OBD-Ⅱ自诊断系统

合集下载

谈第二代随车自诊断系统OBD-Ⅱ

谈第二代随车自诊断系统OBD-Ⅱ

Copyright 2001 by Autopro. All Rights Reserved.
北京中车行高新技术有限公司. 版权所有
地址:北京市西长安街88号首都时代广场823-825室
京ICP证010530号
中车在线汽车服务网
首页 > 技术热点
谈第二代随车自诊断系统OBD-Ⅱ
曹坚木
一、功能介绍
OBD
-Ⅱ采用了统一的诊断模式和统一的诊断插座、相同的数据信息和故障码及含义。汽车维修人员只要用一台仪器即可对各种车辆进行检测和诊断,极大地方便了汽车的维修。
-Ⅱ诊断插座相连,并选择数据读取屏幕则可以检测到各种工况下的各传感器、执行器的工作状态,当执行完所有的程序,屏幕会显示出所有测试已结束。
三、故障码的读取
OBD
-Ⅱ诊断插座统一制成16针插座,且统一安装在汽车仪表板的左下方横装或竖装。汽车维修人员可以利用该插座来读取故障码,具体读取的方法有:
当汽车有故障,而用仪器读不出故障码时,可进行激活测试。准确的激活测试要求车达到与该系统相应的工作状态,如爆震传感器不能在怠速时进行测试,氧传感器不能在减速状态下进行测试。为能够使诊断准确,车辆必须完成正确的驱动以便进行自诊断测试,我们称之为OBD
-Ⅱ驱动循环。在路试测试过程中,车必须达到特定的工作条件,用一个诊断扫描仪与OBD
-Ⅱ插座跨接的方法读取故障码,但可用原车的38针诊断插座中的第4#孔(CH系统)或第19#孔(CARB系统)读取发动机故障码。1994年前的宝马车系可将点火开关打开,在5秒钟内踩加速踏板5次,发动机故障警告灯先亮5秒,然后闪烁1次,再根据发动机故障警告灯的闪烁规律和次数读取故障码。克莱斯勒车系可将点火开关打开关闭3次以后,等待5~10秒,然后根据发动机故障警告灯的闪烁规律和次数读取故障码。本田车系可用右手套箱下的一个2条线和3条线的诊断座读取故障码,如用导线跨接法,可将2条线的诊断座直接用导线跨接,然后打开点火开关,可从发动机故障警告灯(CHECK)中读取故障码;如用仪器读取故障码时,可将仪器接在3条线的诊断座中,直接读取故障码。6缸奥迪车可在发动机室熔断丝盒诊断座中找到黑色与白色诊断座,将发光二极管正极一端接黑色诊断座的正极,负极一端接白色诊断座发动机触发线,然后把负级一端接地4秒后移开,可从发光二极管的闪烁规律和次数中读取故障码。

OBDII车载自动诊断系统简介

OBDII车载自动诊断系统简介

OBDII简介OBDII(the Second On—Board Diagnostics), ,美国汽车工程师协会(SAE,Society of Automotive Engineers)1988年制定了OBD-II标准。

OBDII实行标准的检测程序,并且具有严格的排放针对性,用于实时监测汽车尾气排放情况。

中文名 :汽车诊断第二代系统 .外文名 :OBDII目录:1:OBDII简介2:OBDII工作原理3:OBDII通讯协议▪ ISO9141-2▪ ISO14230▪ ISO157654:OBDII数据连接口5:OBDII终端产品功能6:应用领域7:故障码一、OBDII简介自从20世纪50年代汽车技术与电子技术开始相结合以来,电子技术在汽车上的应用范围越来越广泛。

ECU作为汽车发动机电控系统的核心具有速度快捷、功能强大、可靠性高、成本低廉的特点,故此ECU的引入极大地提高了汽车的动力性、舒适性、安全性和经济性。

然而,由于现代发动机电OBDII 模块控系统越来越复杂,将ECU引入发动机电控系统之后,在提高汽车性能的同时也引发了故障类型难以判定的问题。

针对该情况,从20世纪80年代起,美、同、欧等地的汽车制造企业开始在其生产的电喷汽车上配备车载自诊断模块(On—Board Diagnostics Module)。

自诊断模块能在汽车运行过程中实时监测电控系统及其电路元件的工作状况,如有异常,根据特定的算法判断出具体的故障,并以诊断故障代码(DTC,Diagnostic Trouble Codes)的形式存储在汽车电脑芯片内阳1。

系统自诊断后得到的有用信息可以为车辆的维修和保养提供帮助,维修人员可以利用汽车原厂专用仪器读取故障码,从而可以对故障进行快速定位,故障排除后,采用专用仪器清除故障码。

由于该时期不同厂商的OBD系统之问各行其是、互不兼容,所以被称为第一代车载自诊断系统(OBD—I,the First On—BoardDiagnostics)。

OBDII诊断

OBDII诊断

OBDII诊断OBDII最早出现在1994年的几种车型,包括LEXUS(凌志)E33000,Toyota Camry(佳美)1MZ-FE 观3.0L V-6和T100 pickup(轻卡)3RZ-FE塔尔2.7L four加上(奥迪),Mercedes·Benz(奔驰),V olkSwagen(大众)和V olvo(富豪)车型。

在1995年增加了更多的车型包括Nissan Maxima(千里马)和240 sX。

然后在1996年,美国法规要求所有在本国销售的新轿车和轻卡必须装备OBDII 系统。

所以从1996年开始新轿车和轻卡普遍安装OBDII系统。

OBDII是什么?它是一个非常复杂的自我诊断系统用于探测汽车排放出现的增加。

OBD II 系统不象以前所有的自我诊断系统那样,只能探测传惑器的故障,总的电子故障和会或不会影响发动机性能一类的问题,OBDII的焦点在排放上。

如果碳氢化合物(HC调一氧化碳(Co)9氮氧化物(NOX)!甚至蒸发排放超过美国国家排放限值的卜倍,OBD II装备的汽车就会点亮故障指示灯(MIL)并记录一个诊断故障码(DTC),即使发动机运转不存在明显的恶化或变化,换句话说,可能没有任何动力性问题,故障灯也可能会点亮。

但是如果排放增加,OBD II将升起红旗(危险信号)。

OBDII能够探测造成HC排放突变的任意缺火(点火或稀缺火)。

它甚至能够区分出单个气缸或多个气缸的缺火。

但是它不会点亮故障灯除非它在至少两个连续驱动循环或行程中探测到HC 排放的增加以最大程度地减少“错误”点亮故障灯。

OBDII也用安装在转换器下游的次级氧传感器监测催化转换器。

通过比较上游和下游氧传感器的值,OBDII系统能够探测转换器效率由于污染、空气泵供应的空气缺乏或类似问题造成的任何下降,和任意缺火的情况一样,OBDII在两个连续驱动循环中探测到转换器效率下降才会点亮故障灯。

OBDII系统也监视EGR系统和蒸发排放控制。

第二代随车诊断系统(OBDⅡ)简介

第二代随车诊断系统(OBDⅡ)简介
第二代随车诊断系统(OBDⅡ)简介
功用及类型 工作原理
信号特征期间,许多 汽车制造商给车辆装配随 车诊断系统(OBD,OnBoard Diagnostic),此系 统的最大特点就是当汽车 发生故障时,以特定的方 式显示出故障码,帮助判 断电路故障原因,便于维 修。因为美国和欧洲采用 了两种不同的排放法规体 系,所以第二代车载诊断 系统有OBDII、EOBD两种 形式。美国实施OBDII, 而采用欧洲排放法规的国
一旦故障码己设置,若工作状况恢复正常, 只有在通过了三次连续的行驶过程,OBDII 系统自诊断后,MIL灯才会熄灭。到经过40 个 行驶过程 后并不再有故障出现后,
OBDⅡ需要计算机能快 速留下或存储所有故障 指示出现时的数据,便 于用解码器提取这些数 据,这些被存储的数据 就被称为冻结帧数据。
计算机可清除该故障代码及 冻结帧数据。 像间歇不点火、混合气过浓或过稀这样的故 障码,需要80个行使过程,才能清除故障码。
1. 能检测出与排放 相关元器件的工作 情况,提示驾驶员 需要对与排 放相关 的系统进行维修、 维护。
功用及类型 工作原理
信号特征
检测方法
故障诊断
2.采用统一的故障码及意义,能使用统一协议的检测工具、标准化的16 针诊断座(DLC)进行检测(诊断座见图7-2和其端子说明见表7-1所 示)。
图7-2 OBDII数据传输诊断接头
信号特征
检测方法
故障诊断
7.2.3 OBDII的故障码及故障指示灯
1.OBDII系统故障码的分类
A型故障码是最严重的一类,如发 动机间歇不点火、混合气过浓过稀 等会置出该类故障码。A型故障码 提醒驾驶员车辆排放系统有问题, 会造成催化转换器损坏。
A类故障码 A类故障码是 与排放相关的故障码。计 算机诊断程序连续一个循 环即可检测到该类故障, 并点亮故障指示灯。

第二代车载故障诊断系统OBD-II

第二代车载故障诊断系统OBD-II

OBD-Ⅱ——第二代车载故障诊断系统一、起源目前,北京已开始实施国Ⅲ汽车排放标准。

这一标准是国家第三阶段的排放标准,它相当于欧洲Ⅲ号排放标准,对CO、NOX、HC、CO2采取更严格的限制。

而要达到这一目标就要通过技术提升来解决,在汽车运行全程中不断监视尾气的排放质量,一旦发现汽车在运行过程中与控制尾气排放的相关元件出现故障,就会立刻报警,从而提醒驾驶员立即对车进行检修,以确保汽车时刻处于绿色环保状态。

为此,国Ⅲ汽车排放标准强制规定:新车必须安装OBD车载自诊断系统(即On-Board Diagnos tics的缩写)。

该系统特点在于检测点增多、检测系统增多,在三元催化转化器的进、出口上都有氧传感器。

实际上,自1980年代开始,世界各汽车制造厂就在车辆上配备全功能的控制和诊断系统。

这些新系统在车辆发生故障时可以警示驾驶,并且在维修时可经由特定的方式读取故障代码,以加快维修时间,这便是车载诊断系统。

到了1985年,美国加利福尼亚州大气资源局(CARB)开始制定法规,要求各车辆制造厂在加利福尼亚州销售的车辆必须装置OBD系统,这些车辆上配备的OBD系统被称为OBD-Ⅰ(第一代随车诊断系统)。

OBD-Ⅰ必须符合下列规定:★仪表板必须有“发动机故障警示灯” (MIL),以提醒驾驶注意特定的车辆系统已发生故障(通常是废气控制相关系统)。

★系统必须有记录/传输相关废气控制系统故障码的功能。

★电器组件监控必须包含:氧传感器、废气再循环装置(EGR)、燃油箱蒸汽控制装置(EVAP)。

起初加利福尼亚州大气资源局制定OBD-Ⅰ的用意是要减少车辆废气排放以及简化维修流程,但由于OBD-Ⅰ不够严谨,遗漏了三元催化器的效率监测、油气蒸发系统的泄漏侦测以及发动机是否缺火的检测,导致碳氢化合物排放增加。

再加上OBD-Ⅰ的监测线路敏感度不高,等到发觉车辆故障再进厂维修时,事实上已排放了大量的废气。

OBD-Ⅰ除了无法有效地控制废气排放,它还引起另一个严重的问题:各车辆制造厂发展了自己的诊断系统、检修流程、专用工具等,给非特约维修站技师的维修工作带来许多问题。

OBD II 浅谈

OBD II 浅谈

浅谈什么是OBD-II汽车尾气污染是危害城市环境、引发呼吸系统疾病的罪魁祸首之一。

随着汽车的迅速普及,汽车尾气污染对世界环境的负面效应也越来越大。

有关专家统计,到21 世纪初,汽车排放的尾气占了大气污染的30%~60%。

另外汽车也是能源消耗与温室气体排放的大户。

每辆汽车每年平均消耗近2000L汽油,这些汽油的燃 烧会导致5t左右的温室气体排放。

到2011年8月,全世界拥有超过10亿辆的汽车。

这些汽车每年的消耗要占全世界能源消耗的20%,排放全世界15%的 温室气体。

因此,提高汽车效率,降低尾气污染刻不容缓。

什么是OBDOBD 是On-Board Diagnostics(车载诊断系统)的缩写。

它是集成在发动机管理系统中,监测尾气排放部件工作状态的诊断系统。

OBD 系统通过有效的发动机管理和及时的故障报告来提高发动机效率并降低汽车尾气对大气的污染。

发动机管理—OBD 系统利用很多传感器来收集发动机运行的各项信息,如发动机和环境温度、进气量、发动机负荷、排气中的氧含量等。

动力总成控制模块(PCM)会分析从传感器收到的信息,并通过增加或减少燃油,提前或滞后点火等来提高发动机的工作效率。

故障报告—发动机管理系统以及排放控制系统部件的效能在车辆使用过程中会不断降低甚至损坏,从而导致污染物排放的急剧增加。

故障报告在这时便显得尤为重 要。

当系统出现故障时,动力总成控制模块(PCM或PCU,也被称为发动机控制模块/单元ECM,ECU等).会将故障信息存人存储器,并向时点亮仪表板 上的故障灯。

OBD 故障码随后可以通过将读码器连接到汽车上的专用接口来读取。

根据故障码的提示,用户可以准确地确定故障的性质和部位。

OBD- II的主要用户车主------作为一个早期预警系统,OBD 可以提醒车主潜在的车辆维修需要。

OBD 检测几乎所有的影响到尾气排放的汽车部件。

一旦发现问题,OBD 系统会点亮汽车的仪表板上的故障灯。

维修技师------当检测到故障时,OBD 不但会点亮故障灯,还会将故障的具体信息存储到车载计算机中。

OBDII知识

OBDII知识

OBD-II概述OBDII(the Second On—Board Diagnostics 车载自诊断系统二代), ,美国汽车工程师协会(SAE,Society of Automotive Engineers)1988年制定了OBD-II标准。

OBDII实行标准的检测程序,并且具有严格的排放针对性,用于实时监测汽车尾气排放情况。

一、OBDII简介自从20世纪50年代汽车技术与电子技术开始相结合以来,电子技术在汽车上的应用范围越来越广泛。

ECU作为汽车发动机电控系统的核心具有速度快捷、功能强大、可靠性高、成本低廉的特点,故此ECU的引入极大地提高了汽车的动力性、舒适性、安全性和经济性。

然而,由于现代发动机电控系统越来越复杂,将ECU引入发动机电控系统之后,在提高汽车性能的同时也引发了故障类型难以判定的问题。

针对该情况,从20世纪80年代起,美、同、欧等地的汽车制造企业开始在其生产的电喷汽车上配备车载自诊断模块(On—Board Diagnostics Module)。

自诊断模块能在汽车运行过程中实时监测电控系统及其电路元件的工作状况,如有异常,根据特定的算法判断出具体的故障,并以诊断故障代码(DTC,Diagnostic Trouble Codes)的形式存储在汽车电脑芯片内阳1。

系统自诊断后得到的有用信息可以为车辆的维修和保养提供帮助,维修人员可以利用汽车原厂专用仪器读取故障码,从而可以对故障进行快速定位,故障排除后,采用专用仪器清除故障码。

由于该时期不同厂商的OBD系统之问各行其是、互不兼容,所以被称为第一代车载自诊断系统(OBD—I,the First On—BoardDiagnostics)。

为了统一标准,美国汽车工程师协会(SAE,Society of Automotive Engineers)1988年制定了OBD-II标准。

OBD—II实行标准的检测程序,并且具有严格的排放针对性,用于实时监测汽车尾气排放情况。

车载自诊断系统(obd-ⅱ)标准规范

车载自诊断系统(obd-ⅱ)标准规范

车载自诊断系统(OBD­Ⅱ)标准规范早期的电子控制汽油喷射系统的故障自诊断专用设备, 一般都与各汽车公司 的发动机电子控制系统配套,自成体系,仅适合于单一的车种(或车型)。

随着 电子控制汽油喷射系统的普及,1993 年美国汽车工程师学会(SAE)制定了车 载自诊断系统(OBD­Ⅱ)标准规范,并于1996年在世界各汽车公司推广实施。

它使汽车电子控制系统在全球范围内实现了标准化、系列化、通用化。

该标准采 用了统一的诊断模式,统一的 16 端子诊断接口。

因此,现在用于汽车电子控制 系统故障自诊断的专用设备都具有广泛的通用性,只要换上不同的智能卡(维修 卡)即可适应不同的车系或同一车系不同年代生产的汽车。

它既可用于发动机电 子控制系统的检测诊断,还可以用于汽车其他电子控制系统,应用功能逐渐多样 化,且具有良好的人机对话功能,操纵方式也十分简单。

将故障自诊断专用设备 接口与车上相关控制系统接口对接后,打开故障自诊断专用设备上的电源开关, 通过按键即可获得相关的操作提示。

根据提示即可快速选择所需要检测的系统和 相关项目。

OBD系统的发展历史概述Ø自 80 年代开始,国外各汽车制造厂开始在其生产的车辆上配备控制与诊 断系统。

这些系统在车辆发生故障时,可以警示驾驶员及维修工人在维修 时可以经过由特定的方式读取故障码,以加快维修速度,汽车工业界称之 为随车电脑诊断系统(OBD)。

OBD 的英文全称为 ON­BOARDDIAGNOSTIC,翻译成中文为:随车电脑诊断。

Ø为了方便汽车监管和汽车维修,于是相继出现了 OBD­Ⅰ系统、OBD­Ⅱ 系统、OBD­Ⅲ系统,同时也推动汽车随车诊断技术的不断发展。

OBD­Ⅰ系统Ø美国加州大气资源局(CARB)规定OBD­Ⅰ必须符合下列要求: v (1)仪表板必须有“故障警示灯”(MIL),以提醒驾驶员注意特定 的车辆系统已发生故障(通常是废气控制相关系统)。

自我诊断OBD2的工作原理

自我诊断OBD2的工作原理
行程:
一种点火开,点火关循环使车辆以一种模式工作,这种工作模式能够满足运行给定诊断的能动条件。
诊断执行者:
一套编码指令用于处理和控制其它的编码指令。
被动对主动测试:
被动测试是监测一个系统或者部件的一种诊断测试。主动测试是指在进行一个诊断功能时实际地进行一个动作。
暖热循环:
发动机温度必须达到最小70℃并且在整个行程中升高至少22℃。
节气门位置(TP)传感器A,B
EVAP扫气开关
变速箱3/2换档电磁管
变速箱涡轮速度传感器(HI/LO)
歧管绝对压力(MAP)传感器
自动变速箱温度传感器
点火控制(IC)系统
变速箱车速传感器(HI/LO)
质量空气流量(MAP)传感器
四轮驱动低选择开关
怠速空气控制(IAC)线圈A/B LO/HI
点火传感器(凸轮同步,诊断)
侵入诊断:
任何自我诊断测试都是由诊断管理系统来运行的,这系统会对排放产生影响。
定格:
在存贮排放有关的故障和命令故障灯(MIL)点亮的瞬间存贮车辆数据,这些数据叫定格数据。检查/维护准备就绪状况:
是指ECU标记ECU内部每个排放测试的信号。
BOD2驾驶循环
它的目的是运行所有的自我诊断测试,以便设置I/M准备就绪标记。
图2缩写和简写列表
ABS-防抱刹车系统
EEPROM-可电擦除能编程只读存贮器
KS-爆震传感器
PCM-动力系控制模块
A/C-空调
EGR-废气再循环
MAF-质量空气流量
SPS-维修编程系统
AIR-次级空气喷射系统
EVAP-蒸发排放系统
MAP-歧管绝对压力
TCC-力矩转换器离合器
BARO-大气压

obdii 的通讯协议

obdii 的通讯协议

OBD-II的通讯协议简介OBD-II(On-Board Diagnostics II)是指车辆上的自动诊断系统,它通过车辆上的标准接口与车辆的电子控制单元(ECU)进行通信。

OBD-II的通讯协议定义了数据的格式和传输方式,使得车辆的故障诊断和性能监测变得更加方便和标准化。

OBD-II的标准接口OBD-II的标准接口采用了16个针脚的连接器,通常位于驾驶室内的仪表盘下方。

接口包括了供电、地线、数据线等多个针脚,用于与OBD-II扫描工具或其他设备进行通信。

接口的形状和排列方式是标准化的,以确保兼容性和互操作性。

OBD-II的通讯协议OBD-II的通讯协议定义了数据的格式和传输方式,使得OBD-II设备可以与车辆的ECU进行通信并获取相关的诊断信息。

OBD-II的通讯协议主要基于以下两个标准:1. OBD-II的物理层协议OBD-II的物理层协议定义了数据的传输方式和电气特性。

通常采用的物理层协议有两种:ISO 9141-2和ISO 14230-4(也称为K线协议),以及ISO 15765-4(也称为CAN协议)。

ISO 9141-2和ISO 14230-4协议使用了K线作为数据线,通过电平的变化来传输数据。

ISO 15765-4协议则采用了CAN总线作为数据线,具有更高的传输速率和稳定性。

2. OBD-II的应用层协议OBD-II的应用层协议定义了数据的格式和命令的交互方式。

通常使用的应用层协议有以下几种:SAE J1850 PWM、SAE J1850 VPW、ISO 9141-2、ISO 14230-4和ISO 15765-4。

这些应用层协议定义了诊断请求和响应的格式、命令的编码方式以及错误码的定义。

通过这些协议,OBD-II设备可以向ECU发送特定的命令,并从ECU获取诊断信息和实时数据。

OBD-II的诊断信息OBD-II的通讯协议定义了许多诊断信息的标准参数,可以用于监测车辆的性能和故障。

(最新整理)自诊断概述OBD2

(最新整理)自诊断概述OBD2

2021/7/26
10
(2)利用指针式电压表读取故障代码 对于丰田汽车,用指针式万用表读取故障代码的方法与利用CHECK指示灯相
似。下面以丰田皇冠3.0轿车2Jz—GE发动机电子控制系统为例,说明这种方法 的操作步骤。
①关闭点火开关。打开故障诊断座盒盖,用跨接线将TEl和E1端子相连接; ②将指针式电压表置于直流电压挡(量程为25V左右),将电压表的上正极测 笔接在诊断座的w端子(故障代码输出端子),负极测笔搭铁; ③将点火开关置于“ON”位置,但不要起动发动机。此时,诊断座故障代码 输出端子w就会输出一串脉冲信号,其脉冲的形式和前述“CHECK”故障指示灯的 闪烁形式相同。通过观察指针式电压表指针的摆动规律和次数就可以读出故障代 码; ④读完故障码后,关闭点火开关,拆下跨接线和指针式电压表。
代表发动机、变速器,U未定义,由SAE另行发布; 1:第二位,代表汽车制造厂商。若为0,则代表SAE定义故障码,1、2、3代表
汽车制造厂; 3:第三位,代表SAE定义的故障码范围。如果这一位为“1”,则表示燃油或
空气测试不良;“2”表示燃油或空气测试不良;“3”表示点火系统不良或发动 机间歇熄火;“4”表示废气控制系统辅助装置不良;“5”表示汽车或怠速控制 系统元件不良;“6”表示电脑或输出控制元件不良;“7”表示变速器控制系统 不良;“8”表示变速器控制系统不良;
16
四、OBD—Ⅱ简介
OBD是“ON—BOARD DINGOSITICS”的缩写, 是由美国汽车工程学会(SEA)提出的,经环保机构 (EPA)和加州资源协会(CARB)认证通过的。20世 纪70年代,汽车电控系统中开始采用了第一代随车诊断 系统(OBD-I);1994年以后,美国、日本和欧洲的 主要汽车制造厂家生产的电控汽车逐步开始采用第二代 随车诊断系统(OBD—Ⅱ)。

车载诊断系统(OBD)简介及认证

车载诊断系统(OBD)简介及认证

车载诊断系统(OBD)简介及认证随着汽车技术的不断进步和普及,现代汽车除了具备基本的驾驶功能外,还具备了许多高级功能。

其中,车载诊断系统(OBD)是一种常见的汽车电子控制系统。

什么是OBD?OBD(On-board Diagnostics)是指车载诊断系统。

它是由汽车制造商、车辆技术服务提供商和国家机构共同制定的标准,并在汽车上实现的一个系统,用于监控和诊断所有与引擎和传动系统相关的信息。

OBD通过车载电脑接收车辆各种传感器信号,检测车辆系统是否正常工作并进行诊断。

如果出现了问题,OBD会记录故障代码,方便技师进行维修。

OBD在汽车出现故障时,可以帮助驾驶员更快更精确地定位故障位置,减少了修理费用和时间。

并且,由于OBD可以实现车辆监控,可以最大程度地保证汽车的安全性和性能,减少污染和能源损耗。

OBD的认证OBD是为了消费者和技术服务提供商制定的一个统一标准。

每个制造商都必须按照该标准设计、生产、销售和维修车辆。

这意味着,OBD需要得到认证。

认证是指汽车制造商证明其产品符合特定标准的过程。

在OBD方面,主要分为两个类别,即OBD-I和OBD-II。

OBD-IOBD-I是指20世纪80年代和90年代初期的汽车,由于技术的限制,OBD-I无法记录实时数据。

诊断过程需要使用指定的手动方式,需要通过特殊工具才能读取诊断代码。

OBD-IIOBD-II是指20世纪90年代后期以及21世纪的车辆,所有OBD-II汽车都可以读取实时数据。

OBD-II需要使用标准的扫描工具,可以通过汽车诊断仪器进行远程故障诊断和数据记录。

为了使汽车制造商遵守规定并证明其汽车符合规定,所有OBD-II车辆必须接受OBD-II认证。

在美国,环保署(EPA)和交通部(DOT)都负责监督OBD-II认证,这也是一个汽车制造商在美国销售汽车的必要条件。

OBD的标准OBD的标准具有国际性,某些OBD规格和标准适用于世界各个地区。

美国制定了最常见的OBD系统,即OBD-II系统,因此,未来世界其他地区的OBD系统可能会与OBD-II系统有所不同。

汽车OBD-Ⅱ随车自诊断系统在修理中的应用

汽车OBD-Ⅱ随车自诊断系统在修理中的应用

汽车OBD-Ⅱ随车自诊断系统在修理中的应用摘要:OBD-Ⅱ车载自诊断系统有严格的排放针对性,其实质性能就是检测汽车排放有害气体或燃油蒸发污染量,当超过设定的标准,故障灯就会点亮报警。

OBD-Ⅱ对监测汽车排放十分有效,对汽车的诊断带来极大的方便,同时对环境的保护更是起到了举足轻重的作用。

本文对OBD-Ⅱ车载自诊断系统的发展历史及其在维修中的作用进行了研究。

关键词:OBD-Ⅱ车载自诊断汽车故障诊断OBD-Ⅱ是英文On-Board Diagnostics-Ⅱ的缩写,中文翻译为“第二代车载自动诊断系统”。

这个系统将从发动机的运行状况随时监控汽车是否尾气超标,一旦超标,会马上发出警示。

当系统出现故障时,故障灯或检查发动机警告灯亮,同时动力总成控制模块将故障信息存入存储器,通过一定的程序可以将故障码从PCM中读出。

根据故障码的提示,维修人员能迅速准确地确定故障的性质和部位。

一、OBD-Ⅱ随车自诊断系统简介1.第一代车载自诊断系统。

OBD的概念最早是由通用汽车于1982年引入的,其目的是监测排放控制系统。

一旦发现故障,OBD系统会点亮仪表板上的一个指示灯以通知驾驶员,同时在车载计算机(通常称作发动机控制单元或模块,即ECU或ECM)内记录一个代码,这个代码可通过相应的设备获取以便于故障排除。

2.第二代车载自诊断系统。

OBD-Ⅱ是On Board Diagnosis的缩写,即第二代随车电脑诊断系统。

由于世界各主要汽车厂的车载诊断系统随其发动机管理系统不同而各不相同,这给售后服务维修造成较大的不便。

更重要的是OBD对自身的工作状态是否达到原厂技术要求无法自测,使得维修后的汽车常常不符合原厂技术要求。

这种现象在我国较为普遍,严重影响了汽车的可靠性和寿命。

之后,各主要汽车生产厂家都开始装备统一的第二代车载诊断系统,以弥补OBD-I的不足。

他提供统一的诊断模式和统一的诊断座,只要通过一台仪器,即可对车辆进行诊断检测,不但可以进行自诊断测试、提取故障码、显示故障内容,同时还可清除故障内存,对系统进行基本设定,读取测量数据,对数据单元进行编码,对发动机怠速进行调整等。

第2代汽车微机故障自诊断系统简介

第2代汽车微机故障自诊断系统简介

19 9 0年 以前 世 界 各 国 生 产 的 各 种 型 号 的 电 控 汽
车 ,配 置 各 自 的 故 障 自 诊 断 系 统 。它 们 的 诊 断 插 座 、故 障 代 码 、数 据 流 等 的 形 式 或 内 容 都 截 然 不 同 ,给 电 控 汽 车 的故 障诊 断 和 维 修 带 来 了诸 多 不 便 。 l9 9 0年 。美 国 汽 车 工 程 师 学 会 ( o it fAu S cevo —
tmo ie E gn e s o tv n ie r 。简 称 S AE) 提 出 了 在 全 球 的 ,
汽 车 制 造 厂 生 产 的 汽 车 上 采 用 统 一 的 微 机 故 障 自诊 断 系 统 的倡 议 .并 制 定 了这 种 故 障 自诊 断 系 统 的 工 作 方 式 、诊 断 插 座 、 故 障 代 码 、数 据 流 等 的 统 一 标 准 。 该 标 准 巳通 过 美 国 政 府 环 保 部 门 的认 可 。并 要 求最迟 在 19 9 6年 底 以 前 ,所 有 在 美 国 出 售 的 汽 车 都 要 达 到 这 一 标 准 。 目前 。该 微 机 故 障 自诊 断 系 统
来 收 集 、整 理 的 OB D— l 功 能 、故 障 代 码 及 其 读 I的
置 的 工 作 情 况 进 行 分 析 .进 而 判 断 系 统 的 工 作 正 常 与 否 。所 以 。充 分 利 用 汽 车 电 控 装 置 微 机 故 障 自诊 断 系 统 的 各 种 功 能 .对 现 代 汽 车 的 故 障 进 行 快 速 准 确 地 分 析 、诊 断 .保 证 汽 车 维 修 的 品 质 ,是 十 分 重
维普资讯
第2 代汽车微机故障自 诊断系统简介
周 勇

21-22电控发动机教案-OBD—2自诊断系统故障代码的含义

21-22电控发动机教案-OBD—2自诊断系统故障代码的含义

教学设计
P0231 汽油泵副线路电压太低
P0232 汽油泵回归电压太高
P0232 汽油泵副线路电压太高
P0233 汽油泵副线路间歇故障
P0300 引擎曾经有失火(MISFIRE)现象
P0301 第1缸曾经失火
P0302 第2缸曾经失火
P0303 第3缸曾经失火
P0304 第4缸曾经失火
P0320 分电盘点火系统引擎转速讯号线路失效
P0321 分电盘点火系统引擎转速讯号线路电压值不
正确
P0322 分电盘点火系统引擎转速讯号线路没有讯号
P0323 分电盘点火系统引擎转速讯号线路间歇故障
P0325 爆震传感器线路失效(BANK 1)
P0325 引擎在2000RPM以上一直没有收到爆震信号
(BANK 1)(TOYOTA)
P0326 爆震传感器线路电压不正确或太高
(GM)(BANK1或STESOR 3)
P0327 爆震传感器线路电压太低(GM)(BANK1或
STESOR 3)
P0328 爆震传器线路电压太高或断路(GM)(BANK1
或STESOR 3)
P0329 爆震传感器线路间歇故障(BANK1或
STESOR 3)
P030 爆震传感器线路失效(BANK 2)
备用功能也称备用系统。

当ECU内的微处理器控制
程序出现故障时,ECU把燃油喷射和点火正时控制在
预定水平上,作为一种备用功能强制发动机工作,使
车辆继续行驶。

但备用系统只能维持基本功能,而不
能保持正常的运行功能。

ECU备用系统的工作原理框图。

对备用系统的工作
原理框图进行讲解。

OBD发展历程阶段

OBD发展历程阶段

OBD发展历程阶段
OBD(On-Board Diagnostics)是车辆故障自诊断系统,通过
监测车辆各个系统的运行情况,检测潜在的故障并提供相关的故障码,方便车主或技师进行故障诊断和维修。

OBD发展经
历了以下几个阶段:
1. OBD-I阶段:这个阶段开始于20世纪80年代中期,早期的OBD系统主要用于监测排放系统的工作状况。

各个车厂都采
用了自己的OBD标准,导致了不同车型之间的兼容性问题。

2. OBD-I.5阶段:为了解决不同车型OBD标准不统一的问题,一些车厂开发了选择性监测OBD系统,可以根据驾驶环境和
车速等条件判断是否需要进行故障监测。

3. OBD-II阶段:OBD-II是在1996年引入的标准,要求车辆
配备一个统一的诊断接口,并且必须支持一套基本的故障码,包括了针对排放系统和其他关键系统的故障检测。

OBD-II标
准的引入使得诊断工具的通用性大大提高,方便了车主和技师的故障排查。

4. EOBD阶段:这是欧洲版的OBD-II标准,要求欧洲车辆在1998年后生产的汽油车和2001年后生产的柴油车必须支持EOBD标准,并且使用一个称为ISO 9141-2的通信协议。

5. OBD-III阶段:OBD-III是指下一代的OBD标准,目前还在
研发中。

OBD-III标准预计将更加高级化,可能包括更多系统
的故障监测和更复杂的故障码。

总的来说,OBD发展历程经历了从最初各个车厂的不统一标准到统一的OBD-II标准的过程,提高了诊断工具的通用性和精确性,为车主和技师提供了更方便和准确的故障诊断和维修手段。

未来的OBD-III标准有望进一步提升车辆故障诊断的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OBD-Ⅱ自诊断系统
一、OBD-II概述
OBD-Ⅱ是ON-BOARD DIAGNOSITICS-Ⅱ(随车诊断装置)的简称。

1993年以前的诊断系统为第一代诊断系统,各制造厂家采用的诊断座、故障代码、诊断功能均各不相同,造成修护人员的困难。

美国汽车工程学会(SAE)制定了一套标准规范,经由“环境保护机构”(EPA)及“加洲资源协会”(CARB)认证通过此一套标准,并要求各汽车制造厂家依照OBD-Ⅱ标准提供统一的诊断模式、插座,由一台仪器即可对各车种进行诊断检测。

OBD-Ⅱ是美国加洲规定的标准,凡是销售到美国加洲的车,不论欧、美、日均需合乎该标准,台湾也采用这一标准。

由于采用这一标准,简化技术人员使用仪器的困扰,应深入理解OBD-Ⅱ的特点。

二、OBD-II特点
(1)(1)统一诊断座形状,为16pin (针),如图1所示。

(2)具有数值分析资料传输功能(DATA LINK CONNECTOR-DLC)。

(3)统一故障代码及意义。

(4)具有行车记录器功能。

(5)具有重新显示记忆故障码功能。

(6)具有可由仪器直接清除故障码功能。

三、DLC(资料传输接头)诊断座统一标准
(1)DLC诊断座统一为16pin,装在驾驶室内,驾驶侧仪表板下方。

(2)DLC脚有两个标准:ISO--欧洲统一标准(INTERNATIONAL STANDARDS ORGANIZATION 9141-2),利用7#,15#脚传输资料。

SAE--美国统一标准(SAE-J1850),利用2#,10#脚传输资料。

OBD-Ⅱ诊断座各端子功能见表1。

表1 OBD-Ⅱ诊断座各端子功能
四、OBD-II统一故障代码标准
(一)故障码的构成
故障码由五位数(字)构成,第一个为英文字母,代表被测试的系统,例如:
B(BODY)车身电脑;
C(CHASSIS)底盘电脑;
P(POWER TRAIN)发动机变速器电脑;
U--未定义,由SAE另行发布。

(二)举例
FORD EEC-V(福特汽车第五代电脑)
故障码 P 1 3 5 2。

①②③④
①代表被检测的系统,P代表发动机变速器电脑。

②第二位数,代表汽车制造厂码,0代表SAE定义的故障码,其他1-9代表各汽车制造厂自行定义的故障码。

③第三位数,由SAE定义的故障范围,见表2。

表2 SAE定义的故障范围
④代表汽车制造厂原厂故障码:A组高压、低压线圈不定。

1996年全世界主要汽车制造厂(公司)都在其生产的汽车上采用了OBD-Ⅱ型随机诊断装置。

OBD-Ⅱ诊断装置必须使用专用仪器才能读出故障码。

1994-1995年生产的汽车,各公司还保留原来的短接读取故障码的诊断插座。

TOYOTA 1994年10%车采用OBD-Ⅱ,1995年采用OBD-Ⅱ有40%,同时保留原有诊断座。

TOYOTA CAMRY(佳美)IMZ-FE发动机,短接原有插座TE1和E1端子或OBD-Ⅱ诊断座的5#和6#端子,即可读取故障码。

GM汽车公司:将OBD-Ⅱ端子13搭铁,从“CHECK ENGINE”灯读取故障码。

FORD汽车公司:与GM汽车公司相同。

CHRYSLER汽车公司:点火开关置ON,等待5-10s后,从“CHECK ENGINE”灯读取故障码。

五、丰田OBD-Ⅱ自诊系统
(一)OBD-II应用
丰田车从1994年已开始采用OBD-Ⅱ诊断系统,但还保留原有的诊断座。

OBD-Ⅱ16pin接头如图2所示。

在OBD-Ⅱ诊断系统和原有诊断座并存情况下,24pin诊断接头已取消TE1端子。

(二)OBD-Ⅱ故障码表
OBD-Ⅱ要用专用仪器读出故障码,但也可以通过跨接端子5和6人工读取故障码。

其跨接方式见图2。

图2 TOYOTA 1994年以后诊断接头
(a) 24 pin 诊断接头(DLC1) (b) 17 pin 诊断接头(DLC2)
(c) OBD-Ⅱ 16 pin接头 (d) OBD-Ⅱ诊断接头读取故障的跨接方法
OBD-Ⅱ故障码表见表3。

表3 TOYOTA OBD-Ⅱ故障码表。

相关文档
最新文档