高一数学《1.1.1集合的含义与表示》

合集下载

【数学】1.1.1集合的含义与表示

【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.

高一数学必修一之集合

高一数学必修一之集合

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示一、集合与元素的概念1.集合:(1)概念:一般地,某些确定的对象集在一起就成为一个集合,简称集;通常用大写字母A、B、C...表示。

其中的对象可以是一些数、一些点、一些图形、一些整式、一些物体、一些人等等万事万物,每一组的对象或某些指定的对象集在一起就成为一个集合。

(2)集合的两个特性:整体性和确定性在指定一个集合时,必须有明确的标准,这就构成了集合的确定性;所有符合标准的元素的全体构成集合的整体性。

[例题] 下列各项中,不可以组成集合的是( C )A.所有的正数 B.等于2的数 C.接近于0的数 D.不等于0的偶数2.元素:(1)概念:集合中的每一个对象叫做集合中的一个元素,通常用小写字母a,b,c...表示。

对于尚未确定的集合而言,元素具有任意性。

(2)元素的三个特性(属性)对于一个给定的集合它的元素具有三个特性:确定性、互异性和无序性:①元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于(∈)或不属于(∉)。

②元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

③元素的无序性: 集合中元素的位置是可以改变的,并且改变位置不影响集合(排名不分先后)。

至此,我们也就可以把集合定义为:由一些确定的、互异的对象构成的一个全体就叫集合(简称集)[例题] 若集合M = {a,b,c}中的元素是△ABC的三边长,则△ABC一定不是( D )A.锐角三角形B.直角三角形 C.钝角三角形D.等腰三角形二、集合的分类(一)按集合中元素的多少来分:①有限集——元素个数是有限个(其中包括空集、单元素集)②无限集——元素个数是无限个③空集——不含有任何元素(即元素个数为0属于有限集):空集记作∅或{ }注意{∅}表示含有空集的单元素集合,并非空集,空集为集合中的元素。

(二)按元素的属性来分:①数集——元素全部由数组成;②点集——元素全部由点组成,如角平分线;③解集——由方程或方程组、不等式或不等式组的解构成的集合;(其中一部分属于数集如自变量或应变量的值,一部分属于点集或序数对)。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
例题9
设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().

1.1.1 集合的含义与表示

1.1.1 集合的含义与表示

有理数于3小于11的偶数; { 4,6,8,10 } A=
②1∼10以内的奇数;
1、列举法 B= { 1,3,5,7,9 }
就是将集合中的元素一一列举出来并放在 大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内; 3、别忘了大括号。
例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合 (2)方程
{ x | p(x) }
x为该集合的 代表元素 p(x)表示该集 合中的元素x 所具有的性 质
例如:x―7<3的解集可以表示为:
{x∈R|x<10}
例2.用描述法表示下列集合:
1. 小于10的所有有理数组成的集合; 2. 所有偶数组成的集合; 2 3. 二次函数 y x 2 的函数值组成 的集合; 2 4. 抛物线 y x 2 上的点组成的 集合;
4、集合与元素的关系:
若a是A中元素,记为
a A,
若a不是A中元素,记为
a A
5、有限集:元素个数有限的集合. 无限集:元素个数无限的集合.
集合的三种表示方法:
1、列举法:
2、描述法:
3、图示法:
集合中元素具有 确定性 互异性 无序性
一般 地:我们用小写拉丁字母a,b,c…表示元 素,用大写拉丁字母A,B,C,…表示集合.
若a是A中元素,记为 a A 若a不是A中元素,记为 a A
1、常见数集的表示
N:自然数集(含0)即非负整数集 N+或N*:正整数集(不含0) Z: 整数集
Q:
R:
练习,用适当的方法表示下列集合
1. 小于100的自然数组成的集合; 2. 不等式 2 x 3 3x 的解集 2 3. 方程 x x 6 0 的解集

1.1.1集合的含义与表示

1.1.1集合的含义与表示

一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山

高一必修一1.1.1集合的含义与表示

高一必修一1.1.1集合的含义与表示

注意
(1)大括号不能缺失. (2)有些集合元素个数较多,元素又呈 现出一定的规律,在不至于发生误解的情 况下,亦可如下表示:从1到100的所有整 数组成的集合:{1,2,3,…,100} 自然数集N:{1,2,3,4,…,n,…} (3)区分a与{a}:{a}表示一个集合,该 集合只有一个元素.a表示这个集合的一个 元素.
两种描方法: (1)文字描述法——用文字把元素所具有 的属性描述出来,如﹛自然数﹜. (2)符号描述法——用符号把元素所具有的属 性描述出来,即 {x| P ( x ) } 或 {x∈A| P ( x ) } 等. 含义:在集合A中满足条件P(x)的x的集合.
例7:使用描述法表示下列集合:
(1) 不等式2x-1>3的解集;
有限集与无限集 1、 有限集:含有有限个元素的集合. 2、 无限集:含有无限个元素的集合. 3、 空集:不含任何元素的集合,记作Φ. 如: {x R | x
2
+1 = 0}.
做一做
集合 {(x, y) | y = x +1} 与集合
2
{y | y = x +1}是同一集合吗?
答:不是.集合 {(x, y) | y = x2 +1} 2 是点集,集合{y | y = x +1} = {y | y 1} 是数集.
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}. 2.12的所有约数可表示为{1,2,3, 4,6,12}. 3.方程x-1=0的解集可以表示为{1}.
(2)设不超过30的非负偶数为x,且满足

1.1.1集合的含义与表示

1.1.1集合的含义与表示

3
2.集合: 集合常用大写字母表示,元素常用小 写字母表示.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
4
3.集合与元素的关系: 如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA. 例如:A表示方程x2=1的解. 2A,1∈A.
Hale Waihona Puke 12• 例2试分别用列举法和描述法表示下 列集合: • (1)方程x2-2=0的所有实数根组成的集 合; • (2)由大于10小于20的所有整数组成 的集合。 思考题 结合此例,试比较用自然语言、 列举法和描述法表示集合时各自的特点和 适用的对象。
13
• 练习与思考 教材P5练习1、2
14
课堂小结
那么{(1,2)},{(2,1)}是否为同一集合?
7
判断下列例子能否构成集合 中国的直辖市

× ×
身材较高的人
著名的数学家
高一(3)班眼睛很近视的同学
×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
8
5.集合的表示方法 1、列举法: 无序 互异
将集合中的元素一一列举出来,并 用花括号{ }括起来的方法叫做列 举法
5
4.常用的数集:
N:自然数集(含0)
N+或N*:正整数集(不含0)
Z:整数集
Q:有理数集
R:实数集
6
5.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.

1.1.1集合的含义与表示

1.1.1集合的含义与表示

1.1.1 集合的含义与表示一.知识解读1. 一般地,把研究对象统称为,把一些元素组成的总体叫,也简称。

2. 关于集合的元素的特性有:(1) , (2) , (3) .3.元素与集合的关系-------从属关系;集合常用大写字母表示,元素用小写字母表示;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作(或a A)(举例),(3)集合相等:构成两个集合的元素完全一样.4.常用数集及其记法非负整数集(或自然数集),记作;正整数集,记作或;整数集,记作;有理数集,记作;实数集,记作.5.集合的表示方法(1)列举法:表示集合的方法; (2)描述法:表示集合的方法.二.课堂互动问题1 考查下列每组对象提炼出集合的含义(1)全体高一(3)班的49名学生;(2)1到20以内的所有偶数;(3)2012年伦敦奥运会的所有比赛项目x->的所有解(4)不等式30(5)到顶点A的距离等于定长l的所有的点问题2 判断以下元素的全体是否能构成一个集合,并说明理由(1)高一(1)班所有高个子同学(2)我国的所有小河流问题3 从上面的例子看到,我们可以用自然语言描述一个集合,除此之外,还可以用什么方法表示集合呢?例1、选择适当的方法表示下列集合(1)012=-x 的所有实数根组成的集合(2)welcome 中的所有字母组成的集合(3)直角坐标系内第三象限的点组成的集合(4)所有奇数组成的集合(5)以A 为圆心,r 为半径的圆上的所有点组成的集合跟踪训练:选择适当的方法表示下列集合(1)12的正约数(2)不等式712>+x 的整数解(3)抛物线2x y =上的点例2、已知集合A ={1,-2,x 2-1},B ={1,0,x 2-3x },且A = B ,求x 的值.例3、已知}4,12,3{32---∈-a a a ,求实数a 的值三、课堂练习见教科书第5页练习四、课堂小结1、牢记集合元素的特性2、如何选择适当的方法来表示集合?五、课后作业1、下列说法中能构成集合的是 ( )A.2009年全国的大中专毕业生;B.英德华粤艺术学校高一(1)班个子较高的男生;C.1,1,2三个元素构成的集合;D.与无理数π无限接近的数.2、 下列各项中,不可以组成集合的是 ( )A 、所有的正数B 、等于2的数C 、接近于0的数D 、不等于0的偶数3、以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C) “我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定4、集合 A={(x ,y )|x >0,y ﹥0}是指………………… …( )A .第一象限内的点集B .第三象限内的点集C .在第一、三象限内的点集D .不在第二、四象限内的点集5、{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形6、设集合A={-2,-1,0,1,2}, },1|{2A x x y y B ∈-==.则B中的元素是_____.7、分别判断下列各组集合是否为同一集合(1)A={x|x+3>2} B={y|y+3>2}(2)A={(1,2)} B={1,2}(3)A={(x,y )|y=x 2+1} B={y| y=x 2+1}8、对于集合A={2,4,6},若A a ∈,则A a ∈-6,那么a 的值是9、选择适当的方法表示下列集合:(1)方程x 2-16=0的解集; (2)不等式3x -1>5的解集.10、设A 表示集合{2,3,a 2+2a-3},B 表示集合{|a +3|,2},已知5∈A 且5∉B ,求a 的值。

高中数学课件-1.1.1集合的含义与表示

高中数学课件-1.1.1集合的含义与表示
A
a
c
包裹
b
◣2:元素与集合的关系◢
如果a是集合A的元素,就说a 属于集合A ,记作a∊A;如果a不 是集合A的元素,就说a 不属于集 合A ,记作a∉A。
例如,用A表示“ 大于1小于10的所有偶
数”组成的集合,则有4 ∊A,3 ∉A,等
等。
3:常用数集的专用记号:
集合 (非自负然整数数集)正整数集 整数集 有理数集 实数集
具有的属性描述出来,如﹛自然数﹜
(2)符号描述法——用符号把元素所 具有的属性描述出来,即{x| P(x)}或 {x∈A| P(x)}等。
{ x∈A | P(x) }
可以是多个呵
代表元素
满足的条件
{ x | P(x)}
例2.请用描述法表示下列集合: (1)方程 x2 2 0的所有解组成集合.
新课导入 — 观察下列对象:
(1) 14班的所有同学 (2)大于1小于10的所有偶数 (3)丰城九中校园所有的树 (4) 坐标轴上所有的点
一、集合的含义
1、集合的含义: 把所指对象的全体叫做集合(简
称集), 把集合里的每一个对象叫做
为元素。用大写字母A,B,C…表示 集合,用小写字母a,b,c …表示集合 中的元素
(2)大于10小于20的所有整数组成的集合.
四.回顾交流:
本节课我们学习了那些内容?
集合的含义,集合元素的性质: 确定性,互异性,无序性
元素与集合的关系: ∊, ∉。
3:集合的表示法:列举法,描述法
试试看,行吗?
1.方程组
x
x
y yLeabharlann 2 5的解集用列举法表示为________;用描述法表示为 .
记号
N

高一数学第一章知识点

高一数学第一章知识点

第一章1.1.1、集合的含义与表示:(1)、定义:一般地,我们把研究的对象统称为“元素”,把一些元素组成的整体叫集合,简称集。

(2)、性质:1、确定性(主要用于判断是否是集合)2、无序性3、互异性(主要用于确定集合中元素)(3)、常用大写字母表示集,小写字母表示元素。

如果a是集合A的元素,则说a属于集合A,写作a∈A。

同理,如果a不是集合A的元素,则称a不属于A,写作aA(4)、常见的数集:1、非负整数集(自然数集)【记住最小自然数是0】N2、正整数集N*或N3、主体数集Z4、有理数集Q5、实数集R(5)、集合的表示法:1、(自然语言描述)2、列举法3、描述法4、图列法1.1.2、集合的基本关系:(1)、AB【A含于B或B包含A】用因式分解法〔两种情况2、3〕(2)、A=B [A集合与B集合相变](3)、【A真含于B或A是B的真子集,﹦〉意义:因存在元素x ∈A(4)、空集﹦>不包含任何元素的集,叫空集结论:(1)、任何集分是它本身的子集(2)、传递性学生迅速口头做课后练习1.1.3、集合的基本运算:1、并集:定义,有所有属于A的元素结构组成的集合,为集合A于集合B的并集,记作A∨B2、交集:定义,所有属于集合A是属于集合B的元素,称为集合A与集合B的交集,记作A∧B3、全集:定义,一般地如果一个集合含有我们所研究问题中所涉及的所有元素,那么这个集合称为全集,常记作4、补集:定义,对于一个集合A,由全集中不属于集合A的所有元素组成的集合,称为集合A,相对于全集的补集,简称集合A的补集课后练习题1.2.1、函数及其表示(1)、函数的概念:一般的我们有设集合A、B是非空集数,如果按照确定的对应关系,使集合A中的任意一个数X,在集合B中都有唯一确定的数与之对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作Y=f(x),(2)、函数三要素:定义域、值域、对应关系→相交的函数必须三要素均相同;定义域:由变量的取值范围A;值域:与X相对应得Y值叫做函数值,函数的集合叫函数的值域(3)、区间→开区间、闭区间、半开半闭区间、半闭半开区间区间在数轴上叫做实心点与虚心点课:练习1.2.2、函数表示法(1)、初中学过解析法、图像法和列表法(2)、分段函数(3)、实射:定义:一般的,设集合为A、B是两个非空集合,如果按照某确定的对应关系f,使对于集合中的任一个元素,在集合B中都有唯一确定的元素与之对应,那么就种对应f:A→B为集合B的实射做课后练习回家做练习1.3、函数的基本性质1.3.1、单调性与最大值、最小值(1)、曾函数定义:}注意定义域!(2)、减函数定义:(3)、最大值定义:(4)、最小值定义:2.奇偶性[定义域对称](1)、偶函数定义:f(x)=f(-x)(2)、奇函数定义:f(x)=―f〔-x〕。

1.1.1 集合的含义与表示

1.1.1 集合的含义与表示
例:由两个元素0,1构成的集合可以表示为
{0,1} (1)要把集合中的元素都列举出来,写在“ { } ”内 (2)元素间分隔用逗号 “,” (3)元素不重复 (4)元素无顺序
例1、用列举法表示下列集合: 1. 由两个元素0,1构成的集合可以表示为 {0,1}.
2. 24的正因数所构成的集合可以表示为
适用范围
列举法
元素个数不多的有限集或元素个数较多但呈 现出一定的规律
性质描述法
无限集或元素较多的有限集
布置作业: P12 习题A组 3、4
{1,2,3,4,6,8,12,24}.
3. 不大于100的自然数的全体构成的集合可以表示为
{0,1,2,3,…,100}
4. 自然数集N可以表示为
{0,1,2,3,…,n,…}
学生练习:
(1)小于10的所有自然数组成的集合 (2)绝对值等于2的实数的全体构成的集合 (3)所有大于0且小于10的奇数组成的集合
可表示:{小于6的正整数}
学生练习: 用性质描述法表示下列集合: (1) 目前你所在班级所有同学构成的集合; (2) 正奇数的全体构成的集合; (3) 绝对值等于 3 的实数的全体构成的集合; (4) 不等式 4 x − 5<3 的解构成的集合; (5) 所有的正方形构成的集合.
课堂小结:
集合表示方法
2、描述法:把集合中的元素的公共属性描述 出来,写在大括号内表示集合的方法。
描述法有两种表述形式:
数式形式 :如由不等式x-3>2的所有 解组成的集合,可表示为 {x│x-3>2}; 由直线y=x+1上所有的点的坐标组成的集合。 可表示:{(x,y)│ y=x+1 }。
语言形式 : 如由所有直角三角形组成 的集合,可表示为{直角三角形};由所有 小于6的正整数组成的集合。集合的表示方法高中 Nhomakorabea学必修一

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .

人教版数学必修一 第一章 1.1.1 集合的含义与表示

人教版数学必修一 第一章 1.1.1 集合的含义与表示

问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性

1.1.1集合的含义与表示

1.1.1集合的含义与表示

集合
无限集(元素的个数是无数多个)
空集 ø(集合中不含有元素)
集合的另一种表示方法:图示法
为了形象,常常用一条封闭曲线的 内部表示一个集合 。 (称为韦恩图 或文氏图)
A
小结
集合与元素
集合与元素的关系: ∈ 、 集合的表示法:1、列举法;2、描述法;
3、图示法
集合的分类:有限集、无限集、空集。 集合中元素的特性: 确定性、互异性、 无序性
例1
具有下列特征的对象能否构成一个集合:
(1) 体重很重的人.
(2) 直角坐标平面内第二象限的点.
(3) 直角坐标平面内某些点.
(4) 不大于5 的实数. (5) 方程x2- 3 x=0的有理数解. 解:(1)不能. “体重很重”的标准不明确。 (2)能.横坐标小于0且纵坐标大于0的点都是第二象限的点. (3)不能.“某些”指哪些?标准不明确. (4)能.就是小于或等于5的数. (5)能.该方程的有理数解为x=0
集合的含义与表示
[来源:学_科_网]
一,集合的定义
定义大西洋,印度洋,北冰洋”组成一个集合。
集合表示方法:
A)大括号表示:{太平洋,大西洋,印度洋,北冰洋} B)大写拉丁字母表示: A={太平洋,大西洋,印度洋,北冰洋}
二,元素:集合中的每个对象叫做这个集合的
练习3 P6 4
练习4:用描述法表示下列集合:
(1){ 4,6,8,10,12 }
(2)不在坐标轴的点的集合。
(3)被5除余1的自然数的集合。
答案:(1){x|x=2k,1<k<7,k∈z}
(2){(x,y)|x≠0且y≠0}
(3){x|x=5k+1,k∈z}

1.1.1集合的含义与表示

1.1.1集合的含义与表示

观察下列对象能否构成集合? (1)满足X-3>2的全体实数 (2)本班的全体男生 (3)我国的四大发明 (4)2008年北京奥运会中的球类项目 (5)不等式2X+3 < 9的自然数解; (6)所有的直角三角形;
那么这些集合有没有其它的表示方式?
四、集合的表示法
1. 列举法:将集合的元素一一列举出 来,并置于花括号“{ }”内。 用这种方法表示集合,元素要用逗 号隔开,但与元素的次序无关。
三、集合与元素的关系
如果元素a是集合A的元素,就记作a∈A,读作a属于A;
如果元素a不是集合A的元素,就记作a
Ï
A,读作a不属于A。
例2 用符号“∈”或“Ï ”填空: (1) 3.14_Q; (3)0 _ N+ ; (2) π_Q; (4)0 _ N ;
(5)(-2)0 _ N+ ; (6) 2 5 _ Z; (7) 2 5 _ Q.
C
C
Q
§1.1集合
蓝蓝的天空中,一群鸟在欢快的飞翔
茫茫的草原上,一群羊在悠闲的走动 清清的湖水里,一群鱼在自由地游动; -----
“集合”在现代汉语解释为许多的人或物聚在一起
C
1.根据下面的例子向同学介绍你家原来就读的学校、现在班级 同学的情况。
例:“我原来就读于第二中学” “我现在的班级是高一(2)班,全班共40人,其中男生23人,女 生17人。”
(2)设大于10小于20的整数为x, 它满足条件x Î Z 且10 < x < 20, 因此, 用描述法表示为 B = {x ? Z |10 x < 20}. 大于10小于20的整数有11,12,13,14,15,16,17,18, 19, 因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.

1.1.1 集合的含义与表示

1.1.1 集合的含义与表示
或B={11,12,13,14,15,16,17,18,19 } (3)由所有非负偶数组成的集合
C={x | x=2n,n N }
四、集合的表示
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
A={x R | x<10 } B={x R | x2 -2=0 } C={x Z | 10<x<20 }
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
五、巩固练习
(1)所有偶数组成的集合:
{x | x 2k,k Z }
数集
(2)不等式2 x 3 0的解集: { x | 2 x-3<0}
不等式的解集
(3)函数y x 1的自变量的值组成的集合:

② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
二、集合中元素的特征
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合? 能
常见的数集及其记法:
自然数集 N 整数集 Z
正整数集 N*或N 有理数集 Q
实数集 R
一、集合的含义
一般地,我们把研究的对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c ,…表示集合中的元素.
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特征?
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?

高一数学集合知识点

高一数学集合知识点

1.1集合1.1.1集合的含义与表示一、集合的含义集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.关键词:确定的、总体【特征】确定性、无序性、互异性、【表示方法】列举法、描述法、图示法.二、元素与集合关系得判断【知识点的认识】一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母 A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.【命题方向】元素与集合之间的关系命题方向有二,一是验证元素是否是集合的元素;二是知元素是集合的元素,根据集合的属性求出相关的参数.【解题方法点拨】如题型一:已知A是偶数集,试判断a=2b2+4b,b∈N是否是集合的元素?方法点拨:因为偶数都可以写成整数2倍的形式,故解决本题的方法就是看元素a能否变成数的2倍的形式.三、集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.四、集合的分类【知识点的认识】集合的分类主要依集合中元素个数的多少来划分,有限集和无限集两种.有限集元素个数是确定的,元素个数有限个,可以利用列举法或描述法表示;无限集元素个数是无限的,只能利用描述法表示.【解题方法点拨】从集合的元素个数直接判断.【命题方向】这一考点,是了解内容,会考多以选择题判断为主,高考多与集合之间的关系联合命题.五、集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x-1>0}表示实数x的范围;{(x,y)|y-2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.1.1.2集合间的基本关系一、子集与真子集【知识点的认识】子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).而真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,注①空集是所有集合的子集②所有集合都是其本身的子集③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉空集和它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-2.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且A⊆B 时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.二、集合的包含关系及其应用【知识点的认识】如果集合A中的任意一个元素都是集合B的元素,那么集合A 叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.三、集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作 A=B.(3)对于两个有限数集A=B,则这两个有限数集 A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A 与集合B相等,是指A 的每一个元素都在B 中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.四、集合中元素个数的最值【知识点的认识】【命题方向】【解题方法点拨】求集合中元素个数的最大(小)值问题的方法通常有:类分法、构造法、反证法、一般问题特殊化、特殊问题一般化等.需要注意的是,有时一道题需要综合运用几种方法才能解决.五、空集的定义、性质及运算【知识点的认识】空集的定义:不含任何元素的集合称为空集.记作∅.空集的性质:空集是一切集合的子集.空集不是没有;它是内部没有元素的集合,而集合是存在的.这通常是初学者的一个难理解点.将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的.例如:{x|x2+1=0,x∈R}=∅.虽然有x的表达式,但方程中根本就没有这样的实数x使得方程成立,所以方程的解集是空集.空集是任何集合的子集,是任何非空集合的真子集.【解题方法点拨】解答与空集有关的问题,例如集合A∩B=B⇔B⊆A,实际上包含3种情况:①B=∅;②B⊂A且B≠∅;③B=A;往往遗漏B是∅的情形,所以老师们在讲解这一部分内容或题目时,总是说“空集优先的原则”,就是首先考虑空集.【命题方向】一般情况下,多与集合的基本运算联合命题,是学生容易疏忽、出错的地方,考查分析问题解决问题的细心程度,难度不大,可以在选择题、填空题、简答题中出现.1.1.3集合的基本运算一、并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A ∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A∪B=∅,两个集合都是空集.⑦A∪(CUA)=U.⑧CU(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.二、交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素的所有元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.图形语言:.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(CUA)=∅.⑧CU(A∩B)=(CUA)∪(CUB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.三、补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作CUA,即CUA={x|x∈U,且x∉A}.其图形表示如图所示的Venn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.四、全集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).全集是相对概念,元素个数可以是有限的,也可以是无限的.例如{1,2};R;Q 等等.【解题方法点拨】注意审题,可以借助数轴韦恩图解答.【命题方向】本考点属于理解,常出现的类型有直接求出全集,利用全集求解子集的个数,集合在参数的范围等问题,难度属于容易题.五、交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C).集合的摩根律 Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.六、Venn图表达集合的关系及运算【知识点的认识】用平面上一条封闭曲线的内部来代表集合,这个图形就叫做Venn图(韦恩图).集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn图的直观性,可以深刻理解集合的有关概念、运算公式,而且有助于显示集合间的关系.运算公式:card(A∪B)=card(A)+card(B)-card(A∩B)的推广形式:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C),或利用Venn图解决.公式不易记住,用Venn图来解决比较简洁、直观、明了.【解题方法点拨】在解题时,弄清元素与集合的隶属关系以及集合之间的包含关系,结合题目应很好地使用Venn图表达集合的关系及运算,利用直观图示帮助我们理解抽象概念.Venn图解题,就必须能正确理解题目中的集合之间的运算及关系并用图形准确表示出来.【命题方向】一般情况涉及Venn图的交集、并集、补集的简单运算,也可以与信息迁移,应用性开放问题.也可以联系实际命题.。

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)高中数学知识点必修1第一章集合与函数概念1.1.1 集合的含义与表示1) 集合的概念是指集合中的元素具有确定性、互异性和无序性。

2) 常用数集及其记法:N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

3) 集合与元素间的关系:对象a与集合M的关系是a∈M,或者a∉M,两者必居其一。

4) 集合的表示法包括自然语言法、列举法、描述法和图示法。

5) 集合的分类包括有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系6) 子集、真子集、集合相等的定义和符号表示如下:名称记号意义子集 A⊆B A中的任一元素都属于B真子集 A⊂B A⊆B,且B中至少有一元素不属于A集合相等 A=B A中的任一元素都属于B,B中的任一元素都属于A7) 已知集合A有n(n≥1)个元素,则它有2n个子集,2n-1个真子集,2n-1个非空子集和0个非空真子集。

1.1.3 集合的基本运算8) 交集、并集、补集的定义和符号表示如下:名称记号意义交集A∩B {x|x∈A,且x∈B}并集 A∪B {x|x∈A,或x∈B}补集 A' {x|x∈U,且x∉A}补充知识】含绝对值的不等式与一元二次不等式的解法1) 含绝对值的不等式|x|0)的解集为{-a<x<a}。

1.解一元一次不等式对于形如 $ax+b$ 的一元一次不等式,可以将其看成一个整体,化成 $|ax+b|a(a>0)$ 型的不等式来求解。

2.解一元二次不等式对于形如 $ax^2+bx+c$ 的一元二次不等式,首先计算其判别式 $\Delta=b^2-4ac$,然后根据二次函数$y=ax^2+bx+c(a>0)$ 的图像,分类讨论 $\Delta$ 的大小关系。

当 $\Delta>0$ 时,解集为 $\{x|xx_2\}$;当 $\Delta=0$ 时,解集为 $\{x|x=x_1\}$;当 $\Delta<0$ 时,无实数解。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

D
)
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
9.若 x∈R,则{3,x,x2-2x}中的元素 x 应满足的条件是__________.
3≠x, 2 解析:由集合中元素的互异性知3≠x -2x, x≠x2-2x,
解之得 x≠-1,且 x≠0,且 x≠3.
答案:x≠-1,且 x≠0,且 x≠3
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
10.已知集合 A={x|ax2+2x+1=0,a∈R,x∈R}. (1)若 A 中只有一个元素,求 a 的值;(2)若 A 中至多有一个元素,求 a 的取值范围.
要点突破
典例精析
演练广场
4.设 P、Q 为两个非空实数集合,定义集合 P+Q={a+b|a∈P,b∈Q},若 P={0,2,5}, Q={1,2,6},则 P+Q 中元素的个数是( B ) (A)9 (B)8 (C)7 (D)6
解析:集合 P+Q 的含义就是 P、Q 集合中各取一个因素之和的不同值的个数,有 0+ 1,0+2,0+6,2+1,2+2,2+6,5+2,5+6,共 8 个,故选 B.
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
|a| |b| 6.设 a,b 是非零实数,那么 + 可能取的值组成的集合是______. a b
解析:当 a、b 同正时值为 2,当 a、b 同负时值为-2,当 a、b 异号时值为 0,故组成 的集合是:{-2,0,2}.
答案:{-2,0,2}
首页
要点突破
典例精析

高一数学上必修一第一章集合

高一数学上必修一第一章集合

第一章集合与函数1.1.1 集合的含义与表示1.集合的含义(1)元素与集合的定义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.示例:小于5的自然数组成集合,可以记为B,它的元素是0,1,2,3,4;方程x2-x=0的实数解组成集合,可以记为A,它的元素是0,1.对集合的理解(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)注意组成集合的对象的广泛性,凡是看得见的、摸得着的、想得到的任何事物都可以作为组成集合的对象.(3)集合是一个整体,已暗含“所有”“全部”“全体”的含义.因此一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象.(2)集合中元素的特征元素的特征理解确定性给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素是否在这个集合中就确定了,我们把这个性质称为集合元素的确定性.互异性一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不能重复出现的,我们把这个性质称为集合元素的互异性.无序性集合中的元素是没有顺序的.也就是说,集合中的元素没有前后之分,我们把这个性质称为集合元素的无序性.释疑点判断一组对象能否构成一个集合的方法判断一组对象能否构成一个集合,其关键是看该组对象是否满足确定性.如果该组对象满足确定性,就可以组成集合;否则,就不能组成集合.【例1-1】下列所给的对象能构成集合的是__________.(1)所有正三角形;(2)新课标人教A版数学必修1课本上的所有难题;(3)比较接近1的正整数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点的距离等于1的点的集合;(6)参加伦敦奥运会的年轻运动员;(7)a,b,a,c.解析:序号能否构成集合理由(1)能其中的元素满足三条边相等(2)不能“难题”的标准是模糊的、不确定的,所以元素不确定,故不能构成集合(3)不能“比较接近1”的标准不明确,所以元素不确定,故不能构成集合(4)能其中的元素是“16岁以下的学生”(5)能其中的元素是“到坐标原点的距离等于1的点”(6)不能因为“年轻”的标准是模糊的、不确定的,故不能构成集合(7)不能因为有两个a是重复的,不符合元素的互异性点技巧一组对象能否构成集合的判断技巧判断一组对象能否构成集合的关键在于看是否有明确的...判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.素a与集合A,在“a∈A”与“a∉A”这两种情况中必有一种且只有一种成立.(2)符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系.(3)“∈”和“∉”具有方向性...,左边是元素,右边是集合.【例1-2】设不等式3-2x<0的解集为M,下列关系中正确的是()A.0∈M,2∈M B.0∉M,2∈MC.0∈M,2∉M D.0∉M,2∉M解析:本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x<0的解即可,当x=0时,3-2x=3>0,所以0∉M;当x=2时,3-2x=-1<0,所以2∈M.答案:B(4)相等集合只要构成两个集合的元素是一样的,也就是说它们的元素是完全相同的,我们就称这两个集合是相等的.【例1-3】若方程(x-1)2(x+1)=0的解集为A,方程x2-1=0的解集为B,那么A与B是否相等?解:由题意知集合A中的元素为1,-1;集合B中的元素为1,-1.由定义可知A=B.2.谈重点+0.(2)通常情况下,大写英文字母N,N*,Z,Q,R不再表示其他的集合,否则会引起“混乱”;虽然正整数集有两种字母表示:N*或N+,但是本书中主要用N*表示正整数集.【例2】用符号∈或∉填空:(1)3____N;3____Z;3____N*;3____Q;3____R.(2)3.1____N;3.1____Z;3.1____N*;3.1____Q;3.1____R.解析:观察空白处横线的两边,可看出本题是判断数与常用数集之间的关系,依据这些字母所表示集合的意义来判断.(1)因为3是自然数,也是整数,也是正整数,也是有理数,也是实数,所以有:3∈N;3∈Z;3∈N*;3∈Q;3∈R.(2)因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N*;3.1∈Q;3.1∈R.答案:(1)∈∈∈∈∈(2)∉∉∉∈∈3.集合的表示法(1)自然语言法用文字叙述的形式描述集合的方法.使用此方法要注意叙述清楚,如由所有正方形构成的集合,就是自然语言表示的,不能叙述成“正方形”.(2)列举法定义把集合中的全部元素一一列举出来,并用花括号“{ }”括起来表示集合,这种表示集合的方法叫做列举法.一般形式{a1,a2,a3,…,a n}示例中国古代四大发明组成的集合,用列举法表示为{火药,造纸术,活字印刷术,指南针}谈重点用列举法表示集合应注意的问题(1)当集合的元素较少时,可以采用列举法表示;(2)元素间用“,”分隔开;(3)元素不能重复,不考虑顺序;(4)集合元素个数较多或无限时(无限集),一般不采用列举法,但如果构成集合的元素有明显的规律时,可以采用列举法,但必须把元素间的规律表示清楚后才能用省略号,如正整数集可表示为{1,2,3,4,…}.【例3-1】用列举法表示下列集合:(1)15以内质数的集合;(2)方程x(x2-1)=0的所有实数根组成的集合;(3)一次函数y=x与y=2x-1的图象的交点组成的集合.分析:(1)质数又称素数,指在一个大于1的自然数中,除了1和此数自身外,不能被其他自然数整除的数;(2)中要明确方程x(x2-1)=0的实数根有哪些;(3)中要明确一次函数y=x与y=2x-1的图象的交点有哪些,应怎样表示.解:(1){2,3,5,7,11,13};(2)解方程x(x2-1)=0,得x1=-1,x2=0,x3=1,故方程x(x2-1)=0的所有实数根组成的集合为{-1,0,1};(3)解方程组,21,y xy x=⎧⎨=-⎩得1,1,xy=⎧⎨=⎩因此一次函数y=x与y=2x-1的图象的交点为(1,1),故所求的集合为{(1,1)}.(3)描述法含义用集合中元素的共同特征表示集合的方法一般形式{x|p(x)}(其中x是集合元素的一般符号,p(x)是集合元素的共同特征)具体方法在花括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.谈重点用描述法表示集合应注意的问题(1)写清楚该集合中的代表元素,即代表元素是什么:是数,还是有序实数对(点),还是集合,或是其他形式;(2)准确说明集合中元素的共同特征;(3)所有描述的内容都要写在集合符号内,并且不能出现未被说明的符号;(4)用于描述的语句力求简明、准确,多层描述时,应准确使用“且”“或”等表示描述语句之间的关系;(5)在不致混淆的情况下,可以省去竖线及左边部分,如:{直角三角形},{正方形}等.【例3-2】用描述法表示下列集合:(1)所有的偶数组成的集合;(2)不等式2x-4>0的解集.解:(1)偶数是能被2整除的数,即2的倍数,所以所有偶数组成的集合用描述法表示为{x|x=2n,n∈Z}.(2)设不等式2x-4>0的解集记为A,x为集合A中元素的代表符号,其共同特征是2x -4>0,则A={x|2x-4>0};解不等式2x-4>0,得x>2,则也可以表示为A={x|x>2}.【例3-3】试分别用列举法和描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解:(1)方程x 2-x -2=0的根可以用x 表示,它满足的条件是x 2-x -2=0,因此,用描述法表示为{x ∈R |x 2-x -2=0};方程x 2-x -2=0的根是-1,2,因此,用列举法表示为{-1,2}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z 且-1<x <7,因此,用描述法表示为{x ∈Z |-1<x <7};大于-1且小于7的整数有0,1,2,3,4,5,6,因此,用列举法表示为{0,1,2,3,4,5,6}.4.集合元素的特征的应用(1)集合元素的确定性是指给定一个集合,集合中的元素就确定了,即给定一个集合,任一元素要么在这个集合中,要么不在这个集合中,二者必居其一.考查一组对象的全体能否构成一个集合,需看这组对象是否具有确定无疑的具体特征(或标准).(2)集合元素的互异性是指集合中的元素互不相同,也就是说集合中的元素是不能重复出现的,相同的元素在一个集合中只能算作一个元素.例如:方程x 2=0的两个根x 1=x 2=0,用集合记为{0},而不能记为{0,0}.【例4】下列说法正确的是( )A .数学成绩较好的同学可以组成一个集合B .所有绝对值接近于零的数组成一个集合C .集合{1,2,3}与集合{3,2,1}表示同一个集合D .1,0.5,12,23,46组成一个含有5个元素的集合 解析:对于A 项,“成绩较好”没有标准,不符合元素的确定性,故不正确;对于B 项,“绝对值接近于零的数”标准不明确,不构成集合,故不正确;对于C 项,集合{1,2,3}与{3,2,1}元素相同,是相等集合,因此正确;对于D 项,1,0.5,12,23,46组成一个含有3个元素的集合121,,23⎧⎫⎨⎬⎩⎭,故不正确.答案:C5.元素与集合的关系及应用元素与集合的关系仅有两种:属于和不属于.用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .用描述法给出的集合,判断元素与集合的关系时相对比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?……其次要清楚元素的共同特征是什么;最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.描述法表示的集合形式为{x |x ∈P (x )},其中P (x )为该集合元素的共同特征.例如,集合B ={x |x =3n -1,n ∈Z },则该集合元素的一般符号是x ,其共同特征是x =3n -1,n ∈Z ,即集合B 中的元素是整数,并且这个整数等于3的整数倍减去1,因此判断某个元素与集合B 的关系时,只需判断所给的元素是否等于3的整数倍减去1即可.设3n -1=16,解得n =173,则16不能等于3的整数倍减去1,所以16∉B .设3n -1=17,解得n =6,则17等于3的6倍减去1,所以17∈B .【例5-1】设集合6|2B x x ⎧⎫=∈∈⎨⎬+⎩⎭N N . (1)试判断元素1,2与集合B 的关系;(2)用列举法表示集合B .分析:判断集合B 与元素1,2的关系,只要代入验证即可.解:(1)当x =1时,621+=2∈N . 当x =2时,62+2=63222=∈+N .因此1∈B,2∉B . (2)∵62x +∈N ,x ∈N ,∴2+x 只能取2,3,6. ∴x 只能取0,1,4.∴B ={0,1,4}.【例5-2】若集合A ={a -3,2a -1,a 2-4}且-3∈A ,求实数a 的值.错解:若a -3=-3,则a =0;若2a -1=-3,则a =-1;若a 2-4=-3,则a =±1.综上可知,a =0或a =±1.错因分析:由于-3∈A ,故应分a -3=-3,2a -1=-3,a 2-4=-3三种情况讨论,这是正确的,但求出a 值后,应验证其是否满足集合的互异性,错解在于没有验证,导致出现增解.正解:(1)若a -3=-3,则a =0,此时A ={-3,-1,-4},满足题意;(2)若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足题意;(3)若a 2-4=-3,则a =±1,当a =1时,A ={-2,1,-3},满足题意,当a =-1时,由(2)知,不满足题意.综上可知,a =0或a =1.6.集合的表示方法及应用(1)用列举法表示集合时,既要注意将自然语言与集合语言描述的集合中的元素一一确定出来,又要善于把列举法表示的集合用自然语言表述出来.如方程x 2=1组成的集合是{-1,1},而该集合可描述为x 2=1的解集,或绝对值为1的数等.(2)使用描述法时,需注意以下几点:①写清楚该集合中的代表元素.例如,集合{x ∈R |x <1}不能写成{x <1}.②集合与它的代表元素所采用的字母无关,只与集合中元素的共同特征有关.例如,集合{x ∈R |x <1}也可以写成{y ∈R |y <1}.③所有描述的内容都要写在集合符号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表述方式不符合要求,需将k ∈Z 也写进大括号内,即{x ∈Z |x =2k ,k ∈Z }.④在不致引起混淆的情况下,所有的非负数组成的集合可记为{x |x ≥0}.当集合是数集时,在没有标明x 范围的前提下,我们认为x 的值是使式子有意义的所有值.如⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,此时我们认为x ∈R 且x ≠0.由反比例函数的性质,可知该集合可化为{y |y ∈R ,且y ≠0}.当用文字语言来描述集合中元素的特征或性质时,分隔号及前面的部分常常省去,如“所有四边形组成的集合”记为{x |x 是四边形}.在不致混淆的情况下,可以省去“|”及其左边的部分,直接写成{四边形}.“所有四边形组成的集合”不能写成{所有四边形},因为花括号本身就有全部的意思,故用文字描述集合时,应去掉含有“整体”“全部”等意义的词.(3)对某一个具体的集合而言,其表示方法并不是唯一的,如{x |x 是自然数中三个最小的完全平方数},还可以表示为{0,1,4}.方法的选择要因题而异.集合的表示法 特点 适用范围自然语言法 自然、生动、明确 都可用,无限制列举法 直观、明了 元素个数较少时描述法 清晰反映集合中元素的特征 元素个数无限或不宜一一列举时(1)绝对值不大于2的所有整数;(2)方程组1,1x yx y+=⎧⎨-=-⎩的解.解:(1)由于|x|≤2且x∈Z,所以x值为-2,-1,0,1,2.故绝对值不大于2的所有整数组成的集合为{-2,-1,0,1,2}.另外本题用描述法可表示为{x∈Z||x|≤2}.(2)解方程组1,1x yx y+=⎧⎨-=-⎩得0,1.xy=⎧⎨=⎩因此用列举法表示方程组1,1x yx y+=⎧⎨-=-⎩的解集为{(0,1)}.【例6-2】用描述法表示下列图象中阴影部分(含边界)的点的集合.分析:由于是坐标平面内的点集,所以代表元素可以用有序实数对(x,y),x,y的范围可结合图形写出.解:(1)设阴影部分的所有点构成集合A,则集合A中的元素是点,设为(x,y).由图形知-1≤x≤1,-1≤y≤1,所以A={(x,y)|-1≤x≤1,-1≤y≤1}.(2)设阴影部分的所有点构成集合B,则集合B中的元素是点,设为(x,y).由图形知:-1≤x≤1,y∈R,所以B={(x,y)|-1≤x≤1,y∈R}.【例6-3】下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?分析:对于用描述法给出的集合,首先要清楚集合中的代表元素是什么,元素满足什么条件.解:(1)它们是互不相同的集合.(2)∵集合①{x|y=x2+1}的代表元素是x,满足条件y=x2+1中的x∈R,∴{x|y=x2+1}=R;∵集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1};∵集合③{(x,y)|y=x2+1}的代表元素是(x,y),可以认为是满足y=x2+1的数对(x,y)的集合,也可以认为是坐标平面内的点(x,y)构成的集合,且这些点的坐标满足y=x2+1,∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.点技巧对用描述法表示的集合的理解用描述法表示的集合,一要看集合的代表元素是什么,它反映了集合元素的形式;二要看元素满足什么条件.数集和点集常常会混淆.7.集合相等的应用两个集合相等,是指构成这两个集合的元素完全相同.也就是说,若两个集合相等,则这两个集合中的元素个数相同,并且对于其中一个集合中的任一元素,在另一个集合中都能找到这个元素.例如:若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.解:因为A=B,所以方程x2+ax+b=0的解集是{-1,3},那么-1,3是方程x2+ax+b=0的根,则13,13,a b -+=-⎧⎨-⨯=⎩解得2,3.a b =-⎧⎨=-⎩ __________________________________________________________________________________________________________________________________________________________________________________________【例7】若含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{a 2,a +b,0},求a 2 012+b 2 013的值.分析:由题意知,集合,,1b a a ⎧⎫⎨⎬⎩⎭与集合{a 2,a +b,0}相等,由集合相等的定义,列出关于a,b 的方程组,解出a ,b ,进而求a 2 012+b 2 013的值. 解:由已知集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,得a ≠1且a ≠0. 由题意得21,,0a a a b b a ⎧⎪=⎪=+⎨⎪⎪=⎩或21,,0,a b a a b a⎧⎪+=⎪=⎨⎪⎪=⎩解得1,0a b =-⎧⎨=⎩或1,0.a b =⎧⎨=⎩ 经检验知1,0,a b =⎧⎨=⎩不满足集合中元素的互异性,应舍去. 因此1,0a b =-⎧⎨=⎩ 故a 2 012+b 2 013=1.点技巧 由集合相等求参数的技巧 应从集合相等的定义入手,寻找元素之间的关系,若集合中的未知元素不止一个,则需分类讨论....,同时要注意利用集合中元素的互异性...对求得的结果进行检验....8.方程、不等式等知识与集合交会问题的处理集合语言是表述数学问题的重要语言,以集合为载体的方程、不等式的问题是本节的常见问题之一,解决此类问题应注意:(1)首先是准确理解集合中的元素,明确元素的共同特征,如果不理解集合中的元素,那么就会出现思维受阻的现象,感到无从下手.例如,集合A ={x |ax -1<0}的元素是关于x 的不等式ax -1<0的解,当a =0时,这个不等式化为-1<0,此时不等式的解集为实数集R ,当a ≠0时,这个不等式是关于x 的一元一次不等式.如果忽视a =0,那么就会导致出现错解.(2)解题时还应注意方程、不等式等知识以及数学思想(转化思想、分类讨论思想)的综合应用._______________________________________________________________________________________________________________________________________________________________________________________【例8】已知集合A={x|ax2-3x+2=0}.(1)若A是单元素集合,求集合A;(2)若A中至少有一个元素,求a的取值范围.分析:本题将集合中元素个数问题转化为方程根的问题.(1)A是单元素集合,说明方程有唯一根或有两个相等的实数根.(2)A中至少有一个元素,说明方程有一根或两根.解:(1)当a=0时,23A⎧⎫=⎨⎬⎩⎭,符合题意;当a≠0时,方程ax2-3x+2=0应有两个相等的实数根,则Δ=0,即9-8a=0,解得98a=,此时43A⎧⎫=⎨⎬⎩⎭,符合题意.综上所述,当a=0时,23A⎧⎫=⎨⎬⎩⎭,当a≠0时,43A⎧⎫=⎨⎬⎩⎭.(2)由(1)知,当a=0时,23A⎧⎫=⎨⎬⎩⎭,符合题意;当a≠0时,方程ax2-3x+2=0应有实数根,则Δ≥0,即9-8a≥0,解得a≤98.综上所述,若A中至少有一个元素,则a≤98.辨误区对方程ax2+bx+c=0的错误认识“a=0”这种情况容易被忽视,如“方程ax2-3x+2=0”有两种情况:一是“a=0”,即它是一元一次方程;二是“a≠0”,即它是一元二次方程,只有在一元二次方程这种情况下,才能用判别式Δ来解决.因此解决二.次项系数含参数.......的方程或不等式问题时,应分二次项系数为......0.和不为...0.两种情况进行讨论.9.与集合有关的创新题(1)能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用是新课标对本节课的要求.因此高考更多地将集合作为一种语言来考查.其中不乏一些创新题.(2)与集合有关的创新题主要以集合的表示法和元素与集合的关系为背景,常常是给出新的定义,依据新背景或新定义,借助于集合的含义与表示和元素与集合的关系来解决问题.(3)解决这类问题时,要紧扣所给的新背景或新定义.其所用到的集合知识往往是比较基础的,主要是集合的含义和表示法、集合的性质、元素与集合的关系等.【例9-1】定义集合运算A B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B ={2,3},则集合A B的所有元素之和为()A.0 B.6 C.12 D.18解析:根据A B的定义,当x=0时z=0;当x=1时,若y=2,则z=6,若y=3,则z=12.因此集合A B的所有元素和为18.答案:D【例9-2】已知集合A中的元素均为整数,对于k∈A,如果k-1∉A且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:先分析“孤立元”的含义,再根据不含“孤立元”的条件写出所有不含“孤立元”的集合,最后确定个数.依题意可知,所谓不含“孤立元”的集合就是集合中的3个元素必须是3个相邻的正整数,故所求的集合包括:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个,应填6.答案:6课时作业(一) 集合的含义一、选择题1.①某班视力较好的同学;②方程x 2-1=0的解集;③漂亮的花儿;④空气中密度大的气体.其中能组成集合的是( )A. ②B. ①③C. ②④D. ①②④答案:A 解析:求解这类题目要从集合元素的确定性、互异性出发.①③④不符合集合元素的确定性,故不能组成集合.2.若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:D 解析:△ABC 的三边长两两不等,故选D.3.设不等式3-2x <0的解集为M ,下列结论正确的是( )A. 0∈M,2∈MB. 0∉M,2∈MC. 0∈M,2∉MD. 0∉M,2∉M答案:B 解析:从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是不是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .4.已知2a ∈A ,a 2-a ∈A ,若集合A 中含有2个元素,则下列说法中正确的是( )A .a 取全体实数B .a 取除0以外的所有实数C .a 取除3以外的所有实数D .a 取除0和3以外的所有实数答案:D 解析:根据集合中的元素具有互异性知,2a ≠a 2-a ,∴a ≠0且a ≠3.故选D.5.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A. 1B. -2C. 6D. 2答案:C 解析:由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧ a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠±2且a ≠1.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.6.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A. 2B. 2或4C. 4D. 0答案:B 解析:若a =2∈A ,则6-a =4∈A ;若a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .故选B.二、填空题7.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a,0三个元素构成的集合,若A =B ,则实数a =________.答案:1 解析:由集合相等的概念,得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2, 解得a =1.8.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a =________.答案:2或3 解析:由(x -a )(x -a +1)=0得x =a 或x =a -1.又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意;当a -1=2时,a =3,集合A 中的元素为2,3,符合题意.综上可知,a =2或a =3.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x ∈R ,且x ≠0,1,2,1±52 解析:由元素的互异性,得⎩⎪⎨⎪⎧ x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52. 10.设a ,b ∈R ,集合A 中有三个元素1,a +b ,a ,集合B 中含有三个元素0,b a, b ,且A =B ,则a +b =________.答案:0 解析:由于B 中元素是0,b a,b ,故a ≠0,b ≠0. 又A =B ,∴a +b =0.11.由实数t ,|t |,t 2,-t ,t 3所构成的集合M 中最多含有________个元素.答案:4 解析:由于|t |至少与t 和-t 中的一个相等,故集合M 中至多有4个元素,如当t =-2时,t ,-t ,t 2,t 3互不相同,集合M 中含有4个元素.三、解答题12.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a 的值.解:由-3∈A ,得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1舍去.当a =-32时,a -2=-72,2a 2+5a =-3,符合题意. ∴a =-32. 13.设P ,Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P + Q 中元素的个数是多少?解:∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11,共8个. 14.设集合A 中含有三个元素3,x ,x 2-2x .(1)求实数x 应满足的条件; (2)若-2∈A ,求实数x 的值.解:(1)由集合元素的互异性,得⎩⎪⎨⎪⎧x ≠3,x 2-2x ≠x ,x 2-2x ≠3,解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2. 尖子生题库15.设S 是由满足下列条件的实数所构成的集合:①1∉S ;②若a ∈S ,则11-a ∈S .请回答下列问题:(1)若2∈S ,则S 中必有另外两个数,求出这两个数; (2)求证:若a ∈S ,则1-1a∈S ;(3)在集合S 中元素能否只有一个?若能,把它求出来;若不能,请说明理由.(1)解:∵2∈S,2≠1,∴11-2=-1∈S .∵-1∈S ,-1≠1,∴11-(-1)=12∈S .∵12∈S ,12≠1,11-12=2∈S . ∴集合S 中另外两个数为-1和12.(2)证明:∵a ∈S ,∴11-a∈S ,∴11-11-a ∈S , 即11-11-a=1-a 1-a -1=1-1a ∈S (a ≠0).若a =0,则11-a =1∈S ,不合题意.∴a =0∉S .∴若a ∈S ,则1-1a ∈S .(3)解:集合S 中的元素不能只有一个.理由:假设集合S 中只有一个元素a ,则根据题意知a =11-a ,即a 2-a +1=0,此方程无实数解,所以a ≠11-a.因此集合S 中不能只有一个元素.课时作业(二) 集合的表示一、选择题1.下列集合的表示正确的是( )A .{1,2,2}B .R ={全体实数}C .{3,5}D .不等式x -5>0的解集为{x -5>0}答案:C 解析:A 不正确,因为集合中的元素需满足互异性; B 不正确,因为花括号“{ }”本身就有“全体”的意思;C 正确; D 不正确,不等式x -5>0的解集为{x |x -5>0}. 2.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{-2,2}; ③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( )A .1个B .2个C .3个D .0个答案:A 解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.3.设a ,b 都是非零实数,则y =a |a |+b |b |+ab|ab |可能取的值组成的集合为( )A .{3}B .{3,2,1}C .{3,-2,1}D .{3,-1} 答案:D 解析:①当a >0,b >0时,y =3;②当a >0,b <0时,y =-1;③当a <0,b >0时,y =-1;④当a <0,b <0时,y =-1. 4.集合⎭⎬⎫⎩⎨⎧∈∈*Z x N x 12中含有的元素个数为( ) A .4 B .6 C .8 D .12答案:B 解析:∵x ∈N *,12x∈Z , ∴当x =1时,12x =12∈Z ;当x =2时,12x =6∈Z ;当x =3时,12x =4∈Z ;当x =4时,12x =3∈Z ;当x =6时,12x =2∈Z ;当x =12时,12x =1∈Z .故元素个数为6. 5.设集合A =⎭⎬⎫⎩⎨⎧∈=N n x x n ,31,若x 1∈A ,x 2∈A ,则必有( ) A. x 1+x 2∈A B. x 1x 2∈A C. x 1-x 2∈AD. x 1x 2∈A 答案:B 解析:若元素具有13n (n ∈N )的形式,则这个元素属于集合A ,由于x 1∈A ,x 2∈A ,可设x 1=13m (m ∈N ),x 2=13k (k ∈N ),又x 1·x 2=13m ·13k =13m +k ,m +k ∈N ,∴x 1x 2∈A ,故B 项正确.取x 1=13,x 2=132,可验证A 项,C 项,D 项是错误的.6.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,据此推知,运算⊕可能是( )A .加法B .减法C .除法D .乘法答案:D 解析:因为集合P 中的元素是平方数,又a ∈P ,b ∈P ,故其运算可能是乘法,其他的运算不适合,因为平方数的乘积还是平方数.故选D. 二、填空题7.若3∈{m -1,3m ,m 2-1},则m =________.答案:4或±2 解析:由m -1=3,得m =4; 由3m =3,得m =1,此时m -1=m 2-1=0,故舍去; 由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故m =4或±2.8.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号)①M ={π},N ={3.141 59};②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 答案:④ 解析:只有④中M 和N 的元素相等.9.若集合A ={1,2,3,4},集合B ={y |y =x -1,x ∈A },将集合B 用列举法表示为________.答案:{0,1,2,3} 解析:当x =1时,y =0;当x =2时,y =1;当x =3时,y =2;当x =4时,y =3.故B ={0,1,2,3}.10.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=________.答案:{1,3} 解析:由题意知,-5是方程x 2-ax -5=0的一个根,∴(-5)2+5a -5=0,解得a =-4.则方程x 2+ax +3=0,即为x 2-4x +3=0, 解得x =1或x =3.∴{x |x 2-4x +3=0}={1,3}.11.设A ={2,3,a 2+2a -3},B ={|a +3|,2},已知5∈A ,且5∉B ,则a =________.答案:-4 解析:∵5∈A ,∴a 2+2a -3=5,∴a =2或a =-4, 又5∉B ,∴|a +3|≠5,∴a ≠2且a ≠-8,∴a =-4. 三、解答题12.用适当的方法表示下列集合:(1)所有能被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B . 解:(1){x |x =3n ,n ∈Z };(2)⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪-1≤x ≤2,-12≤y ≤1,且xy ≥0; (3)B ={x |x =|x |,x ∈Z }.13.设集合A ={(x ,y )|x +y =6,x ∈N ,y ∈N },试用列举法表示集合A .解:当x =0时,y =6;当x =1时,y =5;当x =2时,y =4;当x =3时,y =3;当x =4时,y =2;当x =5时,y =1;当x =6时,y =0.∴A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 14.已知集合A ={x ∈R |ax 2-3x +1=0,a ∈R }.(1)若1∈A ,求a 的值;(2)若A 为单元素集合,求a 的值;(3)若A 为双元素集合,求a 的范围.解:(1)∵1∈A ,∴a ×12-3×1+1=0,∴a =2. (2)当a =0时,x =13;当a ≠0时,Δ=(-3)2-4a =0,∴a =94.∴a =0或a =94时,A 为单元素集合.(3)当a ≠0,且Δ=(-3)2-4a >0, 即a <94且a ≠0时,方程ax 2-3x +1=0有两解,∴a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <94且a ≠0 尖子生题库15.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和是多少?解:当x=1或2,y=0时,z=0,当x=1,y=2时,z=2;当x=2,y=2时,z=4.∴A*B={0,2,4},∴所有元素之和是0+2+4=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示
一、教学目标:
1.知识与技能
①初步理解集合的基本概念,常用数集,集合元素的性质等集合的基础知识.
②了解“属于”关系的意义,理解集合相等的含义.
③能恰当地运用列举法与描述法表示集合,能进行自然语言与集合语言间的转换.
2.过程与方法
通过实例的分析、思考,获得集合的基本概念,感知集合元素性质的实质,增强学生发现问题,研究问题的创新意识和能力教学重点与难点:
3.重点难点
重点:集合的基本概念,常用数集,集合元素的性质等集合的基础知识.
难点:能恰当地运用列举法与描述法表示集合.
二、教学过程:
Ⅰ问题提出:“集合”是日常生活中的一个常用词,现代汉语解释为:许多的人或物聚在一起.在现代数学中,集合是一种简洁、高雅的数学语言,我们怎样理解数学中的“集合”?(板书课题)
情景设置:1. 到一个定点A的距离等于定长r的点的集合,即圆.
2. 到一条线段的两个端点距离相等的点的集合,即这条线段的垂直平分线.
示例:(1)1~20以内的所有质数;
(2)所有正方形;
(3)长沙市一中2008年8月入学的8班学生;
(4)中国的直辖市.
Ⅱ探索
集合的概念:
思考1:上述4个集合中的元素分别是什么?
思考2:组成集合的元素所属对象是否有限制?集合中的元素个数的多少是否有限制?
思考3:试列举一个集合的例子,并指出集合中的元素.
2.集合元素的性质:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由此说明什么?
⑴确定性: 集合中的元素必须是确定的.
思考2:北京2008奥运会的金牌数组成的集合有多少个元素?北京2008奥运会的金牌选手组成的集合有多少个元素?由此说明什么?
⑵互异性: 集合的元素必须是互不相同的.
思考3:高一8班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?
⑶无序性: 集合中的元素是无先后顺序的.
练习1.下列指定的对象,能构成一个集合的是( B )
①很小的数②不超过30的非负实数③直角坐标平面的横坐标与纵坐标相等的点
④(的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体
A.②③④⑥⑦⑧
B.②③⑥⑦⑧
C.②③⑥⑦
D.②③⑤⑥⑦⑧
3.集合相等:
4.集合的表示:
集合常用大写字母表示,元素常用小写字母表示.
5.集合与元素的关系:
思考1:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
思考2:对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?
思考3:如果元素a是集合A中的元素,我们如何用数学化的语言表达?如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
如果a是集合A的元素,就说a属于集合A,记作a∈A.
如果a不是集合A的元素,就说a不属于集合A,记作a(A.
例如:A表示方程x2=1的解集,则-1∈A 1∈A
6.重要的数集:
N:自然数集(含0) N+:正整数集(不含0) Z:整数集
Q:有理数集R:实数集
7.集合的表示方法: (1)列举法:
例1.用列举法表示下列集合:
1)小于10的所有自然数组成的集合;
2)方程x2=x的所有实数根组成的集合;
3)由1~20以内的所有质数组成的集合;
4)从50到100的所有整数组成的集合;
5)由所有正偶数组成的集合.
(2)描述法:
例2.用描述法表示下列集合:(1)不等式x-3>2的所有解组成的集合.(2)直线y=x+1上所有点组成的集合.(3)所有奇数组成的集合. (4)所有直角三角形组成的集合.
例3.试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
例4.若x∈R,则数集{1,x,x2}中元素x应满足什么条件.
解:∵x≠1且x2≠1且x2≠x,∴x≠1且x≠-1且x≠0.
思考题1.设x∈R,y∈R,观察下面四个集合
A={ y=x2-1 } B={ x | y=x2-1 } C={ y | y=x2-1 } D={ (x, y) | y=x2-1 }
它们表示含义相同吗?
思考题2:已知集合A={x|ax2+4x+4=0,x∈R,a∈R}只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1. 当a≠0时,(=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第2题
课堂小结
集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示
课后作业
教科书12面习题1.1第3、4题。

相关文档
最新文档