2018-2019学年最新人教版七年级数学上册《几何图形初步》同步测试题及答案-经典试题

合集下载

新版人教版七年级数学上册第四章几何图形初步测试题(含答案)

新版人教版七年级数学上册第四章几何图形初步测试题(含答案)


D. 经过两点可以画一条直线,并且只能画一条直线 C
A. ∠1 与∠ AOB 是同一个角
B. ∠ AOC 也可以用∠ O 来表示
C. 图中共有三个角:∠ AOB ,∠ AOC ,∠ BOC O
D. ∠β 与∠ BOC 是同一个角
3.甲看乙的方向是北偏东 ຫໍສະໝຸດ 00,那么乙看甲的方向是()
A. 南偏东 600
B.南偏西 600
C.南偏西 300
B
β
1
A
第 2 题图 D. 南偏东 300
4. 分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形, 是( )
那么这个几何体
A
B
C
D
5. 下列四个图形中,经过折叠能围成如图所示的几何图形的是(

A
B
C
B 书店 D
6.一个角的度数为 54 11 23 ,则这个角的余角和补角的度数分别为(
8.如图,各图中阴影部分绕着直线 AB 旋转 3600,所形成的立体图形分别是
A
A
A
A
学校
第 7 题图
________________________. __________________________.
B D
C
B 9.如图,以图中的
B
B
第 8 题图
A,B,C,D,E 为端点的线段共有 __________条 .
参考答案: 1.D 2.B 3.C 4.C 5.B 6.A 7.两点之间,线段最短 8.圆柱、圆锥、球 9.10 10.520 11.DC=3cm ,AB=10cm 12.略 13.∠ 2=50 0,∠ 3=65 0
14.( 1) 116 010 ,( 2) 106 025 .

人教版七年级上册数学《几何图形初步》单元检测题附答案

人教版七年级上册数学《几何图形初步》单元检测题附答案
7.如图,∠AOB=90°,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是( )
A.25°B.35°C.45°D.65°
8.∠1的补角是130°,∠2的余角是40°,则∠1与∠2的大小关系是( )
A.∠1>∠2B.∠1<∠2C.∠1=∠2D.不能确定
9.下列说法中正确的是( )
A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合
C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°
10.将一副直角三角尺按如图所示的不同方式摆放,则图中 与 相等的是( )
A. B. C. D.
11.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是( )
A.20°或50°B.20°或60°C.30°或50°D.30°或60°
【点睛】本题是考查正方体 展开图,培养学生的观察能力、分析判断能力和空间想象能力.最好是动手操作一下,既可解决问题,又锻炼动手操作能力.
3.如图,下列说法中正确的是( )
A.OA的方向是北偏东20°B.OB的方向是北偏西65°
C.OC的方向是东南方向D.OD的方向是南偏西55°
【答案】D
【解析】
【分析】
A.①②B.②③C.④⑤D.①③④
【答案】C
【解析】
【分析】
根据线段的MN长度,及PM+PN的长度即可判断出P的位置.
【详解】∵MN=10cm,点P满足PM+PN=20cm,
∴点P不可能在线段MN上,而P的可能在直线MN上,可能在直线MN外.
故只有④⑤说法正确.
故选C.
【点睛】本题考查比较线段长度的知识,这类题目一般不能具体确定p的位置,只是可能不能说必然.

人教版七年级数学上册《几何图形初步》课堂单元检测试题【含答案】

人教版七年级数学上册《几何图形初步》课堂单元检测试题【含答案】

的长是
cm.
14.将长方形 ABCD 沿 AE 折叠,得如图所示的图形,已知∠CED′=50°,则∠AED 的大小

.
15.如图所示,三角形 ABC 绕点 A 旋转后得到三角形 ADE.若∠BAC=100°,∠BAD=25°,
则∠DAE=
,∠CAE=
.
1 16.把一根绳子对折成一条线段 AB,在线段 AB 取一点 P,使 AP= PB,从 P 处把绳子剪断.
19.(12 分)如图,已知直线 AB,CD,EF 相交于点 O,∠COB=90°,∠AOE∶∠AOD=2∶5, 求∠BOF,∠DOF 的度数.
解:因为∠COB=90°,
所以∠AOD=∠BOD=90°.
因为∠AOE∶∠AOD=2∶5,
2×90°
所以∠AOE=
=36°.
5
因为∠AOE+∠AOF=180°,∠BOF+∠AOF=180°,
1 所以 BM= AB=5.
2 所以 CM=BM-CB=5-2=3. (2)点 M 是线段 CD 的中点,理由如下: 因为 AC=BD, 所以 AC-DC=BD-DC, 即 AD=CB. 因为点 M 为线段 AB 的中点, 所以 AM=MB. 所以 AM-AD=MB-CB, 即 DM=MC. 所以点 M 是线段 CD 的中点.
人教版七年级数学上册《几何图形初步》课堂单元检测试题【含答案】
(时间:45 分钟 满分:100 分)
一、选择题(每小题 3 分,共 30 分)
1.已知∠2 是∠1 的余角,且∠1=25°,则∠2 的补角等于( )
A.65°
B.155°
C.115°
D.125°
2.如图,把三角形 ABC 绕点 A 顺时针旋转得到三角形 AB′C′,且∠C′AC=60°,则∠BAB′

最新2019-2020年度人教版七年级数学上册《几何图形初步》同步测试题及答案-经典试题

最新2019-2020年度人教版七年级数学上册《几何图形初步》同步测试题及答案-经典试题

第四章几何图形初步检测题(本试卷满分120分,含附加题20分)一、选择题(每小题3分,共30分)1. 如图1所示的包装盒,可近似看做的立体图形是()A. 棱锥B. 棱柱C. 圆锥D. 圆柱2. 图2是一把茶壶,则它的主视图是()A B C D3. 图3是菲律宾的国旗,该国旗上的平面图形有()A. 三角形B. 五边形C. 三角形和五边形D. 三角形、四边形和五边形4. 如图4,将一块铁皮折叠起来,总会有一道折痕,这说明()A. 两点之间线段最短B. 两点确定一条直线C. 面与面相交成线段D. 线段与线段相交成点5. 将一副三角尺按图5所示摆放,则∠ABC的度数为()A. 70°B. 75°C. 80°D. 85°6. 图6是一个正方体的表面展开图,则与原正方体中“伟”字所在的面相对面上标的字是()A. 中B. 大C. 国D. 的7. 下列基本图形的表示方法不正确的是()A B C D8. 下列各式不正确的是()A. 18 000″<360′B. 2°30′>2.4°C. 36 000″<8°D. 1°10′20″>4219″9. 明明借助一副三角尺和量角器,先画∠AOB=90°,再以点O为顶点,OB为始边,作∠BOC=30°,最后作∠AOC的平分线OD,则∠COD的度数为()A. 30°B. 60°C. 30°或60°D. 15°或45°10.由4个相同的小正方体搭建了一个积木,从不同方向看积木,所得到的图形如图7所示,则这个积木可能是()图7二、填空题(每小题3分,共24分)11. 上午9:30,某校学生进行阳光体育锻炼活动,地面上留下他们的影子,这种现象属于(填“中心”或“平行”)投影.12. 如图8,铅球投掷场地呈扇形,其中投掷区的角度为40°,则这个角的余角为°,补角为°.13. 从多边形的一个顶点与其他顶点连线段,若多边形被分成了八个三角形,则该多边形是_____边形.14. 若一个立体图形的三视图都是圆,则这个立体图形是.15. 图9所示是一个立体图形的表面展开图,请写出这个立体图形的名称:.16. 如图10,甲、乙、丙三只七星瓢虫分别落在操场草坪的点A,B,C处,连接AB,AC,BC,线段BC(填“<”“>”)线段AC,若乙瓢虫在甲瓢虫的北偏东30°,则甲瓢虫在乙瓢虫南偏西°.17. 如图11,点C在线段AB上,D是线段AC的中点,若BD=5 cm,BC=2 cm,则AB的长度为cm.18. 如图12,如图8所示,一个正方体的每一个面分别标有数字1、2、3、4、5、6,根据图中的正方体①、②、③三种状态所显示的数字,可推出“?”处的数字是.①②③图12三、解答题(共46分)19.(6分)仔细观察图13所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥图1320.(6分)已知∠A=24.1°+6°,∠B=56°-26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.21.(6分)如图14,是美丽的蒙古包,它可以近似看做由两个常见的立体图形组合而成,试画出它的三视图.22. (8分)如图15,已知点O在直线AB上,OD、OE分别平分∠BOC、∠AOC,∠BOC=80°. (1)求∠AOD的度数;(2)∠DOC和∠COE有什么关系?简单说明理由.(3)若∠BOC=60°,其他条件不变(2)中的结论还成立吗?23.(9分)图16是一个常见立体图形的三视图,根据三视图,回答下列问题:(1)该立体图形是什么图形?(2)求该立体图形的表面积.24.(10分)如图17,已知线段AB,点E、F分别是线段AC、BD的中点,CD=4 cm,AC+BD=10cm.(1)求线段EF的长度;(2)若CD=a,AC+BD=b,则EF=.附加题(共20分)25. (8分)如图9,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,∠COE=70°.(1)设∠1=x°,用含x的式子表示∠2的度数.(2)若∠2=3∠1,求∠2的度数.图1826. (12分)经过平面内的两个点可以确定一条直线,根据这个性质,完成下列问题:探索知识:(1)在同一平面内有三点,经过其中的两点作直线,则所做直线的条数为;(2)在同一平面内有四个点,经过其中的两点作直线,有几种情况?画出每种情况中的所有直线.(3)由(1)、(2)可知,在同一平面内有五个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;归纳总结:(4)在同一平面内有n(n≥2)个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;运用知识:(5)某市举行篮球赛,进入第二轮比赛共有15个球队,如果采用循环赛(每两个球队都进行一场比赛),那么第二轮共有场比赛.参考答案一、1. A 2. D 3. D 4. C 5. B 6. D 7. C 8. C 9. C 10. D二、11. 平行12. 50 140 13. 十14. 球体15. 圆锥16. <30 17. 8 18. 6三、19. (1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体.(2)②③④⑥(3)①③⑤20. 解:因为∠A=24.1°+6°=30.1°,∠B=56°-26°30′=29°30′=29.5°,∠C=18°12′+11.8°=18.2°+11.8°=30°,所以∠A>∠C>∠B.21. 解:如图所示:1∠BOC=40°,所以∠AOD=180°22. 解:(1)因为OD平分∠BOC,∠BOC=80°,所以∠BOD=2-∠BOD=180°-40°=140°.(2)∠DOC 和∠COE 互余.理由:由(1)得∠COD=40°.因为∠BOC=80°,所以∠AOC=180°-∠BOC=100°.因为OE 平分∠AOC ,所以∠EOC=50°.所以∠DOC+∠COE=40°+50°=90°.(3)成立.23. 解:(1)长方体;(2)2(2×6+2×4+4×6)=88,即该立体图形的表面积为88.24. 解:(1)因为点E 、F 分别是线段AC 、BD 的中点,所以CE=21AC ,DF=21BD. CE+DF=21(AC+BD)=21×10=5(cm). 因为CD=4 cm ,所以EF=CE+DF+CD=5+4=9(cm).(2)a+21b 25. 解:(1)因为∠1=x °,所以∠3=∠COE-∠1=70°-x °.又OC 平分∠AOD ,所以∠4=∠3=70°-x °.由∠1+∠2+∠3+∠4=180°,得∠2=180°-∠1-∠3-∠4=180°-x °-2(70°-x °)= 40°+x °.(2)由∠2=3∠1,得40+x=3x ,解得x=20.所以∠2=3∠1=3×20°=60°.26. (1)1或3;(2)有3种情况,各种情况画出的直线如图所示;(3)10(4)2)1( n n (5)105。

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题,哪种物体最接近于圆柱( )A. B. C. D.2.下列几何体的截面分别是()A. 圆、平行四边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A. 三亚﹣﹣永兴岛B. 永兴岛﹣﹣黄岩岛C. 黄岩岛﹣﹣弹丸礁D. 渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()A. 7条B. 8条C. 9条D. 10条5.如图,C 为线段 AB 上一点,D 为线段 BC 的中点,AB=20,AD=14,则 AC的长为( )A. 10B. 8C. 7D. 66.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD,ON 平分∠AOC,则∠MON 的度数是()A. 135°B. 155°C. 125°D. 145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A. 50°B. 65°C. 45°D. 60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个10.如图是一个棱长为1的正方体的展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( )A. 60°B. 50°C. 45°D. 30°第II 卷(非选择题)二、解答题(题型注释)6.96×108m ,太阳的体积大约是多少?(球的体积的计算公式是V=43πr 3,π取3.14)12.已知一个长方体的长为1cm ,宽为1cm ,高为2cm ,请求出: (1)长方体有 条棱, 个面; (2)长方体所有棱长的和; (3)长方体的表面积.13.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?14.如图,点 B 、C 把线段 MN 分成三部分,其比是 MB :BC :CN=2:3:4,P 是 MN 的中点,且 MN=18cm ,求 PC 的长.15.如图,∠AOB 是平角,∠DOE=90°,OC 平分∠DOB . (1)若∠AOE=32°,求∠BOC 的度数;(2)若OD 是∠AOC 的角平分线,求∠AOE 的度数.16.以直线AB 上一点O 为端点作射线 OC ,使∠BOC =60°,将一个直角三角形的直角顶点放在点O 处.(注:∠DOE =90°)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则∠COE = °;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 恰好平分∠AOC ,请说明OD 所在射线是∠BOC 的平分线;(3)如图3,将三角板DOE 绕点O 逆时针转动到某个位置时,若恰好∠COD = 15∠AOE ,求∠BOD 的度数?17.探索性问题:已知A ,B 在数轴上分别表示m ,n . (1)填表:(2)若A ,B 两点的距离为d ,则d 与m ,n 有何数量关系.(3)在数轴上整数点P 到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.三、填空题18.下面的几何体中,属于柱体的有______个.19.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______20.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.21.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是_____cm.22.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于_____.23.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是_____.24.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=_______° .25.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是_____.若∠1=28°32′35″,则∠1的补角=_____.参考答案1.A【解析】1.根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;C选项:两个底面的大小不同,故本选项错误;D选项:有两个平面,有两个曲面,故本选项错误;故选:A2.B【解析】2.根据平面图形得出截面.由图可知,下列几何体的截面分别是:圆、长方形、三角形、圆.故答案选B.3.A【解析】3.根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.4.B【解析】4.根据线段的定义找出所有的线段即可解答.由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.5.B【解析】5.先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC的长;由已知AB=20得出AC的长,对比四个选项即可确定出正确答案.∵AB=20,AD=14, ∴BD=AB-AD=20-14=6, ∵D 为线段BC 的中点, ∴BC=2BD=12, ∴AC=AB-BC=20-12=8. 故选:B . 6.C【解析】6.根据条件可求出∠COD 的度数,利用角平分线的性质可求出∠MOC 与∠DON 的度数,最后根据∠MON=∠MOC+∠COD+∠DON 即可求出答案. 解:∵∠AOC+∠COD+∠BOD=180°, ∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°, ∴∠MON=∠MOC+∠COD+∠DON=125°, 故选:C . 7.B【解析】7.根据折叠的性质得到∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,再根据平角的定义有∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,易得∠A ′BC +∠E ′BD =180°×12=90°,则∠CBD =90°,再根据平角的定义即可求出∠DBE 的值.∵一张长方形纸片沿BC 、BD 折叠,∴∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,而∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,∴∠A ′BC +∠E ′BD =180°×12=90°,即∠CBD =90°. ∵∠ABE =180°,∴∠DBE =180°-∠ABC -∠CBD =180°-25°-90°=65°. 故选B . 8.C【解析】8.利用分割图形法找出S 1、S 2、S 3的面积,再根据平行四边形的面积公式找出S 4、S 5、S 6的面积,由此即可得出结论.∵矩形的长为a 米,宽为b 米,小路的宽为x 米, ∴S 1=ab−(a+b)x+S 4;S 2=ab−(a+b)x+S 5;S 3=ab−(a+b)x+S 6.S 4=x ⋅x sin60°= 2√33x 2,S 5=x 2,S 6=x ⋅ xsin30°=2x 2, ∴S 2<S 1<S 3. 故答案选C. 9.B【解析】9.由平面图形的折叠及正方体的表面展开图的特点进行判断即可. 解:常见立方体的展开图可以总结为11幅基础图形,如下,据此可知是正方体的平面展开图的有:故选:B . 10.C【解析】10.连接AC ,由图可知∠ACB=90°,简单计算即可发现AC=BC. 解:连接AC ,由图可知∠ACB=90°,由勾股定理可得AC=BC=√5,则△ACB 是一个直角等腰三角形,则∠ABC=45°, 故选择C. 11.1.41×1027m 3.【解析】11.根据已知条件太阳的半径,然后根据球体的体积公式即能得出答案. 解:当r=6.96×108时,V=πr 3≈×3.14×(6.96×108)3≈1.41×1027m 3,答:太阳的体积大约是1.41×1027m3.12.(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2.【解析】12.(1)根据长方体的性质可得出;(2)长方体的棱长总和=4(长+宽+高);(3)长方体的表面积=2(长×宽+长×高+宽×高),把相关数字代入即可.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4,,=4×4,=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2,=(1+2+2)×2,,=5×2,=10(cm2).故长方体的表面积是10cm2.13.A=﹣2,B=﹣3,C=﹣4.【解析】13.两数互为相反数,和为0.本题应对图形进行分析,可知A对应-2,B对应-3,C对应-4,由此可得结论.解:依题意得:A=﹣2,B=﹣3,C=﹣4.14.PC=1.【解析】14.根据比例设MB=2x,BC=3x,CN=4x,再根据线段中点的定义表示出MP并求出x,再根据PC= MC﹣MP列方程代入x的值,从而得解.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC ﹣MP=2x+3x ﹣x=0.5x=1.15.(1)61°;(2)30°.【解析】15.(1)求出∠AOD 和∠BOD ,由OC 平分∠DOB ,求出∠BOC ;(2)根据OC 平分∠BOD ,OD 平分∠AOC 得出∠BOC=∠DOC=∠AOD ,求出∠AOD 即可得出∠AOE.解:(1)∠AOD=∠DOE ﹣∠AOE=90°﹣32°=58°,,∠BOD=∠AOB ﹣∠AOD=180°﹣58°=122°,又OC 平分∠BOD ,所以:∠BOC=∠BOD=×122°=61°;(2)因为OC 平分∠BOD,OD 平分∠AOC ,所以∠BOC=∠DOC=∠AOD ,又∠BOC+∠DOC+∠AOD=180°,所以∠AOD=×180°=60°,所以∠AOE=∠DOE ﹣∠AOD=90°﹣60°=30°.16.(1)30;(2)答案见解析;(3)65°或52.5°.【解析】16.试题分析:(1)根据图形得出∠COE=∠BOE-∠COB ,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE=12∠COA ,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB ,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x +90﹣x=120,解方程即可得.试题解析:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为:30;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12∠COA , ∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB ,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°.17.(1)3,4,12,1,92,2;(2)d=|m﹣n|;(3)﹣5.【解析】17.(1)根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.(2)数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.(3)设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.18.4【解析】18.解这类题首先要明确柱体的概念,然后根据图示进行解答.柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为:4个.19.中.【解析】19.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 根据正方形的平面展开图,观察可知,爱与中相对.20.2或8【解析】20.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D 是线段AC 的中点,∴AD=12AC=12×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=12AC=12×16=8.故答案为:2或8.21.16【解析】21. 分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为:16.22.32°【解析】22.根据比例可设∠3=2x,∠2=5x,利用方程和平角解答即可.∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2-∠1=12°,可得:5x-12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°23.60°.【解析】23.根据互补得出∠COB,进而得出∠AOC的度数.∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°-150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.24.56°【解析】24.分析:由折叠的性质和平角的定义得出2∠1+∠2=180°,即可求出结果.详解:根据题意得:2∠1+∠2=180°,∴∠2=180°-2×62°=56°,故答案为:56°.25.∠AOD,151°27′25″【解析】25.根据互补和互余解答即可.∵∠1=∠2,∴与∠1互补的角是∠AOD.∵∠1=28°32′35″,∴∠1的补角=151°27′25″.故答案为:∠AOD;151°27′25″.。

人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)

人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)

2018-2019七上期末复习试题四学生版第四章几何图形初步检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列几何体中,属于柱体的有( )①长方体;②正方体;③圆锥;④圆柱;⑤四棱锥;⑥三棱柱.A.2个 B.3个 C.4个 D.5个2.下列语句:①点A在直线上;②直线的一半就是射线;③延长直线AB到点C;④射线OA与射线AO是同一射线.其中正确的说法有( )A.0个 B.1个 C.2个 D.3个3.如图,圆柱体的表面展开后得到的平面图形是( ).4.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A.①②③ B.②③④ C.①③④ D.①②④5.如图所示的正方体的展开图是( )6.由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()从正面看从左面看从上面看A.3个B.4个C.5个D.6个7.若∠与∠互为补角,∠是∠的2倍,则∠为()A.30°B.40°C.60°D.120°8.下列立体图形中:①圆柱;②圆锥;③正方体;④四棱柱,面数相同的是( )A.①② B.①③ C.②③ D.③④9.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50° B.20°或60° C.30°或50° D.30°或60°10.4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对二、填空题(每小题3分,共15分)11.木工师傅用刨子可将木板刨平,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为: .12.如图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图中该正方体三种状态所显示的数据,可推出“?”处的数字是 .①②③13.两个完全相同的长方体的长、宽、高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新的长方体中,表面积最大是14平面上有三点A 、B 、C ,①连接其中任意两点,可得线段3条;②经过任意两点画直线,可得到直线 .15如图,∠AOC=50°,∠BOC=20°,OE 平分∠BOC ,OF 平分∠AOC ,则∠EOF 的度数为 .三、解答题(共75分) 16.(6分)已知∠与∠互余,且∠比∠小25°,求2∠-51∠的值.17.(6分)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =8cm ,BD =2cm . (1)图中共有多少条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且EA =3cm .求BE 的长.18.(7分)点A 、B 、C 在同一直线上。

人教版数学七年级上册 几何图形初步单元测试卷附答案

人教版数学七年级上册 几何图形初步单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若,,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【答案】(1)解:∵BD平分∠ABC,∴∠CBD= ∠ABC= ×75°=37.5°,∵CD平分△ABC的外角,∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).∵∠M+∠N+∠CBM+∠NCB=360°,∴∠D=180°- ∠CBM-∠NCB- ∠NCE.=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.= ∠M+ ∠N- ∠NCB- ∠NCE= ,或写成【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;(2)由四边形内角和与角平分线性质即可求解.4.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD ∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.5.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.6.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)解:设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24解得:t=4(秒)(2)解:4或16(3)解:存在关系式 =3.设运动时间为t秒,1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即 =3;2)当3<t<时,点C在点A和点B之间,0<PC<2,①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC= 时,有BD=AP+3PC,即 =3;3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC= 时,有BD=AP+3PC,即 =3;4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.∵P在C点左侧或右侧,∴PD的长有3种可能,即5或3.5【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.7.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.8.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。

(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个 B.2个 C.3个 D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上 B.射线OB上C.射线OD上 D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。

2018-2019学年最新人教版七年级数学上册《几何图形初步》综合测试题及答案-经典试题

2018-2019学年最新人教版七年级数学上册《几何图形初步》综合测试题及答案-经典试题

第1题图会社谐和设建第3题图第四章几何图形初步测试题 (时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。

每小题2分,共24分。

1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥DCB ABADC BAβββααα4.如图,对于直线AB ,线段CD ,射线EF ,其中的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( )A. 3cmB. 4cmC. 5cmD. 6cm1乙甲NM PDC BAB ()D CAD CBA第9题图BA9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( )A. 91°20/24//B. 91°34/C. 91°20/4//D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。

【数学】人教版七年级数学上册第四章几何图形初步单元测试A卷(4).doc

【数学】人教版七年级数学上册第四章几何图形初步单元测试A卷(4).doc

人教版七年级上册第三章一元一次方程单元测试卷一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是 .2、如图,点A 在点O 北偏东32°方向上,点B 在点O 南偏东43°方向上,则∠AOB=3、平面上有任意三点,过其中两点画直线,共可以画 .4、两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是 .9、下列四种说法:①因为AM=MB,所以M是AB的中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB的中点,其中正确的是(只填写序号)10、如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=度.二、选择题11.下列说法中正确的是().A.射线AB和射线BA是同一条射线B. 延长线段AB和延长线段BA的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线12.如图,下列说法不正确的是().A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是().β1OCBA15.下面四个图形中,经过折叠能围成如图所示的几何图形的是()16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为().A. 35°48′37〞, 125°48′37〞B. 35°48′37〞, 144°11′23〞C. 36°11′23〞, 125°48′37〞D. 36°11′23〞, 144°11′23〞三、解答题17.(1)如图1,已知点D是线段AC的中点,点B在线段DC上,且AB=4BC,若BD=6 cm,求AB的长;(2)如图2,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.A B C DA B C D18.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.19.如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最知 .2、如图,点A在点O北偏东32°方向上,点B在点O南偏东43°方向上,则∠AOB=1053、平面上有任意三点,过其中两点画直线,共可以画1或3条 .4、两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是7或10 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是功 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是15 .9、下列四种说法:①因为AM=MB ,所以M 是AB 的中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 的中点,其中正确的是②③ (只填写序号) 10、如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=55度.二、选择题11.下列说法中正确的是(D ).A.射线AB 和射线BA 是同一条射线B. 延长线段AB 和延长线段BA 的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线 12.如图,下列说法不正确的是(B ).A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角(C)C13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是(B).15.下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)β1OCBAA B C D16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为(A ). A. 35°48′37〞, 125°48′37〞 B. 35°48′37〞, 144°11′23〞 C. 36°11′23〞, 125°48′37〞 D. 36°11′23〞, 144°11′23〞三、解答题17(1)如图1,已知点D 是线段AC 的中点,点B 在线段DC 上,且AB =4BC ,若BD =6 cm ,求AB 的长;(2)如图2,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.解:(1)因为AB =4BC ,AB +BC =AC ,所以AC =5BC.因为点D 是线段AC 的中点, 所以AD =DC =12AC =12BC. 因为BD =DC -BC =6 cm , 所以52BC -BC =6 cm. 所以BC =4 cm. 所以AB =4BC =16 cm.(2)因为∠AOB =90°,OC 平分∠AOB , 所以∠BOC =12∠AOB =45°.因为∠BOD =∠COD -∠BOC =90°-45°=45°,∠BOD =3∠DOE , 所以∠DOE =15°.所以∠COE =∠COD -∠DOE =90°-15°=75°.A B C D18.如图,已知线段AB 上有两点C ,D ,且AC ∶CD ∶DB =2∶3∶4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长. 解:因为AC ∶CD ∶DB =2∶3∶4,所以设AC =2x cm ,CD =3x cm ,DB =4x cm. 所以EF =EC +CD +DF =x +3x +2x =6x cm. 所以6x =2.4,即x =0.4.所以AB =2x +3x +4x =9x =3.6 cm.19.如图,P 是线段AB 上任一点,AB =12 cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为2 cm/s ,D 点的运动速度为3 cm/s ,运动的时间为t s.人教版七年级上册第四章几何图形初步单元测试卷一、 选择题 (本题共计 10 小题,每题 分,共计30分 , )1. 以下几何图形中,表示立体图形的是( ) A.B.C.D.2. 同一副三角板(两块)画角,不可能画出的角的度数是( ) A. B. C. D.3. 两个锐角的和( ) A.必定是锐角 B.必定是钝角 C.必定是直角D.可能是锐角,可能是直角,也可能是钝角4. 如图,下列说法正确的是( )A. 的方向是北偏东B. 的方向是南偏东C. 的方向是南偏西D. 的方向是北偏西5. 已知 ″,则 的余角是( ) A. B. C. D.6. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A.B.C.D.7. 下列说法:①射线 和射线 是同一条射线;②若 ,则点 为线段 的中点; ③同角的补角相等;④点 在线段 上, , 分别是线段 , 的中点.若 ,则线段 . 其中说法正确的是( ) A.①② B.②③ C.②④ D.③④8. 已知 , 是 的平分线, , 是 的平分线,则 的度数为( ) A. B. C. D. 或9. 五棱柱的顶点总个数有( )个. A. B. C. D.10. 延长线段 到点 ,使 ,点 是线段 的中点,则 为( ) A. B. C. D.二、 填空题 (本题共计 6 小题,每题 分,共计18分 , )11. 如图所示:小明从学校回家有 条路行径走,他走最近的路线是________号路线.其道理用几何知识解释为________.12. 如图所示的图形绕虚线旋转一周得到的几何体的名称是________.13. 工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.14. 如图,线段,点分线段为,是线段的中点,则线段________.15. 观察下列各图,在第个图中有一个角,第个图中共有个角,第个图中共有个角,则第个图中角的个数是________,第个图中角的个数为________.16. 时钟在人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90。

人教版七年级上册数学《几何图形初步》单元测试卷带答案

人教版七年级上册数学《几何图形初步》单元测试卷带答案

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、基础题1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()、4、将如图所示的正方体沿某些棱展开后,能得到的图形是()5、经过任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线6、下列叙述正确的是()A.180°的角是补角 B.110°和90°的角互为补角C.10°、20°、60°的角互为补角 D.120°和60°的角互为补角7、下列说法正确的是()(A)射线OA与OB是同一条射线;(B)射线OB与AB是同一条射线(C)射线OA与AO是同一条射线;(D)射线AO与BA是同一条射线8、甲看乙的方向为北偏东30°,那么乙看甲的方向是()A.南偏东60° B.南偏西60° C.南偏东30° D.南偏西30°9、下列说法错误的是()(A)点P为直线AB外一点(B)直线AB不经过点P(C )直线AB 与直线BA 是同一条直线 (D )点P 在直线AB 上。

10、一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( ) A 、51 B 、52 C 、57 D 、5811、经过一点可以画 条直线,经过两点可以画 条直线, 经过三点可以画 条直线。

12、要在墙上钉一根木条,至少要 个钉子,理由是 13、如图,从学校A 到书店B 最近的路线是(1)号路线,其道理用几何知识解释应是_______ 14、如图,若CB 等于4cm ,DB 等于7cm ,且D 是AC 的中点,则AC=_________15。

(人教版)七年级数学上册第4章《几何图形初步》解答题专练(含答案)

(人教版)七年级数学上册第4章《几何图形初步》解答题专练(含答案)

第4章《几何图形初步》解答题专练1.(2019秋•西城区期末)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2.(2020春•东城区校级期末)已知:如图,O是直线AB上的一点,∠COD=90°,OC平分∠AOE,∠BOD=30°,求∠DOE的度数.3.(2019秋•密云区期末)如图,点O在直线AB上,OC是∠AOD的平分线.(1)若∠BOD=50°,则∠AOC的度数为.(2)设∠BOD的大小为α,求∠AOC(用含α的代数式表示).(3)作OE⊥OC,直接写出∠EOD与∠EOB之间的数量关系.4.(2019秋•北京期末)如图,请度量出需要的数据,并计算阴影部分的面积.5.(2019秋•通州区期末)如图,以直线AB上一点O为端点作射线OC,使∠AOC=70°,在同一个平面内将一个直角三角板的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,如果直角三角板DOE的一边OD放在射线OA上,那么∠COE的度数为;(2)如图2,将直角三角板DOE绕点O按顺时针方向转动到某个位置,如果OC恰好平分∠AOE,求∠COD 的度数;(3)如图3,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,请直接用等式表示∠AOD 和∠COE之间的数量关系.6.(2019秋•海淀区期末)阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.7.(2019秋•门头沟区期末)阅读材料,并回答问题:材料:数学课上,老师给出了如下问题.已知,点A、B、C均在直线l上,AB=8,BC=2,M是AC的中点,求AM的长.小明的解答过程如下:解:如图2,∵AB=8,BC=2,∴AC=AB﹣BC=8﹣2=6.∵M是AC的中点,∴AM=12AA=12×6=3(①).小芳说:“小明的解答不完整”.问题:(1)小明解答过程中的“①”为;(2)你同意小芳的说法吗?如果同意,请将小明的解答过程补充完整;如果不同意,请说明理由.8.(2019秋•平谷区期末)已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD.求∠COD的度数.∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠+∠=°.∵OC平分∠AOD,∴∠AOC=∠(角平分线定义).∴∠COD=°.9.(2019秋•怀柔区期末)(1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,请补全图形,并求∠ABP的度数.(2)在(1)的条件下,若∠ABC=a,∠CBD=β,直接写出∠ABP的度数.10.(2019秋•延庆区期末)补全解题过程.已知:如图,O是直线AB上的一点,∠COD=90°,OE平分∠BOC.若∠AOC=60°,求∠DOE数;解:∵O是直线AB上的一点,(已知)∴∠BOC=180°﹣∠AOC.()∵∠AOC=60°,(已知)∴∠BOC=120°.()∵OE平分∠BOC,(已知)∴∠COE=12∠BOC.()∴∠COE=°.∵∠DOE=∠COD﹣∠COE,且∠COD=90°,∴∠DOE=°.11.(2019秋•大兴区期末)已知,如图,点C是线段AB的中点,点D是线段AC的中点,BC=6cm,求线段BD 的长.请将以下求解过程补充完整:因为点C是线段AB的中点,所以,因为BC=6cm,所以AC=cm,因为点D是线段AC的中点,所以DC=.所以DC=cm.所以BD==cm.12.(2019秋•石景山区期末)已知:射线OC在∠AOB的内部,∠AOC:∠BOC=8:1,∠COD=2∠COB,OE 平分∠AOD.(1)如图,若点A,O,B在同一条直线上,OD是∠AOC内部的一条射线,请根据题意补全图形,并求∠COE 的度数;(2)若∠BOC=α(0°<α<18),直接写出∠COE的度数(用含α的代数式表示).13.(2019秋•东城区期末)根据题意,补全解题过程:如图,∠AOB=90°,OE平分∠AOC,OF平分∠BOC.求∠EOF的度数.解:因为OE平分∠AOC,OF平分∠BOC所以∠EOC=12∠AOC,∠FOC=12.所以∠EOF=∠EOC﹣=12(∠AOC﹣)=12=°.14.(2019秋•昌平区期末)已知线段AB,点C在直线AB上,D为线段BC的中点.(1)若AB=8,AC=2,求线段CD的长.(2)若点E是线段AC的中点,直接写出线段DE和AB的数量关系是.15.(2019秋•西城区期末)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补16.(2019秋•丰台区期末)如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.17.(2019秋•丰城市期末)已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F 表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.(2019秋•丰润区期末)如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为;(2)将图①中的∠COD绕顶点O顺时针旋转至图①的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图①的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:.19.(2019秋•门头沟区期末)已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的代数式表示)20.(2018秋•延庆区期末)如图,点O是直线AB上一点,∠BOC=120°,OD平分∠AOC.(1)求∠COD的度数.请你补全下列解题过程.∵点O为直线AB上一点,∴∠AOB=°.∵∠BOC=120°,∴∠AOC=°.∵OD平分∠AOC,∴∠COD=12∠AOC.∴∠COD=°.(2)若E是直线AB外一点,满足∠COE:∠BOE=4:1,直接写出∠BOE的度数.21.(2018秋•密云区期末)已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.请你补全下面的解题过程:解:∵AC=2BC,BC=3∴AC=.∴AB=AC+BC=.∵.∴BD=12=.∴CD=BD﹣BC=.22.(2018秋•石景山区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若AC=a,MN=b,则线段BC的长用含a,b的代数式可以表示为_____.解:(1)∵AC=8,CB=6,∴AB=AC+CB=14.∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,(填推理依据)∴MN==.(2)线段BC的长用含a,b的代数式可以表示为.23.(2018秋•丰台区期末)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=12∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.24.(2018秋•昌平区期末)补全解题过程.已知:如图,∠AOB=40°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.解:∵∠AOC=∠AOB+∠,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=°.∵OD平分∠AOC,∴∠AOD=∠AOC().∴∠AOD=50°.∴∠BOD=∠AOD﹣∠.∴∠BOD=°.25.(2018秋•平谷区期末)已知直线AB上一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC 的角平分线OE;(1)按要求完成画图;(2)通过观察、测量你发现∠DOE=°;(3)补全以下证明过程:证明:∵OD平分∠AOC(已知)∴∠DOC=∠AOC.∵OE平分∠BOC(已知)∴∠EOC=∠BOC.∵∠AOC+∠BOC=°.∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=°.26.(2018秋•房山区期末)填空,完成下列说理过程:O是直线AB上一点,∠COD=90°,OE平分∠BOC.(1)如图1,若∠AOC=50°,求∠DOE的度数;解:∵O是直线AB上一点,∴∠AOC+∠BOC=180.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC()∴∠COE=°.∵∠COD=90°,∠DOE=∠﹣∠.∴∠DOE=°.(2)将图1中∠COD按顺时针方向转至图2所示的位置,OE仍然平分∠BOC,试猜想∠AOC与∠DOE的度数之间的关系为:.27.(2018秋•北京期末)分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=3,|y|=2求x+y的值.情况若x=3,y=2时,x+y=5情况若x=3,y=﹣2时,x+y=1情况①若x=﹣3,y=2时,x+y=﹣1情况①若x=﹣3,y=﹣2时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.当直角三角板绕点O继续顺时针旋转一周回到图1的位置时,在旋转过程中你发现∠AOC与∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?情况(1)如图1,当0°≤∠AOD≤90°时,若∠AOC=40°,则∠DOE度数是;情况(2)如图2,当∠AOC是钝角时,使得直角边OC在直线AB的上方,若∠AOC=160°,其他条件不变,则∠DOE的度数是;情况(3)若∠AOC=α,在旋转过程中你发现∠AOC与∠DOE之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数;28.(2018秋•通州区期末)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x﹣2,C=1,D=x﹣1,E=2x﹣1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.29.(2018秋•北京期末)如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;①画射线CB;①反向延长线段AB;①连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)30.(2018秋•顺义区期末)阅读材料并回答问题:阅读材料:数学课上,老师给出了如下问题:如图1,∠AOB=120°,OC平分∠AOB.若∠COD=20°,请你补全图形,并求∠BOD的度数.以下是小明的解答过程:解:如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=∠AOB=.∵∠COD=20°,∴∠BOD=.小敏说:“我觉得这个题有两种情况,小明考虑的是OD在∠BOC内部的情况,事实上OD还可能在∠AOC的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小敏的想法,请你在图1中画出另一种情况对应的图形,此时∠BOD的度数为.31.(2018秋•海淀区期末)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.32.(2018秋•朝阳区期末)填空,完成下列说理过程如图,∠AOB=90°,∠COD=90°,OA平分∠DOE,若∠BOC=20°,求∠COE的度数解:因为∠AOB=90°.所以∠BOC+∠AOC=90°因为∠COD=90°所以∠AOD+∠AOC=90°.所以∠BOC=∠AOD.()因为∠BOC=20°.所以∠AOD=20°.因为OA平分∠DOE所以∠=2∠AOD=°.()所以∠COE=∠COD﹣∠DOE=°33.(2018秋•西城区期末)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA=90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).34.(2018秋•门头沟区期末)填空,完成下列说理过程如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°求证:OD是∠AOC的平分线;证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE.()因为∠DOE=90°所以∠DOC+∠=90°且∠DOA+∠BOE=180°﹣∠DOE=°.所以∠DOC+∠=∠DOA+∠BOE.所以∠=∠.所以OD是∠AOC的平分线.参考答案与试题解析一.解答题(共34小题)1.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤12(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤3A−30+50−A2≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤50−A+3A−402≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.2.【解答】解:∵∠BOD=30°,∠COD=90°,∴∠AOC=90°﹣∠BOD=60°.∵OC平分∠AOE,∴∠COE=∠AOE=60°.∴∠DOE=∠COD﹣∠COE=30°.3.【解答】解:(1)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×130°=65°,故答案为:65°;(2)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=α,∴∠AOD=180°﹣∠BOD=180°﹣α,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×(180°﹣α)=90°−12α;(3)①OE在AB的上面,如图,∵OC是∠AOD的平分线,∴∠DOC=∠AOC=12∠AOD,∵OC⊥OE,∴∠EOD=90°﹣∠COD=90°−12∠AOD,∵∠EOB=90°﹣∠AOC=90°−12∠AOD,∴∠EOD=∠EOB;OE在AB的下面,如图,同OE在AB上面的方法得,∠EOD=∠EOB.4.【解答】解:测量可得半圆半径为2cm,扇形半径为4cm.S半圆=3.14×22÷2=6.28(cm2),S扇形=3.14×42÷4=12.56(cm2),S阴影=12.56﹣6.28=6.28 (cm2).5.【解答】解:(1)∠COE=∠DOE﹣∠AOC=90°﹣70°=20°,故答案为:20°.(2)∵OC平分∠AOE,∠AOC=70°,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=∠DOE﹣∠COE=90°﹣70°=20°.(3)∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.理由如下:当OD始终在∠AOC的内部时,有∠AOD+∠COD=70°,∠COE+∠COD=90°,∴∠COE﹣∠AOD=90°﹣70°=20°,∴∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.6.【解答】解:(1)证明:∵点O在直线AD上,∴∠AOB+∠BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.∵OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∵∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.∴锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.7.【解答】解:(1)小明解答过程中的“①”为线段中点的定义;故答案为:线段中点的定义;(2)我同意小芳的说法,将小明的解答补充如下:如图:∵AB=8,BC=2,∴AC=AB+BC=8+2=10.∵M是AC的中点,∴AA=12AA=12×10=5.8.【解答】证明:∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠AOB+∠COB=50°∵OC平分∠AOD(已知),∴∠AOC=∠COD=50°(角平分线定义)故答案为:AOB;COB;50;COD;50.9.【解答】(1)解:符合题意的图形有两个,①如图,∵∠ABC=90°,∠CBD=30°,∴∠ABD=∠ABC﹣∠CBD=60°.∵BP平分∠ABD,∴∠AAA=12AAAA=30°.①如图,∵∠ABC=90°,∠CBD=30°,∴∠ABD=∠ABC+∠CBD=120°∵BP平分∠ABD,∴∠AAA=12AAAA=60°.综上,∠ABP的度数为30°或60°.(2)由(1)可知:∠ABC =a ,∠CBD =β,∠ABP =A +A 2或A −A 2. 10.【解答】解:∵O 是直线AB 上的一点,(已知)∴∠BOC =180°﹣∠AOC .(平角定义)∵∠AOC =60°,(已知)∴∠BOC =120°.(等量代换)∵OE 平分∠BOC ,(已知)∴∠COE =12AAAA .(角平分线定义)∴∠COE =60°.∵∠DOE =∠COD ﹣∠COE ,且∠COD =90°,∴∠DOE =30°.故答案为:平角定义;等量代换;角平分线定义;60;30.11.【解答】解:因为点C 是线段AB 的中点,所以AC =BC ,因为BC =6cm ,所以AC =6cm ,因为点D 是线段AC 的中点,所以DC =12AC . 所以DC =3cm .所以BD =CD +BD =9cm ,故答案为:AC =BC ,6,12AC ,3,CD +BD ,9.12.【解答】解:(1)补全图形,如图所示:∵点A 、O 、B 在同一条直线上,∴∠AOC +∠BOC =180°(平角的定义).∵∠AOC :∠BOC =8:1,∴∠BOC =20°,∠AOC =160°.∵∠COD =2∠COB ,∴∠COD =40°.∴∠AOD =180°﹣∠COB ﹣∠COD =120°.∵OE 平分∠AOD ,∴∠EOD =12∠AOD =60°(角平分线的定义).∴∠EOC =∠EOD +∠DOC =60°+40°=100°.(2)当射线OD 在∠AOC 的内部时,∠EOC =5α;当射线OD 在∠AOC 的外部时,∠EOC =3α.答:∠COE 的度数为:5α或3α.13.【解答】解:因为OE 平分∠AOC ,OF 平分∠BOC所以∠EOC =12∠AOC ,∠FOC =12=∠BOC .所以∠EOF =∠EOC ﹣∠FOC=12(∠AOC ﹣∠BOC )=12∠AOB=45°.故答案为:∠BOC、∠FOC、∠BOC、∠AOB、45.14.【解答】解:(1)如图1,当C在点A右侧时,∵AB=8,AC=2,∴BC=AB﹣AC=6,∵D是线段BC的中点,∴AA=12AA=3;如图2,当C在点A左侧时,∵AB=8,AC=2,∴BC=AB+AC=10,∵D是线段BC的中点,∴AA=12AA=5;综上所述,CD=3或5;(2)AB=2DE,理由是:如图3,当C在点A右侧时,∵E是AC的中点,D是BC的中点,∴AC=2EC,BC=2CD,∴AB=AC+BC=2EC+2CD=2ED;如图4,当C在点A左侧时,同理可得:AB=BC﹣AC=2CD﹣2CE=2(CD﹣CE)=2DE.15.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.16.【解答】解:如图所示,17.【解答】解:根据题意∵E面和F面的数互为相反数,∴3a+4+2﹣a=0,∴a=﹣3,把a=﹣3代入C=﹣a2﹣2a+1,解得:C=﹣2,∵A面与C面表示的数互为相反数,∴A面表示的数值是2.18.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)∠AOC=2∠DOE;理由:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°﹣∠DOE,则得∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE),所以得:∠AOC=2∠DOE;(3)∠AOC=360°﹣2∠DOE;理由:∵OE平分∠BOC,∴∠BOE=2∠COE,则得∠AOC=180°﹣∠BOE=180°﹣2∠COE=180°﹣2(∠DOE﹣90°),所以得:∠AOC=360°﹣2∠DOE;故答案为:(1)15°;(3)∠AOC=360°﹣2∠DOE.19.【解答】解:(1)∵OC是∠AOB的平分线(已知),∴∠AOC=12∠AOB,∵∠AOB=60°,∴∠AOC=30°.(2)∵OE⊥OC,∴∠EOC=90°,如图1,∠AOE=∠COE+∠COA=90°+30°=120°.如图2,∠AOE=∠COE﹣∠COA=90°﹣30°=60°.(3)∠AOE=90°+12α或∠AOE=90°−12α.20.【解答】解:(1)∵点O为直线AB上一点,∴∠AOB=180°.∵∠BOC=120°,∴∠AOC =60°.∵OD 平分∠AOC ,∴∠COD =12∠AOC .∴∠COD =30°.故答案为:180°;60°;30°;(2)分情况讨论:①当OE 在∠BOC 的内部时,∠COE +∠BOE =120°,∵∠COE :∠BOE =4:1,∴5∠BOE =120°,即∠BOE =24°;①OE 在∠BOC 的外部时,∠COE +∠BOE =360°﹣120°=240°,∵∠COE :∠BOE =4:1,∴∠BOE =240°÷5=48°,∠COE =192°(不合题意,舍去);①OE 在∠BOC 外部时,∠BOE =120°÷3=40°.故∠BOE 的度数为24°或40°.21.【解答】解:∵AC =2BC ,BC =3∴AC =6,∴AB =AC +BC =9,又∵D 为AB 中点∴BD =12AB =4.5, ∴CD =BD ﹣BC =1.5.故答案为6,9,D 为AB 中点,AB ,4.5,1.5.22.【解答】解:(1)∵AC =8,CB =6,∴AB =AC +CB =14.∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC (线段中点的定义),∴MN =12(AC +BC )=7; (2)理由如下:∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC ,∴MN =MC +NC =12AC +12BC =b ,∵AC =a ,∴BC =2b ﹣a ,∴线段BC 的长用含a ,b 的代数式可以表示为2b ﹣a .故答案为:12,12,线段中点的定义,12(AC +BC ),7,2b ﹣a . 23.【解答】解:(1)补全图形,并猜想∠DAB +∠EBA 的度数等于45°;(2)证明:∵AD 平分∠CAB ,BE 平分∠ABC ,∴∠DAB =12∠CAB ,∠EBA =12∠CBA . (理由:角平分线的定义)∵∠CAB +∠ABC =90°,∴∠DAB +∠EBA =12×(∠CAB +∠ABC )=45°.故答案为:45°,12∠CAB ,角平分线的定义,12,∠CAB ,∠ABC ,45°.24.【解答】解:∵∠AOC=∠AOB+∠BOC,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=100°.∵OD平分∠AOC,∴∠AOD=12∠AOC(角平分线定义).∴∠AOD=50°.∴∠BOD=∠AOD﹣∠AOB.∴∠BOD=10°.故答案为:BOC,100,角平分线定义,AOB,10.25.【解答】解:(1)如图所示,(2)通过观察、测量你发现∠DOE=90°;(3)∵OD平分∠AOC(已知),∴∠DOC=12∠AOC(角平分线定义),∵OE平分∠BOC(已知),∴∠EOC=12∠BOC(角平分线定义),∵∠AOC+∠BOC=180°,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=90°.故答案为:90,角平分线定义,角平分线定义,180,90.26.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义)∴∠COE=65°.∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=25°,故答案为:角平分线定义,65,COD,COE,25;(2)∠DOE=12∠AOC,理由:∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC=180°﹣∠AOC,∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义),∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC.故答案为:∠DOE=12∠AOC.27.【解答】解:(1)∵∠AOC +∠BOC =180°,∠AOC =40°,∴∠BOC =140°,∵OE 平分∠BOC ,∴∠COE =12∠BOC 70°,∵∠COD =90°,∴∠DOE =∠COD ﹣∠COE =20°;故答案为:20°;(2)∵∠AOC +∠BOC =180°,∠AOC =160°,∴∠BOC =180°﹣160°=20°;∵OE 平分∠BOC ,∴∠COE =12∠BOC =10°,∵∠COD =90°,∴∠DOE =90°﹣10°=80°;故答案为:80°;(3)∠DOE =12∠AOC =A 2(0°≤∠AOC ≤180°),∠DOE =180°−12∠AOC =180°−A 2(0°≤∠DOE ≤180°).28.【解答】解:(1)∵正方体的左面B 与右面D 代表的代数式的值相等,∴x ﹣1=3x ﹣2,解得x =12;(2)∵正面字母A 代表的代数式与对面F 代表的代数式的值相等,∴kx +1=x ,∴(k ﹣1)x =﹣1,∵x 为整数,∴x ,k ﹣1为﹣1的因数,∴k ﹣1=±1,∴k =0或k =2,综上所述,整数k 的值为0或2.29.【解答】解:(1)如图所示:(2)根据测量可得,点B 到直线AC 的距离,大约是1.5cm ,故答案为:1.5.30.【解答】解:(1)如图2,∵∠AOB =120°,OC 平分∠AOB .∴∠BOC =12∠AOB =60°.∵∠COD =20°,∴∠BOD =60°﹣20°=40°.故答案为:12;60°;40°;(2)如图1,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=12∠AOB=60°.∵∠COD=20°,∴∠BOD=60°+20°=80°.故答案为:80°.31.【解答】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴AA=12AA=5,∴CM=BM﹣CB=5﹣2=3.或方法二:∴CM=AC﹣AM=8﹣5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB﹣MB=8﹣5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC﹣DC=BD﹣DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM﹣AD=MB﹣CB,∴DM=MC∴由图可知,点M是线段CD的中点.32.【解答】解:因为∠AOB=90°.所以∠BOC+∠AOC=90°因为∠COD=90°所以∠AOD+∠AOC=90°.所以∠BOC=∠AOD.(同角的余角相等)因为∠BOC=20°.所以∠AOD=20°.因为OA平分∠DOE所以∠DOE=2∠AOD=40°.(角平分线的定义)所以∠COE=∠COD﹣∠DOE=50°故答案为:同角的余角相等,DOE,40,角平分线的定义,50.33.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠OBC.(理由:同角的余角相等)∵CA平分∠OCD∴∠ACD=∠OCA.(理由:角平分线的定义)∴∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.34.【解答】证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE(角平分线定义)因为∠DOE=90°,所以∠DOC+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°.所以∠DOC+∠COE=∠DOA+∠BOE.所以∠DOC=∠DOA.所以OD是∠AOC的平分线.故答案为:角平分线定义;COE;90;COE;DOC;DOA.。

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上学期第四章单元测试(考试时间:90分钟试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,是三棱柱的为A.B.C.D.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是A.B.C.D.3.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是A.B.C.D.4.下列说法正确的是A.延长直线AB B.延长射线ABC.反向延长射线AB D.延长线段AB到点C,使AC=BC5.“汽车上雨刷器的运动过程”能说明的数学知识是A.点动成线B.线动成面C.面动成体D.面与面交于线6.已知∠α=75°,则∠α的余角等于A.15°B.25°C.75°D.105°7.如图,将一块三角形木板截去一部分后,发现剩余木板的周长要比原三角形木板的周长大,能正确解释这一现象的数学知识是A.两直线相交只有一个交点B.两点之间,线段最短C.经过一点有无数条直线D.两点确定一条直线8.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有A.EF=2GH B.EF>GHC.EF>2GH D.EF=GH9.∠COD=36°19′,下列正确的是A.∠COD=36.19°B.∠COD的补角为144°41′C.∠COD的余角为53°41′D.∠COD的余角为53°19′10.如图,OC平分∠AOB,下列结论错误的是A.∠AOB=2∠AOC B.∠AOC=∠BOCC.∠AOC=12∠AOB D.∠BOC=∠AOB第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.24°18′=__________°.12.如图,用圆规比较两条线段A'B'和AB的长短,则AB__________A'B'.(填“>”“=”或“<”)13.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是__________.①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.14.如图,∠BAD和∠CAE都是直角,若∠BAE=135°17′,则∠CAD=__________.15.如图,能用字母表示的以点C为端点的线段的条数为m,能用字母表示的以点C为端点的射线的条数为n,则m–n的值为__________.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是__________.17.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有__________.①CE=CD+DE;②CE=CB–EB;③CE=CB–DB;④CE=AD+DE–AC.18.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为__________cm3.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,写出图中的所有角,并比较它们的大小,通过测量指出哪些角是直角,哪些角是锐角,哪些角是钝角.20.(本小题满分6分)如图是由小正方形组成的图,请你用三种方法分别在下图中添画两个小正方形,使它能成为正方体的表面展开图.21.(本小题满分8分)已知∠A=24.1°+6°,∠B=56°–26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.22.(本小题满分8分)如图,∠2是∠1的4倍,∠2的补角比∠1的余角大45°.(1)求∠1、∠2的度数;(2)若∠AOD=90°,试问OC平分∠AOB吗?为什么?23.(本小题满分6分)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x–2,C=1,D=x–1,E=2x–1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.24.(本小题满分10分)如图,已知A、O、B三点共线,OC、OE分别平分∠AOD、∠DOB.(1)试探究∠COD和∠DOE的关系;(2)若∠DOE:∠COD=2:3,求∠COB的度数.25.(本小题满分10分)已知直角三角板的直角顶点C放在直尺的一边MN上,(1)若点A和点B在直线MN的上方(如图1),求此时∠ACM与∠BCN的数量关系;(2)若把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图2),求∠ACM与∠BCN的数量关系;(3)若把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图3),求∠ACM 与∠BCN的数量关系.26.(本小题满分12分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案11.24.3 12.< 13.①④14.44°43′15.2 16.顺17.①②④18.9619.【解析】由图可知,图中的角为:∠DOC、∠COB、∠BOA、∠DOB、∠COA、∠DOA;大小关系为:∠DOC=∠BOA<∠COB<DOB=∠COA<∠DOA;(3分)直角是:∠DOB、∠COA;锐角是:∠DOC、∠COB、∠BOA;钝角是:∠DOA.(6分)20.【解析】如图所示:(6分)21.【解析】因为∠A=24.1°+6°=30.1°=30°6′,∠B=56°–26°30′=29°30′,(4分)∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,(6分)所以∠A>∠C>∠B.(8分)22.【解析】(1)因为∠2是∠1的4倍,所以∠2=4∠1,∠1的余角=90°–∠1,∠2的补角=180°–∠2=180°–4∠1,由题意得,(180°–4∠1)–(90°–∠1)=45°,解得∠1=15°,所以,∠2=4×15°=60°;(4分)(2)OC平分∠AOB.理由如下:因为∠AOD=90°,∠2=60°,所以∠AOB=90°–60°=30°,因为∠1=15°,所以∠BOC=30°–15°=15°,所以∠AOC=∠BOC,所以OC平分∠AOB.(8分)23.【解析】(1)因为正方体的左面D与右面B所标注的代数式的值相等,所以x–1=3x–2,解得x=12;(3分)(2)因为正面字母A代表的代数式与对面F代表的代数式的值相等,所以kx+1=x,所以(k–1)x=–1,因为x为整数,所以x,k–1为–1的因数,所以k–1=±1,所以k=0或k=2,综上所述,整数k的值为0或2.(6分)24.【解析】(1)因为OC、OE分别平分∠AOD、∠DOB,所以∠COD=12∠AOD,∠DOE=12∠DOB,所以∠COD+∠DOE=12(∠AOD+∠DOB)=90°;(4分)(2)设∠DOE=2x,∠COD=3x,由(1)可知:∠DOE+∠COD=90°,(6分)所以2x+3x=90°,所以x=18°,所以∠DOE=36°,∠COD=54°,所以∠COB=∠COD+2∠DOE=54°+72°=126°.(10分)25.【解析】(1)当点A和点B在直线MN的上方时,因为∠ACB=90°,所以∠ACM+∠BCN=180°–∠ACB=180°–90°=90°;(3分)(2)当点A在直线MN的下方,点B仍然在直线MN的上方时,因为∠BCN=180°–∠BCM,∠ACM=90°–∠BCM,所以∠BCN–∠ACM=(180°–∠BCM)–(90°–∠BCM)=90°;(6分)(3)当点A和点B都在直线MN的下方时,因为∠BCN=180°–∠BCM,∠ACM=90°+∠BCM,所以∠ACM+∠BCN=(180°–∠BCM)+(90°+∠BCM)=270°.(10分)26.【解析】(1)因为线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,所以CM=12AC=5厘米,CN=12BC=3厘米,所以MN=CM+CN=8厘米;(4分)(2)因为点M,N分别是AC,BC的中点,所以CM=12AC,CN=12BC,所以MN=CM+CN=12AC+12BC=12a;(8分)(3)①当0<t≤5时,C是线段PQ的中点,得10–2t=6–t,解得t=4;②当5<t≤163时,P为线段CQ的中点,2t–10=16–3t,解得t=265;③当163<t≤6时,Q为线段PC的中点,6–t=3t–16,解得t=112;④当6<t≤8时,C为线段PQ的中点,2t–10=t–6,解得t=4(舍),综上所述:t=4或265或112.(12分)。

人教新版七年级数学上册《几何图形初步》测试题及答案

人教新版七年级数学上册《几何图形初步》测试题及答案

第1题图会社谐和设建第3题图DCB ABADC B Aβββααα七年级数学第四章几何图形初步测试题(新课标)(时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。

每小题2分,共24分。

1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( ) A.和 B.谐 C.社 D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )新 课 标 第 一 网A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )第9题图BA1乙甲NM PDC BAB ()D CAD CBA7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( )A. 3cmB. 4cmC. 5cmD. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( )A. 91°20/24//B. 91°34/C. 91°20/4//D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图), 两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

2018_2019学年第一学期七年级人教版数学(上)第四章几何图形初步测试题(含答案解析)

2018_2019学年第一学期七年级人教版数学(上)第四章几何图形初步测试题(含答案解析)
5.如图,点A,B各有一只小蚂蚁,点B处的蚂蚁在A点北偏东60°的方向上,则点A处的蚂蚁在B点()
A.北偏东60°的方向上B.北偏东30°的方向上
C.南偏西30°的方向上D.南偏西60°的方向上
6.已知一个角为55°,下列说法错误的是()
A.这个角的余角为45°B.这个角的补角为125°
C.这个角的补角比这个角的余角大90°D.这个角的一半为27.5°
15.如图,长方形纸片的长为4,宽为2,将该长方形绕虚线MN旋转半周,得到的图形是_______,它的体积为_______.(结果保留π)
16.小英利用量角器作∠AOB=80°,以OB为始边作∠BOC=20°,OD平分∠AOB,则∠COD的度数为_________.
17.(1)如图,写出几何体的名称;
②可以用一个大写字母来表示,如∠B;此种方法只适用于以这个中间字母为端点的角只有一个.
③可以用一个小写数字来表示,如∠1;
④可以用一个小写的希腊字母来表示,如∠α.
【详解】
解:由角的表示方法可知ABC的表示方法均正确,对于顶点A,该处有3个角,故∠A的表示方法不正确,故选择D.
【点睛】
本题考查了角的表示方法.
22.已知线段AB=8 cm,BC=3 cm.
(1)线段AC的长度能否确定?(直接回答“能”或“不能”);
(2)是否存在使A、C之间的距离最短的情形?若存在,请求出此时AC的长度;若不存在,说明理由.
(3)能比较BA+BC与AC的大小吗?为什么?
23.点O在直线MN上,把两个一样的三角尺按图12所示放置,OD,OE分别平分∠CON和∠AOM.
A.∠α>∠β>∠γB.∠α>∠γ>∠β
C.∠β>∠γ>∠αD.∠γ>∠β>∠α

(完整word版)新人教版七年级数学版上册几何图形初步测试题及答案

(完整word版)新人教版七年级数学版上册几何图形初步测试题及答案

七年级数学第4章:几何图形初步测试题姓名: 评价:一、跟踪训练1. 图1是由下列哪个图形绕虚线旋转一周形成的( )2. 小丽制作了一个图2所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )3.如图3,A 、B 、C 三棵树在同一直线上,量得A 树 与B 树间的距离是4米,B 树与C 树间的距离是3米,小明正好站在A 、C 两棵树的正中间O 处,请你计算一下小明与B 树的距离是( )。

A. 2米B. 1. 5米C. 4米D. 0. 5米4. 如图4,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°5. 计算:53°40′30″×2-75°57′28″÷2=______.6. 一个角的补角是这个角余角的4倍,则这个角的度数为 .7. 如图5,小红过生日时,妈妈买了一块蛋糕,ABCD图1BACD图2AO B C图3图5图4如果不考虑它上面的点缀,画出从左面、正面、 上面看这个蛋糕主体部分的平面图形.8. 如图6,已知线段AB=4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明很轻松地求得CD=2. 他在反思过程中想到:若点O 在AB 的延长线上时,原有的结论“CD=2”是否仍然成立?请帮小明画出图形并说明原结论是否成立.9. 小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图7所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图7中的拼接图形上再画一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. (添加所有符合要求的正方形,添加的正方形用阴影表示)10. 如图8, O 为直线AB 上一点,已知∠AOC=50°,OD 平分∠AOC,∠DOE=90°. (1)请你数一数,图中有多少个小于平角的角;(2)求∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC.二、中考链接1. (福州市)从左面看图1中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个B. 2个C. 3个D. 4个图2图7图8图6BD OC A图12. (柳州市)如图2,点A 、B 、C 是直线l 上的三个点,图中共有线段的条数是( )。

最新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(包含答案解析)

最新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(包含答案解析)

一、选择题1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较 5.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 6.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒7.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 9.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个 D .1个10.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .411.已知线段AB ,在AB 的延长线上取一点C ,使25BC AC =,在AB 的反向延长线上取一点D ,使34DA AB =,则线段AD 是线段CB 的____倍 A .98 B .89 C .32 D .2312.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面 B .15条棱 C .7个顶点 D .10个顶点二、填空题13.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:_______________________________________________________________________________ _.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?14.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.15.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.16.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.17.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)18.如图所示,若∠AOC=90°,∠BOC=30°,则∠AOB=________;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=______,∠AOC=________,∠AOB=________.19.如图所示,O 是直线AB 上一点,OD 平分∠BOC, ∠COE =90°,若∠AOC =40°,则∠DOE =_________.20.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.三、解答题21.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.22.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.23.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?24.说出下列图形的名称.25.百羊问题甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)26.如图是由若干个正方体形状的木块堆成的,平放于桌面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章几何图形初步检测题
(本试卷满分120分,含附加题20分)
一、选择题(每小题3分,共30分)
1. 如图1所示的包装盒,可近似看做的立体图形是()
A. 棱锥
B. 棱柱
C. 圆锥
D. 圆柱
2. 图2是一把茶壶,则它的主视图是()
A B C D
3. 图3是菲律宾的国旗,该国旗上的平面图形有()
A. 三角形
B. 五边形
C. 三角形和五边形
D. 三角形、四边形和五边形
4. 如图4,将一块铁皮折叠起来,总会有一道折痕,这说明()
A. 两点之间线段最短
B. 两点确定一条直线
C. 面与面相交成线段
D. 线段与线段相交成点
5. 将一副三角尺按图5所示摆放,则∠ABC的度数为()
A. 70°
B. 75°
C. 80°
D. 85°
6. 图6是一个正方体的表面展开图,则与原正方体中“伟”字所在的面相对面上标的字是()
A. 中
B. 大
C. 国
D. 的
图3
7. 下列基本图形的表示方法不正确的是 ( )
A B C D
8. 下列各式不正确的是 ( )
A. 18 000″<360′
B. 2°30′>2.4°
C. 36 000″<8°
D. 1°10′20″>4219″
9. 明明借助一副三角尺和量角器,先画∠AOB=90°,再以点O 为顶点,OB 为始边,作∠BOC=30°,最后作∠AOC 的平分线OD ,则∠COD 的度数为 ( )
A. 30°
B. 60°
C. 30°或60°
D. 15°或45°
10.由4个相同的小正方体搭建了一个积木,从不同方向看积木,所得到的图形如图7所示,则这 个积木可能是( )
图7
二、填空题(每小题3分,共24分)
11. 上午9:30,某校学生进行阳光体育锻炼活动,地面上留下他们的影子,这种现象属于 (填“中心”或“平行”)投影.
12. 如图8,铅球投掷场地呈扇形,其中投掷区的角度为40°,则这个角的余角为 °,补角为 °.
13. 从多边形的一个顶点与其他顶点连
线段,
若多边形被分成了八个三角形,则该多边形是_____边形.
14. 若一个立体图形的三视图都是圆,则这个立体图形是 .
15. 图9所示是一个立体图形的表面展开图,请写出这个立体图形的名称: . 图9
16. 如图10,甲、乙、丙三只七星瓢虫分别落在操场草坪的点A,B,C处,连接AB,AC,BC,线段BC (填“<”“>”)线段AC,若乙瓢虫在甲瓢虫的北偏东30°,则甲瓢虫在乙瓢虫南偏西°.
17. 如图11,点C在线段AB上,D是线段AC的中点,若BD=5 cm,BC=2 cm,则AB的长度为
cm.
18. 如图12,如图8所示,一个正方体的每一个面分别标有数字1、2、3、4、5、6,根据图中的正方体①、②、③三种状态所显示的数字,可推出“?”处的数字是.
①②③
图12
三、解答题(共46分)
19.(6分)仔细观察图13所示几何体,并完成以下问题:
(1)请你写出几何体的名称;
(2)柱体有______________;
(3)构成几何体的面不超过3个的几何体有____________.
①②③④⑤⑥
图13
20.(6分)已知∠A=24.1°+6°,∠B=56°-26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.
21.(6分)如图14,是美丽的蒙古包,它可以近似看做由两个常见的立体图形组合而成,试画出它的三视图.
22. (8分)如图15,已知点O 在直线AB 上,OD 、OE 分别平分∠BOC 、∠AOC ,∠BOC=80°.
(1)求∠AOD 的度数;
(2)∠DOC 和∠COE 有什么关系?简单说明理由.
(3)若∠BOC=60°,其他条件不变(2)中的结论还成立吗?
23.(9分)图16是一个常见立体图形的三视图,根据三视图,回答下列问题:
(1)该立体图形是什么图形?
(2)求该立体图形的表面积.
24.(10分)如图17,已知线段AB ,点E 、F 分别是线
段AC 、BD 的中点,CD=4 cm ,AC+BD=10cm.
(1)求线段EF 的长度;
(2)若CD=a ,AC+BD=b ,则EF= .
附加题(共20分)
25. (8分)如图9,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC ,OD ,OE , 且OC 平分∠AOD ,∠COE=70°
. 图
14
图15
(1)设∠1=x °,用含x 的式子表示∠2的度数.
(2)若∠2=3∠1,求∠2的度数.
图18
26. (12分)经过平面内的两个点可以确定一条直线,根据这个性质,完成下列问题:
探索知识:(1)在同一平面内有三点,经过其中的两点作直线,则所做直线的条数为 ;
(2)在同一平面内有四个点,经过其中的两点作直线,有几种情况?画出每种情况中的所有直线.
(3)由(1)、(2)可知,在同一平面内有五个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作 条直线;
归纳总结:(4)在同一平面内有n(n ≥2)个点,且任意三个点都不在同
一条直线上,则经过其中的两点作直线,最多能作 条直线;
运用知识:(5)某市举行篮球赛,进入第二轮比赛共有15个球队,如
果采用循环赛(每两个球队都进行一场比赛),那么第二轮共有 场
比赛.
参考答案
一、1. A 2. D 3. D 4. C 5. B 6. D 7. C 8. C 9. C 10. D
二、11. 平行 12. 50 140 13. 十 14. 球体 15. 圆锥
16. < 30 17. 8 18. 6
三、19. (1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体.
(2)②③④⑥
(3)①③⑤
20. 解:因为∠A=24.1°+6°=30.1°,∠B=56°-26°30′=29°30′=29.5°,∠C=18°12′+11.8°=18.2°+11.8°=30°,所以∠A >∠C >∠B.
21. 解:如图所示:
22. 解:(1)因为OD 平分∠BOC ,∠BOC=80°,所以∠BOD=2
1∠BOC=40°,所以∠AOD=180°-
∠BOD=180°-40°=140°.
(2)∠DOC 和∠COE 互余.
理由:由(1)得∠COD=40°.
因为∠BOC=80°,所以∠AOC=180°-∠BOC=100°.
因为OE 平分∠AOC ,所以∠EOC=50°.
所以∠DOC+∠COE=40°+50°=90°.
(3)成立.
23. 解:(1)长方体;
(2)2(2×6+2×4+4×6)=88,即该立体图形的表面积为88.
24. 解:(1)因为点E 、F 分别是线段AC 、BD 的中点,所以CE=
21AC ,DF=2
1BD. CE+DF=21(AC+BD)=21×10=5(cm). 因为CD=4 cm ,所以EF=CE+DF+CD=5+4=9(cm).
(2)a+2
1b 25. 解:(1)因为∠1=x °,所以∠3=∠COE-∠1=70°-x °.
又OC 平分∠AOD ,所以∠4=∠3=70°-x °.
由∠1+∠2+∠3+∠4=180°,得∠2=180°-∠1-∠3-∠4=180°-x °-2(70°-x °)= 40°+x °.
(2)由∠2=3∠1,得40+x=3x ,解得x=20.
所以∠2=3∠1=3×20°=60°.
26. (1)1或3;
(2)有3种情况,各种情况画出的直线如图所示;
(3)10
(4)2
)1( n n (5)105。

相关文档
最新文档