有限元分析概念
有限元分析FEA
广州有道计算机科技有限公司有限元分析FEA有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。
还有三维结构设计方面的UG、CATIA、Proe等都是比较强大的。
国产有限元软件:FEPG、SciFEA、,JiFEX、KMAS等有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
有限元法概述
大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
有限元分析-动力学分析PPT课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元分析法
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
有限元分析及应用
有限元分析及应用介绍有限元分析,简称FEA(Finite Element Analysis),是一种数值计算方法,用于预测结构的力学行为。
它可以将结构离散为有限个小单元,在每个小单元内进行力学计算,并通过求解得到整个结构的应力和位移分布。
有限元分析常用于工程领域中,如结构分析、热传导分析、流体流动分析等。
原理有限元分析的基本原理可以概括为以下几个步骤:1.离散化:将结构或物体离散为有限个小单元。
常见的小单元形状有三角形、四边形等,在三维问题中可以使用四面体、六面体等。
2.建立数学模型:在每个小单元内,根据结构的物理特性和力学行为建立数学模型。
模型中包括了材料的弹性模量、泊松比等参数,以及加载条件、约束条件等。
3.组装和求解:将所有小单元的数学模型组装成一个整体的数学模型,然后利用求解算法进行求解。
常见的求解算法有直接法、迭代法等。
4.后处理:得到结构的应力和位移分布后,可以进行各种后处理操作,如绘制位移云图、应力云图等,以帮助工程师分析结构的强度和刚度性能。
应用有限元分析在工程领域有着广泛的应用。
下面介绍几个常见的应用案例:结构分析有限元分析可以用于结构分析,以评估结构的刚度和强度。
在设计建筑、桥梁、航空器等工程项目时,工程师可以使用有限元分析来模拟结构的力学行为,预测结构在不同加载条件下的变形和应力分布,以优化结构设计。
热传导分析有限元分析也可以用于热传导分析,在工程项目中评估热传导或热辐射过程。
例如,在电子设备的散热设计中,可以使用有限元分析来预测电子元件的温度分布,优化散热设计,确保电子元件的正常工作。
流体流动分析在流体力学研究中,有限元分析可以用于模拟流体的运动和流动行为。
例如,在船舶设计中,可以使用有限元分析来模拟船体受到波浪作用时的变形和应力分布,验证船体的可靠性和安全性。
优缺点有限元分析具有以下优点:•可以模拟复杂结构和物理现象,提供准确的结果。
•可以优化结构设计,减少设计成本和时间。
有限元分析
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
步骤有限元分析的基本步骤通常为:第一步前处理。
根据实际问题定义求解模型,包括以下几个方面:(1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。
(2) 定义单元类型:(3) 定义单元的材料属性:(4) 定义单元的几何属性,如长度、面积等;(5) 定义单元的连通性:(6) 定义单元的基函数;(7) 定义边界条件:(8) 定义载荷。
第二步总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。
总装是在相邻单元结点进行。
状态变量及其导数(如果可能)连续性建立在结点处。
联立方程组的求解可用直接法、迭代法。
有限元分析理论基础
有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
CAE课有限元分析理论基础
类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
有限元分析法概述
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第二章有限元分析基本理论
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元分析及应用
有限元分析及应用有限元分析是一种数值计算方法,用于解决各种工程和科学领域中的复杂问题。
该方法基于物体或结构的离散性近似模型,将其分割成许多小的子领域,进而进行数学求解。
有限元分析广泛应用于结构力学、流体力学、电磁学、热传导等领域,在工程设计、产品开发和科学研究中发挥着重要作用。
一、有限元分析的原理有限元分析的核心原理是将一个复杂的物体或结构离散为许多互相连接的小尺寸单元,如三角形或四边形。
每个单元被视为一个小的、局部的子问题,并假设在每个单元内部的场变量(如位移、温度、电势等)为局部常数。
根据这一假设,可以建立一个局部方程来描述每个单元内部的行为。
为了求解整个系统的行为,将这些局部方程组合为一个整体方程组,并且采用边界条件来限制解的自由度。
然后,通过求解整体方程组,就可以得到整个系统在给定加载条件下的响应。
二、有限元分析的步骤有限元分析通常需要经过以下几个步骤:1. 几何建模:将待分析的物体或结构建立几何模型,包括定义节点、边界和连接关系等。
2. 单元划分:将几何模型划分为许多小的单元,选择合适的单元类型和尺寸。
3. 材料属性和加载条件:分配材料属性和加载条件给每个单元,如材料的弹性模量、材料的线性或非线性特性以及加载的力、温度等。
4. 单元方程建立:根据每个单元的几何形状和材料特性,建立每个单元内部的方程。
5. 整体方程建立:将所有单元的方程组合成一个整体方程,引入边界条件和约束条件。
6. 方程求解:通过数值方法(如矩阵解法)求解整体方程组。
7. 结果后处理:根据求解得到的结果,进行分析和后处理,如位移、应力和应变的计算、轴力图、位移云图等的绘制。
三、有限元分析的应用有限元分析已经应用于各种领域,主要包括以下几个方面:1. 结构力学:有限元分析可以用于评估结构的强度和刚度,预测结构的变形和破坏情况。
它广泛应用于建筑、桥梁、汽车、飞机等结构的设计和优化。
2. 流体力学:有限元分析可以用于模拟流体力学问题,如流体流动、传热和传质等。
有限元的原理
有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。
本文将从有限元分析的基本原理、步骤和应用进行介绍。
有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。
然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。
通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。
有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。
有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。
有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。
首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。
然后,需要施加边界条件,即给定结构的约束条件和外载荷。
接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。
最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。
有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。
在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。
在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。
在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。
总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。
有限元分析FEA
有限元分析FEA有限元分析(Finite Element Analysis,FEA)是一种数值分析方法,广泛应用于工程领域,用于估算结构在特定工况下的力学性能。
FEA 将复杂的实际结构抽象为有限数量的简单几何形状,然后通过对这些几何形状进行分割,建立一个离散的节点网格,进而利用数学方法对节点网格上的几何、力学和材料性能进行模拟和计算,通过求解节点间的方程组,得到结构的应力、应变、位移等结果。
1.建立几何模型:通过计算机辅助设计软件建立结构的几何模型。
模型可以是二维或三维的,包括各种几何形状,如线段、矩形、圆形等,并包含结构的尺寸和几何特征。
2.网格划分:将几何模型划分为离散的节点网格,并在节点上分配适当的节点元素。
节点元素可以是线元素、平面元素或体元素,将结构的连续性转化为离散点之间的连接关系。
3.建立力学模型:根据所要研究的问题和加载条件,确定边界条件、加载情况和材料性能等。
边界条件包括约束和加载,在节点和元素上分配适当的约束和加载。
4.建立单元刚度矩阵:根据单元的几何形状和材料特性,建立单元的刚度矩阵。
刚度矩阵包含单元的弹性刚度、几何刚度和材料刚度。
5.组装刚度矩阵:将所有单元的刚度矩阵根据节点的连接关系进行组装,得到总体的刚度矩阵。
组装的过程包括将单元刚度矩阵映射到全局坐标系、考虑边界条件和加载等。
6.求解方程组:建立节点的位移和约束条件之间的关系,得到结构的位移、应力和应变等结果。
可以通过直接解方程组或迭代求解的方法得到最终结果。
7.后处理:根据具体问题的要求,对结果进行分析和解释。
可以绘制位移云图、应力云图、应变云图等,进行结构的评估和优化。
FEA有以下几个主要特点和优势:1.可适用于各种工程领域:FEA可以用于解决结构和材料的强度、稳定性、疲劳、振动、热传导、电磁等多种问题,广泛应用于航空航天、汽车、能源、建筑和机械制造等领域。
2.具有高精度:通过适当的剖分和合理的力学模型,能够在相对较短的时间内提供较准确的结果,并对结构进行合理和有效的评估。
什么是有限元分析
非变形体 (刚体)
材料力学
对象:简单变形体 特征:变形(小)
简单形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
结构力学
对象:数量众多的简单变形体 特征:变形(小)
简单形状的体(数量众多)
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
弹性力学
对象:任意变形体 特征:变形(小)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(针对微体dxdydz) (1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
模型的建立
设定材料属性
E、G、μ等等
添加边界条件
约束、载荷
划分网格
运行求解
后处理
结果的提取 应力、应变、位移等等
• 边界条件的添加
边界条件——当研究一个物体,与该物体相连接的其他物体被拿掉时,用一个约束或者 载荷来替代被拿掉的物体。这个约束或者载荷就是边界条件。
固定铰链
添加边界条件
位移边界条件 力边界条件
弹性常数
物体变形后的形状 物体的变形程度 物体的受力状态
物体的材料特征
• 基本方程
力的平衡方程: 几何变形方程: 材料的物理方程(本构关系):
力→应力 位移→应变 应力→应变
力平衡方程
几何变形方程
本构关系
• 有限元法的思路
连续体
第一节 有限元分析概述
第一节 有限元分析概述对于一般的工程受力问题,希望通过平衡微分方程、变形协调方程、几何方程和本构方程联立求解而获得整个问题的精确解是十分困难的,一般几乎是不可能的。
随着20世纪五六十年代计算机技术的出现和发展、以及工程实践中对数值分析要求的日益增长,并发展起来了有限元的分析方法。
有限元法自1960年由Clough首次提出后,获得了迅速的发展;虽然首先只是应用于结构的应力分析,但很快就广泛应用于求解热传导、电磁场、流体力学、成形工艺等连续问题。
一、有限元法的基本概念对于连续体的受力问题,既然作为一个整体获得精确求解十分困难;于是,作为近似求解,可以假想地将整个求解区域离散化,分解成为一定形状有限数量的小区域(即单元),彼此之间只在一定数量的指定点(即节点)处相互连接,组成一个单元的集合体以替代原来的连续体,如图7-1弯曲凹模的受力分析所示;只要先求得各节点的位移,即能根据相应的数值方法近似求得区域内的其他各场量的分布;这就是有限元法的基本思想。
从物理的角度理解,即将一个连续的凹模截面分割成图7-1所示的有限数量的小三角形单元,而单元之间只在节点处以铰链相连接,由单元组合成的结构近似代替原来的连续结构。
如果能合理地求得各单元的力学特性,也就可以求出组合结构的力学特性。
于是,该结构在一定的约束条件下,在给定的载荷作用下,各节点的位移即可以求得,进而求出单元内的其他物理场量。
这就是有限元方法直观的物理的解释。
从数学角度理解,是将图7-1所示的求解区域剖分成许多三角形子区域,子域内的位移可以由相应各节点的待定位移合理插值来表示。
根据原问题的控制方程(如最小势能原理)和约束条件,可以求解出各节点的待定位移,进而求得其他场量。
推广到其他连续域问题,节点未知量也可以是压力、温度、速度等物理量。
这就是有限元方法的数学解释。
从有限元法的解释可得,有限元法的实质就是将一个无限的连续体,理想化为有限个单元的组合体,使复杂问题简化为适合于数值解法的结构型问题;且在一定的条件下,问题简化后求得的近似解能够趋近于真实解。
有限元分析的力学基础
应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等
有限元分析及应用的内容
有限元分析及应用的内容有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,通过将实际工程问题建模成有限元模型,采用数值计算方法对其进行求解,从而得到结构的应力、变形、热传导等结果。
其广泛应用于机械、航空航天、土木工程、电子等多个领域。
有限元分析的基本思想是将连续问题离散化成有限个简单的单元,再通过有限元法求得每个单元的解,最终拼接求出整个问题的解。
其核心步骤包括几何建模、单元划分、边界条件设置和求解等。
有限元分析的内容主要涉及以下几个方面:1. 结构力学分析:有限元分析广泛应用于结构力学分析中,可以进行静力、动力、热力、疲劳等各种类型的分析。
通过有限元法可以获得结构的应力、变形、位移、刚度和模态等信息,从而评估结构的安全性和性能。
2. 流体力学分析:有限元分析也可以用于流体力学分析中,如流体的流动、热传导等问题。
通过建立数值模型和使用适当的流体力学方程,结合有限元法可求解复杂的流体流动问题,如气体流动、液体冲击等。
3. 热传导分析:有限元分析可用于热传导问题的求解,如热传导、热辐射、热对流等。
通过建立热传导的数值模型、设置热边界条件和内部热源等,结合有限元法求解热传导问题,获得温度场和热通量等信息。
4. 模态分析:有限元分析可以进行模态分析,得到结构的固有频率、振型和振幅等信息。
模态分析在结构设计中起到重要的作用,可用于评估结构的稳定性、避免共振等问题。
5. 优化设计:有限元分析可结合优化算法进行结构的优化设计。
通过对结构的形状、材料、尺寸等参数进行改变,并以某种性能指标(如结构的最小重量、最大刚度等)作为目标函数,运用有限元分析求解器进行求解,最终得到最优的设计方案。
6. 疲劳分析:有限元分析可用于疲劳分析,通过数值模拟和加载历史条件等,得到结构在循环或随机载荷下的寿命预测。
疲劳分析对于评估结构在实际工况下的安全性和可靠性具有重要意义。
7. 耦合分析:有限元分析还可以进行结构与流体、热传导、电磁场等耦合分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析概念
有限元法
把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件。
有限元模型
它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析
是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元
是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别
1)非线性问题的方程是非线性的,一般需要迭代求解。
2)非线性问题不能采用叠加原理。
3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类
1)材料非线性问题
材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题
几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的
应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。
3)非线性边界问题
在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。
平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。
实际的非线性可能同时出现上述两种或三种非线性问题。