广东省2018年1月普通高中学业水平考试数学试卷+Word版含解析12

合集下载

2018学业水平测试:数学(1)

2018学业水平测试:数学(1)
19、圆心为两直线 x y 2 0 和 x 3y 10 0 的交点,且与直线 x y 4 0 相切的圆的标准方程是_____
三、解答题 20、若等差数列 an满足 a1 a3 8 ,且 a6 a12 36 。(1)求 an的通项
公式;(2)设数列bn满足 b1 2 , bn1 an1 2an ,求数列bn的前
3
3
二、填空题
16、双曲线 x2 y2 1 的离心率为______
9 16
17、若 sin 2 ,且 0 ,则 tan _____
2 3
18、笔筒中放有 2 支黑色和 1 支红色共 3 支签字笔,先从笔筒中随机 取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支 笔使用,则两次使用的都是黑色笔的概率为_______
D. 8和7
1
8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图 是正方形,则该几何体的体积为( )
A.1 B. 2 C.4 D. 8
x y 1 0
9、若实数
x,
y
满足

x y 0
,则 z x 2 y 的最小值为(

x 0
A. 0 B. 1 C. 3 D. 2 2
B.lgx y lg x lg y
C.lg x3 3lg x
D.lg x ln x ln10
解:对于选项 B,令 x y 1 ,则 lgx y lg 2 0, 而 lg x lg y 0 ,
显然不成立。选 B
3、已知函数
f
x

x3 1,
2018 年 1 月广东省普通高中学业水平考试

广东省高中学业水平考试数学试卷含答案(word版)

广东省高中学业水平考试数学试卷含答案(word版)

2021年广东省普通高中学业水平考试数学测试卷(时间:90分钟满分:150分)一、选择题(共15小题,每小题6分,共90分)1.集合{0,1,2}的所有真子集的个数是()A.5B.6C.7D.82.函数f(x)=lg(x-1)的定义域是()A.(2,+∞)B.(1,+∞)C.[ 1,+∞)D.[2,+∞)3.已知平面向量a=(3,1),b=(x,-3),若a⊥b,则实数x等于()A.-1B.1C.-9D.94.若函数f(x)=sin(0≤φ≤2π)是偶函数,则φ=()A. B. C. D.5.已知直线的点斜式方程是y-2=-(x-1),那么此直线的倾斜角为()A. B. C. D.6.如图是2019年在某电视节目中七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()798446479 3A.84,4.84B.84,1.6C.85,1.6D.85,47.要得到函数y=cos(2x+1)的图象,只要将函数y=cos 2x的图象()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.函数y=log a x(a>0,a≠1)的反函数的图象过,则a的值为()A.2B.C.2或D.310.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8B.10C.12D.1411.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A.6B.9C.18D.3612.已知0<a<b,且a+b=1,则下列不等式中正确的是()A.log2a>0B.2a-b<C.log2a+log2b<-2D.213.设x,y满足约束条件则z=x-2y的最小值为()A.-10B.-6C.-1D.014.=()A.-B.-C.D.15.小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲、乙两地的平均速度为v,则()A.v=B.v=C.<v<D.b<v<二、填空题(共4小题,每小题6分,共24分)16.首项为1,公比为2的等比数列的前4项和S4=.17.将一枚质地均匀的一元硬币抛3次,恰好出现一次正面的概率是.18.已知函数f(x)=则f的值是.19.锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=b,则角A等于.三、解答题(共3小题,每小题12分,共36分)20.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.21.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥平面ABC,BE∥CD,F为AD的中点.(1)求证:EF∥平面ABC;(2)求证:平面ADE⊥平面ACD;(3)求四棱锥A-BCDE的体积.22.已知等差数列{a n}满足a2+a5=8,a6-a3=3.(1)求数列{a n}的前n项和S n;(2)若b n=+3·2n-2,求数列{b n}的前n项和T n.答案:1.C【解析】真子集个数为23-1=7,故选C.2.B【解析】由题意得,x-1>0,x>1,即函数的定义域是(1,+∞),故选B.3.B【解析】a·b=3x-3=0,即x=1,故选B.4.C【解析】只需+kπ⇒φ=3kπ+(k∈Z),而φ∈[0,2π],所以φ=,选C.5.C【解析】∵k=tan α=-,∴α=π-.故选C.6.C【解析】由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据为84,84,86,84,87,平均数为=85,方差为[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]==1.6.故选C.7.C【解析】y=cos 2x→y=cos(2x+1)=cos.故选C.8.D【解析】A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.9.B【解析】函数y=log a x(a>0,a≠1)的反函数为y=a x,过点,即,解得a=,故选B.10.C【解析】设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d==2,a1=a2-d=2-2=0,所以S4==2×(0+6)=12.故选C.11.C【解析】由题意可知,几何体是以正视图为底面的三棱柱,其底面面积S=×4×=6,高是3,所以它的体积为V=Sh=18.故选C.12.C【解析】由题意知0<a<1,故log2a<0,A错误;由0<a<1,0<b<1,故-1<-b<0.又a<b,所以-1<a-b<0,所以<2a-b<1,B错误;由a+b=1>2得ab<,因此log2a+log2b=log2ab<log2=-2,C正确;由0<a<b可知>2=2,因此2>22=4,D错误.13.B【解析】由z=x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分),平移直线y=x-,由图象可知,当直线y=x-过点B时,直线y=x-的截距最大,此时z最小,由解得即B(2,4).代入目标函数z=x-2y,得z=2-8=-6,∴目标函数z=x-2y的最小值是-6.故选B.14.C【解析】===sin 30°=.故选C.15.D【解析】设甲地到乙地的距离为s.则他往返甲、乙两地的平均速度为v=,∵a>b>0,∴>1,∴v=>b.v=.∴b<v<.故选D.16.15【解析】S4==15.17.【解析】试验结果有:(正正正)(正正反)(正反正)(反正正)(反反正)(反正反)(正反反)(反反反)共8种情况,其中出现一次正面情况有3种,即P=.18.【解析】f=log2=-2,f=f(-2)=3-2=.19.【解析】因为2a sin B=b,由正弦定理有2sin A sin B=sin B.因为△ABC中sin B≠0,从而sin A=,而A是锐角,故A=.20.【解】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.21.【解】(1)证明:如图所示,取AC中点G,连接FG,BG.∵F,G分别是AD,AC的中点,∴FG∥CD,且FG=DC=1.∵BE∥CD,∴FG与BE平行且相等,∴EF∥BG.又∵EF⊄平面ABC,BG⊂平面ABC,∴EF∥平面ABC.(2)证明:由题意知△ABC为等边三角形,∴BG⊥AC.又∵DC⊥平面ABC,BG⊂平面ABC,∴DC⊥BG,∴BG垂直于平面ADC的两条相交直线AC,DC,∴BG⊥平面ADC.∵EF∥BG,∴EF⊥平面ADC.又∵EF⊂平面ADE,∴平面ADE⊥平面ACD.(3)连接EC,该四棱锥分为两个三棱锥E-ABC和E-ADC.×1+×1×.22.【解】(1)由a6-a3=3得数列{a n}的公差d==1, 由a2+a5=8,得2a1+5d=8,解得a1=,∴S n=na1+d=.(2)由(1)可得,∴T n=b1+b2+b3+…+b n=+…+(1+2+…+2n-1)=+=×(2n-1)=3·2n-1-.。

(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报

(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报

2018年1月广东省普通高中学业水平考试数学试卷(B 卷)1、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则( ){}1,0,1,2M =-{}|12N x x =-≤<M N = . . . .A {}0,1,2B {}1,0,1-C M D N2、对任意的正实数,下列等式不成立的是( ),x y . ...A lg lg lgyy x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =3、已知函数,设,则( )31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a . . ..A 2-B 1-C 12D 04、设是虚数单位,是实数,若复数的虚部是2,则( )i x 1xi+x =. . . .A 4B 2C 2-D 4-5、设实数为常数,则函数存在零点的充分必要条件是( )a 2()()f x x x a x R =-+∈. . . .A 1a ≤B 1a >C 14a ≤D 14a >6、已知向量,,则下列结论正确的是( )(1,1)a = (0,2)b =. . . .A //a b B (2)a b b -⊥C a b =D 3a b = A7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( ). . . .A 69和B 96和C 78和D 87和8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( ). .. .A 1B 2C 4D 89、若实数满足,则的最小值为,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-( ). . . .A 0B 1-C 32-D 2-10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( )o ABCD . .A DA DC AC -=B DA DC DO +=. .C OA OB AD DB -+= D AO OB BC AC++= 11、设的内角的对边分别为,若,则( )ABC A ,,A B C ,,a b c 2,a b c ===C =.. . .A 56πB 6πC 23πD 3π12、函数,则的最大值和最小正周期分别为( )()4sin cos f x x x =()f x . . . .A 2π和B 4π和C 22π和D 42π和13、设点是椭圆上的一点,是椭圆的两个焦点,若P 2221(2)4x y a a +=>12F F ,12F F =( )12PF PF +=. . . .A 4B 8C D 14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不()f x R ()f x 10x <20x >正确的是( ). . . .A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤15、已知数列的前项和,则( ){}n a n 122n n S +=-22212n a a a +++= . . ..A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题:本大题共4小题,每小题4分,满分16分.16、双曲线的离心率为 .221916x y -=17、若,且,则 .2sin()23πθ-=0θπ<<tan θ=18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标20x y +-=3100x y -++=40x y +-=准方程是 .三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.{}n a 138a a +=61236a a +=(1)求的通项公式;{}n a(2)设数列满足,,求数列的前项和.{}n b 12b =112n n n b a a ++=-{}n b n n S 21、如图所示,在三棱锥中,,,为的中点,垂P ABC -PA ABC ⊥平面PB BC =F BC DE 直平分,且分别交于点.PC DE AC PC ,,D E (1)证明:;//EF ABP 平面(2)证明:.BD AC ⊥2018年1月广东省普通高中学业水平考试数学试卷(B 卷)答案解析一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、B 解析:,故选B.{}101M N =- ,,2、B 解析:对于B 项,令,则,而,显然不成1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=立,故选B.3、C 解析: ,故选C.3(0)011a f ==-=- 11()(1)22f a f -∴=-==4、D 解析: ,故选D.(1)1(1)(1)22x x i x x i i i i -==-++-242xx ∴-=⇒=-5、C 解析:由已知可得,,故选C.11404a a ∆=-≥⇒≤6、B 解析:对于A 项,,错误;12-010⨯⨯≠对于B 项,,,则,正确;2(2,0)a b -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥对于C 项,,错误;2a = 对于D 项,,错误. 故选B.10122a b =⨯+⨯=A7、A 解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数1535010k ==320=6()10⨯人为,故选A.3(5020)9()10-⨯=人8、C解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.2214V =⨯⨯=9、D 解析:(快速验证法)交点为,则分别为,所以11(0,1),(0,0),(,22-2z x y =-32,0,2--的最小值为,故选D.z 2-10、D 解析:对于A 项,,错误;DA DC CA -=对于B 项,,错误;2DA DC DO +=对于C 项,,错误;OA OB AD BA AD BD -+=+=对于D 项,,正确. 故选D.AO OB BC AB BC AC ++=+=11、A解析:由余弦定理,得,又222cos 2a b c C ab +-=== ,故选A.0C π<< 5=6C π∴12、A 解析:,最小正周期为,故选A. ()2sin 2f x x = max ()2f x ∴=22T ππ==13、B 解析:122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=,故选B.122248PF PF a ∴+==⨯=14、D 解析:对于A 项,为上的奇函数 ,正确;()f x R (0)0f ∴=对于B 项,为上的减函数 ,正确;()f x R 110()(0)0x f x f ∴<⇒>=对于C 项,20x > 222221121x x x x x ∴+≥===(当且仅当,即时等号成立),正确;221()(2)f x f x ∴+≤对于D 项, 10x < 111111(2x x x x ∴+=--+≤-=--ll,错误. 故选D.111()(2)(2)f x f fx∴+≥-=-15、C 解析:当时,;当时,2n≥1122(22)2222n n n n nn n na S S+-=-=---=⨯-=1n=适合上式. 是首项为,公比211222a S==-=222()(2)4n n nn na n N a*∴=∈⇒=={}2n a∴4为的等比数列,故选C.4222124(14)4(41)143n nna a a--∴+++==-二、填空题:本大题共4小题,每小题4分,满分16分.16、解析:由已知,得532293,164a ab b=⇒==⇒= 222916255c a b c∴=+=+=⇒=双曲线的离心率为.∴53cea==17解析:,且2sin()cos23πθθ-==0θπ<< sinθ∴===.sin3tancos2θθθ∴===18、解析:.49224339P⨯==⨯19、解析:联立得22(4)(2)2x y-++=203100x yx y+-=⎧⎨-++=⎩4(4,2)2xy=⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为(4,2)-40x y+-=d圆的标准方程为.∴22(4)(2)2x y-++=3、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、解:(1)设等差数列的公差为.{}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩ 数列的通项公式为.2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =(2)由(1)知, 2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+ 又适合上式 2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈ 数列是首项为,公差为的等差数列.122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+21、解:(1)证明:垂直平分 为的中点DE PC E ∴PC 又为的中点 为的中位线 F BC EF ∴BCP A //EF BP∴又 ,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面(2)证明:连接BE,为的中点 PB BC = E PC PC BE∴⊥垂直平分 DE PC PC DE∴⊥又, BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面又 BD BDE ⊂ 平面PC BD∴⊥ ,PA ABC BD ABC ⊥⊂平面平面PA BD∴⊥又, PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面又 AC PAC ⊂ 平面BD AC∴⊥。

2018届广州市普通高中毕业班综合测试(一)(理数试题) 含答案

2018届广州市普通高中毕业班综合测试(一)(理数试题) 含答案



+ ) " 1!9'
#' ( ( ! ' ' # ' # %&(" $(" :( :#+ )" )" ! ' ' ' & % ' ## # & % #' ## # & % + $ + $ + ! ) # + # $ " ( !

! ! & # ) 0 ( # ( " /!-./012345678 + + " ! # " " ! " # "

# # ' # " ,#&+& %&! &. ) + ! && & . $ . ) +" ! &. ) ." $ & &# &. ) + " ! " -()*+' ! " ,!'(" ! & -

* %& $$%+) " # " # #" # "




$mCm' :4$ C" ) "

! ' # # ' ; 5" " m' 95" !# ' ' . " ' ' + # %" # % ( !# "( '

广东省2018年高一下学期期末学业水平考试数学试题+Word版含答案8

广东省2018年高一下学期期末学业水平考试数学试题+Word版含答案8

高中一年级学业水平考试数学科试题卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|13}A x x =-<<,{|1}B x x =<,则()U A C B = ( ) A .{|13}x x << B .{|13}x x ≤< C .{|13}x x <≤ D .{|13}x x ≤≤2.若lg lg 0a b +=且a b ≠,则函数()x f x a =与()x g x b =的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐月增加C .各年的月接待游客量高峰期大致在7,8月D . 各年1月至6月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.运行如图所示框图的相应程序,若输入,a b 的值分别为2log 3和3log 2,则输出M 的值是( )A .0B .1 C. 2 D .-15.已知空间两条不同的直线,m n 和两个不同的平面,αβ,以下能推出“αβ⊥”的是( )A .m n ⊥,//m α,//n βB .//m n ,m α⊥,n β⊥ C. m n ⊥,m α⊥,n αβ= D .//m n ,m α⊥,n β⊂6.直线20mx y m +-+=恒经过定点( )A .(1,1)-B .(1,2) C. (1,2)- D .(1,1) 7.某几何体的三视图如图所示,则该几何体的体积是( )A .12π+ B .32π+ C.312π+ D .332π+8.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数为( )A . 0B . 1 C. 2 D .39.直线2340x y --=与直线(1)10mx m y +++=互相垂直,则实数m =( )A . 2B .25- C. 35- D .-310.设函数()cos f θθθ+,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点1(2P ,则()f θ=( )A . 2B .211.已知函数21()log 1f x x x=+-,若1(1,2)x ∈,2(2,)x ∈+∞,则( ) A .1()0f x <,2()0f x < B .1()0f x <,2()0f x > C. 1()0f x >,2()0f x < D .1()0f x >,2()0f x >12.菱形ABCD 中,60BAD ∠=,点E 满足2DE EC =,若172AE BE ∙= ,则该菱形的面积为( )A .92B C. 6 D .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图,在矩形区域ABCD 的,A C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机地选一地点,则该地点无信号的概率是 .14.某实验室一天的温度(单位:0C )随时间t (单位:h )的变化近似满足函数关系:()102sin()123f t t ππ=-+,[0,24)t ∈,该实验室这一天的最大温差为 .15.已知幂函数a y x =的图像经过点(2,8),且与圆222x y +=交于,A B 两点,则||AB = .16.已知0sin104m =,则用含m 的式子表示0cos7为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()sin(2)cos(2)36f x x x ππ=++-,x R ∈.(1)求()f x 的最小正周期;(2)将()y f x =图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求函数()y g x =的单调递增区间.18. 已知函数2()21f x ax x a =-++. (1)若(1)(1)f x f x -=+,求实数a 的值; (2)当0a >时,求()f x 在区间[0,2]上的最大值.19. 某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.20. 如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠= .(1)证明:平面PAB ⊥平面PAD ;(2)若P A P D A B D C ===,90APD ∠= ,求直线PB 与平面ABCD 所成的角的大小.21. 长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动. (1)求线段AB 的中点的轨迹Γ的方程;(2)当2a =时,曲线Γ与x 轴交于,C D 两点,点G 在线段CD 上,过G 作x 轴的垂线交曲线Γ于不同的两点,E F ,点H 在线段DF 上,满足GH 与CE 的斜率之积为-2,试求DGH ∆与DGF ∆的面积之比.22.已知函数(),x x f x e a e x R -=+∙∈. (1)当1a =时,证明:()f x 为偶函数;(2)若()f x 在[0,)+∞上单调递增,求实数a 的取值范围;(3)若1a =,求实数m 的取值范围,使[(2)2]()1m f x f x +≥+在R 上恒成立.高中一年级学业水平考试数学科参考答案一、选择题13.14π-; 14.4; 15. 16. 17.解:(1)()sin 2cos 236f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭sin 2coscos 2sincos 2cossin 2sin3366x x x x ππππ=+++sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭,故()f x 的最小正周期22T ππ==; 【法二:由于22632x x πππ-=+-,故cos 2sin 263x x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, ()sin 2cos 22sin 2363f x x x x πππ⎛⎫⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 的最小正周期为π】(2)()22sin 263g x f x x ππ⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭, 由2222232k x k πππππ-+≤+≤+,解得71212k x k ππππ-+≤≤-+ 故()g x 的单调递增区间为7,1212k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈.18.解:(1)因为)1()1(x f x f +=-,故()f x 的图像关于直线1=x 对称, 故0a ≠且11=a,解得1=a ;【法二:直接把)1()1(x f x f +=-代入展开,比较两边系数,可得1=a 】 (2)由于0a >,()f x 的图像开口向上,对称轴10x a=>, 当11a ≤,即1a ≥时,()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f ≤,故()f x 在[]0,2上的最大值为()253f a =-; 当112a <<,即112a <<时,()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f >,()f x 在[]0,2上的最大值为()01f a =+; 当11a≥,即102a <≤时,()f x 在[]0,2上递减,最大值为()01f a =+;综上所述,()max 53,11,01a a f x a a -≥⎧=⎨+<<⎩19.解:(1)由频率分布直方图知,分数小于70的频率为()10.040.02100.4-+⨯=, 故从总体的400名学生中随机抽取一人,其分数小于70的概率为0.4; (2)由频率分布直方图知,样本中分数在[]50,90之间的人数为 ()1000.010.020.040.021090⨯+++⨯=(人), 又已知样本中分数小于40的学生有5人,故样本中分数在区间[)40,50内的人数为1009055--=(人), 估计总体中分数在区间[)40,50内的人数为20人;(3)由频率分布直方图知,样本中分数不小于70共60人,男、女各30人, 又已知样本中有一半男生的分数不小于70, 从而样本中男生共60人,女生有40人, 故总体中男生和女生人数的比例为603402=. 20.解:(1)//AB CD ,CD PD ⊥,故AB PD ⊥, 又AB PA ⊥,PA PD P = ,可得AB ⊥平面PAD ,AB ⊂ 平面PAB ,故平面PAB ⊥平面PAD ;(2)取AD 的中点O ,连PO 、BO , 由于PA PD =,故PO ⊥AD ,结合平面PAB ⊥平面PAD ,知PO ⊥平面ABCD , 故PBO ∠为直线PB 与平面ABCD 所成的角, 在等腰Rt PAD ∆和等腰Rt PAB ∆中,PO PA =,PB =, 于是1sin 2PO PBO PB ∠==,即直线PB 与平面ABCD 所成的角为30 .21.解:设线段AB 的中点为(),x y ,则()2,0A x ,()0,2B y , 故2AB a ==,化简得222x y a +=,此即线段AB 的中点的轨迹Γ的方程; 【法二:当A 、O 重合或B 、O 重合时,AB 中点到原点距离为a ;当A 、B 、O 不共线时,根据直角三角形斜边中线等于斜边的一半,知AB 中点到原点距离也恒为a ,故线段AB 的中点的轨迹Γ的方程为222x y a +=】(2)当2a =时,曲线Γ的方程为224x y +=,它与x 轴的交点为()2,0C -、()2,0D ,设()0,0G x ,()00,E x y ,()00,F x y -, 直线CE 的斜率002CE y k x =+,故直线GH 的斜率()0022GH x k y -+=, 直线GH 的方程是()()00022x y x x y -+=-,而直线DF 的方程是0022y x y x -=--,即()0022y y x x =--- 联立()()()000002222x y x x y y y x x -+⎧=-⎪⎪⎨⎪=--⎪-⎩,解得()0021323x x y y +⎧=⎪⎪⎨⎪=-⎪⎩,此即点H 的坐标,故23DGH H DGF F S y S y ∆∆==. 22.解:(1)当1a =时,()x x f x e e -=+,定义域(),-∞+∞关于原点对称, 而()()x x f x e e f x --=+=,说明()f x 为偶函数; (2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e e a f x f x e ae e ae e+--+---=+-+=,因为12x x <,函数x y e =为增函数,得12x x e e <,120x x e e -<, 而()f x 在[)0,+∞上单调递增,得()()12f x f x <,()()120f x f x -<, 于是必须120x x e a +->恒成立, 即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x x f x e e e e --=+=+-,设x x t e e -=+,则[)2,t ∈+∞,110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⋅+≥+⎡⎤⎣⎦恒成立,等价于21m t t ⋅≥+,即21t m t +≥恒成立,而22211111124tt t t t+⎛⎫=+=+-⎪⎝⎭,仅当112t=,即2t=时取最大值34,故34m≥.。

(完整版)2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析,推荐文档

(完整版)2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析,推荐文档

⎩2018 年 1 月广东省普通高中学业水平考试数学试卷(B 卷)1、选择题:本大题共 15 小题. 每小题 4 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合 M = {-1,0,1, 2}, N = {x | -1 ≤ x < 2},则 M N = ()A . {0,1, 2}B . {-1,0,1}C . MD . N2、对任意的正实数 x , y ,下列等式不成立的是()A . lg y - lg x = lg y xB . lg(x + y ) = lg x + lg yC . lg x 3= 3lg xD . lg x =ln x ln10⎪x 3 -1, x ≥ 03、已知函数 f (x ) =⎪2x , x < 0 ,设 f (0) = a ,则 f (a )= ()A . -2B . -1C .1 D . 0 2x4、设i 是虚数单位, x 是实数,若复数的虚部是 2,则 x = ()1+ iA . 4B . 2C . -2D . -45、设实数 a 为常数,则函数 f (x ) = x 2 - x + a (x ∈ R ) 存在零点的充分必要条件是()A . a ≤ 1B . a > 1C . a ≤ 14D . a > 146、已知向量 a = (1,1) , b = (0, 2) ,则下列结论正确的是( )A . a / /bB . (2a - b ) ⊥ bC . a = bD . a b = 37、某校高一(1)班有男、女学生共 50 人,其中男生 20 人,用分层抽样的方法,从该班学生中随机选取 15 人参加某项活动,则应选取的男、女生人数分别是()3 13 ⎩y= > A . 6和9B . 9和6C . 7和8D . 8和78、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A .1B . 2C . 4D . 8⎧x - y +1 ≥ 0 ⎪9、若实数 x , y 满足 ⎨x + y ≥ 0 ,则 z = x - 2 y 的最小值为⎪x ≤ 0 ()A . 0B . -1C . - 32D . -210、如图, o 是平行四边形 ABCD 的两条对角线的交点,则下列等式正确的是()A . DA - DC = AC C . O A - OB + AD = DBB . DA + DC =D OD . AO + OB + B C = AC11、设 ABC 的内角 A , B , C 的对边分别为 a , b , c ,若 a =A .5 B .C .2 D . 66333, b = 2, c = ,则C = ()12、函数 f (x ) = 4 s in x cos x ,则 f (x ) 的最大值和最小正周期分别为()A . 2和B . 4和C . 2和2D . 4和213、设点 P 是椭圆 x 2 +a 2 241(a 2) 上的一点, F 1,F 2 是椭圆的两个焦点,若 F 1F 2 = 4 ,则 PF 1 + P F 2 = ()2 { }n n A . 4 B . 8 C . 4 D . 414、设函数 f (x ) 是定义在 R 上的减函数,且 f (x ) 为奇函数,若 x 1 < 0 , x 2 > 0 ,则下列结论不正确的是()A . f (0) = 0B . f (x 1) > 0C . f (x 2 +1) ≤ x 2f (2) D . f (x 1 + 1) ≤ x 1f (2)15、已知数列 a 的前 n 项和 S = 2- 2 , 则 a + a + + a = ()n +122 2 12nA . 4(2n -1)2B . 4(2 n -1 +1)24(4n -1) C .34(4n -1 + 2)D .3二、填空题:本大题共 4 小题,每小题 4 分,满分 16 分.x 2y 216、双曲线- = 1的离心率为 .9 16217、若sin( -)= ,且0 << ,则tan =.2 318、笔筒中放有 2 支黑色和 1 支红色共 3 支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒, 第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为.19、圆心为两直线 x + y - 2 = 0 和 -x + 3y +10 = 0 的交点,且与直线 x + y - 4 = 0 相切的圆的标准方程是.三、解答题:本大题共 2 小题. 每小题 12 分,满分 24 分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列{a n }满足 a 1 + a 3 = 8 ,且 a 6 + a 12 = 36 .(1) 求{a n }的通项公式;(2) 设数列{b n }满足b 1 = 2 , b n +1 = a n +1 - 2a n ,求数列{b n }的前 n 项和 S n .721、如图所示,在三棱锥P -ABC 中,PA ⊥平面ABC ,PB =BC ,F 为BC 的中点,DE 垂直平分PC ,且DE 分别交AC,PC 于点D, E .(1)证明:EF / /平面ABP ;(2)证明:BD ⊥AC .3 2018 年 1 月广东省普通高中学业水平考试数学试卷(B 卷)答案解析一、选择题:本大题共 15 小题. 每小题 4 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、B 解析: M N = {-1,0 1,},故选 B.2、B 解析:对于 B 项,令 x = y = 1 ,则lg(x + y ) = lg 2 > lg1 = 0 ,而lg x + lg y = 0 ,显然不成立,故选 B.3、C解析: a = f (0) = 03 -1 = -1 ∴ f (a ) = f (-1) = 2-1 = 1, 故 选 C.2x x (1- i )x x x4、D 解析: == - i ∴- = 2 ⇒ x = -4 ,故选 D. 1+ i (1+ i )(1- i ) 2 2 25、C解析:由已知可得, ∆ = 1- 4a ≥ 0 ⇒ a ≤6、B 解析:对于 A 项,1⨯ 2-0 ⨯1 ≠ 0 ,错误;1 ,故选 C.4对于 B 项, 2a - b = (2, 0) , b = (0, 2) ,则 2 ⨯ 0+0 ⨯ 2 = 0 ⇒ (2a - b ) ⊥ b ,正确;对于 C 项, a = 2, b = 2 ,错误;对于 D 项, a b = 1⨯ 0 +1⨯ 2 = 2 ,错误. 故选 B.15 337、A 解析:抽样比为 k = = 50 10 ,则应抽取的男生人数为 20 ⨯ =6(人) ,应抽取的女生人数10为(50 - 20) ⨯ 310= 9(人) ,故选 A.8、C解析:由三视图可知,该几何体为长方体,长为 2,宽为 2,高为 1,则体积为V = 2 ⨯ 2 ⨯1 = 4 ,故选 C.9、D解析:(快速验证法)交点为(0,1),(0, 0), (-1 1, ) ,则 z = x - 2 y 分别为 -2, 0, - 2 2,所以 2( 3)2 + 22 - ( 13)22 ⨯3 ⨯ 2 3 3 -x 11 -x 1x 2 时等号 21 z 的最小值为 -2 ,故选 D.10、D 解析:对于 A 项, DA - DC = CA ,错误;对于 B 项, DA + DC = 2DO ,错误;对于 C 项, OA - OB + AD = BA + AD = BD ,错误;对于 D 项, AO + OB + BC = AB + BC = AC ,正确. 故选 D.a 2 +b 2 -c 211、A解析:由余弦定理,得cos C == = - ,又2ab20 < C < 5,故选 A.62 12、A解析: f (x ) = 2 s in 2x ∴ f (x )max = 2 ,最小正周期为T = = ,故选 A.213、B解析: F 1F 2 = 4= 2c ⇒ c = 2 3 ∴ a 2 = c 2 + b 2 = (2 3)2 + 4 = 16 ⇒ a = 4∴ PF 1 + P F 2 = 2a = 2 ⨯ 4 = 8 ,故选 B.14、D 解析:对于 A 项, f (x ) 为 R 上的奇函数 ∴ f (0) = 0 ,正确; 对于 B 项, f (x ) 为 R 上的减函数 ∴ x 1 < 0 ⇒ f (x 1 ) > f (0) = 0 ,正确;对于 C 项, x 2 > 0 ∴ x 2 + 1 ≥ 2 2= 2 当且仅当,即= 1 x 成=立1) x 2∴ f (x 2 + 1) ≤ f (2) ,正确;x 2对 于 D 项 , x 1< 0 ∴ x 1 1 + = -(-x 1 + x 1 1 -x ) ≤ -2 = -2x 1 2 x 2 ∴C =1- ( 2)2 34 - 2 - 4 12 +122 n n n n n n -1⎩ ⎩∴ f (x 1 + 1 ) ≥ x 1f (-2) = - f (2) ,错误. 故选 D.15、C解析:当 n ≥ 2 时, a = S - S = 2n +1 - 2 - (2n - 2) = 2 ⨯ 2n - 2n = 2n ;当 n = 1 时, a 1= S 1 = 22 - 2 = 2 适合上式. ∴ a = 2n (n ∈ N * ) ⇒ a 2 = (2n )2 = 4n ∴{a 2}是首项为 4 ,公比为2224(1- 4n ) 4(4n -1)4 的等比数列 ∴ a 1 + a 2 + + a n = 1- 4 =,故选 C. 3二、填空题:本大题共 4 小题,每小题 4 分,满分 16 分.516、3解析:由已知,得 a 2 = 9 ⇒ a = 3, b 2 = 16 ⇒ b = 4∴c 2 = a 2 + b 2 = 9 +16 = 25 ⇒ c = 5∴双曲线的离心率为e = c = 5.a 317、解析: sin(2-) = cos=,且 0 <<223∴sin= 1- c os 2= = 5 3∴tan=sin= 5 ⨯ 3 = .cos 3 2 24 2 ⨯ 2 418、 解析: P = = .9 3⨯ 3 922⎧x + y - 2 = 0 ⎧x = 4 19、 (x - 4) + ( y + 2) = 2 解析:联立 ⎨-x + 3y +10 = 0 得 ⎨ y = -2 ⇒圆心为(4, -2)则圆心(4, -2) 到直线 x + y - 4 = 0 的距离为 d == ,故圆的半径为∴圆的标准方程为(x - 4)2 + ( y + 2)2 = 2 .5 5 23、解答题:本大题共 2 小题. 每小题 12 分,满分 24 分. 解答须写出文字说明、证明过程和演算步骤.20、解:(1)设等差数列{a n }的公差为 d .∴ ⎨⎧a 1 + a 3 =8 ⇒ ⎧⎨a 1 + a 1 + 2d = 8 ⇒ ⎨⎧a 1 = 2 a + a = 36 a + 5d + a +11d = 36 d = 2 ⎩ 612⎩ 11⎩∴ a n = 2 + (n -1) ⨯ 2 = 2n ∴数列{a n }的通项公式为 a n = 2n .(2)由(1)知, a n = 2n ∴b n +1 = a n +1 - 2a n = 2(n +1) - 2 ⨯ 2n = -2n + 2∴b n = -2(n -1) + 2 = -2n + 4 又 b 1 = 2 适合上式 ∴b n = -2n + 4(n ∈ N * )∴b n +1 - b n = -2n + 2 - (-2n + 4) = -2 ∴数列{b n }是首项为 2 ,公差为 -2 的等差数列.∴ S n = 2n +n (n -1)⨯(-2) = 2n - n 2 + n = -n 2 + 3n 221、解:(1)证明: DE 垂直平分 PC ∴ E 为 PC 的中点又 F 为 BC 的中点 ∴ EF 为 BCP 的中位线∴ EF / / BP又 EF ⊄ 平面AB 面P , BP ⊂ABP ∴ EF / /平面ABP(2)证明:连接 BEPB = BC , E 为 PC 的中点 ∴ PC ⊥ BEDE 垂直平分 PC ∴ PC ⊥ DE又 BE DE = E , BE , DE ⊂ 平面BDE∴ PC ⊥ 平面BDE又 BD ⊂ 平面BDE ∴ PC ⊥ BDPA ⊥平面AB面C, BD ⊂ABC ∴PA ⊥BD又 PC PA =P ,PC, PA ⊂平面PAC ∴BD ⊥平面PAC 又 AC ⊂平面PAC ∴BD ⊥AC“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2018-2019学年广东省普通高中1月学业水平考试模拟数学试卷Word版含答案

2018-2019学年广东省普通高中1月学业水平考试模拟数学试卷Word版含答案

2018-2019学年广东省普通高中1月学业水平考试模拟数学试卷(时间:90分钟满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.若复数z满足i·z=-12(1+i),则z的共轭复数的虚部是()A.-12i B.12i C.-12 D.12解析:z=-12(1+i)i=12i(1+i)=-12+12i,共轭复数为-12-12i,虚部为-12.故选C.答案:C2.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}解析:借助数轴可得{x|2<x<3}.答案:C3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是()A.4 B.3 C.2 D.1解析:函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2,故选C.答案:C4.命题“任意x∈R,x2≠x”的否定是()A .任意x ∉R ,x 2≠xB .任意x ∈R ,x 2=xC .存在x ∉R ,x 2≠xD .存在x ∈R ,x 2=x解析:全称命题的否定是特称命题,所以命题“任意x ∈R ,x 2≠x ”的否定是“存在x ∈R ,x 2=x ”.答案:D5.若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( )A .-1B .0C .1D .3解析:等差数列中,设S 2=a 1+a 2=x ,则a 3+a 4=S 4-S 2=4-x ,a 5+a 6=S 6-S 4=8,则S 2,S 4-S 2,S 6-S 4仍成等差数列,所以2(4-x )=x +8,解得x =0,即S 2=0故选B.答案:B6.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其主视图的面积为23,则其左视图的面积为( )A.32B.33C.34D.36解析:由题意知,该三棱锥的主视图为△VAC ,作VO ⊥AC 于O ,连接OB ,由VA =VC ,知O 为AC 中点,∴OB ⊥AC ,又平面VAC ⊥平面ABC ,∴VO ⊥平面ABC ,∴VO ⊥OB ,设底面边长为2a ,高VO =h ,则△VAC 的面积为12×2a ×h =ah =23.又三棱锥的左视图为Rt △VOB ,在正三角形ABC 中,高OB =3a ,∴左视图的面积为12OB ·VO =12×3a ×h =32ah =32×23=33.答案:B7.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 解析:根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.答案:B8.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59 C.59 D.53解析:利用同角三角函数的基本关系及二倍角公式求解.∵sin α+cos α=33,∴(sin α+cos α)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0,∴2k α+α2<α<2k α+34α(k ∈Z),∴4k α+α<2α<4k α+32α(k ∈Z),∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53.答案:A9.已知双曲线C :x 2-y 28=1,则双曲线的渐近线方程为( )A .y =±22xB .y =22xC .y =-22xD .y =±24x解析:因为双曲线的渐近线方程为y =±ba x 且a =1,b =22,所以答案为A.答案:A10.若实数x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为( )A .3B .4C .6D .8解析:作出满足不等式⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示,作直线l 1:2y -2x=t ,当l 1经过B (1,1)时,z min =2×1-2×1+4=4.故选B. 答案:B11.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( )A.33 B. 3 C .-33D .- 3 解析:∵a ∥b ,∴sin θ-3cos θ=0,即sin θ=3cos θ.故tan θ= 3.答案:B12.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6D.4-π4解析:如图所示,区域D 是正方形OABC ,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,所以所求事件的概率P =4-π4.答案:D13.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( )A .T =π,M =1B .T =2π,M =1C .T =π, M =2D .T =2π,M =2解析:由于三角函数y =A sin(ωx +φ)+B (A >0,ω>0)的最小正周期T =2αω,最大值为A +B ;∴函数y =2sin2x -1的最小正周期T=2α2=α,最大值M =2-1=1. 答案:A14.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 解析:∵n ⊥β,且α,β交于直线l .l ⊂β,∴n ⊥l .答案:C15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5解析:一组数据x 1,x 2,x 3…,x n 的平均值为2,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均数是2×2+1=5;又数据x 1,x 2,x 3,…x n 的方差为1,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的方差是22×1=4,故选A.答案:A二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________.解析:f (3)=-f (-3)=-log 24=-2. 答案:-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.解析:设所求直线l 的方程为x a +yb =1,由已知可得⎩⎪⎨⎪⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求.答案:2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.解析:由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970. 答案:97019.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.解析:由已知两相邻最高点和最低点的距离为22,由勾股定理可得T 2=(22)2-22,∴T =4,∴ω=α2.答案:α2三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1. (1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象.解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x -α4+1的振幅为2,最小正周期T =2α2=α,初相为-α4.(2)列表并描点画出图象: 故函数y =f (x )在区间⎣⎢⎡⎦⎥⎤-α2,α2上的图象是21.(12分)如图所示,在直三棱柱ABCA 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.(1)证明:如图所示,取A 1B 1的中点D ,连接DE ,BD .因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF .所以四边形BDEF 为平行四边形. 所以BD ∥EF .又因为BD ⊂平面AA 1B 1B ,EF ⊄平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解:如图所示,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt △EHF 中,FH =3,EH =AA 1=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.。

广东省2018年高中会考[数学]考试真题与答案解析

广东省2018年高中会考[数学]考试真题与答案解析

广东省2018年高中会考[数学]考试真题与答案解析一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则(). ...2、对任意的正实数,下列等式不成立的是(). ...3、已知函数,设,则(). .. .4、设是虚数单位,是实数,若复数的虚部是2,则( ). ..{}1,0,1,2M =-{}|12N x x =-≤<M N = A {}0,1,2B {}1,0,1-C M D N,x y A lg lg lgy y x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a A 2-B 1-C 12D 0i x 1xi+x =A 4B 2C 2-5、设实数为常数,则函数存在零点的充分必要条件是(). .. .6、已知向量,,则下列结论正确的是( )....7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是(). ...8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为().a 2()()f x x x a x R =-+∈A 1a ≤B 1a >C 14a ≤D 14a >(1,1)a = (0,2)b =A //a bB (2)a b b -⊥C a b =D 3a b = g A 69和B 96和C 78和D 87和A 1..9、若实数满足,则的最小值为(). ...10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( ). . . .11、设的内角的对边分别为,若,则(). ...12、函数,则的最大值和最小正周期分别为( )C 4D 8,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-A 0B 1-C 32-D 2-o ABCD A DA DC AC -=B DA DC DO += C OA OB AD DB -+= D AO OB BC AC++= ABC V ,,A B C ,,a b c 2,a b c ===C =A 56πB 6πC 23πD 3π()4sin cos f x x x =()f x. ...13、设点是椭圆上的一点,是椭圆的两个焦点,若,则()....14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不正确的是(). .. .15、已知数列的前项和,则(). ...A 2π和B 4π和C 22π和D 42π和P 2221(2)4x y a a +=>12F F ,12F F =12PF PF +=A 4B 8C D ()f x R ()f x 10x <20x >A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤{}n a n 122n n S +=-22212n a a a +++= A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题16、双曲线的离心率为 .17、若,且,则.18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标准方程是.三、解答题本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.(1)求的通项公式;(2)设数列满足,,求数列的前项和.21、如图所示,在三棱锥中,,,为的中点,垂直平分,且分别交于点.(1)证明:;(2)证明:.221916x y -=2sin()23πθ-=0θπ<<tan θ=20x y +-=3100x y -++=40x y +-={}n a 138a a +=61236a a +={}n a {}n b 12b =112n n n b a a ++=-{}n b n n S P ABC -PA ABC ⊥平面PB BC =F BC DE PC DE AC PC ,,D E //EF ABP 平面BD AC ⊥答案解析一、选择题1、B答案解析:,故选B.2、B答案解析:对于B 项,令,则,而,显然不成立,故选B.3、C答案解析: ,故选C.4、D 答案解析: ,故选D.5、C答案解析:由已知可得,,故选C.6、B 答案解析:对于A 项,,错误;对于B 项,,,则,正确;对于C 项,,错误;对于D 项,,错误.故选B.7、A答案解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数为,故选A.8、C{}101M N =- ,,1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=3(0)011a f ==-=- 11()(1)22f a f -∴=-==(1)1(1)(1)22x x i x x i i i i -==-++- 242x x ∴-=⇒=-11404a a ∆=-≥⇒≤12-010⨯⨯≠2(2,0)ab -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥2a = 10122a b =⨯+⨯=g 1535010k ==320=6()10⨯人3(5020)9()10-⨯=人答案解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.9、D答案解析:(快速验证法)交点为,则分别为,所以的最小值为,故选D. 10、D 答案解析:对于A 项,,错误;对于B 项,,错误;对于C 项,,错误;对于D 项,,正确. 故选D.11、A答案解析:由余弦定理,得,又 ,故选A.12、A答案解析:,最小正周期为,故选A. 13、B答案解析:,故选B.14、D 答案解析:对于A 项,为上的奇函数 ,正确;对于B 项,为上的减函数,正确;对于C 项,2214V =⨯⨯=11(0,1),(0,0),(,)22-2z x y =-32,0,2--z2-DA DC CA -=2DA DC DO +=OA OB AD BA AD BD -+=+=AO OB BCAB BC AC ++=+=222cos 2a b c C ab +-===0C π<< 5=6C π∴()2sin 2f x x = max ()2f x ∴=22T ππ==122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=122248PF PF a ∴+==⨯=()f x R (0)0f ∴=()f x R 110()(0)0x f x f ∴<⇒>=20x > 222221121x x x x x ∴+≥===(当且仅当时等号成立),正确;对于D 项, ,错误. 故选D.15、C答案解析:当时,;当时,适合上式. 是首项为,公比为的等比数列 ,故选C.二、填空题16、答案解析:由已知,得 双曲线的离心率为.17答案解析:,且18、答案解析:.19、答案解析:联立得221((2)f x f x ∴+≤10x < 111111()2x x x x ∴+=--+≤-=--111()(2)(2)f x f f x ∴+≥-=-2n ≥1122(22)2222n n n n n n n n a S S +-=-=---=⨯-=1n =211222a S ==-=222()(2)4n n n n n a n N a *∴=∈⇒=={}2n a ∴44222124(14)4(41)143n n n a a a --∴+++==- 532293,164a a b b =⇒==⇒=222916255c a b c ∴=+=+=⇒=∴53c e a ==2sin()cos 23πθθ-== 0θπ<<sin θ∴===sin 3tan cos 2θθθ∴===49224339P ⨯==⨯22(4)(2)2x y -++=203100x y x y +-=⎧⎨-++=⎩4(4,2)2x y =⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为圆的标准方程为.三、解答题20、(1)设等差数列的公差为.数列的通项公式为.(2)由(1)知, 又适合上式 数列是首项为,公差为的等差数列.21、(1)证明:垂直平分为的中点又为的中点为的中位线又(2)证明:连接,为的中点 垂直平分(4,2)-40x y +-=d ∴22(4)(2)2x y -++={}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+DE PC E ∴PC F BC EF ∴BCP V //EF BP∴,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面BEPB BC = E PC PC BE∴⊥DE PC又,又又,又PC DE∴⊥BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面BD BDE ⊂ 平面PC BD∴⊥,PA ABC BD ABC ⊥⊂ 平面平面PA BD∴⊥PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面AC PAC ⊂ 平面BD AC∴⊥。

2018年广州市普通高中毕业班综合理科数学试题(一)含答案

2018年广州市普通高中毕业班综合理科数学试题(一)含答案

3
结束
D.
5
1
128,那么其展开式中含 项的系数是
x
A. 84
B . 14
C. 14
D. 84
7.如图,网格纸上小正方形的边长为 表 面积为
1,粗线画出的是某个几何体的三视图,则该几何体的
A. 4 4 2 2 3
B. 14 4 2
C. 10 4 2 2 3
D. 4
8.若 x , y 满足约束条件
x y 2≥0, 2 y 1≥0, 则 z x2 2x x 1≤0,
(一)必考题:共 60 分. 17.(本小题满分 12 分)
已知数列
an 的前 n 项和为 Sn ,数列
Sn n
是首项为 1,公差为 2 的等差数列.
(1)求数列 an 的通项公式; (2)设数列 bn 满足 a1 a2
b1 b2
n
an 5 4n 5 1 ,求数列 bn 的前 n 项和 Tn .
bn
x
y
5.5 112.45
10
2
i 1 xi x
82.50
10
2
i 1 yi y
3947.71
10 i 1 xi x yi y
566.85
( 1)求 y 关于 x 的线性回归方程(回归方程系数精确到
0.01 );
( 2)某同学认为, y px2 qx r 更适宜作为 y 关于 x 的回归方程类型, 他求得的回归
同学不相邻的概率为
A. 4 5
B. 3 5
4.执行如图所示的程序框图,则输出的
9
A.
20
4
B.
9
C. 2 5
S
2
C.

2018学年1月广东省普通高中数学学业水平考试模拟试卷(二)+Word版含解析8

2018学年1月广东省普通高中数学学业水平考试模拟试卷(二)+Word版含解析8

学业水平考试模拟试卷(二)(时间:90分钟满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.若复数z满足i·z=-12(1+i),则z的共轭复数的虚部是()A.-12i B.12i C.-12 D.122.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=() A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是()A.4 B.3 C.2 D.14.命题“任意x∈R,x2≠x”的否定是()A.任意x∉R,x2≠x B.任意x∈R,x2=xC.存在x∉R,x2≠x D.存在x∈R,x2=x5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=() A.-1 B.0 C.1 D.36.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其主视图的面积为23,则其左视图的面积为()A.32 B.33 C.34 D.367.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为()A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)8.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59 C.59 D.539.已知双曲线C :x 2-y 28=1,则双曲线的渐近线方程为( )A .y =±22xB .y =22xC .y =-22xD .y =±24x10.若实数x ,y 满足条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为()A .3B .4C .6D .811.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( )A.33 B. 3 C .-33D .- 3 12.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π413.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( )A .T =π,M =1B .T =2π,M =1C .T =π, M =2D .T =2π,M =214.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 17.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.18.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.19.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1.(1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象.21.(12分)如图所示,在直三棱柱ABCA 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.学业水平考试模拟试卷解析(时间:90分钟 满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.若复数z满足i·z=-12(1+i),则z的共轭复数的虚部是()A.-12i B.12i C.-12 D.12解析:z=-12(1+i)i=12i(1+i)=-12+12i,共轭复数为-12-12i,虚部为-12.故选C.答案:C2.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}解析:借助数轴可得{x|2<x<3}.答案:C3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是()A.4 B.3 C.2 D.1解析:函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2,故选C.答案:C4.命题“任意x∈R,x2≠x”的否定是()A.任意x∉R,x2≠x B.任意x∈R,x2=xC.存在x∉R,x2≠x D.存在x∈R,x2=x解析:全称命题的否定是特称命题,所以命题“任意x∈R,x2≠x”的否定是“存在x∈R,x2=x”.答案:D5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=()A.-1 B.0 C.1 D.3解析:等差数列中,设S2=a1+a2=x,则a3+a4=S4-S2=4-x,a5+a6=S6-S4=8,则S2,S4-S2,S6-S4仍成等差数列,所以2(4-x)=x+8,解得x=0,即S2=0故选B.答案:B6.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其主视图的面积为23,则其左视图的面积为()A.32 B.33 C.34 D.36解析:由题意知,该三棱锥的主视图为△VAC,作VO⊥AC于O,连接OB,由VA=VC,知O为AC中点,∴OB⊥AC,又平面VAC⊥平面ABC,∴VO⊥平面ABC,∴VO⊥OB,设底面边长为2a,高VO=h,则△VAC的面积为12×2a×h=ah=23.又三棱锥的左视图为Rt△VOB,在正三角形ABC中,高OB=3a,∴左视图的面积为12OB·VO=12×3a×h=32ah=32×23=33.答案:B7.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为()A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)解析:根据题意知(-9+2-a)·(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24.答案:B8.已知α为第二象限角,sin α+cos α=33,则cos 2α=()A.-53B.-59 C.59 D.53解析:利用同角三角函数的基本关系及二倍角公式求解.∵sinα+cos α=3 3,∴(sin α+cosα)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sinα+cos α=33>0,∴2kα+α2<α<2kα+34α(k∈Z),∴4kα+α<2α<4kα+32α(k∈Z),∴2α为第三象限角,∴cos 2α=-1-sin22α=-5 3.答案:A9.已知双曲线C :x 2-y 28=1,则双曲线的渐近线方程为( )A .y =±22xB .y =22xC .y =-22xD .y =±24x解析:因为双曲线的渐近线方程为y =±ba x 且a =1,b =22,所以答案为A. 答案:A10.若实数x ,y 满足条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为()A .3B .4C .6D .8解析:作出满足不等式⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示,作直线l 1:2y -2x=t ,当l 1经过B (1,1)时,z min =2×1-2×1+4=4.故选B. 答案:B11.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( ) A.33 B. 3 C .-33D .- 3 解析:∵a ∥b ,∴sin θ-3cos θ=0,即sin θ=3cos θ.故tan θ= 3. 答案:B12.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π4解析:如图所示,区域D 是正方形OABC ,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,所以所求事件的概率P =4-π4. 答案:D13.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( ) A .T =π,M =1 B .T =2π,M =1 C .T =π, M =2D .T =2π,M =2 解析:由于三角函数y =A sin(ωx +φ)+B (A >0,ω>0)的最小正周期T =2αω,最大值为A +B ;∴函数y =2sin2x -1的最小正周期T =2α2=α,最大值M =2-1=1.答案:A14.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 解析:∵n ⊥β,且α,β交于直线l .l ⊂β,∴n ⊥l . 答案:C15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5解析:一组数据x 1,x 2,x 3…,x n 的平均值为2,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均数是2×2+1=5;又数据x 1,x 2,x 3,…x n 的方差为1,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的方差是22×1=4,故选A.答案:A二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________.解析:f (3)=-f (-3)=-log 24=-2. 答案:-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.解析:设所求直线l 的方程为x a +yb =1,由已知可得⎩⎪⎨⎪⎧-2a +2b =1,12|a ||b |=1,解得⎩⎨⎧a =-1,b =-2或⎩⎨⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求.答案:2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.解析:由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970.答案:97019.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.解析:由已知两相邻最高点和最低点的距离为22,由勾股定理可得T2=(22)2-22,∴T =4,∴ω=α2.答案:α2三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1.(1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象.解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x -α4+1的振幅为2,最小正周期T =2α2=α,初相为-α4. (2)列表并描点画出图象: 故函数y =f (x )在区间⎣⎢⎡⎦⎥⎤-α2,α2上的图象是21.(12分)如图所示,在直三棱柱ABCA 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.(1)证明:如图所示,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF .所以四边形BDEF 为平行四边形. 所以BD ∥EF .又因为BD ⊂平面AA 1B 1B ,EF ⊄平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解:如图所示,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt △EHF 中,FH =3,EH =AA 1=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.。

2018年1月广东省普通高中学业水平考试化学试卷(完整版含参考答案)

2018年1月广东省普通高中学业水平考试化学试卷(完整版含参考答案)

2018年1月广东省普通高中学业水平考试化 学 试 卷本试卷共8页,65小题,满分100分。

考试用时90分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

可能用到的相对原子质量:H1 C12 N14 O16 Na23 Cl35.5一、单项选择题Ⅰ(本大题共30小题,每小题1分,共30分。

在每小题列出的四个选项中,只有一项最符合题意)1.人们可以闻到成熟的香蕉和苹果散发出来的香味,这表明A.分子静止不动B.分子可再分C.分子不可再分D.分子在不停运动2.科学家2012年再次合成117号元素,实验中生成了X 293117和X 294117,关于这两种原子的说法不正确的是A.中子数相同B.互为同位素C.核外电子数相同D.质子数相同 3.铝合金常用于制作门框、窗框和日常器皿,是因为 A.Al 的活泼性弱 B.常温下Al 与O 2不反应 C.Al 的还原性弱 D.Al 表面易形成致密的氧化膜 4.下列物质属于纯净物的是A.水泥B.海水C.空气D.液溴5.在贝类和苹果等食物中含有丰富的锌,这里的“锌”应理解为 A.单质 B.分子 C.元素 D.氧化物6.下列过程不涉及化学变化的是A.铁器生锈B.铜器生铜绿C.氯水滴入AgNO 3溶液D.在铁器表面涂油漆 7.NaNO 2可用作电镀缓蚀剂,其中N 元素的化合价为 A.+2 B.+3 C.+4 D.+58.肥田粉是我国最早使用的氮肥,主要成分(NH 4)2SO 4易溶于水,其水溶液呈弱酸性,有关(NH 4)2SO 4的说法不正确的是A.能与BaCl 2溶液反应B.长期使用会导致土壤酸化C.能与NaOH 溶液反应D.其水溶液中的阳离子只有H +9.明矾常用作净水剂,化学式为:KAl(SO 4)2·12H 2O ,明矾中非金属性最强的元素是 A.S B.O C.H D.K10.进行实验时,应高度重视实验安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中学业水平考试数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.2. 对任意的正实数,下列等式不成立的是()A. B.C. D.3. 已知函数,设,则()A. B. C. D.4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.6. 已知向量,,则下列结论正确的是()A. B. C. D.7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和78. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.9. 若实数满足,则的最小值为()A. B. C. D.10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B.C. D.11. 设的内角的对边分别为,若,则()A. B. C. D.12. 函数,则的最大值和最小正周期分别为()A. 2和B. 4和C. 2和D. 4和13. 设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.14. 设函数是定义在上的减函数,且为奇函数,若,,则下列结论不正确的是()A. B. C. D.15. 已知数列的前项和,则()A. B. C. D.二.填空题:本大题共4小题,每小题4分,满分16分.16. 双曲线的离心率为____________.17. 若,且,则____________.18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为____________.19. 圆心为两直线和的交点,且与直线相切的圆的标准方程是____________.三.解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20. 若等差数列满足,且.(1)求的通项公式;(2)设数列满足,,求数列的前项和.21. 如图所示,在三棱锥中,,,为的中点,垂直平分,且分别交于点.(1)证明:;(2)证明:.普通高中学业水平考试【解析】数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意可知故选B2. 对任意的正实数,下列等式不成立的是()A. B.C. D.【答案】B【解析】∵∴选项错误故选B3. 已知函数,设,则()A. B. C. D.【答案】C【解析】∵函数∵∴故选C4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.【答案】D∵复数的虚部为2∴∴故选D5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.【答案】C【解析】∵若函数存在零点∴∴∴函数存在零点的充分必要条件是故选C6. 已知向量,,则下列结论正确的是()A. B. C. D.【答案】B【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,故错误;对于,,故错误故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∴男女生的比例为,∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动∴男生的人数为,女生的人数为故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1体积故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. 若实数满足,则的最小值为()A. B. C. D.【答案】D【解析】根据已知作出可行域如图所示:,即,斜率为,在处截取得最小值为故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B.C. D.【答案】D【解析】对于,,故错误;对于,,故错误;对于,,故错误。

故选D11. 设的内角的对边分别为,若,则()A. B. C. D.【答案】A【解析】的内角的对边分别为,且∴根据余弦定理得∵∴故选A12. 函数,则的最大值和最小正周期分别为()A. 2和B. 4和C. 2和D. 4和【答案】A【解析】∵函数∴函数的最大值为2,最小正周期为故选A13. 设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.【答案】B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.14. 设函数是定义在上的减函数,且为奇函数,若,,则下列结论不正确的是()A. B. C. D.【答案】D【解析】对于,因为是定义在上的奇函数,所以,故正确;对于,因为函数是定义域上的减函数,过原点,且,所以,故正确;对于,设,则当,有最小值为2,所以,因为函数是定义域上的减函数,所以,故正确;对于,因为,所以,因为函数是定义域上的减函数,所以,故错误故选D15. 已知数列的前项和,则()A. B. C. D.【答案】C【解析】∵当时,,当时∴∴首项,公比故选C二.填空题:本大题共4小题,每小题4分,满分16分.16. 双曲线的离心率为____________.【答案】【解析】∵由题可知∴∴离心率故答案为17. 若,且,则____________.【答案】【解析】∵∴∵∴∴故答案为18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为____________.【答案】【解析】第一次为黑色的概率为,第二次为黑色的概率为两次都是黑色的概率为故答案为19. 圆心为两直线和的交点,且与直线相切的圆的标准方程是____________.【答案】【解析】联立方程组解之得∵圆与直线相切∴圆的半径故答案为点睛:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,当直线与圆相切时,圆心到切线的距离等于圆的半径.属于基础题.三.解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20. 若等差数列满足,且.(1)求的通项公式;(2)设数列满足,,求数列的前项和.【答案】(1)(2)【解析】试题分析:(1)设等差数列的公差为,由及,列出方程组即可求解和,从而求出的通项公式;(2)由(1)求出的通项公式,进而求出数列的前项和.试题解析:(1)设等差数列的公差为.数列的通项公式为.(2)由(1)知,又适合上式数列是首项为,公差为的等差数列.21. 如图所示,在三棱锥中,,,为的中点,垂直平分,且分别交于点.(1)证明:;(2)证明:.【答案】(1)见解析(2)见解析【解析】试题分析:(1)由垂直平分及为的中点可证,从而可证;(2)连接,由,为的中点可证,结合,即可证,从而得,再由,可得,即可证,从而得出结论.试题解析:(1)证明:垂直平分为的中点又为的中点为的中位线又(2)证明:连接,为的中点垂直平分又,又又,又点睛:本题主要考查线面平行的判定定理、线面垂直的判定定理等应用,此类题目是立体几何中的常见问题,解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,本题能较好的考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等,试题有一定的综合性,属于中档试题.。

相关文档
最新文档