人教版五年级数学下册第三单元《长方体和正方体》概念
《长方体的认识》长方体和正方体PPT优秀课件
高 长
选自教材第19页做一做
(4)观察这个长方体,最多能看到几个面?
最多能看到3个面。
选自教材第19页做一做
1.填空题。
变式训练
长方体有( 6 )个面,一般都是( 长方 )形,长 方体相对的面的面积大小( 相等 )。
变式训练
2.下列图形中,是长方体的在括号里画“√” 。
()
()
()
()
(√)
(√)
8个顶点。
长方体的特征
12条棱,相对的棱长度相等。
6个面,相对的两个面完全相同。
高
长
宽
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
用细木条和橡皮泥做一个长方体框架。 3组
(1)长方体的12条棱可以分成几组?
用细木条和橡皮泥做一个长方体框架。 不相等
(2)相交于同一顶点的3条棱长度相等吗?
相交于一个顶点的3条棱的长度分别叫作长方体 的长、宽、高。
高 4条高
长
4条长
宽 4条宽
思考:把其中的一条棱隐藏,还能想象出原来的样 子吗?
数学书
15cm
21cm 1cm
魔方 6cm 6cm
6cm
6. 判断哪组的小棒可以搭成长方体。
小棒长度
①
②
③
15cm
5根
4根
8根
10cm
4根
4根
0根
8cm
3根
4根
4根
思维训练
长方体的两个面如图所示,请画出长方体的另外 一个不同的面。
3cm
3cm
6cm
4cm
? 4cm
6cm
课堂小结 这节课有什么收获呢?
人教版五年级数学下册第三单元长方体和正方体长方体
应用:可以用来计算物体的重量、空间大小等 单击添加正文,文字是思想的提炼
正方体的展开与折叠
正方体的展开图
正方体的展开图 有几种形式
正方体展开图的 特征
正方体展开图的 制作方法
正方体展开图的 应用
正方体的折叠方法
展开正方体:将正方体的六个面展开成一个平面图形 折叠正方体:将展开后的平面图形重新折叠成一个完整的正方体 折叠技巧:掌握一些技巧可以帮助你更轻松地折叠正方体 注意事项:在折叠过程中需要注意一些细节,确保正方体的完整性
计算公式:V=l*w*h
单击此处输入你的项正文,文字是您思想的提炼, 请尽量言简赅的意阐述你的观点。
长方体的展开与折叠
长方体的展开图
长方体的展开图是沿着其高展 开得到的平面图形
展开图由长方体的六个面组成, 通常包括前后面、左右面和上 下面
展开图展示了长方体的表面积, 即所有六个面的面积之和
通过观察展开图,可以更直观 地理解长方体的结构和特性
正方体的实际应用
生活中的正方体物品
魔方:一种由正方体组成的智力玩具,通过旋转各个面来还原魔方的 颜色和图案。
骰子:一种由正方体组成的游戏道具,通常用于赌博和游戏。
立方体积木:一种由正方体组成的儿童玩具,可以搭建出各种形状和 建筑物。
立方体包装盒:一种常见的包装盒形状,用于保护和运输各种物品。
正方体在建筑中的应用
正方体的表面积和体积
定义:正方体有6个面,每个面都是正方形 单击添加正文,文字是思想的提炼
计算方法:每个面的面积是边长的平方,所 以正方体的表面积是6个面的面积之和 单击添加正文,文字是思想的提炼
人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单
人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单一、长方体和正方体的定义及特征长方体:有6个面的立体图形,每个面都是长方形,任意两个相邻面都是全等的,相对的面是平行的。
正方体:是一种特殊的长方体,所有的面都是正方形。
二、长方体和正方体的面、棱和顶点1. 面:长方体有6个面,分别是底面、顶面和4个侧面。
正方体同样有6个面,每个面都是正方形。
2. 棱:长方体有12条棱,正方体有12条棱。
3. 顶点:长方体有8个顶点,正方体也有8个顶点。
三、长方体和正方体的名字长方体和正方体的命名按底部的形状来命名,如下所示:1. 底面为长方形的长方体,我们称为长方体;2. 底面为正方形的长方体,我们称为正方体。
四、长方体和正方体的面积和体积1. 面积:长方体的面积计算公式:面积 = 底面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 = 2ab + 2bc + 2ac(其中a、b、c分别为长方体的长、宽、高)正方体的面积计算公式:面积 = 正方形的边长 ×正方形的边长 ×6 = a × a × 6(其中a为正方体的边长)2. 体积:长方体的体积计算公式:体积 = 底面积 ×高 = 底面积 × c(其中c 为长方体的高)正方体的体积计算公式:体积 = 正方形的边长 ×正方形的边长 ×正方形的边长 = a × a × a(其中a为正方体的边长)五、长方体和正方体的应用及实例长方体和正方体在日常生活中有许多应用,比如:1. 盒子和容器:我们常见的纸箱、塑料盒子、储物箱等都是长方体或正方体的形状,它们能够容纳各种物品。
2. 建筑:很多建筑物的砖块、砖石等都是长方体形状的,如砖墙、柱子等建筑结构。
3. 学习用具:书包、文具盒等也常常是长方体或正方体的形状。
举例:1. 如果一座长方体的长、宽、高分别为3厘米、4厘米、5厘米,则该长方体的面积为36平方厘米,体积为60立方厘米。
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析教学目标1、通过观察、操作,认识长方体和正方的特征以及它们的展开图。
2、通过实例,理解体积(包括容积)的含义,认识常用的度量单位(立方米、立方分米、立方厘米、升、毫升),建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,会利用单位间的进率进行简单的换算。
3、探索并掌握长方体、正方体的体积和表面积的计算方法,并能解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
二、内容安排三、各小节的教材说明和教学建议例1、例2例3例1、例2例6(一)长方体和正方体的认识(第18~22页)a、理解长方体各部分的名称,面、棱、顶点。
b、理解和掌握长方体的特征,形成长方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
c、认识长方体的长、宽、高。
d、理解和掌握正方体的特征,形成正方体的概念。
正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
e、长方体和正方体的相同点和不同点f、长方体和正方体的关系本小节学生应掌握的基本技能正确找出长方体横放、竖放、侧放几种不同情况下摆放的长、宽、高。
培养学生的动手能力和观察能力。
例如:用附页的图样做长方体和正方体;用小棒、橡皮泥做长方体框架;测量长方体的长、宽、高;用棱长1厘米的小正方体搭一搭等等。
运用所学知识解决实际问题。
例如:练习五中的第6题,学生要明确需要的彩灯线实际上是哪些棱长之和。
再例如练习五的第9题,要教给学生做这类题的方法对例题的理解主题图教材首先呈现了一些长方体或正方体形状的建筑物和生活用品。
让学生观察它们的形状,其落脚点是让学生感受到生活中很多物品的形状都是长方体和正方体的。
为进一步研究长方体,正方体的特征做准备。
看完主题图后,可以让学生说一说生活中还有哪些物体的形状是长方体或正方体的。
然后从实物图中抽象出长方体的几何直观图,让学生观察这个长方体,图中有什么?学生回答有面、线段、顶点。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版五年级数学下册第三单元长方体和正方体——(长方体和正方体的认识)长方体教案
第3单元长方体和正方体本单元的内容是在学生已经初步认识了一些简单的立体图形——长方体、正方体、圆柱和球的基础上,比较深入地研究立体图形,是从二维空间到三维空间的一次重要转化,系统学习长方体、正方体的有关知识,是学生发展空间观念的一次飞跃。
长方体和正方体是最基本的立体图形,通过学习长方体、正方体,可使学生对周围的空间和空间中的物体形成初步的空间观念,是学生进一步学习其他立体图形的基础。
另外,长方体和正方体体积的计算,也是形成体积的概念,掌握体积的计量单位和计算各种几何形体体积的基础。
教科书非常注重与实际生活的联系,结合学生熟悉的事物进行概念理解,注重用所学的知识解决实际问题。
分三小节编排:1.长方体和正方体的认识,主要教学生认识长方体、正方体的特征;2.长方体和正方体的表面积;3.长方体和正方体的体积。
在“长方体和正方体的体积”一节中,还介绍了容积的概念及体积单位、容积单位间的进率、名数的换算,并探索了某些实物体积的测量方法。
教学重点是认识长方体和正方体的特征,理解表面积、体积、容积的概念,掌握长方体和正方体的表面积、体积的计算方法,建立体积、容积单位表象,灵活运用所学知识解决简单的实际问题。
在学习本单元内容之前,学生已经能够直观地认识一些平面图形和立体图形,能从生活中找到大量的立体图形素材,并能通过这些素材发现一些基本特征。
本单元是在此基础上系统学习长方体和正方体的有关知识。
其中,表面积是学生对面积概念的拓展,体积对学生来说更是一个全新的概念,且学生对“物体占有一定的空间”这句话的理解有一定的困难。
因此,教学时要充分利用故事、实验、比较等方法,让学生切实感悟到物体占有空间,不同物体所占空间有大有小,从而深刻地理解体积的含义,为后面学习圆柱的体积计算作铺垫。
1.充分调动学生已有的知识经验,利用学生熟悉的教学资源,通过指、摸、比、剪、倒、估等操作实验活动认识长方体、正方体的特征,建立体积、容积单位表象,培养、发展学生的空间观念。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
五年级下册数学长方体的认识
五年级下册数学长方体的认识
五年级下册数学中关于长方体的认识主要包括以下内容:
长方体的定义:长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
长方体的面、棱和顶点:长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
有12条棱,相对的棱长度相等。
有8个顶点,每个顶点连接三条棱。
长方体的长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体的特点:长方体相邻的两条棱互相垂直,具有稳定性和空间占据性。
长方体的表面积可以通过计算每个面的面积然后相加得到。
通过以上内容的学习,五年级学生可以初步认识长方体,了解其基本属性和特点,为后续学习其他立体图形打下基础。
人教版数学五下第3章《长方体和正方体》(容积)教案
人教版数学五下第3章《长方体和正方体》(容积)教案
教学目标
1.了解长方体和正方体的定义和特点。
2.掌握长方体和正方体容积计算的方法。
3.能够运用所学知识解决实际问题。
教学重难点
重点
1.长方体和正方体的定义和特点。
2.长方体和正方体容积计算公式的推导和运用。
难点
1.多步解决实际问题的能力培养。
教学准备
1.教师准备:课件、黑板、彩色粉笔、教学实物模型等。
2.学生准备:文具、作业本。
教学过程
导入
教师通过一个实际的问题引出本节课的主题,让学生思考长方体和正方体在日常生活中的应用。
学习
1.长方体和正方体的定义和特点。
–长方体的六个面都是矩形,对边平行且相等;正方体的六个面都是正方形,相邻面互相垂直。
2.长方体和正方体容积计算方法。
–长方体容积公式:V = 长 × 宽 × 高
–正方体容积公式:V = 边长³
实践
让学生分组进行容积计算的练习,包括简单的计算和应用题。
拓展
让学生通过拼凑实物模型,感受长方体和正方体的容积增减变化。
总结
回顾本节课所学知识,强调长方体和正方体容积计算的方法,及时纠正容易犯的错误。
作业布置
1.完成课堂练习。
2.思考:长方体和正方体在日常生活中还有哪些应用?
教学反馈
及时对学生的作业进行批改和评价,针对性地指导学生弥补知识漏洞。
以上内容为本节课的教案内容,希望同学们能够认真学习,掌握相关知识,提高解题能力。
人教版数学五下第三单元《长方体和正方体的认识》教案
人教版数学五下第三单元《长方体和正方体的认识》教案一、教学目标1.知识与能力:–掌握长方体和正方体的概念。
–能够辨别长方体和正方体。
–学会计算长方体和正方体的体积。
2.过程与方法:–激发学生的学习兴趣,引导他们积极参与课堂讨论和互动。
–通过实例和练习,巩固学生对长方体和正方体的认识。
–鼓励学生勇于提出问题和思考,培养他们的逻辑思维和解决问题的能力。
二、教学重点和难点1.教学重点:–掌握长方体和正方体的定义和特征。
–学会计算长方体和正方体的体积。
2.教学难点:–区分长方体和正方体的特点。
–理解长方体和正方体的体积计算方法。
三、教学过程1.导入:通过展示图片或实物,让学生观察长方体和正方体,并与他们讨论不同之处。
2.学习长方体:–引导学生理解长方体是由长方形面拼接而成的立体图形。
–让学生测量和计算长方体的长、宽、高。
–练习计算长方体的体积公式:长 × 宽 × 高。
3.学习正方体:–讲解正方体是一种所有边相等且都是正方形的立体图形。
–比较长方体和正方体的特点。
–练习计算正方体的体积公式:边长的立方。
4.综合练习:–让学生做一些综合练习,巩固长方体和正方体的认识和体积计算。
5.拓展应用:–提出一些拓展问题,让学生运用所学知识解决实际问题,如房间体积计算等。
四、课堂作业1.完成练习册上关于长方体和正方体的作业题目。
2.拓展练习:设计一个包含长方体和正方体的实际问题,计算它们的体积。
五、教学反思在教学过程中,应注重引导学生理解长方体和正方体的定义和特点,通过实例和练习帮助他们巩固所学知识,激发他们对数学的兴趣和学习动力。
同时,教师要充分关注学生的学习情况,及时发现问题并加以引导和解决,确保教学效果的达成。
人教版五年级下册数学《第3单元长方体和正方体探索图形》说课稿
人教版五年级下册数学《第3单元长方体和正方体探索图形》说课稿一. 教材分析《第3单元长方体和正方体探索图形》是人教版五年级下册数学的一个重要单元。
本单元主要让学生通过观察、操作、想象和推理等数学活动,掌握长方体和正方体的特征,理解长方体和正方体在实际生活中的应用。
教材以学生熟悉的现实情境为背景,结合具体操作活动,引导学生探究长方体和正方体的特征,从而提高学生的空间想象力。
二. 学情分析五年级的学生已经掌握了平面图形的知识,具备了一定的空间想象力。
他们在日常生活中也接触过一些立体图形,如长方体和正方体,对它们有初步的认识。
但学生对长方体和正方体的特征的理解还不够深入,需要通过实践活动和引导来进一步掌握。
三. 说教学目标1.知识与技能:学生会识别长方体和正方体,并能运用长方体和正方体的特征解决实际问题。
2.过程与方法:学生通过观察、操作、想象和推理等数学活动,培养空间想象力,提高解决问题的能力。
3.情感态度与价值观:学生体验数学与生活的联系,培养学习数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生掌握长方体和正方体的特征,能运用长方体和正方体的特征解决实际问题。
2.教学难点:学生对长方体和正方体的特征的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法,引导学生主动探究长方体和正方体的特征。
2.教学手段:运用多媒体课件、实物模型和数学游戏等辅助教学,提高学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过展示生活中的长方体和正方体实物,引导学生回顾已知的平面图形知识,为新课的学习做好铺垫。
2.探究长方体和正方体的特征:学生分组进行观察、操作和讨论,发现长方体和正方体的特征,教师引导学生进行推理和归纳。
3.实践应用:学生分组进行实践活动,运用长方体和正方体的特征解决实际问题,如制作立体图形、计算体积等。
4.总结提升:教师引导学生总结本节课的学习内容,明确长方体和正方体的特征及应用。
新人教版数学五年级下册第三单元《长方体和正方体》教材解读
请输入标题
教学建议 教学建议
本小节主要教学认识 请输入文本请输入文本 请输入文本请输入文本
长方体和正方体的特 征。
4
认识体积单位后,探究长方体、正方体的体积 计算方法。体积计算公式的推导,是基于对体 积概念的理解,通过数单位体积的小正方体来 探索的。
教材由问题直接引出,让学生进行讨论交流。 但受客观条件的限制,有些物体是不能切割的, 进一步猜想长方体的体积也应该有计算方法。 由此调动学生实验、探究计算方法的兴趣。
正方体的体积公式,教材启发学生根据长方体 和正方体的关系,利用推理的方法,自主探索 推导得出。
在介绍用字母表示正方体的体积的计算公式时 ,教材介绍了“立方”的含义,说明三个相同 的数连乘就是这个数的立方。
例1是体积公式的应用。根据已知条件,应用 公式计算长方体、正方体保温箱的体积,以巩 固方法。
教学建议
例4是体积单位换算的实际应用。教材给出牛 奶包装箱的真实情境,一方面,让学生理解包 装箱上“50X30X40”的意思;另一方面,利 用公式计算体积,自觉将60000 cm3进行单 位变换,使单位的运用更为合理。
“做一做”第1题是体积单位变换的基本练习 。第2题是实际问题的解决,可先将长、宽、 高的单位变换成“米”作单位,再计算出体积 ,最后求出用砖的块数。
“做一做”通过辨认正方体的展开图,培养学 生的想象能力和空间观念。同时让学生知道, 正方体的展开图不是唯一的。
教学建议
1.建立表面积的一般 意义。 2.重点研究正方体的 展开图。
小学五年级数学下册第三单元--长方体与正方体
第三单元长方体和正方体【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有12条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷121.长方体与正方体都有( )个面,( )个顶点和( )条棱,正方体是( )的长方体。
二、判断。
(对的画√,错的画×)1.在一个长方体中,最多有8条棱完全相等、6个面完全相同。
( ) 4.用棱长是1 cm的小正方体拼成一个大正方体,至少要6个小正方体。
( )4. 在一个长方体中,从一个顶点出发的三条棱的和是7.5分米,这个长方体的棱长总和是30分米.( )3. 长方体的12条棱中,平行的4条棱都相等.()1.用一根长36 cm的铁丝围成一个正方体框架,正方体框架的棱长是( )cm。
人教版五年级数学下册 长方体和正方体 知识点归纳
《长方体和正方体》知识点归纳知识点一、长方体的特征1、长方体由6个面围成,相对的面互相平行且形状大小相同。
通常这些面的形状都是长方形,特殊情况下可有2个相对的面是正方形。
2、长方体有8个顶点。
3、长方体两个面相交的边叫做这个长方体的棱,共有12条棱,且每条棱长都相等。
相邻的三条棱互相垂直。
相对的两条棱互相平行。
4、相交于一个顶点的三条棱分别叫做这个长方体的长、宽、高。
底面中较长的一条棱是长,较短的一条棱是宽,垂直于底面的棱是高。
长方体有4条长、4条宽、4条高。
知识点二、正方体的特征1、正方体由6个面围成,每个面的形状大小都相同,且形状都是正方形,其中相对的两个面互相平行。
2、正方体有8个顶点。
3、正方体两个面相交的边叫做这个正方体的棱,共12条棱,且每条棱长都相等。
相邻的三条棱互相垂直。
相对的两条棱互相平行。
4、正方体可以视为长、宽、高都相等的长方体。
因此正方体是特殊的长方体。
5、从某一点观察,能够呈现几何体整体形状的绘图叫做直观图,其中看见不见的边要用虚线表示。
这里长方体和正方体的图都是直观图。
知识点三、长方体和正方体的相关计算1、物体外部各个面的面积之和叫做物体的表面积。
2、物体所占空间的大小叫做物体的体积。
3、表面积和面积的单位是一样的,常用的有:平方厘米、平方分米、平方米,分别写作cm2、dm2、m2。
4、常用体积单位有:立方厘米、立方分米、立方米,分别可以写作cm3、dm3、m3。
5、单位换算:①1m=10dm,1dm=10cm 。
(进率是10)②1m2=100dm2 ,1dm2=100cm2。
(进率是100)③1m3=1000dm3,1dm3=1000cm3。
(进率是1000)6、大单位转化为小单位,要乘以进率。
小单位转化为大单位,要除以进率。
7、长方体和正方体的表面积公式:温馨提示:计算表面积的时候,要注意物体是否有6个面。
例如游泳池、鱼缸等物体并不是完整长方体,它们只有5个面,我们算出长方体的表面积后,还要减去那1个缺少的面。
人教版五年级数学下册第三单元《长方体和正方体》知识点梳理
人教版五年级数学下册第三单元《长方体和正方体》知识点梳理1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
长方体和正方体都是立体图形。
正方体也叫立方体。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)3、长方体的特征:①面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
②棱:有12条棱。
相对的棱长度相等。
③顶点:有8个顶点。
4、正方体的特征:①面:有6个面都是正方形,6个面完全相同。
②棱:有12条棱。
12条棱的长度相等。
③顶点:有8个顶点。
5、正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
至少要8个小正方体才能拼成一个稍大的正方体。
经过折叠可以组合成长方体:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4 (长+宽+高)=棱长总和÷4 长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b经过折叠可以组合成正方体:正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷126、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab 或S=ab+2ah+2bhS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)正方体的表面积=棱长×棱长×6 图片生活实际:占地面积是指底面积S=a×b油箱、罐头盒等都是6个面S=2(ab+ah+bh)游泳池、鱼缸、教室涂刷等都只有5个面。
人教版五年级下册数学第三单元知识点汇总
人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 【知识点1】要素 立体图形面棱 顶点 数量特征数量 特征 数量 特征长方体 6每个面都是长方形相对的面完全相同 12相对的棱的长度相等8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 6两个相对的面是正方形,其余四个面是完全相同的长方形 12 有4条棱长度相等,而另外8条棱长度相等 8正方体 6 每个面都是正方形且完全相同12 12条棱长度相等8一个长方体如果有两个面是正方形,那么其它4个面是面积相等的长方形,但不会存在3个、4个、5个面是正方形。
练习:填空:一个长方体有4个面完全相同,其它2个面一定是( )。
一个长方体最多有( )面是正方体。
一个长方体最多有( )个面完全相同,最多有( )条棱长度相同。
判断:有6个面,12条棱,8个顶点的物体是长方体。
( ) 长方体6个面一定是长方形。
( )正方体具有长方体所有的特征,所以正方体可以看成是特殊的长方体。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前面和后面的彩带长度=高的长度;左面和右面的彩带长度=高的长度;上面和下面的彩带长度=长的长度+宽的长度。
需要彩带的长度=高×4+长×2+宽的长度×2+打结部分长度 20×4+30×2+20×2+10=190cm 【知识点3】确定长方体中每个面的形状以及长、宽、高分别是多少。
五年级数学下册《正方体和长方体》单元知识点整理
《长方体和正方体》单元知识点整理长方体有12条棱相对的棱长度相等分为3组,每组4条分别叫长方体的长、宽、高棱长总和=长×4+宽×4+高×4或棱长总和=(长+宽+高)×4高=(棱长总和-长×4-宽×4)÷4长方体有6个面相对的面完全相同相对的面面积相等表面积=上面的面积×2+前面的面积×2+左面的面积×2(在解决有关表面积的实际问题时,要根据具体情况确定要算哪些面,有时不一定是算6个面。
)正方体有12条棱12条棱长度全部相等棱长总和=棱长×12棱长=棱长总和÷12正方体有6个面6个面完全相同6个面的面积都相等表面积=一个面的面积×6=棱长×棱长×6与棱有关的知识与面有关的知识长方体正方体与棱有关的知识与面有关的知识根据实际情况,也可能是无盖的,只求5个面的面积体积单位和容积单位及进率1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1升=1立方分米1毫升=1立方厘米体积和容积的计算长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长长(正)方体的体积=底面积×高=横截面积×长容积的计算方法和体积一样不规则物体的体积=物体和水的总体积-水的体积=水上升后的体积-水上升前的体积=容器的底面积×水上升的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体的认识
1、长方体的特征。
长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,相对的面完全相同;有12条棱,相对的棱相等;有8个顶点。
2、长方体长、宽、高的意义。
长方体棱长总和=4个长+4个宽+4个高=(长+宽+高)x
3、正方体的特征。
(1)正方体各部分的名称:
正方体(也叫立方体)是由6个完全相同的正方形围成的方体图形。
它的长、宽、高都相等,统称为棱。
(2)正方体的特征:正方体的6个面完全相同,12条棱的长度相等,有8个顶点。
(3)正方体棱长总和的计算方法。
正方体的棱长总和=棱长x12
4、长方体和正方体的关系。
(1)从长方体和正方体的点、棱、面三个方面比较它们的异同点。
长方体和正方体的表面积的意义。
长方体或正方体6个面的总面积,叫做它的表面积。
长方体和正方体的体积
1、体积的意义。
物体所占空间的大小叫做物体的体积。
2、体积单位的认识。
立方厘米——cm(一个手指头的体积大约是1cm)
常用体积单位立方分米——dm(一个粉笔盒的体积大约1dm)
立方米——m(4张课桌围靠在一起大约是1m)
3、长方体的体积计算公式。
长方体的体积=长X宽X高
如果用字母V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式为:V=abh
4、正方体的体积公式。
正方体的体积=棱长X棱长X棱长=棱长(用V表示正方体的体积a表示正方体的棱长V=a )
4、长方体和正方体统一的体积公式:
(1)底面积的意义:长方体或正方体底面的面积叫做底面积。
(在有些题中,横截面的面积指的就是底面积)
(2)底面积的计算方法:
长方体的底面积=长X宽
正方体的底面积=棱长X棱长
长方体和正方体统一的体积公式=底面积X高(字母V表示体积,S表示底面积,h表示高,则公式为:V=Sh)
体积单位间的进率
1、体积单位间的进率:
1m=1000dm 1dm=1000cm(m和dm、dm和cm是相邻的体积单位,进率都是1000;而m和cm不是相邻的体积单位,进率是1000X1000=1000000)
2、体积、面积、长度单位的比较:
3、体积单位之间的互化:
1、用低级单位除以进率
低级单位转换成高级单位2、把低级单位数的小数点向左
移动与进率相应数位
体积单位间的互化
1、用高级单位的数乘以进率
高级单位转换成低级单位2、把高级单位数的小数点向右
移动与进率相应的位数
立方米——立方分米——立方厘米。