实验一 单级共射放大电路
单级共射放大电路
实验一 单级共射放大电路一、实验目的1.熟悉电子元器件和模拟电子实验箱。
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q 点,A v ,r i ,r o 的方法,了解共射电路的特性。
4.理解放大电路的动态性能。
二、实验仪器1.模拟电子实验箱 2.低频信号发生器 3.交流毫伏表 4.示波器 5.万用表三、预习要求1.复习三极管及单管放大电路的工作原理。
2.了解放大电路静态和动态测量方法。
四、实验概述图1.1为电阻分压式工作点稳定单管共射放大电路。
它的偏置电路采用R b 和R b2组成的分压电路,并在发射极中接有电阻R e ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。
注意:图1.1所示电路中,R 1、R 2为分压衰减电路,除R 1、R 2以外的电路为放大电路。
U o A U s图1.1 工作点稳定的放大电路之所以采取这种结构,是由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R 1、R 2衰减形式。
1.输入电阻的定义为电路的输入电压U i 与输入电流I i 之比,即r i =iiI U r i 为从电路输入端看进去的交流等效电阻,r i 愈大,则电路从信号源取用电流I i 愈小,电路获得的U i 愈大。
2.输出电阻的定义为负载R L 开路,且信号源电压U s =0(但保留其内阻R s ),从输出端看进去的等效电阻。
即输出端开路时,采用戴维南定理求得等效电源内阻。
即r o =ooI U (U s =0,R L = ) r o 为从电路输出端看进去的交流等效电阻,r o 愈小,则电路接上负载后,输出电压下降愈少,即带负载能力愈强。
五、实验内容1.静态测量与调整按图1.1接线(不用接入由R 1、R 2组成的分压衰减电路),确认无误后接通电源,调整R p 使U e =2.2V ,测量电路的静态工作点的相关值(I b 、I c 、U ce ),在这里,为了测量的方便,我们只需测出三极管的三个脚对地的电压,也就是U e 、U b 、U c ,就可以相应推导出Q 点值。
模拟电路实验报告单级共射放大电路
模拟电子系统设计实验第2次实验报告1 实验原理:一:单级共射放大电路电路原理图如下:当I 1>>I BQ 时,有:CC b2b1b2B V R R R V ⋅+≈eBE B E C R V V I I -=≈)(e c C CC e E c C CC CE R R I V R I R I V V +-≈--=βCB I I =调节Rp大小可以改变电路的静态工作点。
接入100mV,1kHz正弦波后,在实验要求的30~50倍增益条件下,调节Rp使输入电压幅值增大时,输出波形波峰和波谷同时开始失真,则静态工作点设置合适,可以作为后续电路电压比较器的输入之一二:三角波产生电路、电压比较器及功率放大器(一)三角波产生电路1.施密特触发器:电路符号如下:输入输出特性图线如下:2.积分电路3.三角波发生器积分后反馈至施密特触发器。
(二)比较器:功能:比较同相输入端和反相输入端的电压,前者高则输出高,反之输出低。
电路包含一个正反馈。
(三)功率放大器:对输入音频做PWM,然后驱动半桥做功率放大,最后滤波2实验元器件仪器:EE1643C型信号发生器/计算器TDS2001C型示波器稳压电源万用表电烙铁主要器件:电阻,电容,电位器,面包板,BJT,各类运放(如TL082,TL3116等)3实验结果和分析D类功率放大器在焊板上走锡线,注意信号线与地线的布线。
得到焊板如下:因实验中电路前一部分的三角波产生电路波形出了问题,所以未得到功放的测试波形。
实验中最常见的问题就是元件焊接时短路或者虚焊。
4实验总结与反思本次试验中,我主要承担了第一级BJT放大电路的搭建工作和最后一级功率放大器的焊接工作。
搭建放大电路主要是计算元件参数,在找到与理论值最接近的电阻之后,搭建电路并寻找静态工作点使得输出波形不失真。
在这个过程中,遇到了面包板接触不良,布线不合理导致干扰过大或者没有输出波形,以及直流电源的使用错误(如未按下output键)等很多问题。
模电实验一
实验一单级共射放大电路实验一、实验目的1、熟悉电子元器件和模拟电路实验箱。
2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。
3、学习测量放大器Q点,AV,Ri,Ro的方法,了解共射极电路特性。
4、学习放大器的动态性能。
二、实验原理图1.1为电阻分压式单管放大器实验电路图。
它的偏置电路采用Rb1和Rb2、Rp(100K和1M可选)组成的分压电路,并在发射极中接有电阻RE(由Re1和Re2组成),以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
图1.1 共射极单管放大器实验电路在图1.1电路中,当流过偏置电阻Rb1和Rb2 的电流远大于晶体管1V1 的基极电流IB时(一般5~10倍),则它的静态工作点可用下式估算其中:Rb=Rb2+Rp电压放大倍数输入电阻 Ri = Rb1 // Rb // rbe输出电阻RO ≈ RC由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,及放大器各项动态参数的测量与调试等。
1、放大器静态工作点的测量与调试(1) 静态工作点的测量测量放大器的静态工作点,应在输入信号ui=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表的直流毫安档和直流电压档,分别测量晶体管的集电极电流IC以及各电极对地的电位UB、UC和UE。
一般实验中,为了避免断开集电极,所以采用测量电压UE或UC,然后算出IC的方法,例如,只要测出UE,即可用算出IC(也可根据,由UC确定IC),同时也能算出,。
实验一:共射极单管放大电路
失真波形
严重截止失真波形
失真波形
饱和失真波形
返回
实验内容
最佳静态工作点的调试
初调静点(空载)第2步:
调节RB1使VC=7V左右。 由低信输出f=1kHZ的正弦信号至Vi,慢慢加大信号幅度, 用示波器观察输出波形Vo,如出现单边失真,调节RB1使之 消除。
再加大Vi,若还出现比较明显的单边失真,则调 节RB1消除之。
返回
饱和区
Ic
为方便演示,假定三极管空载且e级到地电阻为0,此时交直流负 载线重合。 红色的圆表示静 请注意,由于集 基极直流电位下 此时应当降低基极 当输入信号过大 此时应当升高基极 基极直流电位升 态工作点的位置; 电极和基极反相, 降时,静态工作 直流电位,使静态 时,将使动态工 电位,使静态工作 高时,静态工作 红色水平线用于 因此在集电极输 点将下移,在输 工作点下移。 点上移。 作点的范围同时 点将上移,在输 标出叠加图示正 出的波形上,饱 入信号不变时, 进入截止和饱和 入信号不变时, 弦信号时,动态 和失真出现在下 动态工作点将进 区,出现双向失 动态工作点将进 工作点的运动范 半周期,截止失 入截止区,引起 真。此时应减小 入饱和区,引起 围 截止失真 真出现在上半周 输入信号幅度。 饱和失真 期
直至加大Vi出现双向对称失真,此时减小V静态工作点的调试
关断低信,测量最佳静点,完成表2.2的测试内容。
实验内容
测量电压增益
在输出波形为最大不失真波形时用示波器观察放大 器输出电压Uo的波形。 用交流毫伏表测量此种情况下的 Uo1 、 Ui1,计算放 大倍数 加2K负载电阻,用交流毫伏表测试此种情况下的 Uo2 、Ui2值,计算放大倍数。 根据P33公式计算整个电路的输出电阻
项目1: 单级共射放大电路
实验一 单极共射放大电路一、实验目的1.掌握三极管(BJT )单极共射放大电路静态工作点的测量和调整方法。
2.了解电路参数变化对静态工作点的影响。
3.掌握BJT 单极共射放大电路主要性能(A v 、R i 、R o )的测量方法。
4.学习通频带的测量方法。
二、实验仪器1.示波器2.函数信号发生器3.数字万用表4.数字毫伏表5.模拟电路实验平台三、实验原理与参考电路1. 参考电路实验参考电路如图4.2.1所示。
该电路采用自动稳定静态工作点的分压式射极偏置电路,其温度稳定性好。
三极管选用国产高频小功率三极管3DG6,或国外型号9013,电位器R P 为调整静态工作点而设。
LR 1c R 1b R 2b R 1e R '1e R eC 1T 1C CCV +2S +-+-PR 2c iV ∙oV ∙图4.2.1 单级共射放大电路2. 静态工作点的估算与调整静态工作点是指输入交流信号为零时三极管的基级电流I BQ 、集电极电流I CQ 和管压降V CEQ 。
在三极管放大电路的图解分析中已经介绍,为了获得最大不失真的输出电压,静态工作点应选在输出特性曲线上,交流负载线的中点。
若工作点选择的太高,易引起饱和失真,而选得太低,又引起截止失真,对于线性放大电路,这两种工作点都不合适的,必须对其进行调整。
图4.2.1所示电路的直流通路如图4.2.2所示。
其开路电压V BB 和内阻R B 分别为11b B R R =∥12b R CC b b b BB V R R R V 121112+=则 )R )(R 1(2e 1e +++-=βB BEQBB BQ R V V IBQ CQ I I β=CQ c CC CEQ I R V V )R R (2e 1e ++-≈BQI CQI CCV BR 1e R 2e R CR BBV图4.2.2 图4.5.1所示电路的直流通路由以上表达式可见,静态工作点与电路参数V CC 、R C 、R e1、R e2、R b11、R b12三极管的β都有关。
实验一基本共射放大电路实验报告
实验1-单级放大电路
实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
单级共射放大电路实验报告.doc
单级共射放大电路实验报告.doc本实验通过搭建单级共射放大电路并进行测试和分析,加深了我们对基本电路的理解和实践技能的提升。
本文将从实验原理、实验步骤、实验结果及分析等方面进行阐述。
一、实验原理1、单级共射放大器的原理共射放大器即输人输出均在晶体管的基极和发射极之间,因此在放大系数上面具有一定的增益,其输入电阻比共集(电流随输入电阻的变化而变化)放大器高,输出电阻比共射(输出电阻不随输入电阻的变化而变化)放大器要低得多,因此同时具有输入输出阻抗都比较好的特点,也就是可以适用于各种电阻范围内的负载。
单级共射放大器是一种常见的基本放大电路,其基本结构如图1所示。
在正常工作状态下,晶体管的基极极间电位为0.6V时,为了使集电极端的电压维持在5V左右,必须给共射电路提供至少5.6V的电压。
为了让信号能够被放大,必须在基极端加上一个交流信号,造成基极到发射极的直流偏置电压波动,而这种交流电压就是引入的输入信号。
3、放大器的放大性能指标放大器的放大性能指标主要包括频率响应、幅度与相位特性、增益、输入输出电阻、噪声系数等多项指标,其中增益是一项非常关键的指标。
二、实验步骤1、实验所需器材和材料(1) C945B三极管1颗(2)1kΩ电阻4个(4)10μf电解电容1个(6)调码器一个(7)万用表(8)示波器(9)直流电源(10)信号发生器2、实验操作流程(1)根据电路图搭建实验电路。
(2)用万用表测出电路中各个元件的参数值。
(3)连接示波器和信号发生器,使信号发生器输出一个1kHz正弦波。
(4)打开直流电源,调节电源电压为5V.(5)显示器显示开始显示信号曲线,用示波器观察信号波形和增益。
(6)通过调节信号源和示波器来得到最佳的放大性能。
三、实验结果及分析搭建完实验电路并进行调试后,我们得到了以下数据:信号频率 | 10kHz | 100kHz | 1MHz |输入电压 | 200mV | 200mV | 200mV |输出电压 | 1.05V | 1.02V | 390mV |增益(Vout/Vin) | 5.25 | 5.1 | 1.95 |从表格数据中可以看出,在低频范围内,输出电压随着输入电压的增加而增加,实现了较好的信号放大效果。
模电实验单级共射放大电路
模电实验单级共射放⼤电路单极共射放⼤电路⼀、实验⽬的(1)掌握⽤Multisim 13 仿真软件分析单极放⼤电路主要性能指标的⽅法。
(2)熟悉掌握常⽤电⼦仪器的使⽤⽅法,熟悉基本电⼦元器件的作⽤。
(3)学会并熟悉“先静态后动态”的电⼦线路的基本调试⽅法。
(4)分析静态⼯作点对放⼤器性能的影响,学会调试放⼤器的静态⼯作点。
(5)掌握放⼤器的放⼤倍数、输⼊电阻、输出电阻及最⼤不失真输出电压的测试⽅法。
(5)测量放⼤电路的频率特性。
⼆、实验原理1.基本电路电路在接通直流电源CC V ⽽未加⼊输⼊信号时(通过隔直流电容1C 将输⼊端接地),电路中产⽣的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的⼀个⼯作点,称为静态⼯作的Q 。
三极管的静态⼯作点可⽤下式近似估算:)7.0~6.0(=BEQ V V 硅管;(0.2~0.3)V 锗管()e c CQ CC CEQ R R I V V +-=CC P BQ V R R R R V 212++= EBEQBQ EQ CQ R V V I I -=≈βCQ BQ I I =2.静态⼯作点的选择放⼤器静态⼯作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。
在晶体管低频放⼤电路中,静态⼯作点的选择及稳定具有举⾜轻重的作⽤,直接关系到放⼤电路能否正常可靠地⼯作。
若⼯作点偏⾼(C I 放⼤),则放⼤器在加⼊交流信号以后易产⽣饱和失真,此时输出信号o u 的负半周将被削底;若⼯作点偏低,则易产⽣截⽌失真,即o u 的正半周被削顶(⼀般截⽌失真不如饱和失真明显)。
这些情况都不符合不失真放⼤的要求。
所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤电路的输⼊端加⼊⼀定的输⼊电压i u ,并检查输出电压o u 的⼤⼩和波形是否满⾜要求。
如不满⾜,则应调节静态⼯作点的位置。
还应说明的是,上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔。
模电实验一 单级共射放大电路
模电仿真实验报告单级共射放大电路班级:电子信息类一班学号:2014117225姓名:梁霄实验一单级共射放大电路实验目的:1.熟悉常用电子仪器的使用方法。
2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。
3.掌握放大器动态性能参数的测试方法。
4.进一步掌握单级放大电路的工作原理。
实验仪器:1.示波器2.型号发生器3.数字万用表4.交流毫伏表5.直流稳压源实验原理:1.电路静态工作点的调整将放大电路的输入端短路,让其工作在直流状态,用直流电压表测量三极管C,E 间电压,调整电位器使UCE在4-6V之间,这表明放大电路的静态工作点基本设置在放大区,然后测量B极对地的电位并记录。
2.电压放大倍数的测量放大电路静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。
用交流毫伏表或示波器分别测量放大电路的输入,输出电压,按定义式计算。
3.输入电阻Ri 的测量测量输入电阻时,可采用串联电阻法来进行。
4.输出电阻Ro的测量测量输出电阻时采用单负载电阻法。
实验内容:1.装接电路1).用万用表判断试验箱上三极管,电解电容的极性好坏,测试三极管的放大倍数。
2).按图示连接电路,将电位器调到电阻最大位置。
3).接线后仔细检查电路,确认无误后接通电源。
2.静态工作点的调整测量1)同时,在示波器的另一通道监视放大器输出电压U0的波形调整RP的阻值,是静态工作点处于合适的位置,UCE=5.16V。
2)保持静态工作点不变撤去输入信号源,使电路工作在直流状态,用直流电压表测量UB,UC,UE的值,在计算静态工作点的值,并和理论计算值进行比较。
3.电压放大倍数的测量与计算1).放大电路的静态测量完毕后,输入端加上正弦信号,在输出波形不失真的情况下,测量输入信号电压UI和输出信号电压U0的电压值。
改变UI值,在测量U0的值以计算电压放大倍数的平均值,减小测量误差。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的,通过搭建单级共射放大电路,了解其工作原理和特性,并通过实验验证其放大功能和频率响应。
实验仪器和器材,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单级共射放大电路是一种常用的放大电路,其工作原理是利用三极管的放大特性,将输入信号进行放大。
在单级共射放大电路中,输入信号通过输入电容耦合到基极,经过输入电阻进入三极管的基极,通过基极-发射极间的电流放大作用,输出到负载电阻上,实现信号放大。
实验步骤:1. 按照电路图连接实验电路,注意接线正确,电路连接紧密。
2. 调节直流稳压电源,使其输出电压为所需工作电压。
3. 调节信号发生器,输入所需频率和幅值的正弦信号。
4. 连接示波器,观察输入信号和输出信号的波形,记录波形特点和参数。
5. 调节信号频率和幅值,观察输出信号的变化,记录频率响应曲线。
实验结果:经过实验观察和记录,我们得到了以下实验结果:1. 输入信号和输出信号的波形基本一致,幅值经过放大。
2. 随着输入信号频率的增加,输出信号的幅值有所下降,频率响应存在一定的衰减。
实验分析:通过实验结果的观察和分析,我们可以得出以下结论:1. 单级共射放大电路具有信号放大的功能,能够将输入信号进行放大。
2. 由于电容和电感元件的存在,单级共射放大电路存在一定的频率响应特性,随着频率的增加,放大倍数会有所下降。
实验总结:本次实验通过搭建单级共射放大电路,验证了其放大功能和频率响应特性。
同时,通过观察实验现象和分析实验结果,加深了对单级共射放大电路的工作原理和特性的理解。
在今后的学习和工作中,我们将更加熟练地运用单级共射放大电路,并加深对其特性的认识。
实验存在的不足和改进方向:在实验过程中,我们发现了一些不足之处,比如实验中可能存在的误差、实验数据的不够精确等。
因此,我们需要在以后的实验中加强对实验过程的控制,提高实验数据的准确性和可靠性。
通过本次实验,我们对单级共射放大电路有了更深入的了解,也为以后的学习和工作积累了宝贵的经验。
单极共射放大电路实验报告
单极共射放大电路实验报告
实验目的:
1. 了解单极共射放大电路的原理和工作过程。
2. 学习使用实验仪器和测量单极共射放大电路的性能参数。
3. 掌握单极共射放大电路的设计和调试方法。
实验器材:
1. 电源:直流电源和信号发生器。
2. 传输线:22AWG,15cm。
3. 电容:0.1μF,50μF。
4. 电阻:8Ω,10kΩ。
5. 晶体管:2N3904。
实验步骤:
1. 搭建单极共射放大电路。
2. 调节直流电源,使晶体管工作在放大状态。
3. 测量单极共射放大电路的放大倍数、输入阻抗、输出阻抗等性能参数。
4. 根据实验结果改变电路参数,进行单极共射放大电路的设计和调试。
实验数据:
1. 单极共射放大电路的放大倍数为
2.5。
2. 单极共射放大电路的输入阻抗为1kΩ。
3. 单极共射放大电路的输出阻抗为500Ω。
实验分析:
通过实验可以得到单极共射放大电路的重要性能参数,可以根据这些参数对电路进行设计和调整,以满足具体的需求。
同时,实验还可以加深对单极共射放大电路的原理和工作过程的理解。
实验结论:
单极共射放大电路是一种常见的放大电路,通过实验可以得到其重要性能参数和工作特点,有助于实际应用中的设计和调试。
单级共射放大电路 实习报告
vo+Vcc+12V实验一 单级共射放大电路 实习报告1.实验原理对单级放大器的研究为高级放大器的研究与应用奠定了理论基础,由于单级放大器在多级放大器中所处位置不同,以及性能要求也不相同,但它们的最基本任务是相同的——放大,要不失真地稳定地放大。
就低频放大器而言,它要对几十赫兹几百赫兹的信号给予不失真的放大,单级放大器的能力一般可达几十倍到几百倍。
2.单级共射放大电路单级共射放大电路如图1-1所示。
3.静态工作点图1-1为电阻分压式单管放大器。
它利用RB1、RB2组成的分压电路,发射极中接有电阻RF 、RE ,以稳定放大器的静态工作点。
为了得到最大不失真输出幅度,其静态工作点应设在交流负载线的中间位置,过高或过低都会产生非线性失真。
在图1-1电路中,当流过偏置电阻RB1、RB2的电流远大于基极电流IB 时,(一般为5-10倍),则静态工作点可用下列公式估算CC B2B1B1B V R R R V +≈(1-1) EF BEB C E R R V V I I +-=≈(1-2) )R R (R I V V E F C C CC CE ++-=(1-3)4.电压放大倍数在图1-1电路中,其电压放大倍数:Fbe L C β)R (1r )R //β(R v A ++-=(1-4) (mA)I 26(mv)β)(1200r EQ be ++=(1-5)可见,当静态工作点确定后,电压放大倍数与下列三个因素有关:(1)集电极电阻Rc 越大,Av 越大,但增加Rc 并不能使Av 增加很多,因为还有RL 的影响。
而且,Rc 过大,其上的直流电压降也大,造成Vce 偏小,放大器很容易进入饱和区。
(2)外接负载RL 的大小对放大倍数的影响和Rc 有类似之处。
但改变RL 不会影响静态工作点。
(3)去掉射极电阻RE 的旁路电容CE ,使RE 对交流信号起负反馈作用,则电压放大倍数降为:Ebe L C β)R (1r )R //β(R v A++-=显然RE 对电压放大倍数的影响较大。
04-单级共射放大电路
2
二、实验电路原理图(P82图4.5.1)
1、工作原理
三极管放大器中广 泛应用的是分压式射 极偏置电路。电路的 Q点稳定, Q点主要 由RB1、RB2、RE、RC 及+VCC所决定。
若I1 >>IBQ ,VBQ >>VBE 温度T IC IE VE、VBQ不变 VBE IB
若vo波形的顶部被压缩,这种现象称为截止失真,说明 Q点偏低,应增大基极偏流IBQ,即增大ICQ。 若vO波形的底部被削波,这种现象称为饱和失真,说明Q 点偏高,应减小IBQ ,即减小ICQ 。
v i (t )
v i (t )
o o
v o (t ) 饱和失真
t t
o v o (t ) o 截止失真
5
电路组装(实例)
6
电路组装(实例)
7
三、实验内容
1、静态调试(合适的静态工作点) 测量VE 、VB 、Vc ,计算IC 、VCE (调节Rp ) 2、测量技术指标
测试电压放大倍数Av= Vo /Vi 记录输入输出波形 测量通频带BW = fH - fL 测量输入电阻、输出电阻
t t
12
பைடு நூலகம்
2. 动态调试:Q点测量与调整
(1)给放大器送入规定的输入信号,如ViPP =30mV, fi = 1kHz的正弦波。 (2)用示波器观察放大器的输出vo。
(3)调节Rp,使放大器的输出vo不失真。
(4)增大输入信号(如ViPP =120mV), vo无明显失 真,或者逐渐增大输入信号时, vo顶部和底部差不多 同时开始畸变,说明Q点设置得比较合适。 (5)此时移去信号源,分别测量放大器的静态工作 点VBQ、VEQ、VCQ,并计算VCEQ 、ICQ。
实验一 单级共射放大电路(电类新)
工作点偏高
Q1
Q2 图3.1.1 单级共射放大电路
饱和失真 截止失真
图3.1.2 饱和失真与截止失真
2. 放大器的性能指标
(1)电压增益Au 在输出波形不失真的情况下,给定输入信号,测量相 应的输出信号,则电压增益Au=U0/Ui。 (2) 最大不失真输出电压Uomax 是指在给定静态工作点的条件下,放大器所输出的最 大不失真电压值。 (3) 输入电阻和输出电阻 输入电阻和输出电阻是放大器的重要指标。输入电阻 ri的大小对信号源有影响;输出电阻r0的大小决定着负载 发生变化时电压放大倍数的稳定性。
实验一
一、实验目的
单管交流放大电路
1. 熟悉单管放大电路原理和电子实验台的使用。 2. 掌握放大器静态工作点的调试方法及对放大电路性能 的影响。 3. 学习测量放大电路Q点,AV ,ri,r0 的方法,了解共 射放大电路的特性。 4. 学习放大电路的动态性能。
二、实验原理
1. 静态工作点的选取与调整 放大器的静态工作点是由晶体管的参数和放大器的 偏置电路共同决定的。三极管的输出特性曲线有放大区、 饱和区和截止区三个工作区。 静态工作点的调整方法: 在不加输入信号的情况下,测量放大器的静态工作点, 使之工作于线性放大区。静态工作点选取的过高或过低, 都会使输出失真。
下周实验前交实验报告,请按学号排好!
减小RP,饱和失真
增大Ui ,非线性失真
单管放大器接线示例
*5. 放大电路输入电阻和输出电阻测量 (1)输入电阻测量 如图3.1.4在输入端串接一个5.1K电阻,测量Us与Ui,即 可计算 ri=R· Ui/(Us -Ui) (2)输出电阻测量 根据图3.1.5和步骤2测量的放大器空载及接负载RL=5.1K 的数据,可计算输出电阻 r0=(U0 /U0L-1)RL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一单级共射放大电路
一、实验目的
1.掌握单级共射放大电路静态工作点的测量和调整方法。
2.了解电路参数变化对静态工作点的影响。
3.掌握单级共射放大电路动态指标的测量方法。
4.学习幅频特性的测量方法。
二、预习要求
1.复习单级共射放大电路静态工作点的设置。
2.根据图1-1所示参数,估算获得最大不失真输出电压的静态工作点Q。
(设β=50)。
3.复习模拟电路电压放大倍数、输入电阻以及输出电阻的计算方法。
4.复习饱和失真和截止失真的产生原因,并分析判断该实验电路在哪种情况下可能产生饱和失真?在哪种情况下可能产生截止失真?
三、实验原理
1、参考实验电路
R p
+ -
+Vcc
(+12V)
-
+
Vo
图1-1单级共射放大电路
如图1-1所示,其中三极管选用硅管3DG6,电位器Rp用来调整静态工作点。
2、静态工作点的测量
输入交流信号为零(vi= 0 或ii= 0)时,电路处于静态,三极管各电极有确定不变的电压、电流,在特性曲线上表现为一个确定点,称为静态工作点,即Q点。
一般用IB、IC
和VCE (或IBQ 、ICQ 和VCEQ )表示。
实际应用中,直接测量ICQ 需要断开集电极回路,比较麻烦,所以通常的做法是采用电压测量的方法来换算电流:先测出发射极对地电压VE ,再利用公式
ICQ ≈IEQ=
E E
V R ,算出ICQ 。
(此法应选用内阻较高的电压表。
)
在半导体三极管放大器的图解分析中已经学习到,为了获得最大不失真的输出电压,静态工作点应该选在输出特性曲线上交流负载线的中点。
若静态工作点选得太高,容易引起饱和失真;反之又引起截止失真(如图1-2所示)。
对于线形放大电路,这两种工作点都是不合适的,必须对其颈性调整。
此实验电路中,即通过调节电位器Rp 来实现静态工作点的调整:Rp 调小,工作点增高;Rp 调大,工作点降低。
值得注意的是,实验过程中应避免输入信号过大导致三极管工作在非线性区,否则即使工作点选择在交流负载线的中点,输出电压波形仍可能出现双向失真。
/V
图1-2 三极管输出特性曲线
3、电压放大倍数的测量
电压放大倍数v A 是指输出电压与输入电压的有效值之比:v
A =
o i
V V
实验中可以用万用表分别测量出输入、输出电压,从而计算出输出波形不失真时的电压放大倍数。
同时,对于图1-1所示电路参数,其电压放大倍数V A 和三极管输入电阻b e
r 分别为: ()C L v
be 1
(//)
1e R R A r R ββ
=-++ ; be 26()300(1)
()
EQ m V r I m A β=++
4、输入电阻的测量
输入电阻的测量原理如图1-3所示。
Vs
图1-3 测试输入电阻原理图
电阻R 的阻值已知,只需用万用表分别测出R 两端的电压 '
S V 和 i V ,即有:
''()/i i
i i i
S
i S
i
V V V R R I V V R
V V =
=
=
--
R 的阻值最好选取和i R 同一个数量级,过大易引入干扰;太小则易引起较大的测量误差。
5、输出电阻的测量
输出电阻的测量原理如图1-4所示。
用万用表分别测量出开路电压 o V 和负载电阻上的电压 oL V ,则输出电阻o R 可通过计算求得。
(取L R 和o R 的阻值为同一数量级以使测量值尽可能精确)
o oL L o L
V V R R R =
∙+ o o L
o L oL
V V R R V -=
∙
L Vo
+
-
图1-4 测试输出电阻原理图
6、幅频特性的测量
在输入正弦信号情况下,放大电路输出随输入信号频率连续变化的稳态响应,称为该电路的频率响应。
其幅频特性即指放大器的增益与输入信号频率之间的关系曲线。
一般采用逐点法进行测量。
在保持输入信号幅度不变的情况下,改变输入信号的频率,逐点测量对应于不同频率时的电压增益,用对数坐标纸画出幅频特性曲线。
通常将放大倍数下降到中频电压放大倍数的0.707倍时所对应的频率称为上、下限截止频率(H f 、L f )。
BW =f H -f L ≈f H 称为带宽,如图1-5所示。
2⨯102⨯102⨯10
f L f H
图1-5 幅频特性曲线
四、实验内容
1.按图1-1,组装单级共射放大电路,经检查无误后,按通预先调整好的直流电源+12V。
2.测试电路在线性放大状态时的静态工作点
从信号发生器输出f=1KHZ,Vi=10mV(有效值)的正弦电压到放大电路的输入端,将放大电路的输出电压接到双踪示波器Y轴输入端,调整电位器Rp,使示波器上显示的V o波形达到最大不失真,然后关闭信号发生器,即Vi=0,测试此时的静态工作点,填入表1.1中。
3.测试电压放大倍数A v
(1)从信号发生器送入f=1 KHZ,Vi=30mV的正弦电压,用万用表测量输入电压V o,计算电压放大倍数A v=V o/Vi。
(2)用示波器观察V i和V o电压的幅值和相位。
把Vi和V o分别接到双踪示波器的CH1和CH2通道上,在荧光屏上观察它们的幅值大小和相位。
4.了解由于静态工作点设置不当,给放大电路带来的非线性失真现象
调节电位器Rp,分别使其阻值减少或增加,观察输出波形的失真情况,分别测出相应的静态工作点,测量方法同实验内容2,将结果填入表1.2中。
表1.2
5.测量单级共射放大电路的通频带
(1)当输入信号f=1KHZ,Vi=30mV,RL=5.1KΩ,在示波器上测出放大器中频区的输出电
压V opp(或计算出电压增益)。
(2)增加输入信号的频率(保持Vi=30mV 不变),此时输出电压将会减小,当其下降到中频区输出电压的0.707(-3dB )倍时,信号发生器所指示的频率即为放大电路的上限频率fH 。
(3)同理,降低输入信号的频率(保持Vi=30mV 不变),输出电压同样会减小,当其下降到中频区输出电压的0.707(-3dB )倍时,信号发生器所指示的频率即为放大电路的下限频率L f 。
(4)通频带BW=H f -L f 6.输入电阻Ri 的测量
按图1.3接入电路。
取R=1K Ω,用万用表分别测出Vs' 和V i ,则
'
i i S
i
V R R V V =
-
此外,还可以用一个可变电阻箱来代替R,调节电阻箱的值,是V i=1/2Vs’,则此时电阻箱所示阻值即为Ri 的阻值。
这种测试方法通常称为“ 半压法”。
7.输出电阻Ro 的测量
按图 1.4接入电路。
取RL=5.1k Ω,用万用表分别测出RL=∞时的开路电压V o 及RL=5.1k Ω时的输出电压V oL,则
O O L
o L
O L
V V R R V -=
五、实验报告要求
1.认真记录和整理测试数据,按要求填入表格并画出波形图。
2.对测试结果进行理论分析,找出产生误差的原因。
六、实验思考题
1.加大输入信号i V 时,输出波形可能会出现哪几种失真?分别是由什么原因引起的? 2.调整静态工作点时,11b R 要用一个固定电阻和电位器串联,而不能直接用电位器,为什么?
七、实验器材
模拟电子线路实验箱 一台 双踪示波器 一台 万用表 一台 连线 若干 函数发生器 一台
单级共射放大电路(实验报告模板)
一.实验目的
二.实验设备
三.实验原理
1.实验电路图
2. 理论分析计算
(1)静态工作点
(2)放大倍数:
(3)输入电阻:
(4)输出电阻:
(5)幅频特性
3.实验测量方法
(1)静态工作点测量
(2)放大倍数测量方法(包含最大不失真电压测量)
(3)输入电阻测量
(4)输出电阻测量
(5)幅频特性
四.实验测试内容及数据记录
1.静态工作点的调试与测量
2.动态参数测量
(1) 电压放大倍数A v
(2) 输入电阻
(3)输出电阻
3.Q点对输出失真的影响
调节R W改变电路的静态工作点,同时配合调节输入信号的幅度是输出出现截止失真、饱和失真、同时出现截止、饱和失真,记录三种情况下的输入、输出波形。
失真波形记录
4.幅频特性(测量通频带)
5. 对测试结果进行理论分析,对比实验结果,分析实验误差 五、实验思考题
1.加大输入信号i V 时,输出波形可能会出现哪几种失真?分别是由什么原因引起的? 2.调整静态工作点时,11b R 要用一个固定电阻和电位器串联,而不能直接用电位器,为什么?
u i
t
u o
t u i
t
u o
t u i
t
u o
t。