatLab 代码:v=[12 3.4 32 12 43]; [a n]=max(v)a=v(1);n=1;for i=2:length(v)if a<v(i)< bdsfid="88" p=""></v(i)<>a=v(i);n=i;endend[a n]输出结果:习题3:执行vpa(pi,20), 解释vpa函数的功能MatLab 代码:vpa(pi,20)运行结果:vpa函数功能:matlab控制运算精度用的是digits和vpa这两个函数,digits用于规定运算精度,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。
习题4:求解如下方程组:4x+2y-z=23x-y+2z=1012x+3y=8MatLab 代码:A=[4 2 -1;3 -1 2;12 3 0];b=[2;10;8];A\b运行结果:习题5:创建矩阵[-1 6 15 –7 -2 -4 -6]并选出其中非正元素组成一个新的向量s1,并对s1进行升序排列行程矩阵s2 。
matlab简单编程21个题目及答案
1、设⎥⎦⎤⎢⎣⎡++=)1(sin35.0cos2xxxy,把x=0~2π间分为101点,画出以x为横坐标,y为纵坐标的曲线。
第一题的matlab源程序:①考虑cos(x)为一个整体,然后乘以中括号里面的全部x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式plot(x,y)%画出图形图如下:②考虑对整体求解cos,先求x乘以括号中的部分x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式plot(x,y) %画出图形图如下:2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。
并求该矩阵全体数的平均值和均方差。
第二题的matlab源程序如下:R1=randn(8,6) %产生正态分布随机矩阵R1 =1.0933 -0.7697 1.5442 -0.1924 1.4193 0.21571.1093 0.3714 0.0859 0.8886 0.2916 -1.1658-0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.14800.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049-1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223-1.1135 0.0326 2.3505 0.4882 0.6966 2.5855-0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.66691.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值aver =0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差a =1.0819 0.8093 1.3456 0.8233 0.8079 1.2150aver1=(sum(R1(:)))./48 %全体数的平均值aver1 =0.0950b=std(R1(:)) %全体数的均方差即标准差b =1.01033、设x=rcost+3t,y=rsint+3,分别令r=2,3,4,画出参数t=0~10区间生成的x~y 曲线。
matlab习题与答案
matlab习题与答案
MATLAB习题与答案
MATLAB是一种强大的数学软件,广泛应用于工程、科学和金融等领域。
通过MATLAB,用户可以进行数据分析、图像处理、模拟建模等多种操作。
为了帮
助大家更好地掌握MATLAB的应用,我们为大家准备了一些习题与答案,希望
能够帮助大家更好地理解和掌握MATLAB的使用。
习题一:编写一个MATLAB程序,实现对给定矩阵的转置操作。
解答:可以使用MATLAB中的transpose函数来实现矩阵的转置操作。
例如,
对于一个3x3的矩阵A,可以使用以下代码实现转置操作:
A = [1 2 3; 4 5 6; 7 8 9];
B = transpose(A);
习题二:编写一个MATLAB程序,实现对给定矩阵的逆矩阵计算。
解答:可以使用MATLAB中的inv函数来实现对矩阵的逆矩阵计算。
例如,对
于一个3x3的矩阵A,可以使用以下代码实现逆矩阵计算:
A = [1 2 3; 4 5 6; 7 8 9];
B = inv(A);
习题三:编写一个MATLAB程序,实现对给定矩阵的特征值和特征向量计算。
解答:可以使用MATLAB中的eig函数来实现对矩阵的特征值和特征向量计算。
例如,对于一个3x3的矩阵A,可以使用以下代码实现特征值和特征向量计算:A = [1 2 3; 4 5 6; 7 8 9];
[V, D] = eig(A);
通过以上习题与答案的学习,相信大家对MATLAB的应用已经有了更深入的了
解。
希望大家能够多加练习,不断提升自己的MATLAB技能,为今后的工作和学习打下坚实的基础。
MATLAB题目和答案
MATLAB题目和答案题目1编写一个MATLAB函数,该函数可以计算一个矩阵的逆矩阵。
解答1function invMatrix = calculateInverse(matrix)invMatrix = inv(matrix);end题目2编写一个MATLAB函数,该函数可以计算两个矩阵的乘积。
解答2function productMatrix = calculateProduct(matrix1, matrix2)productMatrix = matrix1 * matrix2;end编写一个MATLAB函数,该函数可以计算一个向量中的最大值和最小值。
解答3function [maxValue, minValue] = calculateMinMa x(vector)maxValue = max(vector);minValue = min(vector);end题目4编写一个MATLAB函数,该函数可以计算一个向量的平均值和标准差。
解答4function [average, stdDev] = calculateAverageA ndStdDev(vector)average = mean(vector);stdDev = std(vector);end编写一个MATLAB函数,该函数可以生成一个指定长度的斐波那契数列。
解答5function fibonacciSequence = generateFibonacci Sequence(length)fibonacciSequence = zeros(1, length);fibonacciSequence(1) = 0;fibonacciSequence(2) = 1;for i = 3:lengthfibonacciSequence(i) = fibonacciSequence (i-1) + fibonacciSequence(i-2);endend题目6编写一个MATLAB函数,该函数可以计算一个向量的累积和。
MATLAB习题及答案
一、填空题1.MATLAB于1984年由美国Mathworks公司推出,其后每年更新(两)次。
2.MATLAB是一种以(矩阵)运算为基础的交互式程序设计语言。
3.MATLAB具有卓越的数值计算能力和符号计算、文字处理、可视化建模仿真和实时控制等众多功能,其每个变量代表一个(矩阵),每个元素都看作(复数)。
4.通过命令(help)、(lookfor),可以查找所有命令或函数的使用方法。
5.执行语句a=1:2:10,得到的一维数组是(1 3 5 7 9).6.执行语句b=linspace(1,10,10)后,一维数组b包含(10)个元素,最大值是(10)。
7.函数rem()的功能是取(余)数。
8.若p=[1 0 0;1 1 0],则p|~p=([1 1 1;1 1 1]).(注:填空时请用本题的p的方式表示结果)9.若p=[1 0 0;1 1 0],则all(p)=([1 0 0]).10.矩阵的加减运算,要求相加减的矩阵阶数相同。
若A=[1 2 3 4;2 3 1 8],则执行语句:[n,m]=size(A),则n=( 2 ),m=( 4 ).11.对于一维矩阵,求其长度的函数是(length() ).12.数组和数组之间的运算,尤其是对于乘除运算和乘方运算,如果采用点方式进行计算,表明是数组的(元素)之间的运算关系。
13.求矩阵运算A*B时,要求在维度上,A的(列)数与B的(行)数相等。
二、判断题1.MATLAB只有一种数据类型,一种标准的输入输出语句,不需编译,可直接运行。
(对)2.MATLAB的特殊常量是一些预选定义好的数值变量。
(对)3.MATLAB变量名不区分大小写。
(错)4.i是特殊常量。
(对)5.NAN是非数。
(对)6.MATLAB中所有的变量都表示一个矩阵或一个向量。
(对)7.MATLAB中变量不需要先定义后使用,会自动根据实际赋值的类型对变量类型进行定义。
(对)8.clc命令可以从内存中删除一个、多个和所有变量。
matlab试题及答案
matlab试题及答案一、单项选择题(每题2分,共10分)1. MATLAB中用于创建向量的命令是:A. vectorB. arrayC. linspaceD. colon答案:D2. 在MATLAB中,以下哪个函数用于计算矩阵的行列式?A. detB. rankC. invD. eig答案:A3. MATLAB中用于进行矩阵转置的运算符是:A. 'B. .C. ^D. !答案:A4. 若A是一个3x3的矩阵,执行命令A(2,:)=0;后,矩阵A的第二行将变为:A. [0 0 0]B. [1 0 0]C. [0 1 0]D. [0 0 1]答案:A5. MATLAB中,以下哪个函数用于绘制三维曲面图?A. plotB. surfC. barD. hist答案:B二、填空题(每题3分,共15分)1. MATLAB中,使用________命令可以清除所有变量。
答案:clear2. 若要在MATLAB中创建一个从0到1的100个元素的向量,可以使用命令________。
答案:linspace(0,1,100)3. MATLAB中,使用________函数可以计算矩阵的特征值。
答案:eig4. 在MATLAB中,________函数用于计算两个矩阵的点乘。
答案:dot5. 若要在MATLAB中绘制一个圆,可以使用________函数。
答案:plot三、简答题(每题5分,共20分)1. 请解释MATLAB中矩阵索引的概念。
答案:在MATLAB中,矩阵索引指的是通过行号和列号来访问矩阵中特定元素的过程。
例如,A(2,3)表示访问矩阵A的第二行第三列的元素。
2. MATLAB中如何实现矩阵的元素乘法?答案:在MATLAB中,矩阵的元素乘法可以通过使用点乘运算符(.*)来实现。
例如,C = A .* B,其中A和B是相同大小的矩阵。
3. 请说明MATLAB中如何使用循环结构。
答案:MATLAB中可以使用for循环和while循环两种循环结构。
matlab练习题答案
matlab练习题答案一、求解线性方程组题目描述:解以下线性方程组2x + 3y - z = 7x - y + 2z = 33x + 2y + 4z = 12解答:使用MATLAB的线性方程组求解函数linsolve,可以得到该线性方程组的解。
代码如下:A = [2, 3, -1; 1, -1, 2; 3, 2, 4];B = [7; 3; 12];X = linsolve(A, B);其中,A为系数矩阵,B为常数矩阵,X为方程组的解矩阵。
运行以上代码,即可得到方程组的解为:X =2.0000-1.00003.0000所以,该线性方程组的解为x=2,y=-1,z=3。
二、矩阵运算题目描述:计算矩阵A和矩阵B的乘积,其中A为3×2矩阵,B为2×4矩阵。
A = [1, 2; 3, 4; 5, 6];B = [7, 8, 9, 10; 11, 12, 13, 14];解答:使用MATLAB的矩阵乘法运算符*,可以计算矩阵A和矩阵B的乘积。
代码如下:A = [1, 2; 3, 4; 5, 6];B = [7, 8, 9, 10; 11, 12, 13, 14];C = A * B;运行以上代码,即可得到矩阵A和矩阵B的乘积矩阵C。
C =29 32 35 3865 72 79 86101 112 123 134所以,矩阵A和矩阵B的乘积为一个3×4矩阵C,其中C的元素为上述结果。
三、绘制函数图像题目描述:绘制函数y = sin(x)在区间[0, 2π]上的图像。
解答:使用MATLAB的绘图函数plot,可以绘制函数的图像。
代码如下:x = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);其中,linspace函数用于生成0到2π之间的线性间隔向量,共100个点。
sin函数用于计算每个点的函数值。
plot函数用于绘制图像。
运行以上代码,即可得到函数y = sin(x)在区间[0, 2π]上的图像。
MATLAB习题及参考答案
2 9 0 1310,解方程组3 4 11 x 6。
(应用x=a\b)2 2 6 611,求欠定方程组294 73 54x68的最小范数解。
(应用pinv)5习题:6 9 3 2 4 1与b 的数组乘积。
2 7 5 4 6 81,计算a2, 对于AX B,如果A 3726,求解X。
283,已知:a 1 2 34 5 6,分别计算a的数组平方和矩阵平方,并观察其结果。
7 8 94,角度x 30 45 60,求x的正弦、余弦、正切和余切。
(应用sin,cos,4 2 7 15 95,将矩阵a 、b 和c 组合成两个新矩阵:5 7 8 36 2(1)组合成一个4 3的矩阵,第一列为按列顺序排列的a矩阵元素,第二列为按列顺序排列的元素,第三列为按列顺序排列的c矩阵元素,即b矩阵4 7 55 8 62 1 97 3 2(2)按照a、b、c的列顺序组合成一个行矢量,即4527781356926,将(x-6)(x-3)(x-8)展开为系数多项式的形式。
(应用poly,polyvalm)7,求解多项式X3-7X2+2X+40的根。
(应用roots)8,求解在x=8 时多项式(x-1)( x-2) ( x-3)( x-4)的值。
(应用poly,polyvalm)9, 计算多项式4x412x314x25x 9的微分和积分。
(应用polyder,polyint ,poly2sym)2 2计算表达式z 10 x 3 y 5 e x y 的梯度并绘图。
(应用meshgrid, gradient, con tour, holdon, quiver)15,用符号函数法求解方程a t 2+b*t +c=0。
(应用solve )16,用符号计算验证三角等式:(应用syms,simple )用 syms,ezplot)用 plot,title,text,legend)24, x= [66 49 71 56 38] ,绘制饼图,并将第五个切块分离出来。
MATLAB习题及答案
填空题1. MATLAB于1984年由美国Mathworks公司推出,其后每年更新(两次。
2. MATLAB是一种以(矩阵)运算为基础的交互式程序设计语言。
3. MATLAB具有卓越的数值计算能力和符号计算、文字处理、可视化建模仿真和实时控制等众多功能,其每个变量代表一个(矩阵),每个元素都看作(复数)。
4.通过命令(help)、(lookfor),可以查找所有命令或函数的使用方法。
5.执行语句a=1:2:10,得到的一维数组是(1 3 5 7 9).6.执行语句b=linspace(1,10,10)后,一维数组b包含(10)个元素,最大值是10)7.函数rem()的功能是取(余)数。
8.若p=[1 0 0;1 1 0],则p|〜p=([1 1 1;1 1 1]).(注:填空时请用本题的p的方式表示结果)9.若p=[1 0 0;1 1 0],则all(p)=([1 0 0]).10.矩阵的加减运算,要求相加减的矩阵阶数相同。
若A=[1 2 3 4;2 3 1 8],则执行语句:[n,m]=size(A),则n=(2 ),m=(4 ).11.对于一维矩阵,求其长度的函数是(length()).12.数组和数组之间的运算,尤其是对于乘除运算和乘方运算,如果采用点方式进行计算,表明是数组的(元素)之间的运算关系。
13.求矩阵运算A*B时,要求在维度上,A的(列)数与B的(行)数相等。
二、判断题1.MATLAB只有一种数据类型,一种标准的输入输出语句,不需编译,可直接运行。
(对2.MATLAB的特殊常量是一些预选定义好的数值变量。
(对3.MATLAB变量名不区分大小写。
(错4.i是特殊常量。
(对5.NAN是非数。
(对6.MATLAB中所有的变量都表示一个矩阵或一个向量。
(对7.MATLAB中变量不需要先定义后使用,会自动根据实际赋值的类型对变量类型进行定义。
(对8.clc命令可以从内存中删除一个、多个和所有变量。
MATLAB考试试题及答案
MATLAB考试试题及答案一、选择题(每题5分,共25分)1. 在MATLAB中,下列哪个命令用于创建一个行向量?A. v = [1; 2; 3]B. v = [1 2 3]C. v = [1, 2, 3]D. v = (1, 2, 3)答案:B2. 在MATLAB中,下列哪个命令用于计算矩阵A的行列式?A. det(A)B. det(A')C. det(inv(A))D. det(A^2)答案:A3. 在MATLAB中,下列哪个命令用于计算矩阵A的逆?A. inv(A)B. A^(-1)C. pinv(A)D. A\B答案:A4. 在MATLAB中,下列哪个命令用于求解线性方程组Ax= b?A. A\bB. A/BC. B/AD. A^-1b答案:A5. 在MATLAB中,下列哪个命令用于绘制二维图形?A. plot(x, y)B. scatter(x, y)C. bar(x, y)D. pie(x, y)答案:A二、填空题(每题5分,共25分)6. 在MATLAB中,可以使用______命令创建一个等差数列。
答案:linspace7. 在MATLAB中,可以使用______命令创建一个等比数列。
答案:logspace8. 在MATLAB中,可以使用______命令计算矩阵A的特征值。
答案:eig(A)9. 在MATLAB中,可以使用______命令计算矩阵A的特征向量。
答案:eigenvector(A)10. 在MATLAB中,可以使用______命令计算矩阵A的奇异值。
答案:svd(A)三、解答题(每题25分,共75分)11. 编写MATLAB程序,求解以下线性方程组:2x + 3y - z = 1x - y + 2z = 03x + 2y - 4z = -3答案:```A = [2 3 -1; 1 -1 2; 3 2 -4];b = [1; 0; -3];x = A\b;disp('解为:');disp(x);```12. 编写MATLAB程序,绘制以下函数的图形:y = sin(x) + cos(x),x ∈ [0, 2π]答案:```x = linspace(0, 2pi, 100);y = sin(x) + cos(x);plot(x, y);title('y = sin(x) + cos(x)');xlabel('x');ylabel('y');grid on;```13. 编写MATLAB程序,计算以下矩阵的特征值和特征向量:A = [1 2 3; 4 5 6; 7 8 9]答案:```A = [1 2 3; 4 5 6; 7 8 9];[V, D] = eig(A);disp('特征值:');disp(diag(D));disp('特征向量:');disp(V);```14. 编写MATLAB程序,使用牛顿迭代法求解方程f(x) = x^3 - 4x + 2 = 0在x = 1附近的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 9 2 37 2.9 对于 AX B ,如果 A 7 6 4 , B 26 ,求解 X。 3 5 7 28
>> A=[4 9 2;7 6 4;3 5 7];
>> B=[37 26 28]’; >> X=A\B X = -0.5118 4.0427 1.3318
第1章
MATLAB 概论
1.1 与其他计算机语言相比较,MATLAB 语言突出的特点是什么? MATLAB 具有功能强大、使用方便、输入简捷、库函数丰富、开放性强等特点。 1.2 MATLAB 系统由那些部分组成? MATLAB 系统主要由开发环境、MATLAB 数学函数库、MATLAB 语言、图形功能和应用程序接口五个部分组成。 1.3 安装 MATLAB 时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装? 在安装 MATLAB 时,安装内容由选择组件窗口中个复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本 平台(即 MATLAB 选项)必须安装。第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾 选要补装的组件或工具箱即可。 1.4 MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面 上? 在 MATLAB 操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的 Close 按钮,一个是可以使窗 口成为独立窗口的 Undock 按钮,点击 Undock 按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的 view 菜单中选择 Dock ……菜单项就可以将独立的窗口重新防止的桌面上。 1.5 如何启动 M 文件编辑/调试器? 在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动。在命令窗口中键入 edit 命令时 也可以启动 M 文件编辑/调试器。 1.6 存储在工作空间中的数组能编辑吗?如何操作? 存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选 中要修改的数据单元,输入修改内容即可。 1.7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途? 命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴 板中、将选定内容直接拷贝到 M 文件中。 1.8 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别? 当前目录可以在当前目录浏览器窗口左上方的输入栏中设置, 搜索路径可以通过选择操作桌面的 file 菜单中的 Set Path 菜单项来完成。在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被 MATLAB 运行和调用,如果在当前 目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件, 如果没有特别说明, 数据文件将存储在当前目录上。 1.9 在 MATLAB 中有几种获得帮助的途径? 在 MATLAB 中有多种获得帮助的途径: (1)帮助浏览器:选择 view 菜单中的 Help 菜单项或选择 Help 菜单中的 MATLAB Help 菜单项可以打开帮助浏览器; (2)help 命令:在命令窗口键入“help” 命令可以列出帮助主题,键入“help 函数名”可以得到指定函数的在线帮助 信息; (3)lookfor 命令:在命令窗口键入“lookfor 关键词”可以搜索出一系列与给定关键词相关的命令和函数 (4)模糊查询:输入命令的前几个字母,然后按 Tab 键,就可以列出所有以这几个字母开始的命令和函数。 注意:lookfor 和模糊查询查到的不是详细信息,通常还需要在确定了具体函数名称后用 help 命令显示详细信息。 第2章 2.1 在 MATLAB 中如何建立矩阵 >> a=[5 7 3;4 9 1] 2.2 有几种建立矩阵的方法?各有什么优点? 可以用四种方法建立矩阵: ①直接输入法,如 a=[2 5 7 3],优点是输入方法方便简捷; ②通过 M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; ③由函数建立,如 y=sin(x),可以由 MATLAB 的内部函数建立一些特殊矩阵; ④通过数据文件建立,该方法可以调用由其他软件产生数据。 MATLAB 矩阵运算基础
45 60 ,求 x 的正弦、余弦、正切和余切。
2.15 用四舍五入的方法将数组[2.4568 6.3982 3.9375 8.5042]取整。 >> b=[2.4568 6.3982 3.9375 8.5042]; >> round(b) ans = 2 6 4 9
பைடு நூலகம்
9 1 2 2.16 矩阵 a 5 6 3 ,分别对 a 进行特征值分解、奇异值分解、LU 分解、QR 分解及 Chollesky 分解。 8 2 7
(1)组合成一个 43 的矩阵,第一列为按列顺序排列的 a 矩阵元素,第二列为按列顺序排列的 b 矩阵元素,第三列为按 列顺序排列的 c 矩阵元素,即
4 5 2 7
7 5 8 6 1 9 3 2
(2)按照 a、b、c 的列顺序组合成一个行矢量,即
4
5 2 7 7 8 1 3 5 6 9 2
5 3 5 2 4 2 2.5 计算矩阵 3 7 4 与 6 7 9 之和。 7 9 8 8 3 6
>> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b ans = 7 9 15 7 14 12 7 13 14
5 7 3 ,并将其赋予变量 a? 4 9 1
2.3 在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。 进行矩阵运算的两个矩阵必须满足矩阵运算规则, 如矩阵 a 与 b 相乘 (a*b) 时必须满足 a 的列数等于 b 的行数。 2.4 数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运 算,如 a*b 为矩阵乘,a.*b 为数组乘。
>> [v,d]=eig(a,b) v = -0.4330 -0.5657 -0.7018 d = 13.5482 0 0 4.8303 0 0 -0.2543 0.9660 0.0472 -0.1744 -0.6091 0.7736
0 >> [u,s,v]=svd(a) u = -0.5601 -0.4762 -0.6779 s = 15.5234 0 0 v = -0.8275 -0.3075 -0.4699 l = 1.0000 0.5556 0.8889 u = 9.0000 0 0 >> [q,r]=qr(a) q = -0.6903 -0.3835 -0.6136 r = -13.0384 0 0 >> c=chol(a) c = 3.0000 0 0 0.3333 -4.2183 -4.8172 0.3969 -0.9097 0.1221 1.0000 0 1.0000 0.2041 0.3917 -0.9156 -0.0907 0 0.5320 -0.8340 0.1462
2.7 计算 a
6 9 3 2 4 1 与 b 4 6 8 的数组乘积。 2 7 5
>> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8]; >> a.*b ans = 12 8 36 42 3 40
2.8 “左除”与“右除”有什么区别? 在通常情况下,左除 x=a\b 是 a*x=b 的解,右除 x=b/a 是 x*a=b 的解,一般情况下,a\bb/a。
2.6 求 x
4 8i 3 5i 2 7i 1 4i 7 5i 的共轭转置。 3 2i 7 6i 9 4i 3 9i 4 4i
>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i]; >> x’ ans = 4.0000 - 8.0000i 3.0000 - 5.0000i 2.0000 + 7.0000i 1.0000 - 4.0000i 7.0000 + 5.0000i 3.0000 - 2.0000i 7.0000 + 6.0000i 9.0000 - 4.0000i 3.0000 + 9.0000i 4.0000 - 4.0000i
0 >> a~=b ans = 1 1 2.12 a 5
0
0
1 1
1 1
0.2 0 8 0.7 ,在进行逻辑运算时,a 相当于什么样的逻辑量。
相当于 a=[1 1 0 1 1]。 2.13 在 sin(x)运算中,x 是角度还是弧度? 在 sin(x)运算中,x 是弧度,MATLAB 规定所有的三角函数运算都是按弧度进行运算。 2.14 角度 x 30 >> x=[30 45 60]; >> x1=x/180*pi; >> sin(x1) ans = 0.5000 >> cos(x1) ans = 0.8660 >> tan(x1) ans = 0.5774 >> cot(x1) ans = 1.7321 1.0000 0.5774 1.0000 1.7321 0.7071 0.5000 0.7071 0.8660
2.11 a
1 2 5 8 7 4 ,b ,观察 a 与 b 之间的六种关系运算的结果。 3 6 4 3 6 2
>> a=[1 2 3;4 5 6]; >> b=[8 –7 4;3 6 2]; >> a>b ans = 0 1 >> a>=b ans = 0 1 >> a<b ans = 1 0 >> a<=b ans = 1 0 >> a==b ans = 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1