最新 北师大版七年级数学下册期末测试卷(含答案) (5)

合集下载

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。

最新北师大版七年级数学下册期末考试卷(含答案)

最新北师大版七年级数学下册期末考试卷(含答案)

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!最新北师大版七年级数学下册期末考试卷(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个2、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154B 、31C 、51D 152 4、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径是()A、6万纳米 B、6×104纳米 C、3×10-6米 D、3×10..-5米5、下列条件中,能判定两个直角三角形全等的是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车Array停下来了.A、1个B、2个C、3个D、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .ODCB A12、若229++是一个完全平方式,则k等于.a ka13、()32+m(_________)=942-m14、已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心, AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

最新北师大版七年级数学下册期末考试卷及答案

最新北师大版七年级数学下册期末考试卷及答案

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!最新北师大版七年级数学下册期末考试卷及答案一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个2、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个 D二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .ODCBA15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

最新北师大版七年级数学下册期末测试题(含答案)

最新北师大版七年级数学下册期末测试题(含答案)

最新北师大版七年级数学下册期末测试题(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个2、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154 B 、31 C 、51 D 152 4、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,ODCB A于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

北师版七年级数学下册期末试卷【含答案】

北师版七年级数学下册期末试卷【含答案】

北师版七年级数学下册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是多少厘米?A. 16厘米B. 26厘米C. 28厘米D. 36厘米答案:D3. 下列哪个数是合数?A. 11B. 13C. 15D. 17答案:C4. 一个正方形的边长为5厘米,那么这个正方形的面积是多少平方厘米?A. 10平方厘米B. 15平方厘米C. 20平方厘米D. 25平方厘米答案:D5. 下列哪个数既是偶数又是质数?A. 2B. 3C. 5D. 7答案:A二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。

(正确)2. 任何偶数都可以表示为2的倍数。

(正确)3. 一个三角形的两边之和一定大于第三边。

(正确)4. 任何奇数都可以表示为2的倍数加1。

(正确)5. 两个合数相乘,其结果一定是合数。

(错误)三、填空题(每题1分,共5分)1. 1千米等于______米。

(1000)2. 一个正方形的周长是24厘米,那么它的边长是______厘米。

(6)3. 两个质数相乘,其结果一定是______。

(合数)4. 任何偶数都可以表示为______的倍数。

(2)5. 一个三角形的两边之和一定______第三边。

(大于)四、简答题(每题2分,共10分)1. 请列举出前5个质数。

(2、3、5、7、11)2. 请解释什么是等腰三角形。

(等腰三角形是指有两条边长度相等的三角形)3. 请解释什么是合数。

(合数是指除了1和它本身以外,还可以被其他数整除的数)4. 请解释什么是偶数。

(偶数是指可以被2整除的数)5. 请解释什么是奇数。

(奇数是指不可以被2整除的数)五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

(50平方厘米)2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,求这个三角形的面积。

最新北师大版七年级数学下册期末测试题(含答案)

最新北师大版七年级数学下册期末测试题(含答案)

最新北师大版七年级数学下册期末测试题(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个2、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154 B 、31 C 、51 D 152 4、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,ODCB A于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

【最新】北师大版数学七年级下册《期末测试卷》附答案解析

【最新】北师大版数学七年级下册《期末测试卷》附答案解析

B. ∠BEA =∠CDAC. BE =CD北师大版七年级下学期期末测试数 学 试 卷学校________班级________姓名________ 成绩________一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列计算正确 是( )A. 3a ·4a =12aB. a 3·a 2=a 12C. (-a 3)4=a 12D. a 6÷a 2=a 3的3.将 0.0000019 用科学计数法表示为()A. 1.9×10-6B. 1.9×10-5C. 19×10-7D. 0.19×10-54.如图,AB ∥CD ,直线 l 交 AB 于点 E ,交 CD 于点 F ,若∠2=80°,则∠1 等于()A. 80°B. 100°C. 110°D. 120°5.点 D 、E 分别在级段 AB 、AC 上,CD 与 BE 相交于点 O ,已知 AB =AC ,添加以下哪一个条件不能判定 △ABE ≌△ACD ()A. ∠B =∠CD. CE =BD△6.如图,把 ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,如果∠1=40°,∠2=30°,那么∠A =( )则2 D.3 .A.40°B.30°C.70°D.35°7.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为()A.25°B.65°C.70°D.75°8.已知a+b=5,ab=3,则a2+b2的值为()A19 B.25 C.8 D.69.已知a=8131,b=2741,c=961,a、b、cA.a>b>cB.a>c>b大小关系是()C.a<b<cD.b>c>a的10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.1411.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.412.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020n,,,因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14D.52019-14二、填空题(共6小题,每小题4分,满分24分)13.若a m=3,a n=2,则a m+=_______;14.若x2-2mx+9是一个完全平方式,则m的值为______;15.如图:AB∥CD,AE平分∠BAC CE平分∠ACD,则∠1+∠2=_____;16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.17.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O AD与BC交于点P BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP =BQ;④DE=DP;⑤∠AOE=120°,其中正确结论有_____;(填序号).三、解答题(共9小题,满分78分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a4)2÷a3-a2·a3;(2)2a2b(-3b2c)÷(4ab3)20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=1421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:.解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.23.在一个装有2个红球和3个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?24.我县出租车车费标准如下:2千米以内(含2千米)收费4元;超过2千米的部分每千米收费1.5元.(1)写出收费y(元)与出租车行驶路程x(km)(x>2)之间的关系式;(2)小明乘出租车行驶6km,应付多少元?(3)小颖付车费16元,那么出租车行驶了多少千米?25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为_______________;(2)若点Q的运动速度与点p的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.答案与解析一、选择题(本大题共12小题,每小题4分,共48分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【此处有视频,请去附件查看】2.下列计算正确的是()A.3a·4a=12aB.a3·a2=a12C.(-a3)4=a12D.a6÷a2=a3【答案】C【解析】【分析】直接利用单项式乘以单项式;同底数幂的乘法运算法则;以及幂的乘法运算法则和同底数幂除法运算法则分别计算得出答案.【详解】A项3a·4a=12a2故A项错误.B项a3·a2=a5故B项错误.C项(-a3)4=a12正确.D项a6÷a2=a4故D项错误.【点睛】此题考查了单项式乘以单项式、同底数幂的乘法运算法则以及幂的乘法运算法则和同底数幂除法运算法则运算法则,熟练掌握运算法则是解题的关键.3.将0.0000019用科学计数法表示为()A.1.9×10-6B.1.9×10-5C.19×10-7D.0.19×10-5【答案】A【解析】【分析】利用科学计数法,表达的形式a×10n,其中0≤|a|<10,n是负整数,其n是原数前面0的个数,包括小数点前面的0.【详解】1.9×10-6【点睛】本题考查:小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.80°B.100°C.110°D.120°【答案】B【解析】【分析】利用AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°【详解】因为AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°.故选B【点睛】本题考查平行线的性质,要熟练掌握内错角相等两直线平行;同旁内角互补两直线平行;同位角相等,两直线平行.5.点D、E分别在级段AB、AC上,CD与BE相交于点O,已知AB=AC,添加以下哪一个条件不能判定△ABE≌△ACD()A.∠B=∠CB.∠BEA=∠CDAC.BE=CDD.CE=BD【答案】C【解析】【分析】把选项代入,可知A、B、D都符合全等三角形的判定,只有C项不符合.【详解】添加A选项中条件可用ASA判定两个三角形全等;添加B选项以后是AAS,判定两个三角形全等;添加C是SSA,无法判定这两个三角形全等;添加D因为AB=AC,CE=BD,所以AD=AE,又因为∠A=∠A,AB=AC所以,这两个三角形全等,SAS.故选C.【点睛】本题考查全等三角形的判定,要掌握ASA,SSS,SAS,AAS是解题的关键.△6.如图,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,如果∠1=40°,∠2=30°,那么∠A=()A.40°B.30°C.70°D.35°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠A´ED,∠ADE=∠A´DE,一,再根据平角的性质和三角形内角和定理得出答案.【详解】因为折叠使∠A ED=∠A´ED,∠ADE=∠A´DE,所以∠1+∠AEA´=180°,因为∠1=40°,所以∠AEA´=140°,即∠AED=∠A´ED=70°,同理求出∠ADE=∠A´DE=75°,因为ΔA´DE的内角和180°,所以∠A´=180°-70°-75°=35°,即∠A=35°.则【点睛】本题考查折叠的性质、平角的性质、三角形内角和定理来解,熟练掌握折叠会出现相等的角和线段.7.如图,a ∥b ,点 A 在直线 a 上,点 C 在直线 b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2 的度数为()A. 25°B. 65°C. 70°D. 75°【答案】B.【解析】试题分析:∵∠BAC=90°,AB=AC ,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∵a ∥b ,∴∠2=∠ACE=65°,故选 B .考点: 1.等腰直角三角形;2.平行线的性质.8.已知 a +b =5,ab =3,则 a 2+b 2 的值为()A. 19B. 25C. 8D. 6【答案】A【解析】【分析】先根据完全平方公式得到 a 2+b 2=(a+b )2-2ab ,然后把 a+b=5,ab=3 整体代入计算即可.【详解】因为 a 2+b 2=(a+b )2-2ab ,a+b=5,ab=3,所以 a 2+b 2=(a+b )2-2ab=25-6=19.【点睛】本题考查了完全平方公式:(a ±b )2=a 2±2ab+b 2.也考查了整体代入的思想运用.9.已知 a = 8131,b = 2741,c = 961, a 、b 、c 的大小关系是( ) A. a >b >c【答案】AB. a >c >bC. a <b <cD. b >c >a2 D.33 B.14 C.1.【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:a=8131=3124,b=3123,c=961=3122,a>b>c.故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.14【答案】B【解析】【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.4【解析】【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB 的中垂线上;④利用角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.12.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14 D.52019-142019【解析】【分析】根据题目信息,设 S=1+5+52+53+…+52019,表示出 5S=5+52+53+…+52020,然后相减求出 S 即可.【详解】根据题意,设 S=1+5+52+53+…52019,则 5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+5 = 52020 1 4故选 C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.二、填空题(共 6 小题,每小题 4 分,满分 24 分)13.若 a m =3,a n =2,则 a m +n =_______;【答案】6【解析】【分析】先根据同底数幂的乘法法则把代数式化为已知的形式,再把已知代入求解即可.【详解】∵a m •a n =a m+n ,∴a m+n =a m •a n =3×2=6.【点睛】解答此题的关键是熟知同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即 a m •a n =a m+n .14.若 x 2-2mx +9 是一个完全平方式,则 m 的值为______;【答案】±3【解析】【分析】本题考查完全平方公式的灵活应用,这里首末两项是 x 和 3 的平方,那么中间项为加上或减去 x 和 3 的乘积的 2 倍.【详解】∵x 2-2mx+9 是一个完全平方式,∴-2m=±6,∴∠1=∠BAC,∠2=∠ACD,o.解得:m=±3.故答案为±3.【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.15.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____;【答案】90°【解析】试题解析:AB∥CD,∠BAC+∠ACD=180o,∵AE平分∠BAC,CE平分∠ACD,112211∴∠1+∠2=(∠BAC+∠ACD)=⨯180o=90.22故答案为90o.点睛:两直线平行,同旁内角互补.16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果【详解】解:如图,设大树高为AB=10米,, , 小树高为 CD=4 米,过 C 点作 CE ⊥AB 于 E ,则 EBDC 是矩形,连接 AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6 米,在 △Rt AEC 中,AC= AE 2 + EC 2 =10 米故答案为 10.【点睛】本题考查勾股定理的应用,即 a 2 + b 2 = c 2 .17.等腰三角形两边长为 4cm 、6cm ,求等腰三角形的周长.【答案】14cm 或 16cm【解析】【分析】由于两边的长为 4m 和 6cm ,具体哪边是底,哪边是腰题目没有明确,应分两种情况讨论.【详解】解:当腰长是 6m ,底长是 4cm 时,4+6>6,故能构成三角形,则周长是 4+6+6=16cm ;当腰长是 4m ,底长是 6cm 时,4+4>6,故能构成三角形,则周长是:4+4+6=14cm ;则等腰三角形 周长是 14cm 或 16cm .故答案为 14cm 或 16cm【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边时要分类进行讨论,同时要验证各种情况是否能构成三角形进行解答.18.如图,C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点 O AD 与 BC 交于点 P BE 与 CD 交于点 Q ,连接 PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP=BQ ;④DE =DP ;⑤∠AOE =120°,其中正确结论有_____;(填序号).【答案】①②③⑤【解析】分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC△,得到CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,即∠AOE=180°-60°=120°可知⑤正确.【详解】∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,(又∵∠PCQ=60°△可知 PCQ 为等边三角形,∴∠PQC=∠DCE=60°,∴PQ ∥AE ②正确,∵△CQB ≌△CPA ,∴AP=BQ ③正确,∵AD=BE ,AP=BQ ,∴AD-AP=BE-BQ ,即 DP=QE ,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,∴∠DQE ≠∠CDE ,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE ,∠EDC=60°=∠BCD ,∴BC ∥DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴∠AOE=180°-60°=120°∴⑤正确.故正确的有:①②③⑤.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.三、解答题(共 9 小题,满分 78 分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a 4)2÷a 3-a 2·a 3;(2)2a 2b (-3b 2c )÷(4ab 3)【答案】 1)3a 5 (2)- 3 2ac 【解析】【分析】(1)根据整式混合运算即可求出结果;(2)单项式乘以单项式和单项式除以单项式即可求出答案.【详解】(1)原式=4a 8÷a 3- a 2·a 3=4a 5-a 5=3a 5..(2)原式=-6a2b3c÷(4ab3)=-32ac【点睛】本题考查整式混合运算和单项式乘以单项式、单项式除以单项式,熟练掌握其定义即可20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=14【答案】4x﹣5,﹣4【解析】利用平方差公式和完全平方公式进行化简,然后代入求值即可解:(x+1)(x﹣1)﹣(x﹣2)2=x2﹣1﹣x2+4x﹣4=4x﹣5;当x=11时,原式=4×﹣5=﹣4.4421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.【答案】AB∥CD,理由看详解.【解析】分析】根据ΔABO≌ΔCDO,求出∠C=∠A,根据内错角相等,两直线平行.【详解】在ΔABO和ΔCDO中,AO=CO,∠AOB=∠COD(对顶角相等),BO=DO.所以ΔABO≌ΔCDO (SAS),所以∠C=∠A,所以AB∥CD(内错角相等,两直线平行).因此AB和CD的位置关系是平行.【点睛】本题考查平行线的判定,内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.【答案】∠ACB;同位角相等,两直线平行;∠ACD;∠ACD;CD;两直线平行,同位角相等.【解析】【分析】根据垂直于同一直线的两条直线平行,证出DG∥AC,再根据DG∥AC,∠1=∠2,证出∠1=∠ACD,所以EF∥CD,因此∠AEF=∠ADC=90°,即CD⊥AB.【详解】解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_ACB__=90°(垂直定义)∴DG∥AC,(同位角相等,两直线平行_____)∴∠2=∠ACD__.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD_(等量代换)∴EF∥__CD__(同位角相等,两直线平行)∴∠AEF=∠ADC,(_两直线平行,同位角相等__)∵EF⊥AB,∴∠AEF=90°...∴∠ADC=90°即:CD⊥AB.【点睛】本题考查平行线的判定和平行线的性质的综合运用,要熟练掌握是做题的关键23.在一个装有 2 个红球和 3 个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?【答案】不公平;理由看详解;取出一个白球,使红球和白球的个数相等,这样游戏公平【解析】分析】根据红球和白球的个数,以及总个数,求出 P(小明获胜)和 P(小刚获胜),比较大小所以游戏即可.再根据取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相等,游戏公 平.【详解】因为共 5 个球,红球 2 个,白球 3 个,所以 P(小明获胜)= 2 5 ;P(小刚获胜)= 3 5 , 2 3 < ,所以游 5 5 戏不公平.取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相 等,游戏公平.【点睛】本题考查游戏的公平性,即概率的意义:一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 P (A )=m n . 24.我县出租车车费标准如下:2 千米以内(含 2 千米)收费 4 元;超过 2 千米的部分每千米收费 1.5 元.(1)写出收费 y (元)与出租车行驶路程 x (km )(x >2)之间的关系式;(2)小明乘出租车行驶 6km ,应付多少元?(3)小颖付车费 16 元,那么出租车行驶了多少千米?【答案】(1) y=1+1.5x ;(2)10 元;(3)10 千米.【解析】【分析】根据题意列出来表达式,y=1+1.5x ,然后当 x=6 时求出 y 值,最后当 y=16 时,再求出 x 值.【详解】(1) y=4+(x-2)×1.5=4+1.5x-3=1+1.5x ,即 y=1+1.5x .(2)当 x=6km 时,y=1+1.5×6=10 元,即小明乘出租车行驶 6km ,应付 10 元.(3)当 y=16 元时,则 16=1+1.5x ,则 x=10km ,即小颖付车费 16 元,那么出租车行驶了 10 千米.【点睛】本题考查变量之间的关系,根据题意列出表达式是解题的关键25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.【答案】答案看详解.【解析】【分析】(1)连接AB,做AB的垂直平分线L1,L1与L相交于点M,连接MA和MB,所以MA=MB.(2)过A点向L做垂线AO,并延长AO,使AO=A1O,即A1即为所求.(3)由(2)知A点关于L的对称点A1连接BA与L相交于P,P点即为所求.1【详解】(1)(2)(3)由图知:△ABP周长=AP+BP+AB=AB+BP+P A1=4+6=10,即△ABP周长的最小为10.【点睛】本题考查垂直平分线上的一点到线段两端点的距离相等,一点关于一条直线对称,轴对称最短线路问题,本题关键是掌握两点间线段最短.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含 t 的式子表示 PC 的长为_______________;(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2 时,三角形 BPD 与三角形 CQP 是否全等,请说明理由;(3)若点 Q 的运动速度与点 P 的运动速度不相等,请求出点 Q 的运动速度是多少时,能够使三角形 BPD 与三角形 CQP 全等?【答案】(1)PC=12-2t ;(2)ΔBPD ≌ΔCQP 理由见详解;(3) 8 3cm/s 【解析】【分析】(1)根据 BC=12cm ,点 P 在线段 BC 上以 2 厘米/秒的速度由 B 点向 C 点运动,所以当 t 秒时,运动 2t ,因此PC=12-2t.(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,因为 BC=12cm ,所以 PC=8cm,又因为 BD=8cm ,AB=AC ,所以∠B=∠C,因此求出 ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根据 ΔBPD≌ΔCQP 得出 BP=PC ,进而算出时间 t ,再算出 v 即可.【详解】(1)由题意得出:PC=12-2t(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,∵ BC=12cm ,∴PC=8cm,又∵BD=8cm,AB=AC ,∴∠B=∠C,在 ΔBPD 和 ΔCQP 中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS ).(3)若点 Q 的运动速度与点 P 的运动速度不相等,∵V p ≠V Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则 BP=PC=6cm,CQ=BD=8cm,∴点 P 、点 Q 运动的时间 t=CQ 8 8 8 ∴V Q == = cm/s ,即 Q 速度为 cm/s. t3 3 3 BP 2=3s , 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有 SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.27.在△ABC 中,∠ACB =90°,AC =BC ,直线 MN 经过点 C ,且 AD ⊥MN 于 D ,BE ⊥MN 于 E .(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.【答案】(1)△ADC≌△CEB;(2)理由见详解;(3)理由见详解.【解析】【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,(2)由(1)可知△ADC≌△CEB所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(3)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.【详解】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,∠ADC=∠CEB∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS).(2)由(1)可知△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(3)证明:在△ADC和△CEB中,∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。

最新北师大版七年级数学下册期末测试卷及答案

最新北师大版七年级数学下册期末测试卷及答案

最新北师大版七年级数学下册期末测试卷及答案班级___________ 姓名___________ 成绩_______一、填空题(每空3分,共24分)1. 已知,2)31()9(732=⋅a 则12a 的值为 。

2. 已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 。

3. 3.一只小鸟自由自在在空中飞翔,然后随意落在下图(由16个小正方形组成)中,则落在阴影部分的概率是 。

4.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是 (图中每一块方砖除颜色外完全相同)。

5.计算:8100×0.125100= 。

6.如图,ΔABC 中,AB 的垂直平分线交AC 于点M 。

若CM=3cm ,BC=4cm ,AM=5cm ,则ΔMBC 的周长=_____________cm 。

.7、有一种原子的直径约为0.00000053米,它可以用科学记数法表示为___________米。

8数量x (千克) 1 2345售价y (元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5写出用x 表示y 的公式是________.二、选择题(每小题3分,共24分)9.掷一颗均匀的骰子,6点朝上的概率为( )A .0B .21 C .1 D .61 10.地球绕太阳每小时转动通过的路程约是51.110km ⨯,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( )A .70.26410km ⨯B .62.6410km ⨯C .526.410km ⨯D .426410km ⨯ 11.=5)(m a ( ) (A )m a+5 (B )ma-5 (C ) ma5 (D )55m a12.)()23)(23(=---b a b a(A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b -13.如图,下列条件中,不能判断直线l 1∥l 2的是( ) A 、∠1=∠3 B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180°14.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向右拐50°,第二次向左拐130°B 、第一次向左拐30°,第二次向右拐30C 、第一次向右拐50°,第二次向右拐130°D 、第一次向左拐50°,第二次向左拐13015.一个多项式的平方是m a a ++122,则=m ( )。

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。

北师大版七年级数学下册期末测试卷及答案(最新版)

北师大版七年级数学下册期末测试卷及答案(最新版)

(北师大版)七年级下册数学期末模拟试卷及答案考试时间90分钟一、选择题:(每小题3分,共36分。

每小题四个选项中,只有一个是正确的。

) 1.下列计算正确的是( )A .x+x=2x 2,B .x 3•x 2=x 5,C .(x 2)3=x 5,D .(2x )2=2x 2 2.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( ) A .1≤x≤3, B .1<x≤3, C .1≤x <3, D .1<x <3 3.如图,AB ∥CD ,∠CDE=140°,则∠A 的度数为( ) A .140°, B .60°, C .50°, D .40°4.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( ) A .40°, B .50°, C .60°, D .140°5.以下事件中,必然发生的是( ) A .打开电视机,正在播放体育节目 B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点6.已知点P (a a 31,2-)在第二象限,若点P 到x 轴的距离与到y 轴的距离之和为6,则a 的值为( )A .1-B .1C .5D .37.一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( )A .5B .6C .7D .88.贝贝解二元一次方程组⎩⎨⎧=+=+12y x py x 得到的解是⎪⎩⎪⎨⎧∆==y x 21,其中y 的值被墨水盖住了,不过她通过验算求出了y 的值,进而解得p 的值为( )A .21B .1C .2D .39.如图,在△ABC 中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .100°B .110°C .115°D .120°10.如果()()q a pa a a +-++3822的乘积不含a 3和a 2项,那么p ,q 的值分别是( )A .p =0,q =0B .3-=p ,q =9C .p =3,q =8D .p =3,q =111.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)12.若定义()()a b b a f ,,=,()()n m n m g --=,,,例如()()3,23,2=f ,()()4,14,1=--g ,则()()6,5-f g 的值为( )A .(6-,5)B .(5-,6-)C .(6,5-)D .(5-,6)第Ⅱ卷 非选择题二、填空题:本大题共6小题,满分18分.把答案填写在题中横线上13.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为________cm . 14.已知()()ab x b x a x x ++=++52,b a +=________.15.从A 沿北偏东60°的方向行驶到B ,再从B 沿南偏西20°的方向行驶到C ,则∠ABC=________度.16.已知⊙O 的半径为6cm ,(1)OB=6cm ,则点B 在________;(2)若OB=7.5cm ,则点B 在________.17.已知三元一次方程组⎪⎩⎪⎨⎧=-=+=-1721y z z x y x ,则z y x +-的值为________.18.若多项式42++mx x 能用完全平方公式分解因式,则m 的值是________.三、解答题:本大题共6小题,满分66分.解答应写出必要的计算过程、推演步骤或文字说明.19.(1)解方程组⎩⎨⎧=-=+5342y x y x (5分)(2)分解因式:r p q pqr q 225105++ (5分) 20.(1)利用公式计算803×797(4分)(2)先化简,再求值:()()()a b a b b a b a 24222-++-+,其中21-=a ,2=b (6分) 21.(7分)如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?22.(7分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B ,∠C 应分别是21°和32°.检验工人量得∠BDC=148°.就断定这个零件不合格,这是为什么?23.(10分)2012年12月1日,世界上第一条地处高寒地区的高铁线路——哈大高铁正式通车运营。

新北师大版七年级数学下册期末考试卷(带答案)

新北师大版七年级数学下册期末考试卷(带答案)

新北师大版七年级数学下册期末考试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 8.实数a、b在数轴上的位置如图所示,则化简|a-b|﹣a的结果为()A.-2a+b B.b C.﹣2a﹣b D.﹣b 9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.27的立方根为________.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.6.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为____________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)5 31152x xx x--≥⎧⎪-+⎨-<⎪⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图,在单位正方形网格中,建立了平面直角坐标系,xOy试解答下列问题:(1)写出ABC三个顶点的坐标;(2)画出ABC向右平移6个单位,再向下平移2个单位后的图形111A B C△;(3)求ABC的面积.CD=,4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3m ⊥,13mAD DCBC=,求这块地的面积.AB=,12m5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、B6、A7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、a+c3、15°4、35、24.6、34三、解答题(本大题共6小题,共72分)1、71x -<≤-.2、0.3、(1)A (-1,8),B (-4,3),C (0,6);(2)答案略;(3)112. 4、224cm .5、(1)50;72;(2)详见解析;(3)330.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档